
Atmos. Meas. Tech., 14, 5735–5756, 2021
https://doi.org/10.5194/amt-14-5735-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Interpreting estimated observation error statistics of weather radar
measurements using the ICON-LAM-KENDA system
Yuefei Zeng1, Tijana Janjic1, Yuxuan Feng1,2, Ulrich Blahak3, Alberto de Lozar3, Elisabeth Bauernschubert3,
Klaus Stephan3, and Jinzhong Min2

1Meteorologisches Institut, Ludwig-Maximilians-Universität (LMU) München, Munich, Germany
2Key Laboratory of Meteorological Disaster of Ministry of Education/Collaborative Innovation Center on Forecast and
Evaluation of Meteorological Disasters, Nanjing University of Information Science and Technology, Nanjing, China
3Deutscher Wetterdienst, Offenbach, Germany

Correspondence: Yuxuan Feng (yuxuan.feng@physik.uni-muenchen.de)

Received: 1 April 2021 – Discussion started: 12 April 2021
Revised: 21 July 2021 – Accepted: 24 July 2021 – Published: 20 August 2021

Abstract. Assimilation of weather radar measurements in-
cluding radar reflectivity and radial wind data has been oper-
ational at the Deutscher Wetterdienst, with a diagonal obser-
vation error (OE) covariance matrix. For an implementation
of a full OE covariance matrix, the statistics of the OE have
to be a priori estimated, for which the Desroziers method has
been often used. However, the resulted statistics consists of
contributions from different error sources and are difficult to
interpret. In this work, we use an approach that is based on
samples for truncation error in radar observation space to ap-
proximate the representation error due to unresolved scales
and processes (RE) and compare its statistics with the OE
statistics estimated by the Desroziers method. It is found that
the statistics of the RE help the understanding of several im-
portant features in the variances and correlation length scales
of the OE for both reflectivity and radial wind data and the
other error sources from the microphysical scheme, radar ob-
servation operator and the superobbing technique may also
contribute, for instance, to differences among different ele-
vations and observation types. The statistics presented here
can serve as a guideline for selecting which observations are
assimilated and for assignment of the OE covariance matrix
that can be diagonal or full and correlated.

1 Introduction

Nowadays, assimilation of weather radar measurements
has been widely adopted in many weather services for
convective-scale numerical weather prediction (NWP) mod-
els (Gustafsson et al., 2018). For instance, in the 3D-Var sys-
tem of the Météo-France, Doppler radial wind measurements
are assimilated (Montmerle and Faccani, 2009), and radar
reflectivity measurements are assimilated by a combined 1-
D and 3D-Var method (Caumont et al., 2010), which firstly
derives relative humidity profiles from reflectivity data. At
the Met Office, volume scans of radar reflectivity data are
directly assimilated (Hawkness-Smith and Simonin, 2021)
by the hourly cycling 4D-Var (Milan et al., 2020). At the
Deutscher Wetterdienst (DWD), the Kilometre-scale EN-
semble Data Assimilation (KENDA) system (Schraff et al.,
2016) has been developed for the COSMO (COnsortium for
Small-scale MOdelling, Baldlauf et al., 2011) and the ICON
(ICOsahedral Nonhydrostatic, Zängl et al., 2015) models.
Since June 2020, the radial wind and reflectivity data have
been assimilated via the local ensemble transform Kalman
filter (LETKF, Hunt et al., 2007) combined with the latent
heat nudging (Stephan et al., 2008) for the COSMO model in
the operational suite; the ICON-LAM (ICON – Limited Area
Model) is the limited area version of the ICON model and is
to replace the COSMO model in the operational forecasting
system. The ICON-D2 (D: Deutschland (Germany); 2: 2 km)
is an ICON-LAM setting at approximately 2 km grid spacing,
which is restricted to Germany and the neighboring coun-
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tries and became operational for very-short-range forecast-
ing since February 2021. Despite rapid progress, convective-
scale data assimilation is still at an early phase of develop-
ment, and a number of challenges remain for both variational
and ensemble-based methods, e.g., imbalance due to rapid
update (Bick et al., 2016; Lange et al., 2017; Zeng et al.,
2021b), strong nonlinearity of models and observation oper-
ators (Wang and Wang, 2017), model error due to unresolved
scales (Zeng et al., 2019, 2020) and parameters (Ruckstuhl
and Janjić, 2020), and representation error of observations
(Janjic et al., 2018). In the present work, we focus on the last
topic.

As stated in Janjic et al. (2018), the observation error
consists of two components in the context of data assim-
ilation: the first is the instrument error that occurs during
the measurement process; the second is the representation
error that is understood as the difference between the ac-
tual observation and its modeled representation, and it can
be primarily categorized into three types: observation op-
erator error, pre-processing or quality control error and er-
ror due to unresolved scales and processes. In this work,
for brevity of text and convenience of explanation, we de-
note the observation error with “OE” and the instrument er-
ror with “IE”, and we group the observation operator error
together with pre-processing or quality control error as for-
ward model error and denote it with “FE”, and denote the
representation error due to unresolved scales and processes
with “RE” (i.e., OE= IE+FE+RE). In general, the FE and
the RE are larger than the IE and the IE is better under-
stood (e.g., standard deviations of the IE for radar reflec-
tivity observations are proportional to the measured values,
Doviak and Zrnic, 1993; Xue et al., 2007). To quantify the
OE statistics, the methods of Hollingsworth and Lonnberg
(1986) and Desroziers et al. (2005) have been widely used
in practice. The former is based on the first-guess departure,
while the latter is based on the first-guess and analysis de-
partures and has enjoyed more popularity in recent years.
For instance, the Met Office uses the Desroziers method to
calculate the interchannel error covariances for satellites and
incorporates them in the OE covariance matrix in the 3D-
Var analysis (Weston et al., 2014; Waller et al., 2016a), and
so does ECMWF (Bormann et al., 2016). The DWD speci-
fies the OE variances for conventional observations (Schraff
et al., 2016) and MODE-S observations (Lange and Janjić,
2016) based on the Desroziers diagnostic in the KENDA sys-
tem. Furthermore, Météo-France, the Met Office and JMA
(Japan Meteorological Agency) have also applied the method
for radial wind observations to estimate spatial error corre-
lations that are then accounted for in the data assimilation
(Wattrelot et al., 2012; Simonin et al., 2019; Fujita et al.,
2020). In the present work, we use the Desroziers method
to explore characteristics of the OE for reflectivity and radial
wind in the operational ICON-LAM-KENDA system of the
DWD. It is the first application of radar data assimilation us-
ing this framework (a similar study has been done by Waller

et al., 2019 but for the COSMO-KENDA system and only for
the radial wind). To authors’ knowledge, it is also the first in-
depth attempt to investigate the OE statistics (variances and
correlations) of reflectivity data. However, the estimated OE
statistics embraces contributions from the IE, FE and RE, and
it is not clear how much an individual error contributes. To
approximate the RE, we assume that a high-resolution model
is the truth and we regard model equivalence of radar data
calculated from the truth as observations (e.g., Waller et al.,
2014, 2021) and evaluate the statistics from a set of samples
of differences between observations and model equivalence
of the low-resolution model run, which can then be compared
with the OE statistics estimated by the Desroziers method.

The paper is organized as follows. Section 2 describes the
concepts of the two methods used here to compute the obser-
vation error statistics. Section 3 gives details about the ICON
model and the radar observation operator. Section 4 presents
the experimental settings and results, followed by Sect. 5 for
summary.

2 Methodology

In this section, we describe two methods used for calculating
statistics of the RE and OE.

2.1 Samples of error due to unresolved scales and
processes

In spite of increasing resolution in operational NWP mod-
els, convection cannot be completely resolved and shallow
convection has to be parameterized. It is known that with
a higher horizontal resolution the model can better resolve
updraft and vertical transportation of energy and more accu-
rately describe orography (Wedi, 2014). To mimic the RE,
one can treat the mapping of states from a high-resolution
model as observations (Waller et al., 2014), and the low-
resolution model is considered as a truncation.

Following the similar approach of Zeng et al. (2019), dif-
ferences between forecasts of two model runs with different
resolutions, expressed in the observation space, are used to
represent the RE:

ηk =H
{[
MH (

xH (tk − t)
)]}

−H
{
ML [

T
(
xH (tk − t)

)]}
, (1)

where H is the observation operator, MH and ML are mod-
els at high and low resolutions, respectively, xH is the state
of MH, T is the interpolation operator. t is the predefined
forecast time, and tk is an arbitrary valid time. For any tk , we
can calculate a ηk that is a sample for the RE. A flowchart of
this approach is given in Fig. 2 of Zeng et al. (2019).

Running models for a period (with a certain weather pat-
tern), a set of samples is produced. If the size of samples is
sufficiently large, statistics of samples should provide useful
information on the nature of the RE (under certain weather
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conditions). More details about the settings of model runs
can be found in Sect. 4.1.

2.2 The Desroziers method

The Desroziers method (Desroziers et al., 2005) calculates
the expected value of the outer product of the first-guess
departure (or called innovation) do-b = y

o
−H(xb) and the

analysis departure do-a = y
o
−H(xa) to approximate the ob-

servation error covariance matrix:

Rest = E[do-ad
T
o-b], (2)

where yo is the observation vector. Rest is optimal in case of
a linear observation operator and uncorrelated background
error and OE covariances (denoted by Pb and R) that are
perfectly specified (Reichle et al., 2002). Although these as-
sumptions are usually not satisfied in practice, Rest is still
widely used as a qualitative indicator for the OE statistics.
Besides, Desroziers et al. (2005) initially suggested apply-
ing Eq. (2) in successive iterations to converge to the truth;
however, a useful estimation can be often obtained in the
first iteration (Waller et al., 2016b). Therefore, considering
the computational cost, most of the studies with operational
NWP models have performed only the first iteration (e.g.,
Weston et al., 2014; Lange and Janjić, 2016; Waller et al.,
2016a; Bormann et al., 2016). In this work, we also com-
pute the Desroziers diagnostic in one iteration. Furthermore,
as in Waller et al. (2016a), the means of do-a and do-b are
subtracted to ensure that the bias does not affect Rest.

In the following, we estimate statistics of the RE of
radar reflectivity and radial wind data by using the method
from Sect. 2.1 and statistics of the OE by applying the
Desroziers method to an data assimilation experiment with
a low-resolution model, i.e., do-b = y

o
−H(xL

b ) and do-a =

yo
−H(xL

a ). It should be mentioned that due to the logarith-
mic unit of reflectivity it is very well established in the radar
data assimilation community to set a threshold value for very
small reflectivities (e.g., with negative values) to avoid unre-
alistically large increments (Zeng et al., 2021a) and spurious
convection (Aksoy et al., 2009). In the operational settings
of KENDA, the threshold value is 0 dBZ, which means all
reflectivity values lower than 0 dBZ are set to 0 dBZ, and we
call 0 dBZ data “clear-air reflectivity data”. Before the super-
obbing, the same threshold value is set to all observations and
to all simulated reflectivities in each background ensemble
member. However, regarding the Desroziers diagnostics, the
standard deviations of the OE may be underestimated since
the same threshold value is set to both observations and back-
grounds (Zeng et al., 2021a). To mitigate this problem, we
calculate Desroziers diagnostics for reflectivities with values
≥ 5 dBZ either in observations or in backgrounds or in anal-
yses. To be consistent, we also calculate the statistics of the
RE for reflectivity data ≥ 0 and ≥ 5 dBZ, respectively.

3 The ICON model, radar observations and the
observation operator

The ICON global model, which has been in operation at
the DWD since January 2015 (Zängl et al., 2015), is non-
hydrostatic and is based on an icosahedral (triangular) grid
with a horizontal resolution of 13 km and 90 vertical levels.
The ICON-LAM is the regional model and the ICON-D2 is
one version of the ICON-LAM, with the domain as shown
in Fig. 1 and with a horizontal resolution of 2.1 km and 65
vertical levels. The ICON-D2 model became operational at
the DWD since February 2021. Lateral boundary conditions
for the ICON-LAM Ensemble Prediction System (EPS) are
provided by the global ICON EPS, with a resolution of 40
(20) km globally and 13 (6.5) km over Europe for the ensem-
ble (deterministic run). The deep convection is explicitly re-
solved and the shallow convection is parameterized with the
Tiedtke scheme (Tiedtke, 1989). The turbulent kinetic energy
(TKE) scheme for turbulence is developed by Raschendorfer
(2001). The Lin–Farley–Orville-type one-moment bulk mi-
crophysical scheme is used, which predicts cloud droplets
qc, cloud ice qi, rain qr, snow qs and graupel qg (Lin et al.,
1983; Reinhardt and Seifert, 2006).

The DWD utilizes a network of 17C-band Doppler radars
covering Germany and part of adjacent countries (see Fig. 1),
A complete radar volume scan lasts 5 min and it consists of
180 range bins (resolution of 1.0 km), 360 azimuths (resolu-
tion of 1.0◦) and 10 elevations (0.5, 1.5, 2.5, 3.5, 4.5, 5.5,
8.0, 12.0, 17.0 and 25.0◦). To transform model variables to
synthetic radar observations, an Efficient Modular VOlume
scanning RADar Operator (EMVORADO, Zeng, 2013; Zeng
et al., 2014, 2016) has been developed. The EMVORADO is
coded in a modular way and is able to simulate effects such as
beam bending/broadening/shielding, fall speed and reflectiv-
ity weighting for radial wind, attenuation, detectable signal,
etc. Reflectivities are first calculated on the model grid points
and then interpolated onto radar coordinates. There are two
scattering schemes are implemented: the Rayleigh approx-
imation for simple near-spherical hydrometeors whose size
is small compared to the wavelength and the Mie method
for one- and two-layered spherical hydrometeors of arbitrary
size. To simulate radial wind, three wind components are in-
terpolated onto radar coordinates and then radial winds are
calculated. In the operational settings, the EMVORADO is
run with the Mie method (using look-up tables) and takes
beam shielding, fall speed, attenuation and detectable signal
into account. Beam bending and broadening effects as well
as reflectivity weighting are omitted for the sake of efficiency
(computational costs can be found in Zeng et al., 2016). The
4/3 Earth radius model that assumes a standard atmosphere
is used to mimic the beam propagation (Zeng et al., 2014).

https://doi.org/10.5194/amt-14-5735-2021 Atmos. Meas. Tech., 14, 5735–5756, 2021



5738 Y. Zeng et al.: Interpreting estimated observation error statistics of weather radar measurements

Figure 1. Illustration of the ICON-D2 domain with the orography and of the radar network of the DWD (each station is denoted by a red
bullet and the station number; the scanning range is denoted by a circle).

4 Experimental settings and results

In this section, experiments are performed to create samples
for estimation of the OE statistics of radar observations. For
each elevation, standard deviations and horizontal correla-
tions of the OE at different heights are calculated as in Waller
et al. (2016c, 2019). For comparison, the same is done for
the RE. Results are shown for elevations of 0.5, 1.5, 3.5 and
5.5◦. The elevations higher than 5.5◦ are not shown due to
a small number of samples. As in Liu and Rabier (2002);
Waller et al. (2016c, 2019), the correlation length scale is de-
termined by the distance, at which the correlation coefficient
is not longer greater than 0.2. Standard deviations are aver-
aged over all samples and correlations are calculated for each
elevation at each radar station for a specific time and then av-
eraged. As Waller et al. (2019), if the numbers of samples
available for estimation are too small (e.g.,< 1000), the esti-
mated standard deviations and correlations might be consid-
erably contaminated by the sampling error and therefore are
not reliable. Furthermore, it is noted in Waller et al. (2017)
that for the local ensemble data assimilation scheme the er-
ror correlation between two observations yi and yj estimated
by the Desroziers method is correct if the observation opera-
tor applied to calculate the model counterpart of yi acts only
on states updated by yj ; however, the LETKF does not seem

to suffer strongly from this issue as shown in Waller et al.
(2019).

4.1 Observation error statistics estimated by samples
of error due unresolved scales and processes

4.1.1 Experimental settings

To create samples for the RE, the ICON-D2 model (equipped
with the EMVORADO) is run with a resolution of 1.0 km for
a training period from 26 May 2016, 00:00 UTC to 25 June
2016, 00:00 UTC, which has been investigated in a number
of studies (Zeng et al., 2018, 2019, 2020). During the pe-
riod, a large area of southeastern and central Europe was hit
by severe thunderstorms with heavy rain. The hourly outputs
of the model run at 1.0 km are interpolated onto a coarser
grid with 2.1 km (operational) using the iconremap utility
from the DWD ICON tools (Prill, 2014), and the interpolated
states are used as initial conditions for 1 h forecast runs at the
resolution of 2.1 km. Both high- and low-resolution model
runs are driven by hourly boundary conditions. For any time
during this period, one can build a difference between two
model runs. In total, there are 720 samples of differences.
Since the EMVORADO is run together, we have the sam-
ples also in radar observation space. Each sample contains
differences in radar volume scans of all radar stations. No
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superobbing has been applied, and no data assimilation has
been conducted here since we are interested in the climatol-
ogy of the RE instead of exact positions and intensities of
convection.

It is recognized in Fig. 2a that the resolution of 1 km is
still much coarser than the radar beamwidth (although the
difference narrows with increasing height), the RE will be
probably underestimated. Nevertheless, the statistics can still
provide valuable insights into features of the RE as shown in
the following.

4.1.2 Results

Figure 4a shows vertical profiles of the estimated standard
deviations of the RE for reflectivity data ≥ 0 dBZ at eleva-
tions of 0.5, 1.5, 3.5 and 5.5◦. The biases of the RE are ap-
proximately zero (not shown). The numbers of samples used
vary from 104

∼ 106 near the surface to ∼ 104 at the top
(see Fig. A1). Standard deviations for all elevations are sim-
ilar, which increase until a height of 3 km and then decrease.
It is noticed that variations of standard deviations are very
comparable to those of simulated reflectivities of the (high-
resolution) model run. By comparing simulated reflectivities
in Fig. 4b with the vertical profiles of the mean states of mix-
ing ratio variables in Fig. 5, it can be deduced that reflec-
tivities below the height of 3 km are mainly attributed to the
rain, while reflectivities above 3 km are mainly attributed to
the graupel. For reflectivity data≥ 5 dBZ as shown in Fig. 4e,
standard deviations are also very similar for all elevations ex-
cept at the top, where the higher elevations exhibit slightly
smaller errors. Standard deviations increase in the first few
hundred meters and then slightly decrease for the next few
hundred meters before increasing to a local maximum at
around 3 km. Above 3 km, standard deviations decrease until
5 km and then increase to the top. The variations of simu-
lated reflectivities of the model run exhibit a similar pattern
although the decrease between 2 and 6 km is sharper. Over-
all, it can be said that standard deviations of the RE are ap-
proximately proportional to true values. Moreover, to see the
errors decoupled from observed values (this may be interest-
ing for comparison among elevations because different eleva-
tions scan different parts of atmosphere, their measurements
may be associated with different errors), we divide standard
deviations by simulated data from the high-resolution model
run that represents observations; this is equal to the inverse
of signal-to-noise ratio (e.g., Russ, 2006, hereafter ISNR).
As shown in Fig. 4c and f, the ISNRs are similar among el-
evations and they increase consistently except at very low
heights.

Figure 6 shows the horizontal correlations of the RE for re-
flectivity data≥ 5 dBZ (the correlations for≥ 0 dBZ are very
similar; not shown). The numbers of samples used for each
separate distance and for each elevation are about 106

∼ 108

(see Fig. A2). For the elevation of 0.5◦, the correlation length
scales at heights of 0.2, 1, 2, 3 and 4 km are given, which are

about 4, 4, 4, 4 and 5 km. For 1.5◦, the correlation length
scales at heights of 0.2, 1, 2, 3, 4 and 6 km are given, increas-
ing successively from 4 to 6 km. The correlation length scales
for the other higher elevations look similar to those for 1.5◦.
Overall, for the same elevation, the correlation length scales
increase with the increasing height. This cannot be due to
the beam-broadening effect since it is omitted in both model
runs. The reason for this can be attributed to the fact that
for higher heights the radar beams have to penetrate longer
distances (see Fig. 2b), suffering more from attenuation and
likely the other errors, which may cause longer correlation
length scales. Moreover, for the same height, the correlation
length scales exhibit a slight sensitivity to different eleva-
tions.

The estimated standard deviations of the RE for radial
wind are depicted in Fig. 7a. The biases of the RE are ap-
proximately zero (not shown). The numbers of samples used
vary from 104

∼ 107 at the surface to ∼ 104 at the top (see
Fig. A1). Standard deviations are similar at lower levels for
all elevations and they increase with height, while standard
deviations for lower elevations increase faster. The increase
with the height can be simply due to increasing radial wind
speed with height (see Fig. 7b). Furthermore, since the lower
elevations are more sensitive to the horizontal wind, larger
standard deviations for the lower elevations suggest that the
RE of the horizontal component of the radial wind may domi-
nate the error. The reason for this can be that with the increas-
ing height anvil regions are approached where divergent con-
vective outflows occur and winds move in different horizon-
tal directions and slight spatial shifts of cells in simulations
can lead to large errors.

The horizontal correlations of the RE for the radial wind
are given in Fig. 8. The numbers of samples used for each
separate distance and for each elevation are about 106

∼ 108

(see Fig. A3). For the elevation 0.5◦, the correlation length
scales at heights of 0.2, 1, 2, 3 and 4 km are estimated, which
are about 5, 10, 6, 6 and 6 km. For 1.5◦, the correlation length
scales at all heights are estimated, which are about 4, 7.5, 6,
5.5, 5.5 and 6 km. For 3.5◦, the correlation length scales at all
heights are about 2.5, 5.5, 5.5, 5.5, 5.5 and 6 km. For 5.5◦,
the correlation length scales are about 2, 4, 5, 5.5, 5.5 and
6 km. Therefore, except at 1 km for 0.5 and 1.5◦ (the reason
for this is unidentified), the length scales lengthen with the
increasing heights for the same elevation. Furthermore, the
length scales at the same height become shorter for higher
elevations, especially for lower heights, which can be due to
the fact that radial wind is a directional measurement and
for the same height the lower elevations see more horizontal
components of the radial wind than vertical components, and
the error correlation of the horizontal wind has a much longer
length scale (see Fig. 5 of Zeng et al., 2019).
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Figure 2. Illustration of variations of beamwidths (in km for azimuth resolution of 1.0◦) with height (a) and surface distances (away from
the radar station) with corresponding heights (b) for elevations of 0.5, 1.5, 3.5 and 5.5◦, based on the 4/3 Earth radius model. The height of
the radar station is omitted. The figure for radial ranges with corresponding heights looks very similar to the right panel.

4.2 Observation error statistics estimated by the
Desroziers method

4.2.1 Experimental settings

To apply the Desroziers method, data assimilation experi-
ments are run with hourly updates from 3 June to 17 June
2019. During this summertime period, severe thunderstorms
affected large parts of Germany. We use the operational
ICON-LAM KENDA system. The ensemble size is 40 and
a deterministic run is updated by the Kalman gain for the
ensemble mean. The main data assimilation scheme is the
LETKF, via which conventional observations including ra-
diosondes (TEMP), wind profilers (PROF), aircraft reports
(AIREP) and synoptic surface observations (SYNOP) as well
as MODE-S data (Lange and Janjić, 2016) are assimilated.
More details about the usage of those observations can be
found in Schraff et al. (2016).

In addition, radar observations are also directly assimi-
lated by the LETKF via using the radar observation operator
EMVORADO. Prior to assimilation, signal processor filters
(Werner, 2014) are applied to radar observations for quality
control. Due to high density, radar observations are thinned
in time and space. Temporally, only the latest 5 min radar
observations prior to the analysis time are assimilated (Zeng
et al., 2018, 2019, 2020, 2021a, b; Gastaldo et al., 2021).
Spatially, the superobbing technique is applied to each PPI
(plan position indicator) scan (see Fig. 3), with the goal of
obtaining homogeneous distributions of observations in the
horizontal. The following explains how it works: first, a hor-
izontal Cartesian grid with a desired resolution do is defined.
Second, for each Cartesian grid point, the algorithm searches
for the closest radar bin. If the bin is not too close to the radar

station (within a radial range of 10 km), it will be regarded
as the center of superobbing. Third, a wedge-shaped area
around the center bin is defined by the radial range interval
and the azimuth width. The radial range interval is given by
±
do
√

2
2 and the azimuth width at the radial range r0 is given

by±arctan[(do
√

2/2)/r0]. The superobservation is then cre-
ated by averaging raw observations within the wedge area.
Note that (1) before superobbing, the modeled radial wind is
dealiased (the folding speed is 32 ms−1), and all reflectivi-
ties lower than 0 dBZ are set to be 0 dBZ in both simulations
and observations and treated as clear-air reflectivity data as
mentioned above. (2) If there are fewer than three raw ob-
servations within the wedge area, the superobservation will
be discarded. Additionally for the radial wind, the azimuth
width is limited to 20◦ (an illustration of variations of the
azimuth width with the height is given in Fig. A4), and if
the standard deviation of raw observations exceeds 10 ms−1,
the superobservation will be discarded. The second and third
steps are repeated for all PPI scans. As noted by Waller et al.
(2019), this superobbing technique may create error corre-
lations since the same raw observations may be accounted
for in neighboring superobservations. In this study, we set
do = 5 km. Examples of superobservations at an elevation of
0.5◦ are given in Fig. A5. In addition to the LETKF, the latent
heat nudging (LHN) is performed for each ensemble member
and the deterministic run to assimilate radar-derived precipi-
tation rates (Stephan et al., 2008).

For specification of the R, a diagonal matrix is used.
For the radar reflectivity, R= 10 · 10 · I [dBZ2

], where I is
the identity matrix. For the radial wind, R= 2.5 · 2.5 · γ ·
I [m2 s−2

]. Since the IE of radial wind measurements are usu-
ally large if on-site reflectivities are too small, a scaling factor
γ is introduced, which varies between 1.0 and 10.0 depend-
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Figure 3. Illustration of the radar coordinate (r,α,ε), the beam-broadening effect and the superobbing technique: r0, α0 and ε0 are the radial
range, azimuth and elevation of Beam 1 at the pulse volume whose center is at point P (denoted by a black bullet). h and s are the height
and the surface distance of P (note that the curvature of the Earth is omitted in this figure but not in calculations, e.g., in Fig. 2). θ and b are
beamwidths in degrees and km, respectively. Beam 2 has a higher elevation than Beam 3; the pulse volumes (denoted by a gray cylinder)
from Beam 2 and Beam 3 are at the same height (dented by a dashed red line) but the former one is smaller. The superobbing is done for each
PPI scan, individually, for which a Cartesian grid (denoted by a solid green line) with a fixed resolution of do is defined. For each grid point,
a point from the PPI scan is searched whose projection is closest to it. Once it is found, e.g., the point denoted by “SC1”, a wedge around it
is defined; the gray area is the lower right part of the wedge and the grids denote pulse volumes. SC2 is further in the radial range than SC1
and its superobbing wedge contains fewer pulse volumes.

ing on reflectivities and is determined by the EMVORADO.
For reflectivities smaller than 0 dBZ, γ = 10.0, for reflectivi-
ties greater than 10 dBZ, γ = 1.0, and for reflectivities in be-
tween, γ decreases linearly. Before (super)observations are
assimilated, a first-guess check is carried out (i.e., the inno-
vation of the deterministic run must be smaller than 3 times
the standard deviation of the innovation). For localization,
an adaptive localization is applied in the horizontal for con-
ventional data, whose radius is bounded between 50 and
100 km, and the radius of vertical localization varies with
altitude from 0.0075 to 0.5 in a logarithm of pressure. For
radar observations, the localization radius in the horizontal
is constant and set to 16 km. The observations are weighted
by the fifth-order Gaspari–Cohn function (Gaspari and Cohn,
1999). For inflation, adaptive multiplicative inflation, relax-
ation to prior perturbations (RTPP, Zhang et al., 2004) and
large-scale additive noise (Zeng et al., 2018) are jointly ap-
plied. The prognostic variables are updated at the analy-
sis step except the precipitating variables (i.e., qs, qg and
qr). Also note that boundary layers including 67 km lateral
boundaries at each side and heights above 300 hPa (approxi-
mately 10 km) are not updated.

4.2.2 Results

As Waller et al. (2019), we use the first-guess and analysis
departures of the deterministic run to calculate the statistics

of the OE. Compared to statistics shown in Sect. 4.1, the OE
values obtained here are subject to new error sources such
as the IE and FE, as well as a larger RE since the real radar
observations have an even finer resolution than 1 km, which
is used in Sect. 4.1. Figure 9a shows vertical profiles of the
estimated standard deviations of the OE for reflectivity data
≥ 0 dBZ at elevations of 0.5, 1.5, 3.5 and 5.5◦. The numbers
of samples used vary between 103

∼ 106, and the higher the
elevations is, the fewer samples are available (see Fig. A6).
It is noticed that the standard deviations vary between 4 and
7 dBZ, which is much smaller than 10 dBZ, which is used
to assign R. This is due to the treatment setting all nega-
tive values of reflectivity data equal to 0 dBZ in both obser-
vations and simulations for assimilating clear-air reflectivity
data, which reduces first-guess departures and thus results in
smaller estimated errors (see also Zeng et al., 2021a). To mit-
igate this problem, only reflectivity data ≥ 5 dBZ are evalu-
ated in Fig. 9d, in which standard deviations of all eleva-
tions (except 0.5◦, which is strongly contaminated by ground
clutters) increase until about 3 km and then decrease until
about 5 km before increasing until around 7 km and decreas-
ing again to the top. Moreover, the standard deviations of dif-
ferent elevations are quite different, and at the same height,
the lower the elevations are, the larger the standard deviations
are. This can be attributed to a larger IE that occurs while
the lower elevations scan longer distances, as well as to a

https://doi.org/10.5194/amt-14-5735-2021 Atmos. Meas. Tech., 14, 5735–5756, 2021



5742 Y. Zeng et al.: Interpreting estimated observation error statistics of weather radar measurements

Figure 4. (a) Vertical profiles of the estimated standard deviations of the RE for reflectivity data ≥ 0 dBZ at elevations of 0.5, 1.5, 3.5
and 5.5◦. (b) Vertical profiles of simulated reflectivity data ≥ 0 dBZ in the high-resolution model run, averaged over all samples; (c) ISNR
(inverse of signal-to-noise ratio), i.e., standard deviations in panel (a) are divided by high-resolution data in panel (b) for each elevation,
respectively; (d–f) reflectivity data ≥ 5 dBZ. For each elevation, the samples are binned every 200 m in the vertical. Here, we show results
only up to 10 km to be consistent with Sect. 4.2.

larger FE because the pulse volumes of lower elevations are
larger (see Fig. 3), but the beam-broadening effect is omitted
in EMVORADO. Finally, both Fig. 9c and f show that the
ISNRs of all elevations increase until around 7 km and then
either slightly decrease or halt.

Figure 10 shows the horizontal correlations of the OE for
reflectivity data ≥ 5 dBZ (correlations for reflectivity data
≥ 0 dBZ are not shown because they exhibit very similar pat-
terns to those in Fig. 10). The numbers of samples used vary
between 103

∼ 106 (see Fig. A7). For the elevation 0.5◦, the
correlation length scales at the heights of 0.2, 1.0, 2.0 and
3.0 km are given, which are about 20, 25, 25 and 40 km. For
1.5◦, the correlation length scales at the heights of 0.2, 1.0,
2.0, 3.0, 4.0 and 6.0 km are given, which are about 20, 20,
25, 30, 35 and 50 km. For 3.5◦, the correlation length scales
at the heights of 1.0, 2.0, 3.0, 4.0 and 6.0 km are given, which
are about 20, 25, 30, 35 and 50 km. For 5.5◦, the patterns of
correlations are comparable to 3.5◦ with some fluctuations

due to small numbers of samples used. To sum up, for the
same elevation, the correlation length scales increase with the
height and for the same height the correlation length scales
exhibit little sensitivity to different elevations.

Figure 11a shows vertical profiles of the estimated stan-
dard deviations of the OE for radial wind at elevations of
0.5, 1.5, 3.5 and 5.5◦, and the numbers of samples used are
given in Fig. A6. The variation patterns of the standard devi-
ations are similar to Waller et al. (2019) although the values
here are greater due to the application of the scaling factor
for R of radial wind, which inflates R where small reflectivi-
ties (i.e., between 0 and 10 dBZ) are observed. The standard
deviations at all elevations except 0.5◦ reach their maxima
at different heights between 1 and 6 km, and the higher the
elevation is, the larger the maximum is. Since higher eleva-
tions see more in the vertical, this suggests that the vertical
component of the radial wind is not well reproduced. On one
hand, it can be related to the misrepresentation of w in the
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Figure 5. Vertical profiles of model variables such as horizontal wind (u,v), vertical wind w, temperature T , mixing ratios of cloud water
qc, cloud ice qi, snow qs, graupel qg, rain qr and water vapor qv, as well as air density ρ and pressure P in high- (1.0 km) and low-resolution
(2.1 km) model runs. The absolute values of model variables averaged over the entire period are shown. The vertical dashed black line in the
figure for T indicates 273 K. The solid black line is the relative difference [%] (the upper x axis).

model (see large differences caused by changing the model
resolution from 2.1 to 1 km in Fig. 5 and considering that for
heights until 6 km the radar beamwidth is much shorter than
1 km for higher elevations; see Fig. 2a). Small-scale strong
updrafts often occur within these heights, which radar obser-
vations can much better resolve than the model, leading to
a larger RE. On the other hand, it can be also related to the
misrepresentation of the terminal fall speed of hydrometeors,
which can be due to the parametrization in the microphysical
scheme and which can also be due to neglecting reflectiv-
ity weighting of the radial wind in the EMVORADO. It is
shown in Zeng et al. (2016), for an idealized supercell case,
that the hydrometeor terminal fall speed with the reflectiv-
ity weighting can be maximally 8 ms−1 faster than without.

This causes a larger FE. With increasing height, the misrep-
resentation of the vertical component becomes lower (due to
coarser resolution of observations with the increasing pulse
volume) or less pronounced (due to the increasing horizontal
wind speed), and the standard deviations of the OE become
smaller. Above 6 km, the standard deviations start to increase
with the height and the increase for the lower elevations is
faster, which is because errors in the horizontal component
of the radial wind are dominating as anvil regions are ap-
proached. In Fig. 11c, it can be better seen that the ISNR de-
creases with height up to 6 km due to better representation of
the vertical component and then increases when it gets closer
to anvil regions.
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Figure 6. The estimated horizontal correlations of the RE for reflectivity data ≥ 5 dBZ for elevations of 0.5, 1.5, 3.5 and 5.5◦ at heights of
0.2, 1.0, 2.0, 3.0, 4.0 and 6.0 km. For each elevation, the samples are binned every 2 km in the separation distance. It is possible for each
elevation that samples are not available for some heights.

Figure 7. The same as Fig. 4 but for radial wind.

Figure 12 shows the horizontal correlations of the OE for
the radial wind and the numbers of samples used are given in
Fig. A8. For the elevation 0.5◦, the correlation length scales
at heights of 0.2, 1.0, 2.0 and 3.0 km are given, which are
about 20, 30, 30 and 30 km. For 1.5◦, the correlation length
scales at heights of 0.2, 1.0, 2.0, 3.0, 4.0 and 6.0 km are given,
which are about 10, 25, 30, 30, 30 and longer than 50 km. For
3.5◦, the correlation length scales at heights of 1.0, 2.0, 3.0,
4.0 and 6.0 km are given, which are about 5, 15, 25, 20, 30
and 35 km. For 5.5◦, the correlation length scales are gener-

ally a bit shorter than those for 3.5◦. Overall, it still can be
said that for the same elevation the correlation length scales
increase with height, and the lower elevations generally ex-
hibit longer correlation length scales for the same height.

4.3 Discussion

In this section, we discuss the differences between the RE
and OE for both reflectivity data ≥ 5 dBZ and radial wind
data.
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Figure 8. The same as Fig. 6 but for radial wind.

For reflectivity data ≥ 5 dBZ, it is noticed in Fig. 13a that
the variations of standard deviations of the OE follow those
of the RE until about 7 km, indicating that the RE may be a
dominant error source at these heights. Above 7 km, the stan-
dard deviations of the RE are overestimated since the model
produces too-high reflectivities (cf. Figs. 4e and 9e). This can
be caused by the constant value of the slope intercept param-
eter N0 in the particle size distribution function of the one-
moment microphysical scheme for the graupel, which may
be too small for anvil clouds of the deep convection, lead-
ing too much large graupel over the region. For both RE and
OE, it holds that for the same elevation the correlation length
scales increase with the height (see Fig. 13c) and that for
the same height the correlation length scales exhibit no sen-
sitivity to different elevations (see also Fig. 13e). However,
the correlation length scales of the OE are much longer than
those of the RE. As argued in Waller et al. (2016c), the in-
creasing pulse volume at longer distances could contribute to
this since the beam-broadening effect is omitted in EMVO-
RADO. In addition, the superobbing can be also responsible
for longer length scales. In an experiment with the superob-
bing resolution of 10 km (here 5 km), the lengths scale are
generally increased by 5 km (not shown). The error caused
by the superobbing is usually considered a type of the FE
(Janjic et al., 2018).

For radial wind, the variations of standard deviations of the
RE and OE also share some similarities except at the lower
heights as shown in Fig. 13b. The differences are caused
mainly by the FE arising from the microphysical scheme and

the observation operator as mentioned before. The correla-
tion length scales of the OE are also much longer than those
of the RE and for the same elevation the correlation length
scales of the RE and OE increase with the height. These
are the same as for reflectivity data. Some differences are
also noticed. For instance, the correlation length scales of the
RE and OE for radial wind are less sensitive to the heights
(cf. Fig. 13c and d) and more sensitive to the elevations (cf.
Fig. 13e and f). The former one can be explained by that ra-
dial wind data are less affected by attenuation, and the latter
one is because the radial wind is a directional measurement.
Generally, one could expect that the correlation length scales
for radial wind are longer than for reflectivity at lower ele-
vations since the error correlation length scales of the hori-
zontal wind are longer than those of mixing ratio variables
(Zeng et al., 2019), but for higher elevations, the role of ver-
tical component of the radial wind amplifies and shortens the
correlation length scales.

5 Summary and outlook

An adequate specification of the observation error (OE) co-
variance can be beneficial for convective-scale radar data as-
similation since the radar measurements are dense and their
errors are strongly correlated. The Desroziers method has
been used in previous studies to calculate the variances and
correlations of the OE for radial wind data (e.g., Waller et al.,
2016c, 2019). However, the estimated statistics are not fully
understood since they are composed of contributions from
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Figure 9. (a) Vertical profiles of the estimated standard deviations of the OE for reflectivity data ≥ 0 dBZ at elevations of 0.5, 1.5, 3.5 and
5.5◦. (b) Vertical profiles of observed reflectivity data ≥ 0 dBZ, averaged over all samples; (c) ISNR, i.e., standard deviations in panel (a) are
divided by observation data in panel (b) for each elevation, respectively; (d–f) for reflectivity data ≥ 5 dBZ. For each elevation, the samples
are binned every 200 m in the vertical. Since model states are not updated above 10 km, standard deviations continuously increase (see Waller
et al., 2019). Here we show results only up to 10 km.

different sources such as instrument error (IE), the observa-
tion operator error and pre-processing or quality control error
as forward model error (FE) and the error due to unresolved
scales and processes (RE), and it is difficult to distinguish
individual portion (Janjic et al., 2018). To better understand
possible contributions of the RE, another approach is pro-
posed, which assumes a high-resolution model run as truth
and a low-resolution model run as a truncation, and a set of
samples for truncation error are created and used to approx-
imate the statistics of the RE. It is noted that the standard
deviations for reflectivity data are usually underestimated by
the Desroziers method due to setting all negative reflectivity
values to 0 dBZ (treated as clear-air reflectivity data). To mit-
igate this problem, we focus on the statistics of RE and OE
for reflectivity data ≥ 5 dBZ in this work.

We have run the ICON-D2 model (equipped with the radar
observation operator EMVORADO) with resolutions of 1.0
and 2.1 km in a coupled manner for a summer convection pe-

riod. A sufficient amount of samples for truncation error in
radar observation space has been obtained. The statistics of
samples are evaluated for each elevation. It is found for the
reflectivity data ≥ 5 dBZ that the standard deviations of the
RE are similar for all elevations and are approximately pro-
portional to the true signals. For the same elevation, the hor-
izontal correlation length scales increase with height, which
can be attributed to the fact that for higher heights the radar
beams have to travel through longer distances. For the same
height, the correlation length scales are not sensitive to differ-
ent elevations. A similar situation can be seen for the radial
wind, except that at the same height the length scales become
shorter for higher elevations, especially for lower heights,
which can be due to the fact the radial wind measurement has
a directional component and for the same height the lower el-
evations see more horizontal components of the radial wind
than vertical component, and the error correlation of the hor-
izontal wind has a much longer length scale. Furthermore,
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Figure 10. The estimated horizontal correlations for the OE of reflectivity data ≥ 5 dBZ for elevations of 0.5, 1.5, 3.5 and 5.5◦ at heights of
0.2, 1.0, 2.0, 3.0, 4.0 and 6.0 km. For each elevation, the samples are binned every 5 km in the separation distance.

Figure 11. The same as Fig. 9 but for radial wind data.

the correlation length scales for reflectivity are generally a
bit shorter for lower elevations; this may be because the error
correlation length scales of mixing ratio variables are shorter
than those of the horizontal wind, but for higher elevations,
the vertical component of the radial wind shortens the corre-
lation length scales.

We have also performed data assimilation experiments us-
ing the ICON-LAM KENDA system with operational set-
tings for another summer convection period. We have used
the Desroziers method to estimate the statistics of the OE.
Results show that the standard deviations of reflectivity ≥
5 dBZ exhibit a comparable pattern to that of the RE, in-

dicating the RE is a dominant error source. The difference
with the RE also exists. The standard deviations of differ-
ent elevations are quite different; i.e., at the same height, the
lower the elevations are, the larger the standard deviations
are. This can be caused by a larger IE that occurs while the
lower elevations scan longer distances, as well as to a larger
FE because the pulse volumes of lower elevations are larger,
but the beam-broadening effect is omitted in EMVORADO.
Furthermore, it is seen that representation error is consider-
ably overestimated above about 7 km. This is likely attributed
to the deficiency in the microphysical scheme, leading too
much large graupel at these heights. For radial wind data,
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Figure 12. The same as Fig. 10 but for radial wind data.

the standard deviations of the OE are much larger than those
of the RE; this is mainly due to the the application of the
scaling factor for the OE used in the data assimilation sys-
tem. The scaling factor inflates the OE where the reflectivity
values are too small (≤ 10 dBZ). Besides, the standard devi-
ations are especially large between heights of 1 and 6 km for
the higher elevations. This can be caused by the misrepre-
sentation of the vertical wind in the model since the vertical
wind is very sensitive to the model resolution; it can also be
caused by the misrepresentation of the terminal fall speed of
hydrometeors due to inaccuracy in parametrization of the mi-
crophysical scheme and to neglection of reflectivity weight-
ing of the radial wind in EMVORADO. With respect to the
correlation length scales of the OE, for both reflectivity and
radial wind data, the length scales behavior similarly to those
of the RE, but the length scales are much longer. Among the
possible error sources mentioned above, the application of
the superobbing is another reason. Shorter superobbing res-
olution reduces the length scales. Overall, it is successful to
use the statistics of truncation error in observation space to
better understand the statistics of the OE estimated by the
Desroziers method for both reflectivity and radial wind data.
The RE contributes greatly to the variances and defines sev-
eral features in the correlation length scales.

It is noted that using the Desroziers method for all reflec-
tivity data including clear-air reflectivity data always results
in too-small error variances. Since the Desroziers method
tends to produce too-small variances by its nature, as shown
in a number of studies (Weston et al., 2014; Bormann et al.,
2016), one should greatly inflate them if one considers using

them for assignment of the OE for reflectivity in data assimi-
lation. However, since reflectivity data and clear-air reflectiv-
ity data are associated with different error characteristics as,
for example, the all-sky radiances (error standard deviations
in clear sky are much smaller than in heavy clouds or pre-
cipitation, Geer and Bauer, 2011; Chambon et al., 2014), one
could consider treating them as different data during data as-
similation. In contrast, the variances of the radial wind are
considerably large due to the scaling; it may be unneces-
sary to inflate them for the further use. Comparing the statis-
tics of the RE and OE, we see the potential in improving
the microphysical scheme and the necessity of using a more
comprehensive configuration of EMVORADO (or even im-
provement). Moreover, results presented here are based on
the convective period in the summertime. The applicability
of those results to other periods such as wintertime cyclonic
systems needs further investigation. However, some studies
have been done by the other centers. For instance for the Met
Office UKV (UK variable-resolution) model with the 3D-Var
scheme, the estimated OE statistics (based on the Desroziers
method) for radial wind are qualitatively similar to those in
the summertime (Waller et al., 2016c), and for reflectivity
Kouroupaki (2019) shows that the estimated standard devi-
ations of the OE in winter are larger than those in summer
and that they increase with reflectivity values. Since the cur-
rent superobbing method can lead to extra correlations, we
may also consider refining this method. Finally, the statistics
presented here show the necessity of including correlations
in the OE covariance matrix for radar data assimilation, and
this work can be used as a guideline for selecting which ob-
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Figure 13. (a) Vertical profiles of the estimated standard deviations of the RE and OE at an elevation of 3.5◦ for reflectivity data≥ 5 dBZ and
(b) radial wind. (c) The estimated horizontal correlations for the RE and OE at an elevation of 3.5◦ at heights of 1 and 6 km for reflectivity
data ≥ 5 dBZ and (d) for the radial wind. (e) The estimated horizontal correlations for the RE and OE at a height of 1 km for elevations of
0.5 and 3.5◦ for reflectivity data ≥ 5 dBZ and (f) for the radial wind.

servations are assimilated and for the assignment of the OE
covariance matrix that can be diagonal or full and correlated.
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Appendix A: Additional figures

In this section, we provide figures for the numbers of samples
used for estimating the statistics of the RE (Figs. A1–A3) and
OE (Figs. A6–A8), as well as figures for the superobbing
technique (Figs. A4–A5).

Figure A1. Vertical profiles of numbers of samples used for estimating standard deviations of the RE for reflectivity data ≥ (a) and ≥ 5 dBZ
(b) and for radial wind (c) at elevations of 0.5, 1.5, 3.5 and 5.5◦.

Figure A2. The numbers of samples used for estimating horizontal correlations for the RE of reflectivity data ≥ 5 dBZ for elevations of 0.5,
1.5, 3.5 and 5.5◦ at heights of 0.2, 1.0, 2.0, 3.0, 4.0 and 6.0 km.
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Figure A3. The same as Fig. A2 but for radial wind data.

Figure A4. Variations of the width of azimuth with height for superobbing of reflectivity (a) and radial wind (b) at elevations of 0.5, 1.5, 3.5
and 5.5◦. A maximum of 20◦ is set for superobbing of radial wind.
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Figure A5. Illustration of superobbing for reflectivity data ≥ 0 dBZ (a, b) and radial wind (c, d) with resolution do = 5 km (a, c) and
do = 10 km (b, d) at an elevation of 0.5◦ for radar station 10356 at 13:00 UTC on 3 June 2019.

Figure A6. Vertical profiles of numbers of samples used for estimating standard deviations of the OE for reflectivity data ≥ 0 dBZ (a) and
≥ 5 dBZ (b) and for radial wind (c) at elevations of 0.5, 1.5, 3.5 and 5.5◦.
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Figure A7. The numbers of samples used for estimating horizontal correlations for the OE of reflectivity data ≥ 5 dBZ for elevations of 0.5,
1.5, 3.5 and 5.5◦ at heights of 0.2, 1.0, 2.0, 3.0, 4.0 and 6.0 km.

Figure A8. The same as Fig. A7 but for radial wind data.
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Ruckstuhl, Y. M. and Janjić, T.: Combined state-parameter estima-
tion with the LETKF for convective-scale weather forecasting,
Mon. Weather Rev., 148, 1607–1628, 2020.

Russ, J.: The Image Processing Handbook, CRC Press, Boca Raton,
USA, 2006.

Schraff, C., Reich, H., Rhodin, A., Schomburg, A., Stephan, K.,
Periáñez, A., and Potthast, R.: Kilometre-Scale Ensemble Data
Assimilation for the COSMO Model (KENDA), Q. J. Roy. Me-
teor. Soc., 142, 1453–1472, 2016.

Simmer, C., Adrian, G., Jones, S., Wirth, V., Göber, M., Hoheneg-
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