Supplement of Atmos. Meas. Tech., 14, 6039–6056, 2021 https://doi.org/10.5194/amt-14-6039-2021-supplement © Author(s) 2021. CC BY 4.0 License. ## Supplement of ## Development of a laser-photofragmentation laser-induced fluorescence instrument for the detection of nitrous acid and hydroxyl radicals in the atmosphere Brandon Bottorff et al. Correspondence to: Philip S. Stevens (pstevens@indiana.edu) The copyright of individual parts of the supplement might differ from the article licence. Table S1: Summary of figures of merit for the LP/LIF instrument | | OH Sensitivity (R_{OH}) counts s^{-1} /(cm^{-3} mW) | Photofragmentation
Efficiency (PE) | HONO limit of detection | OH limit of
detection | |---|---|---------------------------------------|-------------------------|--| | Outdoor measurements | 3 × 10 ⁻⁸ | 0.25% | 18 ppt (10 min) | ~5×10 ⁵ cm ⁻³ (60 min) | | (Section 3.1) Indoor measurements (Section 3.2) | 2.75×10^{-8} | 0.34% | 9 ppt (10 min) | ~7×10 ⁵ cm ⁻³ (60 min) | Figure S1: Absorption cross section of HONO with the 355-nm emission from the third harmonic of the Nd:YAG laser highlighted. Figure S2: Schematic diagram of the water vapor photolysis calibration source. Figure S3: Plot of instrumental sensitivity to OH (R_{OH}) dependence on water vapor. The dashed lines represent a 95% linear fit confidence interval and the dotted lines represent a 95% prediction interval.