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Abstract. Measuring atmospheric conditions above convec-
tive storms using spaceborne instruments is challenging. The
operational retrieval framework of current hyperspectral in-
frared sounders adopts a cloud-clearing scheme that is un-
reliable in overcast conditions. To overcome this issue, pre-
vious studies have developed an optimal estimation method
that retrieves the temperature and humidity above high thick
clouds by assuming a slab of cloud. In this study, we find
that variations in the effective radius and density of cloud
ice near the tops of convective clouds lead to non-negligible
spectral uncertainties in simulated infrared radiance spec-
tra. These uncertainties cannot be fully eliminated by the
slab-cloud assumption. To address this problem, a syner-
gistic retrieval method is developed here. This method re-
trieves temperature, water vapor, and cloud properties simul-
taneously by incorporating observations from active sensors
in synergy with infrared radiance spectra. A simulation ex-
periment is conducted to evaluate the performance of dif-
ferent retrieval strategies using synthetic radiance data from
the Atmospheric Infrared Sounder (AIRS) and cloud data
from CloudSat/CALIPSO. In this experiment, we simulate
infrared radiance spectra from convective storms through a
combination of a numerical weather prediction model and a
radiative transfer model. The simulation experiment shows
that the synergistic method is advantageous, as it shows high
retrieval sensitivity to the temperature and ice water con-
tent near the cloud top. The synergistic method more than
halves the root-mean-square errors in temperature and col-
umn integrated water vapor compared to prior knowledge
based on the climatology. It can also improve the quantifica-

tion of the ice water content and effective radius compared to
prior knowledge based on retrievals from active sensors. Our
results suggest that existing infrared hyperspectral sounders
can detect the spatial distributions of temperature and humid-
ity anomalies above convective storms.

1 Introduction

Water vapor in the upper troposphere and lower stratosphere
(UTLS) plays an essential role in the Earth’s climate sys-
tem due to its important radiative effects (Huang et al., 2010;
Dessler et al., 2013) and chemical effects (Shindell, 2001;
Kirk-Davidoff et al., 1999; Anderson et al., 2012).

Our understanding of UTLS water vapor has long been in-
formed by accurate in situ observations carried out during
aircraft and balloon campaigns. Long-term records provided
by balloon-borne observations have suggested a decadal in-
crease in stratospheric water vapor (Oltmans et al., 2000;
Rosenlof et al., 2001; Hurst et al., 2011) but a decadal cool-
ing in tropical tropopause temperature over the same period
(Rosenlof et al., 2001; Randel et al., 2004). These contra-
dictory trends in water vapor and temperature are not repro-
duced well by reanalysis products (Davis et al., 2017), and
the key processes at play are still under debate. This increase
in UTLS water vapor, if true, may accelerate the decadal
rate of surface warming through its impact on thermal ra-
diation (Solomon et al., 2010). While balloon-borne instru-
ments suggest possible changes in UTLS water vapor, air-
craft campaigns reveal that UTLS water vapor can be highly
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variable under the influence of deep convection. By sampling
plumes from convective detrainment, these campaigns have
found that overshooting deep convection can increase the
UTLS water vapor by injecting moist plumes or ice particles
that sublimate in a warmer environment (e.g., Corti et al.,
2008; Schiller et al., 2009; Anderson et al., 2012; Sun and
Huang, 2015; Smith et al., 2017). Despite substantial evi-
dence of convective hydration, it has been argued that the
overall impact of convection on the global UTLS water va-
por budget might be negligible (e.g., Ueyama et al., 2018;
Schoeberl et al., 2019; Randel and Park, 2019).

Therefore, long-term global observations of UTLS wa-
ter vapor, especially above convective storms, are essential.
However, the operational global radiosonde network does not
perform well in cold and low-pressure environments such as
the UTLS (Kley, 2000). Moreover, while satellite observa-
tional products have been extensively used to investigate the
spatial and temporal variability of UTLS water vapor (Sun
and Huang, 2015; Randel and Park, 2019; Yu et al., 2020;
Wang and Jiang, 2019; Jiang et al., 2020), these products
have some limitations. Although limb-viewing and solar oc-
cultation instruments are sensitive to the UTLS region, they
are not suitable for detecting small-scale variability above
convective storms because the horizontal sampling footprints
of these instruments are larger than 100 km. Furthermore,
contamination from convective clouds leads to higher uncer-
tainty in the current products of microwave sounders (such
as MLSv4.2, Livesey et al., 2017) due to strong scattering.
Moreover, because they are limited by the occurrence of solar
occultation, instruments that use this technique do not pro-
vide sufficient sampling to study convective events.

Meanwhile, the current hyperspectral sounding framework
of the NOAA and NASA adopts a cloud-clearing scheme
(Susskind et al., 2003; Gambacorta et al., 2014). This scheme
infers the radiance of clear scenes from a 3 x 3 set of adja-
cent instrument fields of view (FOVs) with different cloud
amounts, assuming the same temperature and atmospheric
absorber (including water vapor) fields in all FOV footprints
(~13.5km). Consequently, such a cloud-clearing scheme
fails in overcast cloud conditions (i.e., when there are the
same cloud amounts in adjacent footprints) or when ther-
modynamic properties vary drastically among adjacent foot-
prints. For this reason, the current retrieval products from
hyperspectral infrared sounders, including AIRS (the At-
mospheric Infrared Sounder; Chahine et al., 2006), IASI
(Infrared Atmospheric Sounding Interferometer; Blumstein
etal., 2004), and CrIS (Cross-track Infrared Sounder; Bloom,
2001), are not reliable above convective storms.

Recently, researchers have demonstrated the feasibil-
ity of performing single-footprint retrievals in cloudy-sky
conditions from AIRS using an optimal estimation (OE)
scheme (DeSouza-Machado et al., 2018; Irion et al., 2018;
Feng and Huang, 2018). Using the same instrument, such
single-footprint retrievals improve the spatial resolution from
40.5km in the cloud-clearing scheme to 13.5km. In those
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studies, DeSouza-Machado et al. (2018) used the a priori
cloud state from a numerical weather prediction (NWP)
model and then adjusted the cloud state to match the ob-
served brightness temperature of an infrared window chan-
nel. Irion et al. (2018) retrieved the cloud optical depth, cloud
effective radius, and the cloud-top temperature by obtaining
a priori data from collocated MODIS (Moderate Resolution
Imaging Spectroradiometer; Platnick et al., 2003) observa-
tions. While DeSouza-Machado et al. (2018) and Irion et al.
(2018) discussed the implementation of an all-sky, single-
footprint OE scheme in general, Feng and Huang (2018)
focused especially on optically thick cloud conditions, for
which they conducted a comprehensive information content
analysis. They showed that existing hyperspectral infrared
sounders present substantial numbers of degrees of free-
dom for signal (DFS; a higher DFS indicates greater verti-
cal resolution) in UTLS temperature (~5) and water vapor
(~1). They also found that the presence of thick cloud in
the upper troposphere increases the DFS compared to clear-
sky conditions. By validating the retrieval using in situ ob-
servations carried by aircraft campaigns, Feng and Huang
(2018) demonstrated that it is possible to detect both hydra-
tion and dehydration anomalies in the UTLS using current
infrared hyperspectral sounders. In the case of optically thick
clouds, e.g., deep convective clouds, these studies (DeSouza-
Machado et al., 2018; Irion et al., 2018; Feng and Huang,
2018) similarly represent the cloud as a slab (an optically
thick and uniform layer) of ice clouds with fixed microphys-
ical properties, based on cloud states inferred a priori from
the brightness temperature of an infrared window channel,
NWP, or coincident passive cloud instrument (e.g., MODIS).
Retrieval methods that use this cloud assumption are referred
to as slab-cloud methods hereafter.

However, neglecting the variability in cloud mass and mi-
crophysical properties leads to uncertainty in the thermal
emission of the cloud, and this emission greatly contributes
to the observed top-of-atmosphere (TOA) radiances. Yang
et al. (2013) showed that the scattering and absorption prop-
erties of ice clouds across the infrared spectrum are greatly
impacted by the size and shape of ice particles. Furthermore,
deep convective clouds are typically associated with large
temperature perturbations near the cloud top and drastic tem-
perature decreases with altitude (Biondi et al., 2012). If there
is an anomalous temperature field, inferring the cloud-top po-
sition from the brightness temperature of an infrared window
channel, as done in previous studies, can lead to biases (Sher-
wood et al., 2004). When the temperature lapse rate is large,
the vertical distribution of ice content can influence the ther-
mal emission of the cloud. Therefore, it is necessary to assess
and constrain the impacts of these factors on the retrieval ac-
curacy.

These uncertainties regarding clouds can be reduced by
combining collocated observations from active sensors on-
board the same satellite constellation. The A-Train satel-
lite constellation uniquely provides collocated observations
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from an orbital hyperspectral infrared sounder (i.e., AIRS)
and active remote-sensing instruments, including the cloud
profiling radar aboard CloudSat (Stephens et al., 2008) and
CALIOP (Cloud—-Aerosol Lidar with Orthogonal Polariza-
tion) aboard CALIPSO (Cloud-Aerosol Lidar and Infrared
Pathfinder Satellite Observation; Winker et al., 2010). Be-
fore the year 2015, these instruments passed over nearly the
same locations within 2min of each other while traveling
along the A-Train orbit track. The nearest lidar (90 m x 90 m)
and CPR (2.5km x 1.4km) footprints were typically lo-
cated around 5km from the center of the AIRS footprints
(13.5km x 13.5 km), well within the AIRS FOVs.

DARDAR-Cloud (Delanoé¢ and Hogan, 2008, 2010) is a
joint product that combines radar reflectivity measurements
from CPR with the lidar attenuated backscatter ratio from
CALIOP to provide ice water content (IWC) and effective
radius profiles at each CPR footprint. Compared to passive
instruments, this joint product is more sensitive to the verti-
cal ice distribution near the cloud top, which can be an im-
portant influence on the thermal emission of the cloud. In
the present work, we develop an optimal estimation method
to retrieve the temperature, water vapor, ice water content,
and effective radius simultaneously by incorporating active
cloud remote-sensing products and infrared hyperspectra, us-
ing the DARDAR-Cloud product and AIRS L1B observa-
tions to construct an example. A retrieval method that in-
corporates such collocated cloud products is referred to as
a synergistic method.

In this paper, we first quantify the uncertainty in infrared
radiance spectra induced by cloud optical properties. We then
evaluate the performance of retrieval strategies that use the
slab-cloud and synergistic methods following a simulation
experiment emulating an implementation based on the AIRS
L1B and DARDAR-Cloud products. This experiment sim-
ulates observational signals from realistic temperature, hu-
midity, and cloud fields above a deep convective event simu-
lated by an NWP model. Section 2 describes the main com-
ponents of this simulation experiment. We then implement
different retrieval strategies, as formulated in Sect. 2.3, to re-
trieve from synthetic observations. The results are evaluated
in Sect. 3 by comparing the retrievals to the prescribed truth.
The application of the improved synergistic retrieval scheme
to existing instruments is discussed in Sect. 4.

2 Method

The simulation experiment in this study consists of the fol-
lowing components:

1. a cloud-resolving NWP model that is used to provide
the true atmospheric conditions (the “truth”) during a
tropical cyclone event and to construct a priori and test
sets, as described in Sect. 2.1;
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2. aradiative transfer model that is used to generate syn-
thetic observations with the AIRS instrument specifica-
tions and as the forward model in the retrieval, as de-
scribed in Sect. 2.2;

3. retrieval algorithms, as explained in Sect. 2.3; and

4. comparisons between the retrieved quantities and the
NWP-generated truth in Sect. 3.

A tropical cyclone event is simulated because it gener-
ates a vast convective cloud system that covers a large spa-
tial domain for contrasting the above-storm temperature and
humidity fields. In the framework of this simulation experi-
ment, we neglect the complexity of the scan geometry of the
instrument by assuming that the instrument views from the
nadir, that the atmospheric conditions are uniform within one
footprint, and that coincident cloud products are available for
every sample. In reality, the scanning angle of AIRS foot-
prints for which the nearest CloudSat footprints are within
6.5 km from the center is around 16° off the nadir.

2.1 Numerical weather prediction model

In this study, we use the Global Environmental Multiscale
(GEM) model of Environment and Climate Change Canada
(hereafter ECCC; Co6té et al.,, 1998; Girard et al., 2014)
to provide a detailed and realistic representation of storm-
impacted atmospheric and cloud profiles, following the study
by Qu et al. (2020). The GEM model is formulated using
nonhydrostatic primitive equations with a terrain-following
hybrid vertical grid. It can be run as a global model or a
limited-area model and is capable of one-way self-nesting.
For the experiments conducted here, three self-nested do-
mains are used with areas of 3300 x 3300, 2000 x 2000, and
1024 x 1024 km? and horizontal grid spacings of 10, 2.5,
and 1 km, respectively, centered at 141°E, 16° N. All sim-
ulations use 67 vertical levels, with a vertical grid spac-
ing Az~250m in the UTLS region and the model top
at 13.5hPa (29.1km). The simulation is initialized with
conditions from the ECCC global atmospheric analysis at
00:00 UTC 16 May 2015. It runs for 24 h until 00:00 UTC
on 17 May 2015. A model spin-up time of 6h is used to
ensure the correct formation of clouds. Model outputs at a
horizontal grid spacing of 1 km are saved every 10 min. The
subdomains of the 1 km simulation near the cyclone are used
in the simulation experiment.

For the two high-resolution simulations with horizontal
grid spacings of 2.5 and 1 km, the double-moment version
of the bulk cloud microphysics scheme of Milbrandt and Yau
(2005, hereinafter referred to as MY?2) is used. This scheme
predicts the mass mixing ratio for each of six hydromete-
ors, including nonprecipitating liquid droplets, ice crystals,
rain, snow, graupel, and hail. Condensation (ice nucleation)
is formed only upon reaching grid-scale supersaturation with
respect to liquid (ice). In addition to the MY?2 scheme, the
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planetary boundary-layer scheme (Bélair et al., 2005) and
the shallow convection scheme (Bélair et al., 2005) can also
produce cumulus, stratocumulus, and other low-level clouds,
which are of less relevance to our UTLS-centric simulation
experiment.

A snapshot of the 1km resolution GEM simulation ob-
tained 410 min after the initial time step is used for the radi-
ance simulation because a mature storm at that time point
generated abundant convective clouds, which our retrieval
approach targets. Figure 1 shows the atmospheric conditions
at this time step, including the distributions of temperature
and water vapor at 81 hPa, the level at which the variance is
largest. To mimic the satellite infrared image, we show the
distribution of the brightness temperature in a window chan-
nel at 1231 cm™! (8.1 um, BT1231). A cold BT231 suggests a
deep convective cloud (DCC) that extends to the tropopause
level. Overshooting DCCs are often identified from satellite
infrared images based on a warmer BT in a water vapor chan-
nel (BT 419 cm™!) relative to BT;23;, which can be attributed
to water vapor emission above the cold point (Aumann and
Ruzmaikin, 2013). The BT-based criterion is used to select
retrieval samples, mimicking the scenario in which satellite
infrared radiance measurements alone are used to identify
overshooting DCCs, as done in Feng and Huang (2018). Us-
ing the BT-based criterion, 9941 retrieval samples are iden-
tified, with their locations marked in Fig. 1. These samples
are confirmed to be continuous precipitating clouds that fully
cover the vertical range from near the ground to a potential
temperature of 380 K. Among these samples, 100 profiles are
randomly selected to construct a test set. The sample size is
verified to check that it meets the convergence requirement
of the statistical evaluation conducted in Sect. 3. The other
simulated profiles (numbering 0(10%)) are used, regardless
of cloud conditions, to construct an a priori dataset to define
the prior knowledge used in the retrieval in Sect. 2.3.

2.2 Radiative transfer model

This study uses the code MODerate spectral resolution
TRANsmittance version 6.0 (MODTRAN 6.0) (Berk et al.,
2014) to simulate infrared radiance spectra observed by satel-
lites. MODTRAN 6.0 provides a line-by-line (LBL) algo-
rithm that performs monochromatic calculations at the cen-
ters of 0.001cm™! sub-bins. Within each 0.2cm™! spec-
tral region, this method explicitly sums contributions from
line centers while precomputing contributions from line tails.
This algorithm has been validated against a benchmark ra-
diation model, LBLRTM, and was found to deviate from
this benchmark by an atmospheric transmittance of less than
0.005 throughout most of the spectrum (Berk and Hawes,
2017). MODTRAN 6.0 accounts for both absorptive and
scattering media in the atmosphere by implementing a spher-
ical refractive geometry package and the DISORT discrete
ordinate model to solve the radiative transfer equation (Berk
and Hawes, 2017).
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Figure 1. GEM-simulated atmospheric conditions used as the truth
in the simulation experiment. (a) Brightness temperature (K) at
1231 cm™ L. (b) Temperature (K) at 81 hPa. (¢) Water vapor vol-
ume mixing ratio (ppmv) at 81 hPa. (d) Column integrated water
vapor (CIWV) from 110 to 70hPa. Solid color-coded dots mark
the overshooting deep convective clouds sampled via the BT-based
criterion. The test set used to conduct the retrievals was randomly
selected from these samples. Partially transparent colors show the
rest of the simulated fields. The variable fields were taken 410 min
after the initial time step.

In this study, we use MODTRAN 6.0 to simulate the
all-sky radiances with user-defined atmospheric profiles. 80
fixed atmospheric pressure levels are used. Temperature, wa-
ter vapor, and ice cloud (IWC) profiles from GEM simula-
tions at 67 layers are input into the model. Above the GEM
model top (13.5 hPa), the values from a standard tropical pro-
file McClatchey, 1972) are placed between 13.5 and 0.1 hPa.
Other trace gases are fixed at their tropical mean values.

User-defined cloud extinction coefficient, single-scattering
albedo, and asymmetry factor (defined per unit mass of cloud
ice) values are added to the model, based on the cloud optical
library of Yang et al. (2013). This cloud optical library pro-
vides a look-up table for the scattering, absorption, and polar-
ization properties of ice particles of different habits, rough-
nesses, and sizes. We parameterize the particle size distribu-
tion following microphysical data obtained from in situ ob-
servations at temperatures lower than —60°C (Heymsfield
et al., 2013; Baum et al., 2014). Following Appendices A—
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B in Baum et al. (2011), the mean extinction coefficients,
mean single-scattering albedo, and mean asymmetry factor
of the parameterized particle size distribution are obtained at
individual wavelengths for effective radii ranging from 1 to
100 um. These optical properties are then supplied to the ra-
diative transfer calculations for specified effective radii and
crystal habit mixtures. The optical depth of ice clouds in the
DCC samples exceeds 100, which completely attenuates the
emission from liquid clouds. Liquid clouds are therefore ne-
glected.

The instrument specifications of AIRS are used in the re-
trieval framework of this simulation experiment. This instru-
ment has 2378 channels from 650 to 2665 cm™!. The radio-
metric noise of this instrument is obtained from the AIRS
L1B product, and corresponds to a noise-equivalent temper-
ature difference (NEdT) of around 0.3 K (at 250 K). This
NEdT increases to around 0.5 K at a reference temperature
of 200 K. Based on the radiometric quality of each chan-
nel, 1109 channels are selected. This rigorous channel selec-
tion also excludes O3 absorption channels (980-1140 cm™h),
CHy4 absorption channels (1255-1355 cm™ 1), and shortwave
infrared channels (2400-2800cm™'). Adopting the AIRS
spectral response function, synthetic radiances are generated
using MODTRAN with temperature, water vapor, and ice
water content profiles from the test set described in Sect. 2.1.
Effective radius profiles of the test set are prescribed ac-
cording to the DARDAR-Cloud observations described in
Sect. 2.2.1. A crystal habit mixture model (Baum et al., 2011)
for tropical deep convective clouds is used to generate syn-
thetic radiance spectra. Spectrally uncorrelated noise is gen-
erated and added to the synthetic radiance spectra. The noise
in each channel follows the Gaussian distribution, the mean
of which is equal to the radiometric noise of the AIRS instru-
ment. These infrared radiance spectra are used as synthetic
observations in the simulation experiment.

2.2.1 Cloud-induced uncertainties

Ice clouds impact infrared radiance spectra via their thermal
emission. Besides its temperature, the thermal emission of a
cloud is influenced by the mass density of cloud ice and its
optical properties, which include the extinction coefficient,
single-scattering albedo, and asymmetry factor. These optical
properties are jointly affected by the particle size distribution,
effective radius, habit, and surface roughness of ice particles,
and are defined per unit mass in this study. In this section, we
are interested in whether the mass density of cloud ice and
optical properties significantly affect infrared radiance spec-
tra. We also evaluate uncertainties in the forward model when
simulating infrared radiance spectra with simplified cloud in-
puts.

The cloud-induced uncertainties in infrared radiance spec-
tra are evaluated with regard to three factors: (1) the vari-
ation in IWC, (2) the variation in cloud optical properties
caused by the column to column (horizontal) variation in ef-
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fective radius, and (3) the variation in cloud optical proper-
ties caused by crystal habit mixture variation and the layer-
to-layer (vertical) variation in effective radius. Uncertainties
due to the particle size distribution are not evaluated because
there is a lack of observations of its variability and because
it has a smaller impact compared to the other cloud vari-
ables considered here. The surface roughness of the ice par-
ticles is neglected because it mainly affects the scattering
angle (Yang et al., 2013), which plays only a minor role in
the infrared channels. To gain knowledge of cloud ice parti-
cles and their impacts on the infrared radiance spectrum, and
to prescribe relevant information in the UTLS retrieval (see
Sect. 2.3), we use the DARDAR-Cloud product to form a
dataset of observations close to tropical cyclones, due to their
relevance to the simulation experiment. The times at which
A-Train satellites pass over tropical cyclones are identified
by the CloudSat 2D-TC product (Tourville et al., 2015) for
the years 2006-2016. Only overpasses in the western part of
the Pacific are used. From these overpasses, we select DAR-
DAR footprints that are within 1000 km of a cyclone center.
Based on the CloudSat-CLDCLASS product, 98 293 of these
footprints contain OT-DCCs that penetrate beyond 16 km in
altitude. Each profile consists of the IWC and the effective
radius (R.) at a vertical resolution of 60 m.

Using the identified OT-DCC profiles from DARDAR-
Cloud, we calculate the probability distribution function
(PDF) of the effective radii of ice particles at the topmost
cloud layer. Figure 2a shows that the ice particles are typ-
ically small, with an average effective radius of 21.5um
and 1st and 99th percentiles of 13.3 and 39.7 um, respec-
tively. Using the same OT-DCC profiles, profiles of the mean
and standard deviation (SD) of the IWC are obtained and
are shown in Fig. 2b. The statistical calculations performed
here exclude zero values. The average cloud-top height is
16.7 km.

Baum et al. (2011) developed a model of habit mixture
as a function of ice particle size for tropical deep convec-
tive clouds. Using this model, ice cloud optical properties are
generated following the description in Sect. 2.2. A radiance
spectrum calculated using this model is indicated by the sub-
script “mix.” Based on the habit mixture model, over 80 %
of small ice particles in tropical deep convection are solid
columns. Therefore, we also generate the radiance from ice
cloud optical properties using solid columns alone, and this
is indicated by the subscript “sc.”

100 profiles are selected from the OT-DCC samples. For
each sample, we calculate the upwelling infrared radiance
Rpix (Re, IWC) using the IWC profile, effective radius (Re)
profile, and the habit mixture model developed by Baum
etal. (2011). The mean temperature (7o) and water vapor (qo)
profiles of the NWP simulation domain (Fig. 1) are used in
the radiative transfer calculations.

Considering that the infrared radiance spectra may not
be sensitive to vertical variations in cloud optical prop-
erties, we assume that optical properties are constant in
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Figure 2. Cloud statistics based on 98 293 overshooting deep convective samples from the DARDAR-Cloud dataset. The samples are within
1000 km of a tropical cyclone center. (a) Histograms of the effective radius (um) of cloud ice particles at the topmost layer (blue) and the
effective radius for representing vertically uniform optical properties (Re,opt red). (b) Mean IWC (blue curve) and SD of the IWC (gray

area).

all vertical layers of an atmospheric column and a crys-
tal habit of solid columns to simplify the input cloud vari-
ables for MODTRAN. Following this assumption, we cal-
culate Rgc(Re opt, IWC) using solid columns alone and one
effective radius value, Re opi, for all vertical layers of an
individual profile. This Re op, which minimizes the bright-
ness temperature difference between Rpix(R.,IWC) and
Rsc (Re,opt, IWC), is solved iteratively. The PDF of Re op is
shown in red in Fig. 2a; it has an average of 34 pm (Re0)
and a SD of 11um. In practice, one may estimate Re opt
from the effective radius of a cloud layer where the optical
depth measured from the cloud top reaches unity, in which
case the root-mean-square error (RMSE) is 1.6 um (~5 %).
The spectrum of the RMSE in Ry (Re,opt, IWC) relative to
Rix (Re, IWC) is shown by the red solid curve in Fig. 3a.
The magnitude of this RMSE spectrum in the mid-infrared
is around 0.1 K, confirming that the mid-infrared spectrum is
not sensitive to layer-to-layer variations in effective radius or
to mixtures of crystal habits that differ from solid columns. A
reasonable representation of the mid-infrared emission spec-
trum of a tropical deep convective cloud can be obtained by
assuming constant cloud optical properties for the entire col-
umn of the cloud. At wavenumbers higher than 1800cm™!,
however, neglecting the variations in effective radius and
crystal habit induces significant RMSE, as shown in Fig. 3a.
The RMSE spectrum is also computed by adopting an AIRS-
like spectral response function, &synergistic,> t0 represent the
forward model uncertainty in the synergistic retrieval method
introduced in Sect. 2.3.
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In the following, the Reopc determined for each pro-
file as described above is used to represent the verti-
cally constant effective radius value for characterizing the
cloud optical properties of a cloud column. It is also used
to evaluate the spectral differences caused by IWC and
column-to-column variations in cloud optical properties. We
calculate infrared radiance spectra with the mean effec-
tive radius (Re,0, 34 um) or IWC profile (IWCy), denoted
Rsc(Re,0,IWC) and Rgc(Re, opt, IWCop), respectively. Pertur-
bations of infrared spectra caused by variations in effective
radius (Re opt) are then evaluated using the mean (blue curve)
and the SD (gray-shaded area) of the equivalent brightness
temperature of Rgc(Re, opt, IWCo), as shown in Fig. 3b. Us-
ing the mean effective radius leads to a RMSE spectrum in
Rsc(Re 0, IWC) relative to Ry (Re, opt, IWC), as shown by the
red curve in Fig. 3b. Similar results are shown in Fig. 3c for
the IWC.

In Fig. 3b and c, the mean spectrum of OT-DCCs shows
cold and relatively uniform brightness temperatures in the
window and weak absorption channels that largely corre-
spond to the emission from the cloud top. While variations
in the effective radius (Re,opt) and IWC have only a weak ef-
fect on the strong absorption channels, they greatly impact
the cloud emission, thus leading to large radiance variations
in the window and weak absorption channels. As a result, the
two RMSE spectra are similar. The RMSE due to column-to-
column variations in effective radius (Re opt) is around 1K,
and the RMSE due to a varying IWC profile is around 3 K.

The RMSE spectra are further normalized with respect to
the spectral mean, as shown in Fig. 3d, to examine whether
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Figure 3. Effects of variations in tropical deep convective clouds on infrared radiance spectra from 200 to 2500 cm™! at 5cm™! resolution.

(a) The mean bias (blue, left y axis) and RMSE (red, right y axis) in Rgc(Re,opt, IWC) (solid) and Rsc(Re,opt, slab) (dashed), respectively,
relative t0 Ryjx (Re, IWC). (b) The mean radiance spectrum of Rsc(Re,opt, IWCp) (blue, left y axis) and its SD (gray area). Red curves (right
y axis) show the RMSE in Rsc(Re o, IWC) relative to Rsc(Re,opt, IWC). (¢) The mean radiance spectrum of Rgc(Re o, IWC) (blue, left y
axis) and its SD (gray area). Red curves (right y axis) show the RMSE in Rgc(Re, opt, IWCy) relative to Ryc(Re,opt, IWC). (d) The RMSE
in Rgc(Re,0, IWC) relative to Rgc(Re,opt, IWC) (blue) and the RMSE in Rgc(Re,opt, IWCp) relative to Rge(Re, opt, IWC) (red); both are also

normalized to the spectral mean.

the spectral signatures of the effective radius and IWC are
distinguishable from each other. Despite the overall similar-
ity, the effective radius affects the spectrally dependent ex-
tinction coefficients, leading to a tilted pattern across the in-
frared spectra, while the RMSE due to the IWC is relatively
uniform across the infrared window. Therefore, it is possi-
ble to distinguish the radiative signals of the effective radius
from those of the IWC with a mid-infrared coverage char-
acteristic of existing instruments. Interestingly, differences
in the two normalized RMSE spectra are more prominent
at lower wavenumbers (~200cm™!), suggesting that far-
infrared channels — e.g., those from future instruments such
as FORUM (Palchetti et al., 2020) and TICFIRE (Blanchet
et al., 2011) — may be advantageous for UTLS retrieval. This
is beyond the scope of the present simulation experiment but
warrants future investigation.

To enable a comparison, we follow Feng and Huang
(2018) in obtaining the infrared spectra using the slab-cloud
method. For each Rpyix(R.,IWC), we calculate the bright-
ness temperature of the window channel at 1231cm™!. The
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idea of the slab-cloud method used by Feng and Huang
(2018) is to minimize the infrared radiance residual at this
window channel by placing a slab of cloud at the ver-
tical layer where the atmospheric temperature differs the
least from BTj23;. This 500m thick slab of cloud has
a uniform IWC of 1.5gm™> and an effective radius of
34um. The temperature of this vertical layer is adjusted
to BTj231. With this prescribed cloud layer in place, ra-
diance spectra denoted Rgc(Re,0,slab) are calculated again
for each profile. The BT23; values of Rpix(Re, IWC) and
Ry (Re,0,slab) are identical. Consequently, the differences
between Rpix(Re, IWC) and Ryc(Re o, slab) in other chan-
nels highlight the radiance uncertainty due to the slab-
cloud assumption. The RMSE in Ry (R 0, slab) relative to
Rpix (Re, IWC) is shown by the dashed red curve in Fig. 3a.

Figure 3a reveals that the slab-cloud assumption cannot
fully account for the spectral variations in cloud emission.
This assumption leads to a spectrally tilted mean radiance
bias, as shown by the red curve in Fig. 3a. We note that this
tilted pattern is related to the spectrally dependent extinction
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coefficient, which is affected by the effective radius (the vari-
ation in Re opt) so that radiances at different wavenumbers
are contributed by cloud emission at different heights, which
is in turn affected by the vertical distribution of ice mass.
Therefore, the clear-cut cloud boundary in the slab cloud
and the constant effective radius (Re opt) collectively con-
tribute to the radiance bias shown by the dashed blue curve in
Fig. 3a. The RMSE of Ry:(R¢ o, slab) shows a minimum of
around 0.2 K in the mid-infrared window and a maximum
of over 4K at high wavenumbers (over 2000 cm~1). This
RMSE spectrum is also calculated by adopting an AIRS-like
spectral response function to represent the radiance uncer-
tainty induced by the slab-cloud assumption in the retrieval
described in Sect. 2.3, and is denoted &q,p.

2.3 Retrieval algorithm

The cloud-assisted retrieval proposed by Feng and Huang
(2018) is an optimal estimation method (Rodgers, 2000)
that retrieves atmospheric states above clouds using infrared
spectral radiance. Similar to Eq. (1) in Feng and Huang
(2018), we express the relation between the observation vec-
tor y and the state vector x as follows:

oF
y=F(xo)+—8 (x —x0)t+e (D
X
=y, +K(x —x0) +e. 2)

Using a similar definition to that in Feng and Huang (2018),
the state vector includes the temperature x; and the loga-
rithm of specific humidity x, in 67 model layers. x( refers
to the first guess for the state vector, which is the mean of
the a priori dataset. y contains the infrared radiance observa-
tions y..q. F is the forward model that relates x to y. Here,
the forward model is the radiative transfer model, MOD-
TRAN 6.0, configured with the spectral response function
of the AIRS instrument. The forward model can be linearly
approximated by the Jacobian matrix K, which is iteratively
computed at every time step. ¢ is the measurement error,
which includes the radiometric uncertainties of the instru-
ment and the forward model error. The forward model error
comes from the radiative transfer algorithm used by the for-
ward model and from inputs to the forward model. Because
the line-by-line algorithm of MODTRAN has been validated
against LBLRTM (Berk and Hawes, 2017), we consider the
forward model error to mainly arise from the uncertainties
in the inputs, namely the cloud assumptions in the radiative
transfer simulation, which is evaluated in Sect. 2.2.1. Other
uncertainties in the forward model calculations are neglected.

Following the optimal estimation method (Rodgers, 2000,
Eq. 5.16), an estimate of x, denoted X, is expressed as

X=x0+GK(x —x0)+G(y —Kx) 3)

G=S.K" (KSaKT T se) - 4)
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where S, and S; are the covariance matrix of the state vector
as given by the a priori dataset and that of the error in the
observation vector, respectively. S, is set to be a diagonal
matrix because the observation errors in different channels
are considered to be uncorrelated.

X can then be solved iteratively via

-1
£it1 =x0+(KI-TS;1Ki+Sa_1) KIS [y—F(¥)
+K; (£, — x0)]. (5)

where the subscript i refers to the ith iteration step.

The equations described above are adopted from Feng and
Huang (2018), where the state vector x includes the tempera-
ture and the logarithm of specific humidity. For comparison,
we adopt the slab-cloud retrieval scheme of Feng and Huang
(2018) as described above and refer to the result as the slab-
cloud retrieval in the following. The only difference from
Feng and Huang (2018) is in S;. While S; is the square of the
radiometric noise of the AIRS instrument in Feng and Huang
(2018), in this study using the slab-cloud retrieval scheme,
S¢ contains the sum of the square of radiometric noise and
the square of &g4p (as schematically depicted by the dashed
red curve in Fig. 3a) to account for radiance uncertainties
induced by the slab-cloud assumption. Because &gy, is rela-
tively small, especially at absorption channels, we find that
adding off-diagonal correlations to S, does not improve the
retrieval quality significantly. Therefore, S, keeps its diago-
nal form.

We further examine whether the addition of &g, masks
spectral signals from atmospheric variations. Figure 1 shows
that strong cooling and hydration appear above overshooting
DCCs near the cyclone center (141° E, 16° N). We denote the
mean profiles of temperature and water vapor in this region as
tcold and gmois, respectively, and these are shown in Fig. 4b, d
(blue curves). A set of radiative transfer calculations are con-
ducted to obtain Ryc(Re,0,0,40)> Rsc(Re,0, eold> gmois), and
Ry (Re.,0, tcold> qo) at 0.1 cm™! spectral resolution using an
effective radius of 34 um and a randomly selected IWC pro-
file (cloud top at 100 hPa) for this region. The spectral sig-
nals for temperature and water vapor are then obtained from
Rsc(Re,0,10,q0) — Rsc(Re 0, teold> q0) and R (Re 0, f0, q0) —
Rsc(Re.0, 0, gmois), respectively. The signal strength under
different spectral specifications was examined by Feng and
Huang (2018) and that investigation is not repeated here. The
spectral signals are compared to the radiance uncertainties in
Fig. 4. The spectral range used in the retrieval tests (between
649.6 and 1613.9cm™!) is demarcated by dotted gray lines
in Fig. 4.

Figure 4 shows that the radiance uncertainty from using
the slab-cloud assumption, &gap, does not completely obscure
the temperature signal or water vapor signal. In the CO; and
water vapor channels, where the signal is the strongest, the
TOA radiance spectra are not as sensitive to cloud emission
due to strong atmospheric attenuation in these channels. ggap
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Figure 4. Spectral signals of above-storm atmospheric variations in (a) temperature and (c) water vapor from 200 to 2500 cm~!. The signals
are obtained by differencing the upwelling radiance spectra at the TOA simulated from the mean of all profiles (black curves in panels b and
d) and radiance spectra simulated from the mean of the profiles with overshooting convective clouds near the cyclone center (blue curves in
panels b and d). These signals are shown at a spectral resolution of 0.1 cm~ L In (a) and (c), the dotted light gray lines denote a NEdT of
0.5K (characterizing the AIRS instrument at cold scene temperature). The solid red lines denote the uncertainties for a combination of the
NET and &gypergistic and the dotted red lines denote those for a combination of the NEdT and &g1,p, which are convoluted at 5 em~! spectral

intervals in this plot. The AIRS spectral range used in this study is 649.6-1613.9 em~! and is marked by dashed dark gray lines.

becomes greater in the wings of absorption channels, where
the signals are already masked by the instrumental NEdT of
~0.5K.

2.3.1 Synergistic method

The radiance uncertainty due to the slab-cloud assumption,
&lab, can be largely eliminated by incorporating collocated
observations of cloud profiles from active sensors (CloudSat-
CALIPSO) along the same track as the hyperspectral in-
frared sounder (such as AIRS). Motivated by the work of
Turner and Blumberg (2018), instead of simply prescrib-
ing the cloud profile from the active sensors in the for-
ward model, we include relevant cloud variables in a syn-
ergistic retrieval. Turner and Blumberg (2018) demonstrated
that additional observation vectors, such as atmospheric and
cloud profiles from other instruments or NWP products, can
improve convergence in cloudy scenes and retrieval preci-
sion by constraining the posterior uncertainty. Following this
idea, the observation vector y in Eq. (1) is formulated as:
[Yiads Yother]s Where y..4 contains the infrared radiance obser-
vations and y e, includes elements other than radiance ob-
servations; we refer to the latter as the additional observation
vector. Collocated cloud observations are added to y e tO
mimic cloud properties obtained from the DARDAR-Cloud
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product. At every iteration step (Eq. 5), the IWC and effec-
tive radius are included in the state vector x and are updated
along with the temperature and humidity profiles.

In this simulation experiment, the observation vector for
the IWC, y;,., is set to be the natural logarithm of the IWC
profile to account for IWC variations ranging from O(107>)
to O(1) gm™3 and to avoid negative values. Uncertainties in
IWC measurements are estimated by averaging the posterior
uncertainty of the IWC (provided by the DARDAR-Cloud
product for every footprint) in the OT-DCC profiles identi-
fied in Sect. 2.2.1. This estimated precision is denoted é&jyc,
and corresponds to an uncertainty in the IWC at vertical lev-
els near the tropopause of roughly 20 %. Then we account
for the IWC observation uncertainty by randomly perturb-
ing y,wc SO that y;,. deviates from the true state by an error
that has an SD of gjw.. As mentioned in Sect. 2.2, the ef-
fective radius profiles of the test set are sampled from the
DARDAR-Cloud product. However, we do not intend to re-
trieve the effective radius profile because mid-infrared radi-
ance spectra are not sensitive to layer-to-layer variations in
effective radius, as found in Sect. 2.2.1. Instead, the effec-
tive radius for representing the spectral emission of an entire
cloud column is retrieved, which is the same as Re opt defined
in Sect. 2.2.1. The true Re op is obtained by approaching the
true radiance spectra through iteration. The observation vec-
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tor for Re opt, ¥ Re.opt® is constructed by randomly perturbing
the effective radius value at the layer where the optical depth
measured from the cloud top reaches unity (R =1) with an
uncertainty of 5 um. Note that this prescribed uncertainty is
larger than the typical value in the DARDAR-Cloud product
(1.6 um) to account for sampling differences between the in-
struments. Because the satellite-measured infrared radiance
spectra are most sensitive to cloud emission near the cloud
top, only the top 1.5km of the IWC profile in y;,. is kept,
which corresponds to six model layers in the radiative trans-
fer calculations.

The state vector xjy contains six layers of the logarithm
of the IWC at the same model layers as y;,.. Note that xjwc
and y;,,. are not required to have the same vertical resolution;
in practice, the vertical resolution of y;,. can be much finer
than that of the model layers. The first guess and covariance
matrix of xjyc are calculated using the same a priori dataset
described in the previous section, although cross-correlations
between the IWC and other atmospheric variables are ne-
glected. Consequently, the forward model for relating xjy.
to ¥;wc 1S @ matrix that linearly interpolates the pressure level
of xiwc to match the level of y;,. (Eq. 6 in Bowman et al.,
2006). The a priori value of x g, is 34 pm with an uncer-
tainty range of 11 um. The diagonal elements of S, for y;,.
and y Re.op Ar€ set by conservatively quadrupling the squares
of the uncertainty ranges of the variables (20 % for the IWC
and 5 pm for Re opt).

In this synergistic retrieval framework, cloud optical prop-
erty inputs to the forward model are considered to be the
major source of uncertainties in the forward model. While
the IWC and R op are retrieved states, uncertainties in other
cloud variables should be included in the forward model er-
ror quantified by &gynergistic in Sect. 2.2.1. Therefore, the S,
for y;.q in the synergistic method contains the sum of the
square of the radiometric noise and the square of &gynergistic-
As shown in Figs. 3 and 4, egynergistic is much smaller than
&slab and the spectral signals from the temperature and water
vapor. It is also smaller than the spectral RMSE caused by
the IWC and Re opt, with a distinct shape in mean biases (see
Fig. 3).

2.3.2 Additional atmospheric observations

Besides the cloud observations, other products that provide
collocated atmospheric profiles can be useful for improving
the precision of the posterior estimation. These additional
products may include atmospheric observations from other
instruments that are in the same satellite constellation as the
hyperspectral infrared sounder, as well as reanalysis prod-
ucts, which typically do not assimilate cloudy infrared ra-
diances in operation. In this study, we investigate the effect
of incorporating coincident reanalysis products by adding an
observation vector, y,.,, which contains the temperature and
the logarithm of specific humidity at a later time step in the
GEM simulation: 810 min after the initial time. This arbitrary
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choice of simulation time step is intended to represent the po-
tential quantitative differences in temperature, humidity, and
cloud fields between a reanalysis product and the true state.

Distributions of retrieval variable fields are shown in
Fig. 6. As inferred from the brightness temperature, the mas-
sive spatial coverage of DCCs is evident at the time step used
as the truth (410 min after the initial time in the GEM sim-
ulation). At the later time step (810 min), the atmospheric
data used as y,,, are taken from the same locations but de-
viate from the truth as they are not directly above convective
overshoots at this time step. The RMSE between atmospheric
profiles from the two time steps (410 and 810 min) defines
the uncertainties in y,,. To be conservative, the uncertainty
in y,m is set to quadruple the square of the RMSE in the
corresponding diagonal elements of S;.

3 Results

Four retrieval cases are examined to assess the retrieval per-
formance achieved using different strategies. Among them,
Cases 1 and 2 use the slab-cloud method whereas Cases 3
and 4 use the synergistic method that incorporates cloud ob-
servations. Cases 2 and 4 differ from Cases 1 and 3 in that
they include y,., in the retrieval. The components of the
state and observation vectors for the four cases are listed in
Table 1. An additional case is also performed, Case 5, which
follows the same optimal estimation framework as in Case 4
without using the infrared radiances y.4. It is expected to
converge to a posterior state that is jointly determined by the
a priori profile, y;., and y,.,. Therefore, the statistical dif-
ferences between Case 4 and 5 indicate the improvements at-
tributable to infrared radiances (as opposed to other sources
of information). Case 5 is relatively uniform in space and
is therefore not included in the figures, but it is listed in Ta-
bles 1 and 2 for comparison. Following the framework of this
simulation experiment, retrievals are then performed for the
100-profile test set, using the synthetic radiance observations
(¥raq) generated in Sect. 2.2, the IWC (y;,.) and effective
radius (y Re.opl) described in Sect. 2.3.1, and the additional
atmospheric product (y,,,) constructed in Sect. 2.3.2. Re-
trieval performance is assessed by examining the mean biases
and RMSEs in Figs. 5 and 6. Retrieved temperature, water
vapor, and IWC profiles are also compared to the first guess,
observation constraints (y e ), and the truth in Fig. 7 for two
samples from the test set.

We next examine the DFS (degrees of freedom for signal;
Rodgers, 2000) of the temperature, water vapor, IWC, and
effective radius in the four retrieval cases (Table 1). DFS is
defined as the trace of the averaging kernel A, which relates
the retrieved state X to the true state xo , as derived from
Eq. (5) at the end of the iteration:

* —x0=A(x—x0) (6)

-1
A= (KTS;‘K+S;1) K’S7'K. )
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Table 1. State vector and observation vector in four retrieval strategy cases. Case 5 is a posterior estimation of the state vector from a
combination of Yutms Yiwes YR, opt? and the a priori profile. DFS is compared to the number of vertical layers of the state vector. DFS is
counted from 130 to 13.5 hPa for temperature and water vapor (20 model layers).

x y DFS
Slab cloud
Casel x4, x4 Yrad t:3.15,¢: 0.69
Case2 x4, x4 Yrad> Yatm Same as Case 1
Synergistic
Case 3 x¢,Xg, Xiwe, XReopt  Yrads Yiwer Y Re.opt t:3.6,q:0.74, IWC: 1.94, Re opt: 0.65
Cased x4, Xg, Xiwes XReopt  Yrads Yatm> Yiwe> Y Re opt Same as Case 3
Case5 xy, Xq> Xiwes XReope Yatm» Yiwer Y Re opt -
Mean While all observation vectors are used in the retrieval, only
40 @ the radiance observation y,.4 is included to calculate the
_ _ DFS, so a higher DFS indicates higher information content
S g g brought by y,,4 alone. Because the DFS depends on the cloud
g g g distribution, the DFS shown in Table 1 is averaged over the
E 2 2 100-profile test set.
Fa S Although ¢4, does not mask the observable signals in
Fig. 4a and b, the DFS for temperature increases from 3.15
18°Temi‘:atur;g§’] 210 Temperature (K] 10 (Case 1) to 3.6 (Case 3) when the synergistic method is
© adopted. This improved DFS highlights the strong sensitiv-
40 — prior 40 ity of the synergistic method to the temperature near the
gw o el = 60 cloud top. In comparison, the slab-cloud method fails to fully
%g nropmicases z capitalize on information near the cloud top as it neglects
gg 80 case 4 £ 80 contributions from the vertical layers around the assumed
2 i g sharp cloud boundary. Therefore, the synergistic method is
§ & 100 & 100 expected to achieve a better result for temperature.
120 e 120 Moreover, significant DFS values are found for the IWC
2 4 6 8 10 12 (1.94 out of 6, on average) and effective radius (0.66 out of 1,
Water vapor [ppmv] Water vapor [ppmv] e .
© ® on average). The DFS confirms the sensitivity of infrared ra-
40 40 diances to the IWC profile and effective radius near the cloud
T 6o = 6 _\é';fe 3 top, which is consistent with the large radiative perturbation
£E < taed caused by varying IWC (Fig. 3c—d) based on the DARDAR-
% £ 80 £ 80 — Cloud product. The DFS for IWC varies from 0.96 to 2.71
f E E > in the test set, depending on the optical depth near the cloud
Ee 100 & 100 / top. Low ice density near the cloud top leads to a higher DFS
120 120 — > for IWC and effective radius. For example, the DFS for IWC
0 ey 20 10 20 3040 increases from 1.30 in Fig. 7c to 2.63 in Fig. 7f because ther-
percentage RMSE percentage
_____ pror  ==——=omse | case $ mal emission from lower levels can be transmitted through

—tr(ith

Figure 5. Profiles of the mean and RMSE of the temperature (a, b)
and water vapor (¢, d) for the four retrieval strategy cases. Profiles of
the percent mean bias (e) and RMSE (f) of the IWC are also shown.
Blue curves show the bias and RMSE in the prior. Red curves re-
fer to cases where the retrieval strategy uses the slab-cloud method
(solid lines for Case 1 and dotted lines for Case 2), while yellow
curves refer to cases where the retrieval strategy uses the synergis-
tic method (solid lines for Case 3 and dotted lines for Case 4).
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the topmost cloud layer. In the meantime, the DFS for effec-
tive radius increases from 0.04 to 0.66 because the thermal
emission is more sensitive to the spectral shape of extinction
coefficients induced by the effective radius (as depicted in
Fig. 3c) when the optical depth is small. Overall, the DFS
values suggest that the synergistic method can improve the
precision of IWC and effective radius measurements relative
to collocated cloud products alone.

Retrieval performance is evaluated through the mean bias
and RMSE in temperature, humidity, and IWC between each
retrieved profile and the truth, as shown in Fig. 5. The re-
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Figure 6. Horizontal distributions of the anomalies (defined as the deviation from x()) in water vapor (in ppmv, upper panels), temperature
(in K, middle panels) at 81 hPa, and column integrated water vapor between 110 and 70 hPa (in gm_z, lower panels). The true states are
shown in the first column, with the BT 53 distribution shown in the background of each panel via gray shading. The second to fifth columns
show retrieved results for the four retrieval strategy cases described in Table 1. The sixth column shows the distribution of the additional
observation vector, y,,, incorporated into the retrievals in Cases 2 and 4. This additional atmospheric constraint (y,,) is taken from the

model fields 810 min after the initial simulation time step.

trieval performance is also evaluated with regard to these
quantities at selected levels and with regard to CIWV inte-
grated from 110 to 70 hPa.

3.1 Slab-cloud retrieval

Improving upon Feng and Huang (2018), Case 1 accounts for
the radiance uncertainties due to the slab-cloud assumption,
while Case 2 further incorporates additional atmospheric
constraints to improve the precision of the method.

The results for Case 1 are shown as solid red curves in
Figs. 5 and 7. The major improvement in Case 1 as com-
pared to the prior (solid blue curves) is in the temperature
profile from 100 to 75 hPa. Although the DFS for water va-
por reaches 0.69, Case 1 does not provide much of an im-
provement in water vapor from the first guess.

Case 2 improves upon Case 1 owing to the informa-
tion carried by the additional atmospheric constraints, y -
Case 2 is represented by the dotted red curves in Figs. 5 and
7. It approaches the true state better than Case 1, despite
warm and dry biases in the first guess and y,,, (see Fig. 5a,
c). Notably, it increases the retrieved water vapor concentra-
tion by around 1 ppmv on average and reduces the RMSE
from 2.4 to 1.0 ppmv, as shown in Fig. 5c, d and Table 2.
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Case 2 reduces the RMSE in the CIWV by half when com-
pared to Case 1.

To demonstrate how well the retrieved atmospheric field
represents the spatial variability in the true state (Fig. 1),
namely the moister and colder UTLS region in the cyclone
center compared to the south of the domain, the distribu-
tions of water vapor, temperature, and CIWV are presented
in Fig. 6. It shows that the true spatial patterns are well re-
produced by the Case 2 retrieval.

Furthermore, individual profiles from two clusters of over-
shooting DCCs, which include the DCCs near the cyclone
center and those in the south of the domain, are randomly
selected to investigate how well the retrieval reproduces the
spatial variability in temperature and water vapor. The all-sky
optical depths from TOA and IWC profiles for the two loca-
tions are shown in Fig. 7c, d. The retrievable signals mainly
come from the atmospheric column above thick cloud layers,
i.e., where the optical depth is less than 2 (only 13.5 % of the
infrared emission is transmitted through this cloud layer).

Figure 7a—c shows results for a location close to the cy-
clone center. At this location, the slab-cloud method pre-
scribes the cloud layer to be located at the cold point due
to the strong cloud emission. Atmospheric anomalies above
86 hPa have an impact on TOA infrared radiances. Around
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Figure 7. Temperature (a, d) and water vapor (b, e) profiles of the first guess (solid blue lines), truth (solid black lines), and posterior results
(red and yellow lines represent the slab-cloud and synergistic methods, respectively; the solid lines refer to cases without y ., and the dotted
lines to cases that include y,q,;,) for two profiles from the test set. (c, f) True IWC (red curve and upper x axis) and all-sky optical depth from
the TOA (blue curve and lower x axis) for the two selected profiles. The y;, and retrieved IWC profile are indicated by triangles, circles
(Case 3), and asterisks (Case 4), respectively. Dotted black lines mark the vertical ranges of ice cloud information included in y;y,. and xjyc,
while ice clouds at the lower vertical levels are prescribed to be the same as the observed cloud.

80 hPa, the truth profile that we aim to retrieve is around 8 K
colder than the prior and nearly 3 ppmv moister. While the
result from Case 1 overcomes the bias in temperature, it in-
creases the water vapor over a broad vertical range due — as
explained by Feng and Huang (2018) — to the strong smooth-
ing (smearing) effect of the averaging kernel in this case. In
comparison, Case 2 correctly produces peak moistening at
around 80 hPa while yielding a retrieved temperature profile
similar to Case 1.

Figure 7d—f shows the results in a location in the southern
part of the domain, where the slab-cloud method prescribes
the cloud layer at 95hPa. At this location, the cloud emis-
sion from the top 1.5km cloud layer affects infrared radi-
ances strongly, as inferred from the optical depth (Fig. 7f),
leading to a large radiance residual that cannot be addressed
under the slab-cloud assumption. Therefore, Case 1 fails to
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improve upon the prior. Case 2 leads to a moister posterior
compared to the prior owing to the addition of y,,,,. How-
ever, Case 2 fails to update the temperature profile above the
cloud layer. Instead, it approaches y,., at lower altitudes,
leading to an unrealistic vertical oscillation in temperature
near 100 hPa.

3.2 Synergistic method

Case 3, which uses the synergistic method, is more sensi-
tive to water vapor and temperature than Case 1, as indicated
by the reduced RMSE in Table 2 and the closer match be-
tween the retrieved field and the true state in Fig. 6. It re-
trieves higher water vapor concentrations from 110 to 70 hPa
in comparison with Case 1. Owing to the radiative emission
from in-cloud layers between 110 and 95 hPa, Cases 3 and
4 become sensitive to the temperature profile near the cloud

Atmos. Meas. Tech., 14, 5717-5734, 2021
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Table 2. Performance assessment of four retrieval strategy cases. The cases are compared with the prior, the observation vector, and Case 5.

t (K) at g (ppmv) at CIWV (g m_z) from IWC (g m_3) Re (um)
81 hPa 81hPa 110 to 70 hPa at 90 hPa
Bias RMSE | Bias RMSE | Bias RMSE |  Bias RMSE | Bias RMSE

Prior 6.8 7.1 | —1.8 1.5 | =030 034 | 00014 00413 | -5 11
[Yatm: Yiwe] 8.1 10.6 | —1.7 23 | =017 024 | 0.0029 0.009% | —0.8 4.8
Slab cloud
Case 1 0.2 45| -18 24 | —029 0.36 - - - -
Case 2 1.1 4.1 | -0 1.0 | —0.11 0.16 - - - -
Synergistic
Case 3 0.0 24 | —18 23| —02 0.30 | —0.0029 0.0075 | 2.4 43
Case 4 0.8 27 | 08 L1 | —0.09 0.16 | 0.0015 0.0056 | 1.8 37
Case 5 27 49 | —1.8 24 | —0.18 024 | 0.0029 0.009 | —0.8 4.8

top. Hence, Cases 3 and 4 reduce the RMSE compared to
other cases.

The advantage of the synergistic method, especially when
the IWC near the cloud top is relatively small, is illustrated
in Fig. 7d—f. At this location, the radiative signal from the
moistening near the cloud top can be transmitted to the TOA.
As aresult, Case 3 approaches the true cloud-top temperature
much more closely than Cases 1 and 2 (Fig. 7a, d). It also
produces higher water vapor compared to Case 1 (Fig. 7e).
Case 4 further benefits from y,;,,, which constrains the pro-
file in the vertical range below 110hPa and above 80 hPa.
Case 4 overcomes the warm bias around 90 hPa in y,,, and
the first guess. It also reproduces the oscillating temperature
feature in Fig. 7d.

Owing to its sensitivity to the IWC and Re op¢ (as sug-
gested by the DFS and Fig. 3), the synergistic method can
improve upon the collocated cloud observations by reducing
the RMSE in the IWC profile and in Re opt (Fig. 5 and Ta-
ble 2). Although adding y,,,, does not significantly improve
the retrieval performance in Case 4, it stabilizes the iterative
retrieval process by constraining uncertainties in tempera-
ture. The improvement attained by using infrared spectra and
through the addition of y,, is desirable to reduce measure-
ment uncertainties caused by sampling differences between
the active sensors and the infrared instrument.

While the improvements obtained in Cases 2 and 4 show
the advantage of including additional atmospheric products
(¥aum)» one caveat is the difficulty involved in properly eval-
uating the uncertainty range, which is included in the co-
variance matrix of the observation vector. This is important,
as the uncertainty range in y,, constrains the posterior un-
certainty range of the retrieval at each vertical level. In this
study, we account for the difficulty in evaluating S, by in-
creasing the RMSE in y,,, so that the square root of S, of
Yam 18 €quivalent to a doubling of the RMSE shown by the
blue dotted line in Fig. 5b, d.
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Although the additional measurement vector y,,, does not
contain the spatial variability pattern seen in Fig. 6, the corre-
sponding covariance in S; properly accounts for its variabil-
ity (uncertainty) by prescribing a large value around 80 hPa
but smaller values at other vertical locations. Therefore, it
increases confidence in the posterior at levels where the ther-
modynamic variables are relatively constant. This increased
confidence in turn enhances the degrees of freedom in the
range around 80 hPa, where the warm and dry signals mainly
come from. Therefore, even though y,, itself deviates from
the true state, including y,., in the optimal estimation can
still improve the posterior estimation. In practice, uncertain-
ties in atmospheric products can be estimated by inflating the
precision of the product to account for sampling size differ-
ences through comparison with NWP models and collocated
observations.

4 Conclusion and discussion

Sounding the thermodynamic conditions in the UTLS has
long been a challenge. In this work, a simulation experi-
ment was conducted to simulate hypothetical radiance ob-
servations of AIRS by integrating a NWP model and a ra-
diative transfer model, MODTRAN 6.0. By conducting the
simulation experiment, this study evaluated the ability of
existing hyperspectral infrared sounders to detect tempera-
ture and humidity fields above convective storms. Our fo-
cus was on investigating and constraining the uncertainties
induced by clouds. Two retrieval methods were tested: a
slab-cloud method that mainly uses infrared radiance mea-
surements (i.e., AIRS) and a synergistic method that com-
bines cloud products from collocated active sensors (i.e.,
DARDAR-Cloud).

First, we found that a radiative transfer model can simulate
the TOA mid-infrared radiance spectra above tropical deep
convective clouds fairly accurately (RMSE around 0.1K,
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characterized by &synergistic) by assuming constant cloud op-
tical properties (per unit mass) in all vertical layers of a
cloud column. Uncertainties in the infrared radiance spec-
tra mainly come from variations in the IWC profile and
column-to-column variations in effective radius (Fig. 3). The
uncertainties are largest in window channels and weak ab-
sorption channels because they are sensitive to cloud emis-
sion. The slab-cloud assumption locates a clear-cut cloud top
that matches the brightness temperature of the window chan-
nel. This assumption alleviates, but does not fully eliminate,
the cloud effect in the radiance spectrum (Fig. 3a). The re-
maining radiance uncertainty was accounted for in the re-
trieval framework of this study and was found to nonsignif-
icantly obscure the temperature and humidity signals in the
retrieval. Therefore, we affirmed that the cloud-assisted re-
trieval proposed by Feng and Huang (2018) improves the
sounding of UTLS temperature and water vapor compared
to prior knowledge. However, this retrieval neglects infor-
mation content from the in-cloud atmosphere. As a result, it
may lead to biases in individual temperature profiles. For ex-
ample, as shown in Fig. 7c, the slab-cloud retrieval fails to
reproduce oscillating temperature anomalies, although it still
detects anomalous moistening above convective storms. Al-
though not explicitly discussed here, a similar OE framework
that adopts the slab-cloud assumption would be expected to
detect moistening anomalies when applied to other hyper-
spectral infrared sounders (e.g., IASI and CrIS), due to their
similar spectral specifications to AIRS.

Second, especially after incorporating an additional atmo-
spheric constraint, y,,, we found that the synergistic method
is sensitive to temperature, water vapor, the IWC profile,
and the column-to-column variation in effective radius. It
substantially reduces the RMSE in temperature from 7.1 to
2.7 K compared to the prior. It also reduces the RMSE in col-
umn integrated water vapor by half. This method can capture
strong moistening features in individual profiles (as shown
by Fig. 7b) and detect oscillating temperature anomalies (as
shown by Fig. 7¢). The temperature and humidity fields re-
trieved by the synergistic approach best match the true hori-
zontal distribution patterns at a fixed pressure level (Fig. 6).
Moreover, owing to the sensitivity of infrared radiance spec-
tra to cloud properties, the synergistic method is able to im-
prove the IWC and effective radius (Re,opt) relative to collo-
cated active cloud observations.

In conclusion, our study suggests that the synergistic
method holds promise as a means to use hyperspectral in-
frared radiance and cloud profiles from existing instruments
(AIRS, CloudSat, and CALIPSO) to retrieve UTLS temper-
ature and water vapor distributions above deep convective
clouds. As discussed in Feng and Huang (2018), the sen-
sitivity to water vapor and cloud microphysical properties
(see Sect. 2.2.1) could be further improved by including the
far-infrared coverage provided by future instruments, e.g.,
FORUM and TICFIRE. While a limited number of samples
are available when applying synergistic retrieval, instruments
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in geostationary orbit such as IRS (Infrared Spectrometer)
and GIIRS (Geostationary Interferometric Infrared Sounder)
(Schmit et al., 2009; Holmlund et al., 2021) could greatly
increase collocation with other spaceborne active sensors
over convective regions. Such an approach may also enhance
our understanding of convective impacts by providing time-
continuous observations (Li et al., 2018) in future research.
The ability of the synergistic method to leverage hyperspec-
tral infrared observations to improve NWP outputs (y,.,)
also suggests that the inclusion of cloudy-sky observations in
global data assimilation systems, as performed by Okamoto
et al. (2020), would be advantageous.
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