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Abstract. Mobile monitoring is becoming increasingly pop-
ular for characterizing air pollution on fine spatial scales.
In identifying local source contributions to measured pollu-
tant concentrations, the detection and quantification of back-
ground are key steps in many mobile monitoring studies,
but the methodology to do so requires further development
to improve replicability. Here we discuss a new method for
quantifying and removing background in mobile monitoring
studies, State-Informed Background Removal (SIBaR). The
method employs hidden Markov models (HMMs), a popu-
lar modeling technique that detects regime changes in time
series. We discuss the development of SIBaR and assess its
performance on an external dataset. We find 83 % agree-
ment between the predictions made by SIBaR and the pre-
determined allocation of background and non-background
data points. We then assess its application to a dataset col-
lected in Houston by mapping the fraction of points des-
ignated as background and comparing source contributions
to those derived using other published background detection
and removal techniques. The presented results suggest that
the SIBaR-modeled source contributions contain source in-
fluences left undetected by other techniques, but that they
are prone to unrealistic source contribution estimates when
they extrapolate. Results suggest that SIBaR could serve as a
framework for improved background quantification and re-
moval in future mobile monitoring studies while ensuring
that cases of extrapolation are appropriately addressed.

1 Introduction

Understanding air pollution exposure is important, as it has
been linked to various adverse health conditions (Caplin et
al., 2019; Zhang et al., 2018). Mobile monitoring, a tech-
nique in which continuous air pollution measurements are
collected using instrumentation on a mobile platform, is be-
coming increasingly important for characterizing exposure
because air pollution varies on spatial scales finer than the
typical distance between stationary monitors (Apte et al.,
2017; Chambliss et al., 2020; Messier et al., 2018).

A key component of mobile monitoring analysis is identi-
fying ambient background levels, defined here as measured
air pollution concentrations independent of local source in-
fluences (Brantley et al., 2014). Background quantification
is vital from both policy and exposure perspectives, as it
is important to assess the contribution of local sources to
pollution concentrations accurately. Table 1 summarizes the
wide variety of methods used to estimate background in stud-
ies incorporating mobile monitoring published within the
past 5 years. The wide variance in the approaches used is
problematic, as estimates of source contributions to mea-
surements have been shown to be sensitive to the technique
used (Brantley et al., 2014). To improve the replicability and
power of mobile monitoring studies, a more consistent tech-
nique for background estimation is needed.

Designing a method to determine the background in mo-
bile monitoring studies presents several challenges. Measure-
ments in remote locations are often regarded as the most
reliable representation of background concentrations; how-
ever, remote locations may be inaccessible for some mobile
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Table 1. Summary of previous methodologies for estimating background levels of air pollution in mobile monitoring campaigns.

Study Method used to determine background concentration

Apte et al. (2017) Applied 10 s moving average filter, then selected the smaller of the given data value or
the 2 min 5th percentile to derive baseline concentrations.

Brantley et al. (2019) Fitted quantile regression with cubic natural spline basis expansion of time with degrees
of freedom equal to the number of hours in the time series.

Hankey and Marshall (2015) Used pollutant-specific underwrite functions to estimate instantaneous background con-
centrations and subtracted these concentrations from the original time series, averaged
reference monitor measurements, then added averaged measurements to underwrite ad-
justed time series.

Hankey et al. (2019) Used hourly averaged measurements in centrally located site for additive correction
factor; used daily median fixed-site measurement for temporal correction factor.

Hudda et al. (2014) Applied rolling 30 s 5th percentile of the original time series.

Larson et al. (2017) Applied 10 min rolling minimum.

Li et al. (2019) Applied 1 min moving median filter, then calculated 1 h rolling 5th percentile of
smoothed data; additionally, used wavelet decomposition to isolate concentration
changes across 8 h at stationary monitors, then subtracted lowest decoupled concen-
tration from mobile monitoring time series across 15 min time windows.

Patton et al. (2014) Used mobile measurements in designated urban background neighborhoods removed
from highway.

Robinson et al. (2018) Linearly interpolated averaged data collected at designated background locations.

Shairsingh et al. (2018) Applied rolling 60 s mean, then applied spline of minimums technique (Brantley et al.,
2014) across different time windows dependent on a desired background scale.

Tessum et al. (2018) Used daily 5th percentile for all pollutants other than fine-particle number concentra-
tion; used rolling 30 min 5th percentile for fine-particle number concentration.

Van den Bossche et al. (2015) Used averaged measurements from stationary monitor located in an urban green to
apply additive correction factors to measurements greater than background, then av-
eraged site measurement and multiplicative correction factors to measurements lower
than background.

monitoring studies and are themselves subject to occasional
source influences. These drawbacks make time series meth-
ods for determining background more desirable. However,
many time-series-based methods often rely on setting static
time windows, which are usually determined by the expected
duration of influence from source plumes within the mobile
monitoring study (Bukowiecki et al., 2002). The underlying
physical representation of these time series methods remains
unclear for more extensive mobile monitoring campaigns, as
the setting of static time windows does not often capture the
entire variation in timescales that source impacts can have on
mobile measurements.

Here we show the results of a newly developed method
called State-Informed Background Removal (SIBaR) used to
estimate background for several traffic-related air pollutants,
namely nitrogen oxides (NOx) and carbon dioxide (CO2).
The method incorporates hidden Markov models (HMMs),
a time series regime modeling technique used in a wide vari-

ety of contexts in signals processing, finance, and the social
sciences and that has been used to model background in sta-
tionary monitors (Gómez-Losada et al., 2016, 2018, 2019;
Visser and Speekenbrink, 2010). HMMs assume that obser-
vations within a time series are drawn from probability distri-
butions governed by a hidden sequence of states. We propose
decoding this hidden sequence of states as a way to deter-
mine whether measurements were taken during time periods
representative of background versus time periods subject to
local influences. We illustrate that a more physically mean-
ingful representation of background is captured in this mod-
eling context for mobile monitoring time series and show its
application to a wide variety of traffic-related air pollutant
measurements. As a proof of concept, we run the method on
a published external dataset already marked as background
and non-background and assess its performance. As a first
application and to provide further proof of concept, we map
points binned as background by SIBaR to show their spatial
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distributions. As a proof of importance, we highlight differ-
ences in mapped source contributions derived from SIBaR
background and background derived from other time-series-
based techniques. Results indicate that our consistent method
for background identification and removal has a noticeable
impact on mapped mobile source contributions.

2 Methods

2.1 Mobile campaign

Measurements were taken during the Houston Mobile Mon-
itoring Google Street View (GSV) campaign and are de-
scribed in detail elsewhere (Miller et al., 2020). Measure-
ments were conducted over a 9 month period spanning July
2017 to March 2018. Sampling primarily took place between
07:00 and 16:00 local standard time (Miller et al., 2020) in
a variety of census tracts across metropolitan Houston. Cen-
sus tracts are included in the current analysis if they were
sampled a minimum of 15 times during this 9-month period
(Apte et al., 2017; Li et al., 2019). Details and names used to
describe each census tract are given in Table S1 in the Sup-
plement. The time of day and day of week for each census
tract visit were predetermined to minimize temporal biases
in sampling to the greatest extent possible. Instruments (Ta-
ble S2) were loaded into two gasoline-powered GSV cars that
sampled every drivable road in 22 different census tracts in
the greater Houston area. Details and names used to describe
each of the census tracts considered are given in Table S1. In-
dividual observations are aggregated to 50 m points in neigh-
borhoods and 90 m points on highways using a road network
created from U.S. Census TIGER/Line roads (TIGER/Line
Shapefile, 2018). More details on the road network creation
and data quality control are provided elsewhere (Miller et
al., 2020). Data quality and control measurements were im-
plemented to ensure sound statistics were performed. Mea-
surements were removed if they were taken during calibra-
tion periods, during periods of suspected instrument failure,
and if they were outside of an instrument’s reported operating
range. Measurements were synchronized to GPS time stamps
and adjusted for inlet residence time differences based on
results from match strike tests. Measured pollutants include
black carbon (BC), carbon dioxide (CO2), nitric oxide (NO),
and nitrogen dioxide (NO2) (NOx =NO+NO2).

Bias, precision, and the minimum detection limit (MDL)
for each instrument are provided in Table S2. Details con-
cerning the calculation of each parameter for each instrument
are given elsewhere (Miller et al., 2020). In brief, the bias for
the T200 NO analyzer and T500U NO2 analyzer were calcu-
lated from gas calibration checks performed every 2 weeks
at the start of the study period and every month towards the
end of the study period because the checks routinely showed
bias <±10 %. The bias for the LI-7000 CO2/H2O Analyzer
was determined from a gas phase calibration before the start

of the study to match the manufacturer reported value. Pre-
cision values for the T200 and T500U were calculated as the
standard deviation of zeroing periods taken throughout the
entire campaign. Minimum detection limits for the T200 and
T500U were determined as the mean of the time series zero
+3σ . The minimum detection limit and precision of the Li-
COR were not considered due to taking measurements at a
consistently elevated global background and the latter man-
ufacturer’s reported value having a minuscule effect on the
overall uncertainty of the measurement. For the purposes of
this work, we perform no MDL substitution, as MDL sub-
stitution would censor the underlying modeled background
probability distribution.

2.2 Hidden Markov model categorization – the
background partitioning step

Time series observations are segregated by day and for each
GSV car, and HMMs are fit to each day’s worth of data. Be-
fore fitting the HMM to each day’s time series realizations,
we log transform them. HMMs attempt to maximize the log-
likelihood, LC, determined by the sum of the forward vari-
ables αT (i):

LC =

N∑
i

αT (i) (1)

in which i designates state i (total statesN ) at the last realiza-
tion of the time series T . The forward variables are derived
recursively as

α1(i)= πip(y1|θi,z) (2)

αt+1(j)=
∑N

i

(
αt (i)aij

)
p
(
yt |θj ,z

)
(3)

in which πi represents the initial probability for state i, aij
represents the state transition probability from state i to state
j , and p(yt |θi,z) represents the conditional probability of ob-
servation yt conditioned on the parameters θi governed by
state i and any additional covariates z. For the purposes of
our work, we assume that the probability distributions gov-
erning yt are log normal and parametrize the mean of the
response distribution as

µt = β̂0+ β̂1t, (4)

where µt is the time-dependent mean of the response, β̂0 and
β̂1 are estimated parameters, and t is time.

The log-likelihood of Eq. (1) is maximized using the ex-
pectation maximization algorithm (Dempster et al., 1977;
Visser and Speekenbrink, 2010). Initial starting values of the
transition probabilities are bootstrapped 150 times to produce
150 candidate models because convergence to a maximum
likelihood can be affected by the starting values. The model
with the greatest log-likelihood is then selected for decoding
via the Viterbi algorithm (Forney, 1973). The Viterbi algo-
rithm seeks to maximize the joint probability of both obser-
vations and state sequence (q1, . . .,qT ) given the parameters.
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We define a variable δ recursively as

δt+1(j)=
[
maxδt (i)aij

]
p
(
yt+1|θjz

)
(5)

with the initialization

δ1(i)= πip(y1|θiz) . (6)

To retrieve the state sequence, we create a matrix ψ such that

ψ1(i)= 0, 1≤ i ≤N (7)
ψt (j)= argmax

(
δt−1(i)aij

)
, 1≤ j ≤N, 2≤ t ≤ T . (8)

We retrieve the state sequence by backtracking:

qT = argmax[δT (i)] , 1≤ i ≤N (9)
qt = ψt+1 (qt+1) , t = T − 1,T − 2, . . .1. (10)

This state sequence is then used to designate observations as
background or source. State-assigned points with the lower
median are designated background. An example of a decoded
sequence is given in Fig. 1 for NOx (after retransformation).

HMM fits can be highly sensitive to time series outliers
(Svensén and Bishop, 2005; Chatzis and Varvarigou, 2007;
Chatzis et al., 2009). Additionally, while computationally
cheap, the linearity assumption embedded in the time covari-
ate could fail to capture more complex variations in back-
ground and produce flawed state categorizations. To capture
misclassification instances, we recast the step as an unsu-
pervised learning problem, design an empirical routine to
evaluate the quality of created clusters, and incorporate it
into SIBaR. The routine, coined the fitted line classifier, fits
a line between averaged transition measurements and their
corresponding transition times. The method then calculates
the percentage of points above the line that are classified as
background and the percentage of points below the line that
are classified as source. If either percentage is greater than
or equal to 50 %, a predetermined percentage threshold, the
method deems the series incorrectly classified. If a series is
incorrectly classified, SIBaR breaks the series into two and
performs the background partitioning step on each half chunk
separately. Sixteen example time series, labeled as classified
correctly or incorrectly, are depicted in Figs. S1 and S2. After
fitting HMMs to each separate chunk, SIBaR then uses the
fitted line classifier on each chunk, repeating the process if
any chunk’s partitioning is labeled misclassified. The process
continues recursively until all created partitions are deemed
correctly classified. SIBaR then combines the state designa-
tions from all created chunks into one and returns those state
designations as the corrected designations for the time series.

In running SIBaR on the campaign NOx measurements,
we note that the empirical classifier designates 96 % of the
original time series to be correctly classified for a 50 %
threshold. We run a sensitivity analysis on the percentage
threshold and show the results in Fig. S3. The figure illus-
trates that changing the percentage threshold causes changes

in the percentage of correctly classified time series to range
between 80 %–100 %, dipping below 50 % only for the most
stringent requirement (5 %). These results give us confidence
in the partitioning step.

2.3 Natural spline fit

After HMMs have been fit to all time series data, natural
splines are fit to the background points by day. As in the work
published by Brantley et al. (2019; “Brantley”), we select a
natural spline basis with the degrees of freedom equal to the
number of hours in the time series. However, we fit to the
mean of our partitioned background time series, whereas in
Brantley the focus is on a 10th quantile regression. An exam-
ple of this spline fit is given in Fig. 1.

Because SIBaR’s partitioning step periodically generates
background-assigned points that differ from one another for
the same time series, we perform a test to evaluate its robust-
ness. We run SIBaR 25 times and evaluate the pairwise root
mean square error (RMSE) between each set of generated
background predictions for NOx as defined by

RMSE=

√√√√√ T∑
t
(nta − ntb)

2

T
(11)

in which nta is the background realization at time t of signal
a, ntb is the background realization at time t of signal b, and
T is the total number of realizations in the time series.

The pairwise RMSE values for the first 12 runs are given in
Table S3. We calculate an average RMSE of 0.05± 0.02 ppb
between each background signal and conclude that the fitting
step is robust to small changes in background-assigned points
in the partitioning step.

2.4 Evaluating the partitioning step: validation on an
external dataset

To test the validity of the partitioning step, we perform exter-
nal validation using a mobile monitoring dataset published
in Brantley et al. (2014). In that study, a van collecting mo-
bile measurements of carbon monoxide (CO) systematically
looped a route in which it drove through a predefined back-
ground location, on transects to a highway, and on the high-
way itself (Brantley et al., 2014). The measurements taken
in the prescribed background location were marked as back-
ground, and all other measurements were marked as non-
background. We run the partitioning step on these data to
determine how well SIBaR captures the measurements taken
in the background location of the study.

2.5 Generating mapped fractional background
contribution and source contribution maps

We explore the spatial extent of our HMM-decoded catego-
rizations from the partitioning step by creating mapped frac-
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Figure 1. Example time series of SIBaR background signal (blue) being fit to background designated points (black) created in the SIBaR
partitioning step. Points are colored red if designated as the source in the partitioning step and black if designated background. Data presented
in this time series were collected on 30 March 2018 starting at 10:00 Central Daylight Time (CDT).

tional background contribution maps. After aggregating time
series observations (either CO2 or NOx , depending on the
pollutant analyzed) to road segment points created within our
road segment network, we sum the number of observations
designated as the background state and divide by the total
number of observations assigned to that road segment point.
We map the results and present them in Sect. 3.2.

In Sect. 3.3, we derive source contributions (source sig-
nal= original signal – background signal) using our back-
ground method and map them. To put these source contri-
butions in context with previously published work, we re-
peat the same process using background derived from a mov-
ing 2 min 5th percentile baseline (Apte et al., 2017; “Apte”)
and the Brantley technique described previously in Sect. 2.2
(Brantley et al., 2019). To derive our source contributions,
we make predictions for the background for each time se-
ries realization collected using the derived background spline
and then subtract those predictions from the original time se-
ries observations. We also derive source contributions using
the Apte and Brantley techniques. We create the maps using
the same methodology as Miller et al. (2020) and described
briefly here. Using our created road segment network, we
take the mean of measurements collected as the GSV car
drives past a road segment point in our network, coined the
drive pass mean. We take the median of these drive pass
means and map the result. Because we consider drive pass
means taken within 4 h of one another to provide no new in-
formation about the air quality at that road segment, we take
the median of drive pass means occurring within that 4 h time
window to generate a 4 h median of drive pass means. Then,
we take the median of all 4 h medians of drive pass means
at that road segment to derive its map-reduced median. We
perform this procedure for the source contributions derived

using our method and the source contributions derived using
the other published methods.

3 Results – proof of concept

3.1 Validating the partitioning step on an external
dataset

A comparison between SIBaR’s partitioning and the par-
titioning originally published by Brantley et al. (2014) is
given in Fig. 2. Initially, the HMM fitting step is performed
and the resulting state sequence decoded. We run our clas-
sifier on the initially decoded time series and find it to be
misclassified, which is apparent from panel (a) of Fig. S4,
which shows the unsmoothed CO data before correction. The
algorithm breaks the series into two chunks and refits the
HMM to each part separately, resulting in the state desig-
nations in panel (a) of Fig. 2. We then compute the per-
centage of matching background/non-background designa-
tions. The SIBaR partitioning step is able to match 83 %
of the originally published background/non-background des-
ignations. The mismatches could be attributed to the tran-
sition between the background/non-background portions of
the route in the original study, which is observed in Fig. 2
in the periods where background points show larger values
than source points near periods of the transition (for example,
the last blue spike at approximately 08:45 Eastern Daylight
Time, EDT). Mismatches also could be a result of the effects
of traffic on measurements in the background designated por-
tion of the route. Finally, the mismatches could be attributed
to the inability of the SIBaR linearity assumption to capture
finer scale temporal variations within the background (see
Eqs. 2–4).
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In running this test, we note that the method is sensitive
to a smoothing time window if one is used. Figure S4 illus-
trates uncorrected SIBaR-decoded states for three different
smoothing time windows on the same CO dataset and shows
that the method produces different state categorizations de-
pending on the window used, even making correction unnec-
essary in the 30 s instance. We hypothesize that smoothing
reduces the skewness of the data such that they better fit two
switched lognormal Gaussian distributions.

3.2 Mapped fractional background state contributions

For the Houston mobile campaign, maps detailing the frac-
tional contribution of the background state to the overall
mapped points are created for CO2 and NOx . Individual ob-
servations assigned to a road segment point have their de-
coded category designations assigned to the same point. The
number of observations assigned the background category
are then divided by the total number of observations assigned
to the point to determine the fractional background state con-
tribution. Figure 3 shows these census tract maps for NOx .
Figure S5 shows the maps for CO2. It is important to note
that these maps represent the fraction of the measurements
that are categorized as background or source for the given
pollutant at a given location.

We note the following about the broad spatial patterns in
the mapped background state fraction presented in Fig. 3.
First, background state designated points dominate residen-
tial areas for both pollutants. This is encouraging, as it is ex-
pected that few point sources of these two pollutants would
be found in residential neighborhoods except for those near
industrial activity (Miller et al., 2020). Second, source state
designated points dominate highways and busy arterial roads,
which is expected given the large amounts of traffic on these
roads. Finally, we note the appearance of source-dominated
hotspots in front of point sources identified in our previous
work (Miller et al., 2020) and denote their locations in Fig. 3.
This is encouraging given that we found these road segments
to be elevated for NO and/or NO2 compared to their sur-
rounding neighborhood domain.

We take the background state fractions depicted in Fig. 3
and bin them by distance to the highway. The results are pre-
sented in Fig. 4. We do the same for CO2 and present the
results in Figs. S5–S6. The exponential behavior exhibited
in Fig. 4 mirrors published exponential decays in roadside
source pollutant concentrations (Apte et al., 2017; Karner et
al., 2010), while the sizable interquartile ranges within each
bin highlight the complexity and variability of source road-
side gradients, which depend on emission rates, meteorology,
geography, and other factors (Baldwin et al., 2015; Patton et
al., 2014).

3.3 Comparison of source contribution maps using
different background removal techniques

To put SIBaR predicted source contributions in context,
we compare the source contribution maps generated using
SIBaR to the ones generated by the Apte and Brantley tech-
niques. We zoom in on the Ship Channel domain for ease of
comparison in Fig. 5. We refer the reader to Figs. S7–S15 to
see maps for all other areas in the mobile monitoring cam-
paign for both NOx and CO2. The average NOx background
predicted by the Apte, Brantley, and SIBaR techniques are
15.25, 11.58, and 13.02 ppb, respectively.

Figure 5 shows that the source contributions derived using
the Apte technique are lower on highways compared to the
source contributions derived using SIBaR and the Brantley
techniques. Additionally, both the Brantley and SIBaR tech-
niques derive higher source contributions on road segments
with elevated NO and NO2 concentrations compared to the
Apte technique, as identified in Miller et al. (2020). We hy-
pothesize that this occurs due to the smaller time window uti-
lized in the Apte technique. The GSV vehicles would often
sit in traffic on highways for extended periods of time, mak-
ing a 2 min time window unsuitable for describing source du-
rations during those time periods. While the 2 min assump-
tion would be better suited for situations in which the car was
exposed to source durations within that time interval (which
occurred in the Apte study), it would not be for source dura-
tions of a larger time interval, highlighting the challenges in
assuming a static time window for extensive mobile monitor-
ing campaigns with varying source durations.

We plot road segment median source contributions derived
by Apte and Brantley algorithms against the road segment
median concentrations derived by SIBaR and present the re-
sults for NOx in Fig. 6. Additionally, we plot lines of best fit
derived using ordinary least squares (OLS) regression. Fig-
ure 6a illustrates that SIBaR derives higher source contri-
butions medians than the Apte technique, which is largely
driven by differences in highway road segment medians. The
slope determined using OLS regression suggests that, on av-
erage, SIBaR median source contributions are∼ 41 % higher
than Apte median source contributions. Panel (b) of Fig. 6
comparing Brantley and SIBaR road segment medians in-
dicates much closer agreement between the two techniques,
with SIBaR estimating source contribution medians at an av-
erage offset of 2 ppb lower than Brantley source contribu-
tion medians. Data for CO2 source contribution medians are
shown in Figs. S16 and S17.

While the road segment median source contributions be-
tween the Brantley and SIBaR techniques exhibit strong
agreement, we note that source contributions evaluated on
a more granular level exhibit some disagreement. Figure 7
displays the inter quartile ranges (IQRs) for source contri-
butions assigned to each road segment plotted against each
other for the SIBaR and Brantley techniques, again colored
by distance to the closest highway. We display additional 1 : 1
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Figure 2. Comparison between SIBaR-predicted background and source states and originally published designations from Brantley et
al. (2014) for log-transformed CO. Background designated points are in blue and source designated points in red. (a) SIBaR-decoded states
for the mobile CO measurements. (b) Designations originally published by the authors of the study.

Figure 3. Fraction of points aggregated to the road segment network designated as background in SIBaR-decoded states for NOx . Maps
were generated following the methods outlined in Sect. 2.5. Points are mapped on a scale of 0 to 1; 1 implies all points aggregated to that
road segment were designated as background and 0 implies all points were designated as non-background. Details of the census tracts are
provided in Table S1. Gold stars indicate locations of elevated NO and/or NO2 medians next to known industrial facilities published in
Miller et al. (2020). Basemap generated by MATLAB geobasemap “streets” and is hosted by ESRI (Sources: Esri, DeLorme, HERE, USGS,
Intermap, iPC, NRCAN, Esri Japan, METI, Esri China (Hong Kong), Esri (Thailand), MapmyIndia, Tomtom).
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Figure 4. Boxplots of mapped background NOx fractions, presented in Fig. 3, binned by distance from the highway. The red line represents
the median, the top and bottom edges represent the 75th and 25th percentiles, respectively, and the whiskers extend to the most extreme data
points not considered outliers.

Figure 5. Comparison of source contributions derived using different techniques in the Ship Channel domain. Source contributions were
aggregated according to the methods described in Sect. 2.4. (a) Source contributions derived using the Apte technique. (b) Source contribu-
tions derived using the Brantley technique. (c) Source contributions derived using the SIBaR technique. Basemap generated by MATLAB
geobasemap “streets” and is hosted by ESRI (Sources: Esri, DeLorme, HERE, USGS, Intermap, iPC, NRCAN, Esri Japan, METI, Esri China
(Hong Kong), Esri (Thailand), MapmyIndia, Tomtom).

plots of the IQR for different techniques and pollutants (NOx
and CO2) in the Supplement (Figs. S18–S20). There are no-
ticeable deviations from the 1 : 1 line in IQR between SIBaR
and the Brantley technique for both NOx and CO2, suggest-
ing that the two techniques disagree with one another on indi-
vidual source contribution drive pass means. Figure S21 dis-
plays a histogram of differences in drive pass means between

the two techniques. While SIBaR predicts lower source con-
tributions compared to the Brantley technique on average,
there are noticeable discrepancies captured in the tails of the
distribution.

To provide further context for these results, we present two
examples of daily time series of each background technique’s
predictions in Fig. 8. It is apparent that the Apte technique
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Figure 6. Scatterplots of road segment median source contributions predicted by two different techniques against their corresponding SIBaR
median source contributions for NOx . The line of best fit is derived using OLS regression and is depicted in red. The 1 : 1 line is depicted in
black. Points are colored by their distance to the closest highway. (a) SIBaR source contribution medians plotted against Apte source con-
tribution medians. (b) SIBaR source contribution medians plotted against Brantley source contribution medians. The plots in red rectangles
designate a blown-up portion near the origin.

overfits to the data in both cases. The top panel shows an
example of SIBaR’s predictions offering an advantage over
Brantley’s; since SIBaR is fit to a subset of the data, it avoids
overfitting in the early morning hours of the time series that
the Brantley time series incorporates. Figure 8a illustrates
why the cases in the right tail of the histogram in S21 exist.
In contrast, the bottom panel showcases the potential faults in
using SIBaR predictions; since there are no background des-
ignated points at the beginning of this time series example,
the spline fit wildly extrapolates, resulting in unrealistic pre-

dictions that are captured in the left tail of the histogram in
Fig. S21. Both panels illustrate why the medians of Brantley
and SIBaR agree so well with one another, yet display IQRs
that deviate from their 1 : 1 line. Both signals exhibit strong
agreement with one another but can capture different source
influences periodically because of the assumptions inherent
in each technique. It is also evident that the appropriate back-
ground fit would need to be investigated on a case-by-case
basis, as one should avoid using the SIBaR technique in in-
stances where extrapolation could occur.
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Figure 7. 1 : 1 scatterplot of the interquartile range (IQR) of predicted NOx source contributions at individual road segments for the SIBaR
and Brantley techniques. The line of best fit is derived using OLS regression and is depicted in red. The 1 : 1 line is depicted in black. The
inset, outlined by the red rectangle, shows the IQR at lower values of the Brantley source contribution IQR. Deviations from the 1 : 1 line
suggest that SIBaR captures source influences the Brantley method fails to detect, despite predicting lower source contributions on average
and the excellent agreement in median source contribution.

4 Concluding remarks

We illustrate that SIBaR provides a defensible mechanism
to quantify and remove background from air pollution mon-
itoring data time series. The method’s partitioning step
is able to match 83 % of a study’s previously published
background/non-background designations. Mapped distribu-
tions of the partitioning step’s decoded states show high lev-
els of background state assignment in residential areas, with
notable exceptions in hotspots published in a previous study.
Finally, we show the impact using SIBaR can have on deriv-
ing source contributions in comparing it to the background
signals predicted by other techniques. Most notably, SIBaR
does not rely on a static time window assumption to deter-
mine source impacts, and instead relies on fitting to a subset
of the data generated with a time series regime change mod-
eling technique. Setting a static time window can have signif-
icant impact on the derived source contributions, as exhibited
by the discrepancies between the Apte and SIBaR methods
shown in Sect. 3.3. While the SIBaR and Brantley techniques
produce similar source contribution medians to one another
in the context of this campaign’s measurements, both capture
different source influences based on the assumptions inherent
in each respective technique.

Despite SIBaR’s rigor and advancements relative to pre-
viously published methods, our approach needs careful con-
sideration and improvement. The method is sensitive to how
data in the time series are distributed, and transforming the
measurements can provide different results. For example,
Fig. 9 exhibits a side-by-side comparison of SIBaR state

predictions for transformed (Fig. 9a) and non-transformed
(Fig. 9b) NOx data. The transformation in this instance re-
sults in portions of the measurements in the early morning
period being classified as background, whereas none are des-
ignated as background in the non-transformed case. While
we think data are more appropriately described in the log-
normal regime (Seinfeld and Pandis, 2016), careful consid-
eration of transformation is necessary. Additionally, as dis-
cussed in Sect. 3.1 and exhibited in Fig. S4, applying a
smoothing time window can also affect the state categoriza-
tions.

While the linearity assumption in the time covariate is
computationally cheap and easy to implement, it is limited.
It is unrealistic to expect background air pollution to exhibit
linear behavior, especially as the time series duration extends
(Luke et al., 2010). While the linearity assumption seems to
be acceptable for time series of several hours of data, prob-
lems with that assumption arose in this work and will most
likely arise on time series of data by day or when time series
are impacted by abrupt meteorological changes. Future work
should incorporate assumptions of non-linear behavior into
the analysis. Several studies have been published showing
the applicability of HMMs to covariates expressed as splines
(Langrock et al., 2015, 2018). However, trade-offs between
computational time and precision would need to be consid-
ered. In its current version, SIBaR takes ∼ 6.5 h to model
background for millions of data points (performing the por-
tioning step, evaluating and/or correcting the fit, and fitting
the spline for all time series). The Brantley technique, in con-
trast, takes several minutes.
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Figure 8. Time series plots depicting the original mobile campaign measurements, colored by their SIBaR-decoded states (background
and source), along with the background signals generated by the SIBaR, Brantley, and Apte techniques. (a) NOx time series of mobile
measurements taken on 3 October 2017, which displays the Apte and Brantley signals overfitting to data decoded as source by the SIBaR
partitioning step. (b) NOx time series of mobile measurements taken on 30 November 2017, which shows wildly extrapolated SIBaR
predictions at the beginning of the time series due to the lack of background-decoded states.

Figure 9. Comparison of SIBaR state designations for (a) log-transformed versus (b) non-transformed NOx data on 30 October 2017 (local
time, i.e., Central Daylight Time, CDT) in the Houston mobile monitoring campaign. Transformation can affect state assignments, which in
this case results in 38 % of the observations having a different categorization upon transformation.

Despite these shortcomings, SIBaR holds promise as a
framework to quantify and remove background from air pol-
lution monitoring time series. In its current state, it is inferior
to the Brantley technique with regards to computation time.
However, these problems with SIBaR are computational ones
rather than problems with its underlying theory. The SIBaR

partitioning step captures transient behavior between back-
ground and non-background quite well, as the diagnostic re-
sults of Sect. 3.1 and the maps in Sect. 3.2 indicate. In addi-
tion to addressing other issues highlighted here, future work
should focus on methods to reduce its computational time to
make its use more straightforward.
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