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Abstract. The quality of the zenith hydrostatic delay (ZHD)
could significantly affect the accuracy of the zenith wet delay
(ZWD) of the Global Navigation Satellite System (GNSS)
signal, and from the ZWD precipitable water vapor (PWV)
can be obtained. The ZHD is usually obtained from a stan-
dard model – a function of surface pressure at the GNSS sta-
tion. When PWV is retrieved from the GNSS stations that are
not equipped with dedicated meteorological sensors for sur-
face pressure measurements, blind models, e.g., the global
pressure and temperature (GPT) models, are commonly used
to determine the pressures for these GNSS stations. Due to
the limited accuracies of the GPT models, the ZHD obtained
from the model-derived pressure value is also of low accu-
racy, especially in mid- and high-latitude regions. To address
this issue, a new ZHD model, named GZHD, was investi-
gated for real-time retrieval of GNSS-PWV in this study.
The ratio of the ZHD to the zenith total delay (ZTD) was
first calculated using sounding data from 505 globally dis-
tributed radiosonde stations selected from the stations that
had over 5000 samples. It was found that the temporal vari-
ation in the ratio was dominated by the annual and semian-
nual components, and the amplitude of the annual variation
was dependent upon the geographical location of the station.
Based on the relationship between the ZHD and ZTD, the
new model, GZHD, was developed using the back propaga-
tion artificial neural network (BP-ANN) method which took

the ZTD as an input variable. The 20-year (2000–2019) ra-
diosonde data at 558 global stations and the 9-year (2006–
2014) COSMIC-1 (Constellation Observing System for Me-
teorology, Ionosphere, and Climate) data, which were also
globally distributed, were used as the training samples of the
new model. The GZHD model was evaluated using two sets
of references: the integrated ZHD obtained from sounding
data and ERA5 reanalysis data. The performance of the new
model was also compared with GPT3, the latest version. Re-
sults showed the new model outperformed GPT3, especially
in mid- and high-latitude regions. When radiosonde-derived
ZHD was used as the reference, the accuracy, which was
measured by the root mean square error (RMSE) of the sam-
ples, of the GZHD-derived ZHD was about 21 % better than
the GTP3-derived ones. When ERA5-derived ZHD was used
as the reference, the accuracy of the GZHD-derived ZHD
was about 30 % better than GPT3-derived ZHD. In addition,
the real-time PWV derived from 41 GNSS stations result-
ing from GZHD-derived ZHD was also evaluated, and the
result indicated that the accuracy of the PWV was improved
by 21 %.
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1 Introduction

Water vapor plays an important role in both the energy bud-
get and hydrological cycle of the earth, although it only
makes up ∼0.1 %–4 % of the atmosphere. Therefore, accu-
rate acquisition of water vapor is critical for both weather
forecasting and climatology. During the last three decades,
Global Navigation Satellite System (GNSS) has been used
to retrieve precipitation water vapor (PWV) due to its high
spatial-temporal resolution and all-weather, nearly real-time,
high-accuracy, and low-cost features. The usual procedure
for obtaining GNSS-derived PWV is as follows (Bevis et al.,
1992): (1) estimating the zenith total delay (ZTD) of GNSS
signals for each GNSS station; (2) using an empirical or stan-
dard model together with surface meteorological measure-
ments to calculate the zenith hydrostatic delay (ZHD) for
the GNSS station, then subtracting it from the ZTD to ob-
tain the zenith wet delay (ZWD) of the GNSS signals for the
station; and (3) converting the ZWD into PWV by multiply-
ing the ZWD by a conversion factor which is a function of
the water-vapor-weighted mean temperature (Tm) at the sta-
tion. Tm can be calculated by the approximation introduced
by Askne and Nordius (1987) or from a Bevis-type model
(Bevis et al., 1992; Ross and Rosenfeld, 1997; Singh et al.,
2014; Yao et al., 2014) and a blind model (Ding, 2018; He et
al., 2017; Yao et al., 2012; Sun et al., 2021a). The accuracies
of the three types of models were analyzed in several works
(Wang et al., 2016; Zhang et al., 2017).

Usually, the ZHD can be determined at a millimeter level
by a standard model such as the most common model: the
Saastamoinen model, under the condition that the surface
pressure used in the model is measured by meteorological
sensors (Bosser et al., 2007). However, not all GNSS stations
are equipped with meteorological sensors, and the majority
of GNSS stations are not close to any weather stations. In this
case, two alternative methods are used (Wang et al., 2017):
(1) using a blind model, e.g., global pressure and temper-
ature (GPT) models (Böhm et al., 2007), to obtain surface
meteorological parameters for the GNSS stations; (2) using
reanalysis data, e.g., ERA-Interim (Wang et al., 2017), ERA5
(Zhang et al., 2019), or NCEP (Jiang et al., 2016), to in-
terpolate surface meteorological parameters for the GNSS
stations. In real-time retrieval of GNSS-PWV, the forecast
pressures from reanalysis data need to be downloaded in ad-
vance, which increases the complexity of data processing,
not to mention the fact that the forecast data may not be avail-
able due to various reasons, e.g., problems of some servers
or agencies. In contrast, blind models such as the GPT mod-
els, which are commonly adopted, are simple and effective
(Charoenphon and Satirapod, 2020; Gurbuz et al., 2020).

GPT, first proposed for geodetic applications by Böhm in
2007, can provide pressure and temperature at any geograph-
ical location on the earth’s surface and at any time (Böhm et
al., 2007). Lagler et al. (2013) developed GPT2 by combin-
ing GPT with the Global Mapping Function (GMF), which

can provide the values for more parameters than GPT, e.g.,
the coefficients of the GMF. In 2015, based on GPT2, Böhm
et al. (2015) developed GPT2w by adding the determination
of the ZWD. The latest version, i.e., GPT3, was developed
by Landskron and Böhm (2018), which can provide not only
the parameters from GPT2w but also an empirical gradient
grid.

Since these models can provide pressure and tempera-
ture at any location on the earth’s surface and at any time,
the blind models have been widely applied to real-time re-
trieval of GNSS-PWV. However, the main issue using the
blind models to determine the ZHD is their limited accuracy.
Wang et al. (2017) evaluated the accuracy of pressure de-
rived from GPT2w at 108 global GNSS stations and found
the root mean square errors (RMSEs) of the pressure samples
were above 7 hPa in mid- and high-latitudes regions, which
resulted in large errors in PWV. A similar conclusion was
made by Zhang Di (2016).

The above-mentioned blind models, similar to any other
empirical models, are based on the trend of the spatial-
temporal variation in pressure (or the corresponding ZHD).
Thus, the accuracies of the models are limited due to the dy-
namic feature of most atmospheric parameters. In fact, dur-
ing GNSS data processing for the estimation of the ZTD and
other unknown parameters, although a model-derived ZHD
is sometimes used as the approximate value, it does not need
to be highly accurate as the approximate value does not af-
fect the accuracy of the final ZTD estimation results. How-
ever, when the PWV is converted from the ZWD, which is
obtained from the subtraction of the ZHD from the ZTD,
the ZHD needs to be as accurate as possible for an accu-
rate ZWD. Due to the high accuracy of the ZTD estimate, it
may be used to improve the ZHD models if the relationship
between the ZHD and ZTD at the same station is known.

As is mentioned in the literature (e.g., Luo et al., 2013;
Zhang et al., 2016), the ZHD and ZWD account for about
90 % and 10 % of the ZTD, respectively. However, the ratio
of the ZHD to ZTD cannot be assumed to be about 0.9 : 1. In
this study, the ratio of the ZHD to ZTD was investigated us-
ing sounding data at 505 globally distributed radiosonde sta-
tions during the 20-year period of 2000–2019. Then, based
on the relationship between the ZHD and ZTD, a new ZHD
model with a good temporal resolution required by real-time
retrieval of PWV was developed using the back propaga-
tion artificial neural network (BP-ANN) technique. The new
model took into account not only the spatial-temporal varia-
tion in the ZHD, as current blind models do, but also the ratio
of the ZHD to ZTD (i.e., the GNSS-derived ZTD was used as
an input variable of the new model). This study mainly aims
to provide such a new method that is more accurate than blind
models and more convenient in applications than reanalysis
data for the determination of the ZHD. The ZHD can be ap-
plied to the retrieval of GNSS-PWV.

The outline of this paper is as follows. The data used in
this study are briefly introduced in Sect. 2.1. The investiga-
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tion into the ratio of the ZHD to ZTD based on sounding data
at 505 globally distributed radiosonde stations is presented
in Sect. 2.2, followed by a new ZHD model developed based
on the ratio of the ZHD to ZTD in the section. In Sect. 3, the
new model is validated using two sets of references: ZHDs
derived from radiosonde data and ERA5 data; and the per-
formance of the new model is also compared with that of
GPT3. The influence of the new model on real-time PWV is
also evaluated in this section. Conclusions are given in the
last section.

2 Data and methodologies

2.1 Data

Four types of data were used in this study, including sound-
ing data from radiosonde stations, radio occultation (RO)
data from the Constellation Observing System for Meteorol-
ogy, Ionosphere, and Climate (COSMIC) project, ERA5 re-
analysis data from the European Centre for Medium-Range
Weather Forecast (ECMWF), and GNSS data provided by
the International GNSS Service (IGS). The radiosonde data
were mainly used to estimate the ratio of the ZHD to ZTD
and train the BP-ANN for the new ZHD model. The RO data
were for improving the performance of the new model, espe-
cially over the ocean areas. The ERA5 reanalysis data were
used as a reference for the evaluation of the new ZHD model
developed. The GNSS data were used to evaluate the influ-
ence of the new ZHD model on GNSS-derived PWV. The
distribution of the four data sets and some associated infor-
mation are shown in Fig. 1.

2.1.1 Radiosonde

The 20-year (2000–2019) sounding data were from the In-
tegrated Global Radiosonde Archive (IGRA), a high-quality
radiosonde data set provided by the National Climate Data
Center (NCDC). The temporal resolution of the data is usu-
ally twice per day (or four times at a few stations), and
the distribution of the stations included in the data set is
nonuniform (only about 1500 unevenly distributed stations
are available around the world). The data set includes the ob-
servations of pressure, temperature, geopotential height, and
pressure for water vapor at the standard, surface, tropopause,
and significant levels (Durre et al., 2006). These observations
form basic atmospheric profiles, based on which the ZHD
and ZTD can be calculated by the following approximation
to the definition of the integral (Davis et al., 1985):

ZTD =
ht∑
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(
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T
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T 2

)
dh, (1)
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T

)
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where hs and ht are the heights of the bottom and top layers
respectively (in units of mm, the same as the ZTD or ZHD),
Pd (in hPa) is the partial pressure of the dry constituent, Pw
(in hPa) is the partial pressure of water vapor, T (in K) is
the partial temperature, and k1, k2, and k3 are the ideal gas
constants from Thayer (1974).

Although a strict quality control process has been con-
ducted on the radiosonde data from the IGRA, there still
exist some missing and/or gross data in the data set; thus,
further quality control schemes were carried out, according
to the experiments and literature (He et al., 2017; Li et al.,
2020), a profile must satisfy the following seven criteria: (1)
the number of pressure levels in the profile must be over 10,
(2) the pressure of water vapor at the top level of the profile
must be under 0.1 hPa, (3) the maximum height of the pro-
file must be over 10 km, (4) the difference in pressures be-
tween any two adjacent layers of the profile must be over 0
and under 200 hPa, (5) the difference in heights between any
two adjacent layers must be over 0 and under 10 km, (6) the
pressure levels in the profile must contain the mandatory and
significant levels, and (7) the number of all profiles at the ra-
diosonde station at which the profile was obtained must be
above 2000. As a result, 695 unevenly distributed radiosonde
stations over the world were identified and used in this study.
Of the 695 stations, 558 stations were used as sample data
(see Fig. 1a) to develop the new ZHD model, while the other
stations (shown in Fig. 1b) were used to test the model de-
veloped. In addition, from the above 695 stations, 505 sta-
tions had more than 5000 profiles; thus the data from the
505 stations were used to analyze the ratio of the ZHD to
ZTD. Finally, 371 of the 695 radiosonde stations had over
500 profiles in the 1-year period of 2020, during which no
data were used in the construction (or training) of the new
model. These out-of-sample data were also used to evaluate
the performance of the new model.

2.1.2 COSMIC RO

The COSMIC initiative is one of the main RO missions,
and contains COSMIC-1 and COSMIC-2 constellations. In
this study, data from the COSMIC-1, which consists of six
low-earth-orbit satellites at an 800 km altitude, were adopted.
During the period of 2006 to 2014, more than 4 million pro-
files were acquired, and the data included temperature, pres-
sure, and atmospheric density at various altitudes. Those pro-
files together with Eqs. (1) and (2) were used to calculate the
ZTD and ZHD.

Traditional ZHD models such as blind models are based
on harmonic functions, which need long time series data
from the same station. However, RO profiles from COSMIC
are unevenly distributed over the globe, i.e., long time series
data from the same site are unavailable. Hence, the traditional
models are not applicable. To overcome this problem, in this
study, based on the BP-ANN technique, the RO profiles were
used to improve the new model, especially over the ocean
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Figure 1. (a) Radiosonde stations for the development of the new model. (b) Radiosonde stations for testing the new model. (c) GNSS
stations for evaluating the effect of the new model on real-time GNSS-derived PWV. (d) Profiles selected from COSMIC RO data. The color
bars in (a)–(c) indicate the number of samples at each station, and the color bar in (d) denotes the penetration depth of each profile.

regions. Considering the gross error and penetration depth
(i.e., the bottom altitude) of the profiles, two criteria for the
selection of valid profiles were applied. First, the penetration
depth of the profile must be under 8 km since the new model
was mainly for the earth’s surface. Secondly, if the difference
between the ZHDs derived from COSMIC RO data and from
reanalysis data (i.e., ERA5) was above 3 times the standard
deviation of the mean of the differences, the profile was re-
jected. Consequently, 3 405 763 profiles were selected to de-
velop the new ZHD model; see Fig. 1d for their distribution
and penetration depth (indicated by the color bar).

2.1.3 ERA5

ERA5 is the latest reanalysis data set provided by ECMWF
and contains various hourly atmospheric variable values, in-
cluding pressure, temperature, geopotential height, and rela-
tive humidity at 37 pressure levels from 1000 to 1 hPa and at
a specific horizontal resolution. Similar to radiosonde data,
this data set can be also used to calculate the ZTD and ZHD
using Eqs. (1) and (2).

In this study, the atmospheric data related to the ZTD and
ZHD at the 37 pressure levels during the 20-year period from
2000 to 2019 over the globe were downloaded from https://
doi.org/10.24381/cds.bd0915c6 (Hersbach et al., 2018), and
the horizontal resolution of the data is 2.5◦. As a relatively
accurate data set, it was used as a reference to evaluate the
performance of the new model developed in this study and
also that of GPT3 through a comparison of the two mod-
els. In addition, the ZHDs derived from ERA5 in the 9-year
period from 2006 to 2014 were also used as the reference
of the ZHDs derived from the selected COSMIC RO data

for the gross error identification of the RO data. The ERA5
data in the 1-year period of 2020, which was different from
the period of the training data (i.e., out-of-sample data), over
the globe were also used to evaluate the accuracy of the new
model.

2.1.4 GNSS

In April 2013, the IGS formally released the IGS real-time
service (RTS) for provision of GNSS data, orbit, and clock
products with latencies of a few seconds. The real-time data
can be obtained and processed freely using the BKG Ntrip
Client (BNC) software, which is a client software package al-
lowing for precise point positioning (PPP) in real time. In this
study, the modified BNC software used in Sun et al. (2021b)
was used to receive the GNSS data stream from IGS data
centers and process the GNSS data in real time to acquire
real-time ZTD.

Since the PWV derived from sounding data is commonly
regarded to be of high accuracy, the 41 IGS stations (shown
in Fig. 1c) that are close to radiosonde stations (e.g., within
10 km), the so-called co-located stations, were selected as
the samples to evaluate the effect of the new ZHD model,
GZHD, on PWV derived from GNSS in real time. The real-
time ZTDs in the 154 d period from 1 January to 30 June
2020 (note: ZTD data on some days were not received due
to network problems) at the 41 IGS stations were converted
into PWVs, and then these PWVs were compared against the
PWVs derived from the sounding data of their co-located ra-
diosonde stations (as the reference) for performance assess-
ment.
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2.2 Methodologies

In the section, the relationship between the ZHD and ZTD
was first analyzed using the Lomb–Scargle periodogram at
the aforementioned 505 globally distributed radiosonde sta-
tions. Then, a new ZHD model for the real-time retrieval of
GNSS-PWV was constructed based on the relationship and
the BP-ANN technique.

2.2.1 Ratio of the ZHD to ZTD

As mentioned in the literature (Luo et al., 2013; Zhang et
al., 2016), the ratio of the ZHD to ZTD is commonly re-
garded as a constant around 90 %, which may not be true
in some areas or cases. To investigate this, the ratios of the
ZHD to ZTD derived from sounding data at the 505 selected
globally distributed radiosonde stations during the period of
20-years from 2000 to 2019 were analyzed.

Figure 2 shows the ratio results of six radiosonde stations
located in different latitude regions and their power spec-
tral density obtained from the Lomb–Scargle periodogram.
We can see significant annual periodicity with large peaks
from all the six examples and semiannual periodicity from
three time series (see CAM00071082, CAM00071913, and
CHM00051463) with the peaks much smaller than those of
the annual periodicity. This implies that the temporal varia-
tion in the ratio is dominated by the annual periodicity. Dif-
ferent from the ZTD time series (W. Li et al., 2012) and ZHD
time series (Wang et al., 2017), the ratio time series reached
the maximum in winter and the minimum in summer, which
agreed well with the fact that PWV is higher in summer than
winter, leading to larger ZWD in summer. In addition, the in-
terannual variations were obvious at the three stations that are
located in the Equator region and Southern Hemisphere pos-
sibly due to the change in the trend of PWV (climate change)
in these areas.

In order to estimate the annual and semiannual compo-
nents in the ratio time series, the following model fitting the
ratio time series at each radiosonde station was adopted:

R = a0+ a1 · t + a2 · cos
(

2π
365.25

· t −D1
)

+ a3 · cos
(

4π
365.25

· t −D2
)
, (3)

where R is the ratio of the ZHD to ZTD, a0 is the mean of the
ratio, a1 is the linear trend of the ratio, a2 and a3 are the am-
plitudes of the annual and semiannual components, respec-
tively, D1 and D2 are the phases of the annual and semi-
annual components, respectively, and t is the number of the
days starting from 1 January 2000. The six unknown param-
eters – ai (i = 0,1,2,3), D1, and D2 – would be estimated
using the least-squares method.

Figure 3 shows the annual amplitude at each of the 505 sta-
tions. One can see that the annual amplitude of a station was
more dependent upon the climatic type rather than latitude of

the station. Most of the large annual amplitudes were found
in mid-latitude regions (near 30◦ in both the Northern Hemi-
sphere and Southern Hemisphere), and small annual ampli-
tudes were found in high-latitude and Equator regions. The
annual amplitudes over the eastern Atlantic and the north-
east Pacific coast were small, which was likely due to the
effect of the ocean (Jin et al., 2007). The annual amplitudes
at all the 505 stations ranged from 0.1 % to 5.7 % with the
mean of 2.2 %. Based on the mean of the ratio of 2.2 %, if
the ZTD is assumed to be 2000 mm, then the mean of the
annual amplitudes in the ZHD variation is 44 mm. This is a
large value and thus can considerably affect the accuracy of
GNSS-derived PWV.

The fact that the noticeable annual periodicity and the
large annual amplitudes in the ratio time series are related
to the climatic type suggests that the ratio is not always a
constant, e.g., the commonly regarded 90 % or any other val-
ues. Based on this characteristic, the ZHD can be obtained
after the ZTD is obtained from the GNSS data processing.
Thus, a new ZHD model was developed mainly for real-time
retrieval of GNSS-PWV, and its validation will be presented
in the following sections.

2.2.2 The new ZHD model

Similar to the biological neural system, the artificial neu-
ral network (ANN) is a complex network composed of
many neurons or nodes connecting with each other (Kat-
sougiannopoulos and Pikridas, 2009). Its working principle
is to produce the target value according to the input data
after being trained by the training data set. As one of the
most common ANNs, the BP-ANN is a multi-layer feed-
back network trained according to the error back propaga-
tion algorithm (J. Li et al., 2012). It has been applied to sev-
eral fields, e.g., functional approximation, pattern recogni-
tion, classification, and data compression. Due to its ability
of multi-parameters nonlinear regression, this study used the
BP-ANN to investigate a new ZHD model, named GZHD,
mainly for the real-time retrieval of GNSS-PWV.

The output of GZHD is the ZHD, which is required in
the conversion of the GNSS-ZTD into PWV, while the in-
put variables must be independent from each other and also
related to the output. Therefore, in this study, in addition to
the common five variables, i.e., the day of year (DoY), the
hour of day (HoD), latitude (ϕ), longitude (λ), and ellipsoidal
height (H ) of the station, the ZTD was also used as an input
variable of GZHD based on the analysis in Sect. 2.2.1. Using
the sample data for the input variables and the output ZHD
and the BP-ANN technique, the GZHD model can be devel-
oped.

The BP-ANN used in this study contained three hidden
layers, and the network for the new model was trained for
thousands of times, depending on the number of the neurons
and the activation function used in each hidden layer. From
our tests, we found that the RMSE of the new model-derived
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Figure 2. Time series of the ratio of the ZHD to ZTD at six radiosonde stations located in different latitude regions.

Figure 3. Annual amplitude of the ratio of total and hydrostatic zenith delays at each of the 505 global radiosonde stations.

ZHD varied slightly (at a sub-millimeter level) with the in-
crease in the number of the neurons and the selection of the
active function. Then, in consideration of both accuracy and
efficiency of the network, the structure with 20, 20, and 12
neurons and the active functions of tansig, tansig, and logsig
for the three hidden layers were adopted. The structure of
the BP-ANN including the input variables, output ZHD, and
three hidden layers is shown in Fig. 4.

For the development of GZHD, two data sets were used
to train the network: one was the sounding data for a period

of 20 years at the aforementioned 558 global radiosonde sta-
tions, and the other was the COSMIC-1 RO data around the
globe for a period of 9 years. The former was taken as the
main training data due to its high accuracy, while the latter
was taken as auxiliary training data since the radiosonde sta-
tions were mainly deployed on continents. As mentioned be-
fore, COSMIC-1 RO profiles are unevenly distributed around
the globe, which are not suitable for harmonic functions used
in the traditional models since long time series data from the
same site are not available. However, the uneven distribution

Atmos. Meas. Tech., 14, 6379–6394, 2021 https://doi.org/10.5194/amt-14-6379-2021
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Figure 4. Structure of BP-ANN used in this study.

of the RO data is beneficial for the BP-ANN technique, and
the usage of the RO data means an increase in the number of
the training samples, which is likely to improve the perfor-
mance of GZHD, especially over the ocean regions. A total
of 3 405 763 RO profiles were used to train the network.

3 Result of GZHD

The performance of the GZHD model was assessed using
the sounding data from 137 global radiosonde stations and
also global ERA5 data as two reference data sets. In addi-
tion, GZHD was also evaluated using the sounding data and
ERA5 data in 2020, which were different from the training
period and thus are out-of-sample data. For convenience, the
ZHDs obtained from the integration expressed by Eq. (2) and
the data from the above two data sources are named ZHD-RS
and ZHD-ERA5, respectively, hereafter. The performance of
GZHD was also compared with that of GPT3 by compar-
ing the biases and RMSEs of the two model-derived ZHDs,
named ZHD-GPT3 and ZHD-GZHD, respectively, based on
the same reference data set. The formulas for the bias and
RMSE of the differences between the model-derived ZHDs
and the references are

bias =
1
n

n∑
i=1

(
ZHDri −ZHDmi

)
, (4)

RMSE =

√√√√1
n

n∑
i=1

(
ZHDri −ZHDmi

)2
, (5)

where n is the number of the samples used for the evalua-
tion, i is the index of the sample, and r and m denote the ref-
erence and model-derived, respectively. It was expected that
the GZHD would outperform GPT3 since GPT3 is based on

the global ZHD variation trend rather than using any actual
measurements like the GZHD does (GNSS-derived ZTD is
used as the input of GZHD).

3.1 Result using ZHD-RS as reference

ZHD-GZHD and ZHD-GPT3 calculated for each site of the
above-mentioned 137 global radiosonde stations during the
20-year period from 2000 to 2019 were compared against the
reference of the ZHD-RS at the same station. The bias and
RMSE of the ZHD-GZHD and ZHD-GPT3 at each station
are shown in Fig. 5.

Figure 5a1 indicates that the biases of ZHD-GPT3 at most
stations were negative, and the bias values were under 6 mm
at 122 stations. However, the bias values at the radiosonde
stations located in Australia were over 10 mm (negative)
(which will be discussed later). Figure 5a2 shows that the
bias values of ZHD-GZHD varied within ±6 mm at 132 ra-
diosonde stations, while at the other stations the bias values
were over 6 mm. Comparing Fig. 5a1 with a2, there are 111
radiosonde stations where the biases of ZHD-GZHD were
smaller than the ones of ZHD-GPT3. Therefore, the new
model significantly outperformed GPT3, in terms of biases.

In Fig. 5b1, the RMSE of ZHD-GPT3 appeared to be de-
pendent upon latitude, and generally, the higher the latitude,
the larger the RMSE. Most of the RMSEs in mid- and high-
latitude regions were over 20 mm, which was different from
the small values in the low-latitude region. Figure 5b2 also
shows the latitude-dependent feature of the RMSE of ZHD-
GZHD. However, the RMSE was smaller than that of ZHD-
GPT3 at each of the 117 stations, and at the other 20 stations,
which were mainly distributed in the low-latitude region (a
total of 45 stations), the RMSE was slightly larger than that
of ZHD-GPT3. In conclusion, the accuracy of GZHD was
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Figure 5. Bias (a1) and RMSE (b1) of ZHD-GPT3 and bias (a2) and RMSE (b2) of ZHD-GZHD at each of the 137 radiosonde stations
during the 20-year period of 2000–2019 (reference: ZHD-RS).

Table 1. Maximum, minimum, and mean of the biases and RMSEs
of all the 137 stations shown in the four panels in Fig. 5.

Model Bias (mm) RMSE (mm)

Mean Min Max Mean Min Max

GZHD −0.5 −13.1 12.9 12.3 3.0 23.5
GPT3 −4.0 −29.7 6.2 15.5 2.6 35.5

significantly better than that of GPT3, especially in mid- and
high-latitude regions.

The maximum, minimum, and mean of the biases and
RMSEs of all the 137 stations shown in the four panels in
Fig. 5 are listed in Table 1. The result indicates that the
mean of ZHD-GZHD was much smaller than that of ZHD-
GPT3. This demonstrates significant improvements made by
GZHD in comparison with GPT3. In addition, the mean bias
of−4.0 mm of GPT3 implies an underestimation of the ZHD
from the GPT3 model, and the mean bias of −0.5 mm from
GZHD means a slight underestimation of the new model.

For further comparison of the two model-predicted ZHD
time series with the ZHD-RS time series, six radiosonde sta-
tions were selected as examples. It is worth mentioning that
the six stations are located on six continents, i.e., one ra-
diosonde station in each of the six continents, except for
Antarctica due to its very small population. The results are
shown in Fig. 6, and Fig. 7 shows the correlations between
the model-predicted ZHDs and ZHD-RS, named R-GZHD
and R-GPT3, respectively, of the six stations.

All the ZHD-GZHD (blue) time series in the six panels of
Fig. 6 show not only annual and semiannual periodic varia-
tion characteristics but also high-frequency variations, which

was closer to the observed (the truth) ones, compared with
the ZHD-GPT3. This was because the GZHD model used
the ZTD derived from sounding data as its input. In contrast,
the reason for the ZHD-GPT3 time series only reflecting
the annual and semiannual variations by smooth curves was
that the model was constructed based on a harmonic func-
tion that only contains two periodic terms (Landskron and
Böhm, 2018). Moreover, the high-frequency variations were
more significant at the stations that are located in mid- and
high-latitude regions (see the first three and the last panels)
than the other two, which are located in low-latitude regions.
This was why GZHD significantly outperformed GPT3, es-
pecially in mid- and high-latitude regions.

From Fig. 7, we can see that in each pane the blue dots
(ZHD-GZHD) distributed around the red line and much
closer to the red line than the green ones (ZHD-GPT3). The
result indicates that the ZHD-GZHD agreed with ZHD-RS
better than ZHD-GPT3. The correlation coefficient values
of R-GZHD shown in the five panels, except for the mid-
dle one in the bottom row (which is located in Africa where
only a few stations were used to construct the new model;
see Fig. 1a), were larger than those of R-GPT3. This means
an improvement was made by the new model. Furthermore,
the improvement in a high-latitude region was more signif-
icant than a low-latitude region. For example, the R-GPT3
and R-GZHD at CAM00071926 (high-latitude) were 0.32
and 0.74, respectively, whilst the corresponding values at
BRM00083362 (low-latitude) were 0.62 and 0.64, respec-
tively.
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Figure 6. Time series of ZHD-RS (red), ZHD-GZHD (blue), and ZHD-GPT3 (green) at six radiosonde stations located on six continents.

Figure 7. Correlation between the two model-predicted ZHD time series, ZHD-GZHD (blue) and ZHD-GPT3 (green), shown on the vertical
axis and ZHD-RS (i.e., observed, on the abscissa axis) at the six radiosonde stations shown in Fig. 6.
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Figure 8. Bias (a1) and RMSE (b1) of ZHD-GPT3 and bias (a2) and RMSE (b2) of ZHD-GZHD over each global grid point (the horizontal
resolution: 2.5◦× 2.5◦) during the 19-year period of 2000–2019 (reference: ZHD-ERA5).

3.2 Result using ZHD-ERA5 as reference

In this section, both ZHD-GZHD and ZHD-GPT3 calculated
for each global grid point (with the horizontal resolution of
2.5◦× 2.5◦) during the 20-year period of 2000–2019 were
compared against the ZHD-ERA5 (which was not used in
the construction of the new model) over the same grid. The
statistical results of the 20-year data over the globe are shown
in Fig. 8.

Figure 8a1 shows noticeable biases in ZHD-GPT3. In
most regions, the biases were negative, which was different
from the fact that most biases in Antarctica and mountain-
ous regions were positive, such as the Tibetan Plateau, Andes
Mountains, Rocky Mountains, etc. This may be caused by
the underestimation of pressure by GPT3 above the earth’s
surface (Li et al., 2021) and the overestimation of pressure
below the earth’s surface. Note that the lowest height of
the grid points of ERA5 over the globe ranged from about
−200 to 200 m, which is different from the true topography.
Figure 8a2 indicates that small ZHD-GZHD biases were in
most regions, while large biases were in Antarctica and its
surrounding regions (latitude between 30 and 90◦ S). Com-
pared to ZHD-GPT3 in Fig. 8a1, the biases of ZHD-GZHD
in Fig. 8a2 were significantly smaller in most regions over the
globe. In Antarctica, the poor performance of GZHD may be
also due to the fact that not only was the number of the sam-
ples in the Southern Hemisphere considerably smaller than
that in the Northern Hemisphere, but also ZHD-ERA5 was
of low accuracy in Antarctica (Tetzner et al., 2019; Zhang et
al., 2019).

In Fig. 8b1, the RMSEs of ZHD-GPT3 appeared to be
latitude-dependent, and generally, the RMSEs were higher

in mid- and high-latitude regions than those in low-latitude
regions. Similar to the ZHD-GPT3 biases, the RMSEs were
also very large in complex mountainous terrain. The poor
performance of GPT3 in complex mountainous terrain is
mainly because of the mismatch between the model and
actual terrain (Zhang et al., 2013; Wang et al., 2017). In
Fig. 8b2, although the RMSEs were slightly dependent upon
latitude, the RMSEs of ZHD-GZHD were smaller than those
of ZHD-GPT3 in most regions, except for Australia and its
surrounding regions (which will be discussed later). In sum-
mary, the accuracy of the new ZHD model was higher than
GPT3 in most regions when ZHD-ERA5 was used as the ref-
erence, especially in mid- and high-latitude regions.

For further evaluation of the performance of the two mod-
els in different latitudes, the mean biases and RMSEs in 12
latitude regions (with a 15◦ interval) were compared, and
corresponding results are listed in Table 2. Figure 9 is for
a better-resolution (with a 2.5◦ interval) result. We can see
that in most latitude ranges, the biases and RMSEs of ZHD-
GZHD were smaller than those of ZHD-GPT3. In summary,
the accuracy of ZHD-GZHD was improved by 29 % in com-
parison with ZHD-GPT3 when ZHD-ERA5 was used as the
reference.

It is worth mentioning that, from the results of the above
two sections, in Australia, when ZHD-ERA5 was used as the
reference, the bias and RMSE of ZHD-GZHD were larger
than those of ZHD-GPT3. However, when ZHD-RS was used
as the reference, the result was completely different. To in-
vestigate the cause of the difference, the two sets of ZHD
reference values at 32 radiosonde stations located in Aus-
tralia were compared and results are shown in Fig. 10. It
can be seen that both the bias (in a) and RMSE (in b) were
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Table 2. Mean of the biases and RMSEs of ZHD-GZHD and ZHD-GPT3 during the 19-year period of 2000–2018 in different latitude ranges
(with a 15◦ interval).

Latitude GZHD GPT3

Bias (mm) RMSE (mm) Bias (mm) RMSE (mm)

75◦N< ϕ ≤ 90◦N −2.5 11.4 −5.7 25.8
60◦N< ϕ ≤ 75◦N −3.2 14.9 −5.1 25.1
45◦N< ϕ ≤ 60◦N −3.0 17.1 −5.2 23.4
30◦N< ϕ ≤ 45◦N −4.3 15.3 −2.3 18.1
15◦N< ϕ ≤ 30◦N −5.0 9.7 −4.9 9.8
0◦ < ϕ ≤ 15◦N −2.3 6.1 −5.9 7.3
15◦ S< ϕ ≤ 0◦ −1.9 6.1 −5.7 7.3
30◦ S< ϕ ≤ 15◦ S −1.2 10.3 −5.1 9.0
45◦ S< ϕ ≤ 30◦ S −7.4 17.3 −5.6 17.5
60◦ S< ϕ ≤ 45◦ S −11.8 21.0 −5.7 28.8
75◦ S< ϕ ≤ 60◦ S −6.9 17.8 −3.1 29.8
90◦ S≤ ϕ ≤ 75◦ S −1.2 19.8 14.3 32.8

Mean −4.2 13.9 −3.3 19.6

Figure 9. Mean biases (a) and RMSEs (b) of two model-derived ZHDs during the 20-year period of 2000–2019 in different latitude ranges
(with a 2.5◦ interval).

large, at most stations the biases were negative with a (ab-
solute) value above 10 mm, and the RMSEs at all stations
were above 10 mm. The mean of all biases and RMSEs were
−16.9 and 24.1 mm, respectively. The large negative biases
suggest a significant underestimation of ZHD-ERA5 in the
region. This might be caused by the assimilation algorithm
and/or other assimilated data, although radiosonde data have
been assimilated into ERA5. When ZHD-ERA5 was used as
the reference, ZHD-GPT3 agreed well with ZHD-ERA5 and
much better than the new model developed in this study since
GPT3 was based on ERA-Interim data (the last generation of
the reanalysis data set provided by ECMWF).

3.3 Results in different period

To evaluate the accuracy of the GZHD model, the ZHD-
GZHD and ZHD-GPT3 at 371 radiosonde stations and each
global grid point (with the horizontal resolution of 2.5◦×
2.5◦) during the 1-year period of 2020 were compared
against the references of ZHD-RS and ZHD-ERA5, respec-
tively. Results are shown in Figs. 11 and 12.

In Fig. 11, the biases and RMSEs of ZHD-GZHD were
smaller than those of ZHD-GPT3 at most radiosonde sta-
tions, which was similar to the results of Sect. 3.1, and
Fig. 12 also shows the same results as Fig. 8. These results in-
dicate that GZHD outperformed GPT3 in 2020 during which
no data were used in the construction or training of the new
model, i.e., the test data were out-of-sample data. In sum-
mary, when ZHD-RS was used as the reference, the mean
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Figure 10. Bias (a) and RMSE (b) between ZHD-ERA5 and ZHD-RS during the 19-year period of 2000–2019 at each of the 32 radiosonde
stations located in Australia.

Figure 11. Bias (a1) and RMSE (b1) of ZHD-GPT3 and bias (a2) and RMSE (b2) of ZHD-GZHD at each of the 371 radiosonde stations
during the 1-year period of 2020 (reference: ZHD-RS, the dots stand for the radiosonde stations that were used in the construction of GZHD,
while the triangles stand for the radiosonde stations that were not used in the construction of GZHD).

RMSE of ZHD-GZHD in 2020 was 13.2 mm, while that of
ZHD-GPT3 was 17.0 mm. When ZHD-ERA5 was used as
the reference, the mean RMSE of ZHD-GZHD in 2020 was
13.4 mm, while that of ZHD-GPT3 was 20.6 mm.

3.4 Result of PWV

The effect of GZHD on PWV derived from GNSS in real
time was assessed using data from 41 global IGS stations in
the 154 d period from 1 January to 30 June 2020 since co-
located radiosonde stations could be found for these GNSS
stations. The PWV derived from sounding data of these ra-
diosonde stations, named PWV-RS, was used as the refer-
ence in the evaluation of the PWVs resulting from the ZHDs
derived from the two previously tested models – GZHD and
GPT3, named PWV-GZHD and PWV-GPT3, respectively. It

is noted that the ZTD estimated in real time and Tm derived
from GGNTm, a new global grid-based empirical Tm model
(Sun et al., 2021a), were used to retrieve the GNSS-derived
PWVs. The bias and RMSE of the PWV-GZHD and PWV-
GPT3 at each station are shown in Fig. 11.

Figure 13a1 shows the biases of PWV-GPT3 ranged from
−4.3 to 3.3 mm with the mean of −0.6 mm, and the biases
of PWV-GZHD in a2 ranged from −3.2 to 4.0 mm with the
mean of 0.2 mm. Comparing the two panels, one can find that
at some stations the bias of PWV-GZHD was slightly larger
than that of PWV-GPT3, and such a small difference can be
neglected.

Figure 13b1 shows the RMSEs of PWV-GPT3 varied from
1.5 to 5.6 mm with the mean of 3.4 mm, and the stations
where the RMSEs were large are mainly distributed in mid-
and high-latitude regions. Figure 13b2 shows the RMSEs of
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Figure 12. Bias (a1) and RMSE (b1) of ZHD-GPT3 and bias (a2) and RMSE (b2) of ZHD-GZHD over each global grid point (the horizontal
resolution: 2.5◦× 2.5◦) during the 1-year period of 2020 (reference: ZHD-ERA5).

Figure 13. Bias (a1) and RMSE (b1) of PWV-GPT3 and bias (a2) and RMSE (b2) of PWV-GZHD in the 154 d period from 1 January to 30
June 2020 at each of the 41 global IGS stations (reference: PWV-RS).

PWV-GZHD varied from 0.8 to 5.6 mm with the mean of
2.7 mm. The RMSE of PWV-GZHD hardly had a depen-
dency upon latitude, and it was less than that of PWV-GPT3
at most stations (33 of the 41 stations). In addition, at 28 of
the 41 stations, the RMSEs of PWV-GZHD were less than
3 mm, which is the threshold suggested by the EUMETNET
EIG GNSS water vapor program for the accuracy of PWV
required for meteorological research (Offiler et al., 2020).
However, there were only 11 stations where the RMSEs of
PWV-GPT3 were less than the threshold. The improvement
in the accuracy of the GNSS-derived PWV made by GZHD

was 21 %, in comparison with GPT3, which is a significant
improvement.

4 Conclusion

The accuracy of the ZHD could significantly affect the qual-
ity of the ZWD from which PWV is converted using a con-
version factor. The ZHD is usually obtained from a standard
model – a function of the surface pressure measured by a
meteorological sensor at the site of the GNSS station, and
the accuracy of the ZHD is generally as high as at a mil-
limeter level. However, not all GNSS stations are equipped

https://doi.org/10.5194/amt-14-6379-2021 Atmos. Meas. Tech., 14, 6379–6394, 2021



6392 L. Li et al.: A new ZHD model for real-time retrievals of GNSS-PWV

with such a meteorological sensor. In addition, a majority
of GNSS stations are not close to any weather stations, and
thus there are no surface pressure measurements available for
these stations. In this case, blind models, such as a series of
GPT models, are often used to obtain surface pressures. As
a result, the accuracy of the model-derived ZHD is limited,
especially in mid- and high-latitude regions. To address this
issue, a new ZHD model was developed in this study using
the following technique.

First, the ratio of the ZHD to ZTD was analyzed using
the Lomb–Scargle periodogram at 505 global radiosonde sta-
tions at each of which the number of samples was over 5000.
Their ratio time series showed significant annual and semi-
annual periodicities, and the annual amplitude was related
to the geolocation of the station. Then, a new ZHD model,
GZHD, was developed using the BP-ANN technique and
sounding data from 558 global radiosonde stations, together
with RO data from COSMIC-1. In the GZHD model, not
only the seasonal and spatial variation in the ZHD but also
the relationship between the ZHD and ZTD were taken into
consideration. More specifically, the ZTD was used as an in-
put variable for the network for the modeling.

The newly developed GZHD model was assessed using
two sets of references, ZHD-RS and ZHD-ERA5, and the
performance of the model was also compared with GPT3.
Results showed that the new model significantly outper-
formed GPT3, especially in mid- and high-latitude regions,
and the improvements in the accuracy of the ZHD-GZHD
were about 21 % and 30 % in comparison with ZHD-GPT3
based on the references of ZHD-RS and ZHD-ERA5, respec-
tively. In addition, the effect of the ZHD-GZHD on PWV re-
trieved from 41 global GNSS stations that are equipped with
meteorological sensors was also evaluated using PWV-RS
as the reference. Results showed that, compared with PWV-
GPT3, the accuracy of the PWV-GZHD was improved by
21 %, which is significant. These results suggest the promis-
ing potential of the GZHD model for a better GNSS-derived
PWV for the GNSS stations that are not equipped with me-
teorological sensors, especially for the real-time mode.

Our future work will be using ERA5 data in the construc-
tion of the new model to improve its performance in the
Southern Hemisphere.
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