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Abstract. Differential absorption radar (DAR) near the
183 GHz water vapor absorption line is an emerging mea-
surement technique for humidity profiling inside of clouds
and precipitation with high vertical resolution, as well as for
measuring integrated water vapor (IWV) in clear-air regions.
For radar transmit frequencies on the water line flank away
from the highly attenuating line center, the DAR system be-
comes most sensitive to water vapor in the planetary bound-
ary layer (PBL), which is a region of the atmosphere that
is poorly resolved in the vertical by existing spaceborne hu-
midity and temperature profiling instruments. In this work,
we present a high-fidelity, end-to-end simulation framework
for notional spaceborne DAR instruments that feature realis-
tically achievable radar performance metrics and apply this
simulator to assess DAR’s PBL humidity observation capa-
bilities. Both the assumed instrument parameters and radar
retrieval algorithm leverage recent technology and algorithm
development for an existing airborne DAR instrument. To
showcase the capabilities of DAR for humidity observations
in a variety of relevant PBL settings, we implement the in-
strument simulator in the context of large eddy simulations
(LESs) of five different cloud regimes throughout the trade-
wind subtropical-to-tropical cloud transition. Three distinct
DAR humidity observations are investigated: IWV between
the top of the atmosphere and the first detected cloud bin or
Earth’s surface; in-cloud water vapor profiles with 200 me-
ter vertical resolution; and IWV between the last detected
cloud bin and the Earth’s surface, which can provide a precise
measurement of the sub-cloud humidity. We provide a thor-
ough assessment of the systematic and random errors for all
three measurement products for each LES case and analyze
the humidity precision scaling with along-track measurement

integration. While retrieval performance depends greatly on
the specific cloud regime, we find generally that for a radar
with cross-track scanning capability, in-cloud profiles with
200 m vertical resolution and 10 %–20 % uncertainty can be
retrieved for horizontal integration distances of 100–200 km.
Furthermore, column IWV can be retrieved with 10 % un-
certainty for 10–20 km of horizontal integration. Finally, we
provide some example science applications of the simulated
DAR observations, including estimating near-surface relative
humidity using the cloud-to-surface column IWV and infer-
ring in-cloud temperature profiles from the DAR water vapor
profiles by assuming a fully saturated environment.

Copyright statement. © 2021 California Institute of Technology.
Government sponsorship acknowledged.

1 Introduction

Cloud morphology and precipitation depend sensitively on
the three-dimensional distributions of water vapor and tem-
perature, especially within the planetary boundary layer
(PBL) where most convective initiation occurs. Existing
spaceborne sensors have limited ability to sample water va-
por and temperature in the PBL with high spatial resolu-
tion, with increased difficulty inside of cloudy and precipi-
tating volumes for passive infrared and microwave sounders
(Wulfmeyer et al., 2015; Stevens et al., 2017; Sahoo et al.,
2015). The 2017 Decadal Survey for Earth Science and Ap-
plications from Space (NASEM, 2018) has recommended
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the incubation of technologies that enable improved space-
borne measurements of PBL thermodynamics during the cur-
rent decade. Active humidity sounding approaches, includ-
ing differential absorption lidar (DIAL) and differential ab-
sorption radar (DAR), offer new potential spaceborne solu-
tions for providing high-vertical-resolution water vapor pro-
files in clear-sky and cloudy regions, respectively (Nehrir
et al., 2017), with a typical vertical resolution target of 200 m.
The advantage of the active DIAL/DAR approaches is to
constrain the vertical variability in water vapor desired by
the decadal survey (NASEM, 2018). It is anticipated that
these observations would exist within a larger observing sys-
tem where the requisite horizontal variability is observed by
passive infrared and microwave systems. However, because
DAR is a relatively new measurement approach with limited
instrument deployment (Roy et al., 2020, 2021; Cooper et al.,
2020) and simulation (Lebsock et al., 2015; Millán et al.,
2016; Battaglia and Kollias, 2019; Millán et al., 2020; Schnitt
et al., 2020) heritage, there is a need to critically assess the
measurement capabilities of notional spaceborne DAR sys-
tems with detailed radar simulations from an orbital altitude,
in addition to continued assessment of observational capabil-
ities from airborne platforms.

In this work, we expand significantly on previous space-
borne DAR instrument simulation efforts to provide a de-
tailed assessment of DAR retrieval capabilities in the context
of different regimes throughout the trade-wind marine cloud
transition from stratocumulus to deep convection. First, we
utilize five different large-eddy simulations (LESs) that rep-
resent distinct cloud regimes throughout the transition, and
we perform forward radar simulations that include detailed
effects such as realistic electromagnetic scattering from ice
particles, non-uniform beam filling leveraging the high spa-
tial resolution of the LES, and multiple scattering. Second,
we build on retrieval approaches developed previously for
real DAR observations (Roy et al., 2020) and implement
a new least-squares retrieval algorithm that mitigates re-
trieval bias using an improved spectral fitting function and
retrieves the entire vertical humidity profile as part of a sin-
gle optimization procedure. The new formulation employs
an improved humidity interpolation function that allows for
a flexible retrieval of water vapor between arbitrarily spaced
cloud range bins, which is important given the inherently
sparse sampling of radar reflectivity profiles. The result is
a seamless retrieval of both high-vertical-resolution (200 m)
in-cloud profiles and integrated water vapor measurements in
clear-air columns (e.g., between the cloud base and the sur-
face). Importantly, this retrieval does not require specifica-
tion of a prior distribution for the humidity profile, nor does
it impose any regularizing constraints on the form of the re-
trieved profile as in Roy et al. (2020). The linearity of the
retrieval algorithm’s forward model in the state vector allows
for a straightforward transformation of random measurement
error to retrieved state uncertainty, which is then analyzed
as a function of along-track averaging distance to assess the

achievable humidity precision in the different cloud scenar-
ios.

For these simulations, we place emphasis on prescribing
instrument performance metrics that are technologically fea-
sible for a spaceborne radar deployment in the next decade
and will therefore provide an honest assessment of the plat-
forms capabilities. In fact, only recently has it become pos-
sible to develop cloud radars at frequencies above 100 GHz
with useful measurement sensitivity for atmospheric science
studies. The first in this new line of G-band cloud radars, the
Jet Propulsion Laboratory’s Vapor In-cloud Profiling Radar
(VIPR) (Cooper et al., 2020; Roy et al., 2020, 2021; Lamer
et al., 2021), achieves a noise-equivalent reflectivity, a num-
ber which roughly dictates the minimum detectable cloud
signal, of −40 dBZ at 1 km range using a range resolution of
15 m. If an identical system were deployed in low-earth orbit
with an altitude of 400 km and range resolution of 200 m, the
resulting noise-equivalent reflectivity would become about
0 dBZ. This sensitivity level is 16 dB worse than the equiva-
lent figure for CloudSat’s 94 GHz Cloud Profiling Radar and,
when combined with the increased attenuation at G-band in
clear air and within clouds and precipitation, suggests that
such a system would have minimal cloud sampling ability,
especially in the PBL. Thus, significant improvements to the
VIPR transceiver sensitivity are necessary for spaceborne
implementation.

The radar performance metrics assumed here are consis-
tent with a system that employs a long-duration pulse with
linear frequency modulation and pulse compression with
very large time-bandwidth product, similar to that in the
recent successful Radar in a CubeSat (RainCube) mission
(Peral et al., 2019). We assume that the instrument is de-
ployed on a traditional medium-sized satellite bus, similar
in scale to the CloudSat platform, that can afford a large,
solid reflector antenna of diameter Da = 2 m and a high-
power, high-duty-cycle transmitter with a peak output power
of 200 W. Such transmitter performance is consistent with a
vacuum-electronics-based, traveling-wave tube amplifier that
is currently under development, and which is based on a her-
itage implementation at 231–235 GHz for a synthetic aper-
ture radar application (Basten et al., 2016). The three trans-
mit frequencies located at 155.5, 168.0, and 174.8 GHz are
carefully chosen to lie in bands that do not feature interna-
tional transmission restrictions (NTIA, 2015) and correspond
to bands that are currently used in the VIPR system. The mid-
dle DAR channel used here differs slightly from the 167 GHz
lower frequency channel used in past two-frequency DAR
measurements with VIPR (Roy et al., 2020). This new loca-
tion is chosen to minimize covariance between fit parameters
in the three-frequency retrieval (see a2 and a3 in Eqs. 6 and
7). Finally, while the desired vertical humidity profile resolu-
tion of 200 m suggests that the radar could have a range reso-
lution of 200 m, we find that it is necessary to oversample the
range dimension by a small factor in order to remove the hu-
midity measurement bias that arises from non-uniform filling
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of range bins by cloud and precipitation particles. Therefore,
we assume a range resolution of 50 m, which can be achieved
with a moderate radar pulse modulation bandwidth of around
6 MHz. We note that the approach implemented here does not
include specific aspects of the radar range weighting function
(RWF) and is instead equivalent to assuming an RWF that is
a top-hat function of width 50 m.

2 Methods

2.1 LES case studies

The synthetic observations used in this study were pro-
duced by means of large-eddy simulation (LES), which is
a well-known method for realistic high-resolution model-
ing of multi-phase three-dimensional non-hydrostatic turbu-
lent atmospheric flows (Stevens and Lenschow, 2001). We
choose five canonical cases covering the transition from the
subtropics to the tropics over ocean. The simulated con-
vective regimes were a focus of the previous field cam-
paigns: DYCOMS-II and VOCALS (both on stratocumu-
lus), BOMEX (non-precipitating shallow Cu), RICO (shal-
low Cu), and GATE (deep convection). Results of those cam-
paigns served as the initial and boundary conditions for the
LES. Details of the field campaigns and the modeling setups
are provided in Table 1 and the references therein.

For each simulation, the cascade of turbulent motions de-
velops within the domain, with the boundary layer dynam-
ics driven by surface fluxes of latent and sensible heat and
the vertical shear of horizontal wind, modified by radiation
(either interactive for stratocumulus or prescribed for other
cases) and large-scale advective tendencies (for shallow Cu
cases). For the shallow precipitating cases, two-moment mi-
crophysics provides the information about both mixing ra-
tios and droplet number concentrations of the precipitating
and non-precipitating forms of water. For deep convection,
bulk one-moment microphysics is used that represents six
classes of water: vapor, cloud liquid, cloud ice, warm rain,
snow, and graupel. Horizontal resolutions range from 5 m for
DYCOMS-II to 100 m for GATE. Three-dimensional LES
outputs are combined with one-dimensional MERRA-2 re-
analysis data (Gelaro et al., 2017) aloft, producing a full-
depth atmospheric column that is the input for the radiative
transfer model. We utilize the grid point from MERRA-2 that
is closest to the model domain, where the MERRA-2 latitudi-
nal and longitudinal resolutions are 0.5◦ and 0.625◦, respec-
tively, and the thermodynamic profiles used here are given on
42 vertical levels.

2.2 Radar forward model

We implement the radar forward model on a given LES atmo-
spheric state in three distinct steps: (1) calculation of volu-
metric and surface scattering parameters for each of the DAR
channel frequencies at the LES model resolution; (2) inter-

polation in the vertical dimension to an equally spaced grid
that is much finer than the radar range resolution, and sub-
sequent computation of the time-dependent radiative trans-
fer solution including the effects of multiple scattering; and
(3) processing of the ideal, high-resolution radar backscat-
ter quantities to produce observations consistent with the as-
sumed radar instrument parameters. The important elements
of the single-scattering calculations in step (1) are described
in Appendix A, while steps (2) and (3) are described below.

The single-scattering properties of the atmospheric gases,
cloud and precipitation hydrometeors, and ocean surface (see
Appendix A) at the LES spatial resolution serve as inputs
to the multiple-scattering simulator of step (2), for which
we utilize the time-dependent, two-stream implementation
of Hogan and Battaglia (2008). In order to assess system-
atic error in the DAR retrieval resulting from non-uniform
range-bin filling, we interpolate the scattering property fields
from the LES grid resolution – which has a variable spacing
that increases with height – to an equally spaced vertical grid
with 10 m resolution. This ensures that the instrument range
resolution of 1r = 50 m is sufficiently oversampled in the
forward simulator throughout the LES domain. At this stage,
the only instrument parameter that is required to be specified
for the multiple-scattering calculation is the angular width
of the radar beam, which we calculate from the antenna di-
ameter Da assuming a Gaussian beam shape and an 11 dB
beam taper. The output of the multiple-scattering calculation
is the observed, or apparent, volume backscatter coefficient
ηobs(f,x,y,z) as a function of transmit frequency at the LES
horizontal resolution (1x,1y) and interpolated vertical res-
olution (10 m).

Given the forward-simulated, observed, volume backscat-
ter coefficient, ηobs(f,x,y,z), we begin step (3) by averag-
ing over the instrument horizontal beam footprint and range
resolution. Here it is assumed that the along-track direction
corresponds to the y dimension. Note that in this step of res-
olution degradation we are leveraging the fine spatial res-
olution of LES to provide realistic representation of non-
uniform beam-filling effects both in terms of the horizon-
tal footprint and within single range bins. Given an antenna
footprint |F(f,θ,φ)|2 = |F(f,r)|2, which we express in the
interpolated Cartesian coordinate system, we calculate the
footprint-averaged, observed backscatter after an along-track
integration time of Tint from

ηobs(f,xi,yj ,zk)=
1

1rR2�effTint

∫
Vijk

d3r ′ηobs(f,r
′)

×

Tint∫
0

dt ′|F(f,x′,y′− vgt ′)|4. (1)

Here the orbital altitude R appears via the solid-angle
normalization factor, where we have substituted d�′ =
dx′dy′(R− zk)−2

≈ dx′dy′R−2 throughout the LES domain
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for simplicity since the true range from the satellite R−
zk varies by only a few percent. The integration volume
Vijk centered on the observation point (xi,yj ,zk) is defined
by−1x3 dB/2≤ x′−xi ≤1x3 dB/2,−1y3 dB(Tint)/2≤ y′−
yj ≤1y3 dB(Tint)/2, and −1r/2≤ z′− zk ≤1r/2, where
1x3 dB is the 3 dB full width of the two-way beam pat-
tern |F(f0,r)|

4 at the lowest frequency, and 1y3 dB(Tint)

is the 3 dB full width of the time-averaged beam footprint
in the along-track direction. Finally, the effective two-way
solid angle �eff is the integral of the time-averaged two-
way beam pattern over the restricted angular domain de-
fined by Vijk . Averaging the observed normalized radar
cross section (NRCS) over the satellite footprint to get
σ 0

obs(f,xi,yj ) is performed by making the replacement
ηobs(f,r

′)→1rδ(z′)σ 0
obs(f,x

′,y′) in Eq. (1), where δ(z′)
is the Dirac delta function.

We evaluate Eq. (1) for each footprint centroid (xi,yj ) by
performing a discrete summation at the interpolated model
resolution. The radar sampling horizontal grid is defined by
xi+1−xi =1x3 dB and yi+1−yi = vgTint, implying that adja-
cent footprints in the cross-track dimension contain no com-
mon LES pixels, while sequential along-track footprints fea-
ture realistic overlap. Note that we do not assume that the
radar can measure multiple, simultaneous footprints in the
cross-track dimension but instead are maximizing use of the
rectangular LES domain to gather as many statistical sam-
ples as possible for eventual retrieval performance evalua-
tion. Finally, for comparison of radar-retrieved humidity pro-
files with those in the LES, we average the model humid-
ity field over the time-averaged, two-way antenna pattern as
well.

Next, we calculate the observed reflectivity from
Zobs(f )= ηobs(f )c

4f−4π−5
|Kw(f )|

−2, where c is the
speed of light, Kw(f )= [εw(f )+ 2]−1

[εw(f )− 1], and
εw(f ) is the dielectric constant of pure water evaluated at
280 K. At this point we must specify the instrument param-
eters that determine the minimum detectable signal and ran-
dom measurement uncertainty. These values are listed in Ta-
ble 2. As previously discussed, we assume a transmitter with
a pulse-averaged power of 200 W and duty cycle of 25 %.
Then, in order to determine the single-pulse radar sensitivity,
we must specify the pulse duration τp and compare this with
the measurement decoherence time. Generally speaking for
a pulse compression radar that is not performing Doppler ve-
locity estimation, it is desirable to have τp as large as possible
while maintaining coherent measurement integration to max-
imize the signal-to-noise ratio (SNR). However, for a space-
borne radar in low-earth orbit, the fast transit of the beam
across a region of interest combined with the fact that the
measurement relative error is at minimum σZZ

−1
obs =N

−1/2
i ,

where Ni is the number of statistically independent pulses
transmitted at a given frequency, implies that τp should not
be so large that insufficient incoherent averaging occurs.

Because we expect measurement decorrelation to be dom-
inated in general by broadening of the returned signal
spectrum due to the satellite-motion-induced Doppler ef-
fect, we can quantify the decoherence timescale by ana-
lyzing the resulting pulse-to-pulse correlations. The rele-
vant equations are discussed in several references (Tanelli
et al., 2002; Hogan et al., 2005) and are revisited in Ap-
pendix B, with the end result that the pulse-to-pulse decoher-
ence timescale for radar signal power measurements, some-
times referred to as the “time to independence”, is given by
τi = (2

√
πσf )

−1, where σf = vsatθ0λ
−1 is the standard de-

viation of the Doppler-effected spectral density for a station-
ary target that fills the radar beam. However, because of the
inherent scaling θ0 ∝ λ/Da, the Doppler spectral width in
frequency space is independent of the radar frequency, and
for our assumed hardware parameters the coherence time be-
comes τi ≈ 0.40Dv−1

sat = 104 µs. Given Np sequential pulses
with an inter-pulse spacing of Tp, the number of statistically
independent pulses for radar signal power estimation Ni is
determined from (Doviak and Zrnić, 1993)

ξ(τi,Tp)≡
Np

Ni
= 1+2

Np−1∑
m=1

(
1−

m

Np

)
exp

(
−
m2T 2

p

τ 2
i

)
. (2)

Because the radar cycles between widely separated trans-
mit frequencies after each pulse, the relevant inter-pulse
spacing in this case is Tp =NfTrep, whereNf = 3 is the num-
ber of frequency channels. Evaluating Eq. (2) using the pa-
rameters in Table 2, we find that ξ ≈ 1 or Np =Ni. Next,
we calculate the relative uncertainty in the reflectivity mea-
surement due to random error according to (Papoulis, 1965;
Doviak and Zrnić, 1993; Torres, 2001)

σZ

Zobs
=

1√
Np

[
ξ(τi,Tp)+

2
SNR

+
1

SNR2

]1/2

, (3)

where SNR is the measurement signal-to-noise ratio, which
is easily determined in our simulations by comparing the
calculated radar echo power with the prescribed receiver
noise Pn = kBTBFτ

−1
p . Here kB is Boltzmann’s constant, TB

is the scene brightness temperature, assumed to be 280 K,
and F is the noise factor related to the noise figure through
F = 10NF/10. Note that Eq. (3) assumes that the noise power
contribution to the detected signal can be removed without
inflating the measurement variance. The noise-equivalent re-
flectivity ZNE and surface NRCS σ 0

NE are defined as the re-
spective observed values that correspond to SNR= 1, while
the minimum detectable reflectivity and NRCS improve
upon this figure as a result of incoherent averaging accord-
ing to dBZmin = dBZNE− 10log10(

√
Ni) and σ 0

min(dB)=
σ 0

NE(dB)− 10log10(
√
Ni). In addition to thermal noise, sur-

face clutter can potentially limit the radar detection sensitiv-
ity in the lowest layers of the atmosphere. In this case, we
find that the large pulse bandwidth of 6 MHz and pulse dura-
tion that is well below the decoherence time result in a sur-
face clutter profile that is largely confined to the lowest few
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Table 2. High-level airborne VIPR system parameters.

Radar parameter Value

Transmit power, Pt 200 W
Transmitter duty cycle 25 %
Pulse duration, τp 50 µs
Pulse repetition interval, Trep 200 µs
Range resolution, 1r 50 m
Antenna diameter, Da 2 m
Receiver noise figure 8 dB
Orbital altitude, R 400 km
Orbital speed, vsat 7.7 kms−1

Ground speed, vg 7.2 kms−1

Along-track integration time, Tint 60 ms
Number of pulses per frequency, Np 100
Transmit frequency f0 = 155.5 GHz f1 = 168.0 GHz f2 = 174.8 GHz
3 dB beam width 0.064◦ 0.060◦ 0.057◦

Horizontal footprint (x× y) 450× 640 m 420× 620 m 400× 610 m
Minimum detectable reflectivity∗, dBZmin −33 dBZ −34 dBZ −35 dBZ

∗ The minimum detectable reflectivity is evaluated at the surface range.

hundred meters above the surface, with the surface equiva-
lent reflectivity falling below −40 dBZ at a height of 200 m.
Therefore, we do not expect this clutter source to limit de-
tection sensitivity. We note that this contrasts with the ex-
perience of RainCube, where measurement sensitivity is de-
graded in the lowest 0.5–1 km of the atmosphere because of
surface clutter (Battaglia et al., 2020). However, key differ-
ences between the two systems that explain this difference
are the relative chirp bandwidths and the ratio of pulse du-
ration to coherence time, which in the case of RainCube is
larger than 1.

2.3 DAR measurement methodology

The physical basis of the DAR measurement has been dis-
cussed in a number of previous works. Here, we focus on
the complete treatment first detailed in Battaglia and Kollias
(2019) and subsequently in Roy et al. (2020) that quantifies
the impact of frequency-dependent hydrometeor scattering
and attenuation on the DAR humidity retrieval, and we sim-
ply recount the main results. First, we define the local, ob-
served extinction coefficient,

βobs(r,f )=
1
2
∂

∂r
ln(Zobs(r,f )) . (4)

Anticipating that differential extinction will be measured
over a baseline of Nb range bins, we form the finite differ-
ence version of Eq. (4),

βobs(r,f )≈
1

2Nb1r
ln

(
Zobs

(
r−,f

)
Zobs

(
r+,f

)) , (5)

where r± = r ±Nb1r/2. For small changes in range Nb1r

and assuming negligible multiple scattering, the appropriate

fitting function for βobs can be shown to be (Battaglia and
Kollias, 2019; Roy et al., 2020)

β̂obs(r,fi)= a1+a2(fi−f0)+a3κv(r,fi)+βg,d(r,fi), (6)

where we assume that measurements are made at a dis-
crete set of frequencies {fi}, the values aj are the re-
gression coefficients, κv(r,f ) is the water vapor absorption
cross section per unit mass, and βg,d(r,f ) is the absorp-
tion coefficient for dry air. Defining the unattenuated re-
flectivity Z(r,f )= Zobs(r,f )exp(2τ(r,f )), where τ is the
one-way optical depth, the differential backscatter function
α(r,f )= (2Nb1r)

−1 ln[Z(r−,f )/Z(r+,f )], and the hy-
drometeor extinction coefficient βh(r,f ), the regression co-
efficients in Eq. (6) can be shown to relate to the following
physical quantities:

a1↔ α(r,f0)+βh(r,f0)

a2↔
∂

∂f
(α(r,f )+βh(r,f ))|f=f0

a3↔ ρv(r). (7)

In these relations, it is understood that all functions of r are
approximated by their average value between r− and r+.

With three regression parameters, the model in Eq. (6) re-
quires observations at three or more frequencies in order to
perform a least-squares fit. For Nf = 3, the solution is inde-
pendent of the measurement covariance matrix and can be
written as x̂ =K−1(y− b), where x̂ = [â1, â2, â2]

T, Ki0 =
1, Ki1 = fi − f0, Ki2 = κv(r,fi), bi = βg,d(r,fi), and yi =
βobs(r,fi). It is instructive to use an example LES hydrom-
eteor profile to compare humidity profiles estimated using
this three-frequency model and those derived using the two-
frequency differential absorption approach (e.g., Lebsock
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et al., 2015; Millán et al., 2016; Roy et al., 2018). Specifi-
cally, in the two-frequency approach, one assumes that the
contributions from a2 and βg,d to observed differential ex-
tinction in Eq. (6) are negligible and therefore can estimate
the humidity as ρ̂v(r)= [βobs(r,f1)−βobs(r,f0)][κv(r,f1)−

κv(r,f0)]
−1. Figure 1 compares the humidity profiles re-

trieved using these two approaches for two different atmo-
spheric profiles from the RICO LES case with different pre-
cipitation characteristics. To highlight the fact that the two-
frequency DAR measurement can exhibit biased retrievals
even for a perfect radar measurement, here we use reflec-
tivity profiles calculated within the single-scattering approx-
imation at the LES model resolution (i.e., not averaged over
the radar footprint). These results show the added utility of a
third DAR frequency channel over a wide transmitter band-
width to eliminate hydrometeor-scattering-induced biases in
the humidity retrieval.

2.4 Water vapor retrieval algorithm

The retrieval algorithm employed in this work follows a sim-
ilar formalism to that developed in Roy et al. (2020), but
with some improvements and important modifications to ac-
commodate the Nf ≥ 3 DAR approach and additional regres-
sion parameter at each retrieval height corresponding to the
a2 term that is linear in frequency in Eq. (6). In essence,
the task is to relate the radar observations y to a forward
model F (x,c) that is a generalization of the fitting function
in Eq. (6) to model the entire vertical profile. Here x is the
state vector consisting of quantities that will be retrieved as
part of the inverse problem and c contains parameters that
must be assumed to compute the forward model. We note at
the outset that the inverse problem will be formulated in such
a way that the forward model will be a linear transformation
of the state vector, or F =Kx+ b, where b is the part of the
forward model that does not depend on the state vector, and
it is understood that K and b depend on the forward model
assumptions c.

We define the observation vector as y = [y0,y1,y2],
where [yj ]i = ln(Zobs(ri,fj )Z

−1
0 ) for 0≤ i ≤M − 2,

[yj ]M−1 = ln(σ 0
obs(fj )), and r = [r0, r1, . . ., rM−1]

contains the range-bin positions for which the radar
signals exceed the instrument sensitivity threshold
at all three frequencies. Given the full range vector
r ′ = [rTOA, rTOA+1r, . . ., rs−1r,rs] of length M ′, where
rTOA and rs are the top-of-atmosphere and surface ranges,
respectively, we define the measurement projection matrix
Pr according to r = Prr

′. In cases of severe hydrometeor
beam attenuation, the surface return may be below the
sensitivity threshold σ 0

min, in which case the final ele-
ment of each yj is replaced by the last cloud bin with
dBZobs > dBZmin. The measurement covariance matrix is
defined in block-diagonal form as Sy = diag(Sy0 ,Sy1 ,Sy2),
where [Syj ]ik = (σZZ

−1
obs|ri ,fj )

2δik , and the relative error
σZZ

−1
obs is evaluated at range ri and frequency fj using

Eq. (3). Note that in general y has dimension Nf×M and
that this formalism is easily extended to more than three
frequencies.

Next, we define the state vector according to x =

[x0,x1,x2], where [x0]i = ln(Zr(ri,f0)Z
−1
0 ) is a vec-

tor of dimension M , Zr(r,f0) is the retrieved reflectiv-
ity at f0 including attenuation from hydrometeors, x1 =

[γ0,γ1, . . .,γM−1], where γi is a range-dependent slope vs.
frequency and is analogous to a2 in Eq. (6), and x2 contains
the N retrieved humidity values and requires careful speci-
fication given an arbitrary measurement projection Pr. The
forward model is then defined in block form as follows:

F (x,c)=

 IM (f0− f0)IM −2T0
IM (f1− f0)IM −2T1
IM (f2− f0)IM −2T2

 x0
x1
x2


− 2

 τ g,d(f0)

τ g,d(f1)

τ g,d(f2)

 , (8)

where IM is theM×M identity matrix, Ti is a matrix of size
M ×N that computes the water vapor absorption contribu-
tion to the total optical depth profile given the values in x2,
and τ g,d(fi) is the optical depth profile at fi due to dry air
absorption. At this point, we must assume vertical profiles
of temperature T (r ′) and pressure P(r ′) at the radar range
resolution, which are elements of c, in order to calculate the
gas absorption quantities τ g,d(fi) and Ti . For this work, we
do so by averaging these thermodynamic profiles over the
whole LES domain and smoothing the result by performing
a convolution with a box of length 2 km. Note that due to
the relatively weak dependence of the water vapor absorp-
tion cross section on pressure and temperature, the system-
atic error associated with these assumptions is not a lead-
ing order effect (Roy et al., 2018). Then, the dry air opti-
cal depth vector is easily defined by the recursive relation
[τ g,d(fj )]i = [τ g,d(fj )]i−1+1rβg,d(r

′

i−1,fj ) and the initial
condition [τ g,d(fj )]0 = 0.

The first step in defining Ti , and therefore the structure and
interpretation of x2, is to prescribe a maximum vertical res-
olution for the retrieved humidity profile, which we call 1z.
Furthermore, we restrict 1z to values that satisfy the con-
dition that 1z/1r =O is an integer, and we define the new
vertical axis z′ = [zTOA,zTOA−1z,. . .,1z+1r,1r], where
the lowest height position corresponds to the first range bin
above the surface rs−1r , and zTOA corresponds to the range
r ′ = rTOA+1z−1r . In this work, we use1z = 200 m, result-
ing in a range-bin oversampling factor of O = 4. To deter-
mine which vertical humidity values will be retrieved given
a radar measurement projection Pr, we define a new projec-
tion matrix Pz and axis z, with z= Pzz

′, and Pz projects onto
the non-zero elements of the following downsampling vector
d:

https://doi.org/10.5194/amt-14-6443-2021 Atmos. Meas. Tech., 14, 6443–6468, 2021



6450 R. J. Roy et al.: Differential absorption radar

Figure 1. Comparison of two-frequency and three-frequency DAR humidity retrievals (see Sect. 2.3) using atmospheric profiles from the
RICO LES. An ideal reflectivity measurement is assumed, with no multiple scattering, arbitrarily high range resolution and measurement
sensitivity, and zero random measurement error. Retrievals are performed using a differential absorption baseline equal to the model vertical
resolution of r+−r− = 40 m. (a) Humidity retrievals vs. LES truth (left subpanel) for a lightly precipitating grid cell; (right subpanel) Liquid
water mixing ratio profiles and corresponding observed reflectivity at f1 = 168 GHz. (b) Same as panel (a) but for a moderate precipitation
case. In both cases, performing the three-parameter fit using the model function in Eq. (6) removes the humidity biases that originate from
frequency dependence of hydrometeor backscatter and extinction.

[d]i =

M−1∑
j=0

Oi+O−1∑
k=Oi

[Pr]jk. (9)

Note that this definition for z ensures that a humid-
ity value at a certain height z will only be retrieved if
there is at least one radar observation within the interval
[z−1r,z+ (O − 1)1r).

Next, we write the matrix Ti as the product of three ma-
trices, Ti = PrT

′

iA, where A (M ′×N ) first interpolates the
humidity state vector x2 to the r ′ full range space, then T ′i
(M ′×M ′) computes the full optical depth profile, and finally
Pr projects this profile onto the measurement range vector
r . In contrast with the humidity interpolation approach uti-
lized in Roy et al. (2020), here we interpolate to the 1r
resolution between retrieval heights in z using an exponen-
tial profile with fixed scale height Hρ . For situations where
sequential elements for z are closely spaced, the choice of
interpolation function is irrelevant, since the absorption line
shape properties change negligibly and thus the retrieval is
only sensitive to the integrated water vapor (IWV) between
the two retrieval heights. However, for situations with widely
spaced elements of z, including total column water vapor
(TCWV) retrieval scenarios where no clouds are detected,
the exponentially interpolated humidity profile provides a re-
alistic weighting of the vertical absorption cross section. We
note that the assumption of the exponential profile is not nec-
essary. We use this assumption here to demonstrate how a
radar-only retrieval might perform in the absence of any addi-
tional information. In practice, in an operational environment
a more detailed profile shape would be taken from a weather
analysis system or from coincident observations from passive
sounders. In fact, we show below that the derived column

water vapor measurements below are significantly sensitive
to the exponential scale height motivating the future use of
ancillary data in the DAR retrievals. Finally, the matrix T ′i
can be shown to be a lower triangular matrix defined by

T ′i =

1r



κv(r
′

0,fi ) 0 · · · 0

κv(r
′

0,fi ) κv(r
′

1,fi ) 0 · · ·

.

.

.

κv(r
′

0,fi ) κv(r
′

1,fi ) κv(r
′

2,fi ) 0 · · ·

.

.

.

.

.

.

.

.

.

.

.

.
. . .

. . .
.
.
.

. . . 0
κv(r

′

0,fi ) κv(r
′

1,fi ) κv(r
′

2,fi ) · · · · · · κv(r
′

M ′−1,fi )


. (10)

An example of the humidity profile grid selection and inter-
polation procedure is given in Appendix C.

To proceed towards retrieving the best estimate of the state
vector x, we define the cost function to equal the weighted
least-squares sum C(x)= (y−Kx− b)TS−1

y (y−Kx− b).
Note that, because of the introduction of the model parame-
ters in x1 corresponding to the linear frequency fit term, the
DAR retrieval no longer requires regularization as was imple-
mented in Roy et al. (2020), and there is no need to introduce
a systematic error covariance matrix, because the current
model is designed to eliminate the hydrometeor-scattering-
induced bias. Furthermore, it worth highlighting here that the
only a priori information necessary for this retrieval is speci-
fication of representative T and P profiles, which exemplifies
the sharp contrast between this inversion approach and that
of optimal estimation. The value of x that minimizes C(x),
as well as the estimated state’s covariance matrix, is then cal-
culated as follows:

Atmos. Meas. Tech., 14, 6443–6468, 2021 https://doi.org/10.5194/amt-14-6443-2021



R. J. Roy et al.: Differential absorption radar 6451

Ŝx = (K
TS−1
y K)−1

x̂ = ŜxK
TS−1
y (y− b). (11)

For much of the analysis in Sect. 3, it is more appropriate
to analyze the IWV for individual partial columns of the re-
trieval (i.e., corresponding to a single column of the matrix A
as shown in Fig. C1b) than it is to analyze water vapor den-
sities at specific heights, as this provides a common frame-
work to discuss both in-cloud profiling retrievals with high
vertical resolution and partial and total column retrievals en-
compassing large cloud-free volumes. It is easy to show that
converting the estimated humidity state vector x2 to a partial-
column IWV variable amounts to a simple linear transforma-
tion c = Lx2, where Lii =1r

∑
jAji is a diagonal matrix

where each entry is the sum of all elements in a column of
A. The corresponding IWV covariance matrix is then cal-
culated according to Sc = LSx2L

T, where Sx2 is the square
block from Ŝx that pertains to the retrieved humidity values
x2.

3 Results

In this section we detail the results of case-by-case forward
simulations and retrievals for the five LES scenarios de-
scribed in Sect. 2.1. Because the analysis framework is iden-
tical for all five cases, we provide the most detail in Sect. 3.1
in describing the GATE simulations, with more limited dis-
cussion in the sections for the remaining four cases.

Before presenting the results, however, it is important to
decide on a framework for conveying the independent as-
pects of (1) random uncertainty, which stems from reflec-
tivity measurement error, and (2) systematic uncertainty, or
bias. Under the assumption of small relative measurement er-
ror σZZ−1

obs� 1, which is ensured by our specification of the
minimum detectable reflectivity, the errors in the observa-
tion space (y) are Gaussian distributed. Furthermore, since
the forward model is linear in the state vector, this Gaus-
sianity is preserved in going from observation to state space
(x). Therefore, the estimators for the state vector and its co-
variance matrix in Eq. (11) describe a multivariate normal
distribution from which a real observing system would sam-
ple. Note that because our inverse algorithm does not im-
pose a prior as is done in the optimal estimation approach,
the estimated state vector and covariance matrix are not bi-
ased by the assumed prior distribution. One approach often
used in instrument simulator studies to assess the effect of
random error on the inferred atmospheric state and its un-
certainty is to inject random noise into the observations ac-
cording to an error model like that in Eq. (3). However,
this approach would be redundant in this case because of
the detailed uncertainty quantification given by Ŝx and the
Gaussianity properties described above. Furthermore, by not

adding random noise to the observed reflectivity profiles, we
can utilize the humidity retrieval mean values in x̂ to assess
measurement bias on a grid-cell-by-grid-cell basis.

For these reasons, we proceed by simulating observations
without the injection of random noise and subsequently an-
alyzing the simulated retrievals by separately addressing the
issues of systematic and random error. While the variability
of humidity at a given height within the LES is small, the
retrieval estimate of that quantity in the state vector x̂ can
vary widely from grid cell to grid cell due to changing hy-
drometeor fields. Therefore, by analyzing the variability of
retrieved state mean values, we can assess the level of sys-
tematic error in the DAR measurement due to effects includ-
ing non-uniform beam-filling, multiple scattering, incorrect
humidity interpolation assumptions, and insufficiency of the
linear-in-frequency fit term for mitigating the hydrometeor
scattering biases. Then, we separately examine the retrieval
random uncertainty and its scaling with along-track averag-
ing distance by combining sequential along-track grid cells
using a weighted mean and variance approach. Furthermore,
to explore the systematic error that comes from assuming
an exponential humidity interpolation function, we perform
retrievals for each case using two different scale heights of
Hρ = 1.5 and 2.5 km.

Finally, it is important to recognize that while we can cal-
culate from the LES a 3D snapshot of observed reflectivity
values, the notional DAR system is not intended to be able
to measure such a 3D field in a single along-track overpass.
Instead, we treat the simulated 3D reflectivity field as provid-
ing a rich set of statistically independent vertical profiles that
can be used to assess the accuracy and precision of measure-
ments from a DAR that would sample similar clouds over
an along-track distance that is typically far greater than the
linear size of the LES domain. To this end, we will exam-
ine two different beam sampling strategies in the following
analysis: one using a fixed, nadir-pointing beam that exe-
cutes sequential along-track overpasses in a raster-scan fash-
ion across the LES domain; and a second approach where we
assume that the radar possesses intelligent pointing capabili-
ties and can arbitrarily target a single pixel in the cross-track
(x) dimension for each along-track (y) position. We envision
a cross-track scanning capability on the order ±3◦, which
from 400 km altitude provides a 42 km range in cross-track
sampling location. This relatively limited scanning capability
would provide significant increases to cloud sampling oppor-
tunities in shallow convective cloud regimes while also lim-
iting the technical complexity of a wide-angle scan. We note
that we do not model the angular dependence of the NRCS
in this study, which has little variation over this modest an-
gular range (Roy et al., 2021). For this latter approach, we
envision that the spacecraft would be outfitted with an addi-
tional passive sensor, for instance a microwave imager, that
can provide an estimate of cloud liquid water path in advance
of the radar measurement and can therefore feed-forward
this information to the intelligently scanning antenna. In this
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work, we assume that for each along-track pixel the antenna
scans to the cross-track location with maximum liquid water
path. While such a capability is highly idealized, it provides
a useful benchmark for assessing the limits of an intelligently
scanned system.

3.1 Deep convection: GATE

Forward simulated DAR observations for the GATE deep
convection case are presented in Fig. 2. In general for the
different LES cases, results are shown for the online fre-
quency f2 = 174.8 GHz because it experiences the most at-
tenuation and therefore is the limiting factor for the three-
channel DAR system in terms of sampling. For instance, as
shown in the vertical reflectivity profiles for all three frequen-
cies in Fig. 2d, the two offline channels f0 and f1 penetrate
the entire cloud column down to the surface, while the on-
line channel is fully extinguished at a height of about 2 km.
The observed ocean surface NRCS in Fig. 2a reveals the hor-
izontal structure of this deep convection scene, showing how
regions near plumes contain a significant hydrometeor bur-
den that prohibits detection of surface echoes at f2. Never-
theless, there is still substantial coverage in both the hori-
zontal and vertical (see Fig. 2c) near these deep convective
clouds. Finally, Fig. 2d provides a clear picture of the water
vapor differential absorption signature in the observed multi-
frequency reflectivity profiles with continuous sampling at
all frequencies from roughly 2 to 12 km in height.

The results of the GATE retrievals are summarized in
Fig. 3, where panels a and b pertain only to systematic
measurement error, and panel c shows the scaling of ran-
dom uncertainty, or precision, with along-track averaging for
the two radar sampling approaches, fixed nadir and intelli-
gently scanned. We note that the GATE case is the only one
for which multiple scattering features noticeably in the for-
ward simulations, and we assume that range bins for which
the multiply scattered signal is 3 dB higher than the single-
scattering reflectivity can be identified and filtered out be-
fore retrieval. The retrieval humidity values x2 are classi-
fied according to three different types of DAR measurement
columns: the “top column” between the radar and the first de-
tected range bin; the “in-cloud” columns that include cloud
returns at both the near and far ranges; and the “cloud-to-
surface” column between the final cloud bin and the surface.
In Fig. 3a, the DAR retrieval (blue circles) corresponds to the
average at each height of the in-cloud profiling retrievals that
have a vertical resolution of 200 m. That is, partial-column
retrievals that are still in cloud but have a column lengths
greater than 200 m are excluded as these do not represent
high-resolution, local humidity measurements. Importantly,
the blue error bars in Fig. 3a do not represent random mea-
surement error but instead are the standard deviations of the
mean retrieval values at each height for the entire LES do-
main. Therefore, these error bars provide a measure of the
spread of in-cloud profiling biases, while the close agree-

ment between the mean values and the conditionally sampled
truth profile (open black circles) reveals that the mean bias is
small.

The results of the IWV bias assessment for all three re-
trieval column types are shown in Fig. 3b. Here the his-
tograms correspond to retrievals performed using a humidity
scale height of Hρ = 2.5 km, with the median biases shown
by the solid black lines. The black dashed lines show the me-
dian IWV biases that result from retrievals performed using
the other scale height of Hρ = 1.5 km. For this analysis, we
include all columns of the in-cloud type and do not restrict
them to be of 200 m length. The magnitude of the median
bias never exceeds 2 mm IWV for either value of Hρ , and
the results for Hρ = 2.5 km show the exceptional accuracy
of this DAR measurement method in capturing both in-cloud
and clear-air water vapor columns, with biases rarely exceed-
ing 0.5 mm.

We assess the scaling of in-cloud, 200 m profiling preci-
sion with along-track averaging distance (Fig. 3c) by per-
forming a weighted average of retrievals at a specific height
of 3.9 km using the both fixed-nadir (orange circles) and in-
telligently scanned (orange dashed line) approaches. The re-
sult is that after 100 km of along-track averaging, these sam-
pling approaches yield random humidity uncertainties of 2
and 1 g m−3, respectively. It is important to note that the hu-
midity profiling resolution and random uncertainty can be
traded off in a linear fashion, meaning we would expect pro-
files with 400 m resolution to exhibit half the uncertainty
shown here. Because the cloud-to-surface and top columns
are typically measured over a much larger differential ab-
sorption baseline, the amount of averaging necessary to reach
a specified relative uncertainty is reduced relative to the in-
cloud profiling. Here, retrieval precisions for both column
types are at the 1 mm level after only 10 km of along-track
averaging. These column IWV retrieval capabilities could
provide unprecedented observations of horizontal water va-
por variability in deep convective cold pools.

3.2 Precipitating shallow cumulus: RICO

Forward simulated DAR observations for the RICO case with
precipitating shallow cumulus clouds are presented in Fig. 4.
Because of the high horizontal resolution of the LES relative
to the radar footprint, we compare the simulated observed
ocean surface NRCS both before (panel a) and after (panel b)
averaging over the instrument beam pattern. In this case, the
reduced hydrometeor burden relative to the deep convection
regions of the GATE simulation results in nearly ubiquitous
sampling of the surface at f2. In Fig. 4c and d, we show the
model cloud and rain liquid water content (LWC) profiles and
corresponding observed reflectivity for the fixed-nadir path
shown by the dashed line in panels a and b. Even at the highly
absorbing online frequency f2, the radar is able to sample
almost a large fraction of the LWC field within the PBL.
Furthermore, we highlight using gray shading in Fig. 4d the
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Figure 2. Selected results from GATE forward simulations. (a) Observed surface NRCS at f2 = 174.8 GHz. Surface echoes with SNR below
the detection threshold appear as white and generally correlate with convectively active regions with large liquid and ice water content (LWC
and IWC) values. (b) Two-dimensional cross section of model condensed water profiles (ice and liquid) for the along-track path (dashed
line) in panel (a). (c) Corresponding observed reflectivity profiles at 174.8 GHz. Gray regions in lower-tropospheric convective cores indicate
regions where the multiply scattered signal is at least 3 dB higher than the single-scattering reflectivity. We assume that these grid points can
be filtered out before performing water vapor retrievals. (d) Vertical reflectivity profiles at all three DAR frequencies corresponding to the
dashed line in panel (c).

Figure 3. GATE DAR retrieval results for systematic (a, b) and random (c) error assessments. (a) Lower-tropospheric mean-retrieved water
vapor profile (blue solid circles) compared with model values, including the full domain mean profile (solid black line), range of model
humidity at each height (gray shaded region), and the conditionally sampled truth profile (black circles), which is calculated using only
grid cells for which the DAR retrieved a 200 m resolution profile value. Note that the DAR retrieval error bars correspond to the standard
deviation of mean-retrieved values (i.e., elements of x̂) at each height and do not depict measurement uncertainty from random error. (b)
Two-dimensional histograms of IWV bias from retrievals using Hρ = 2.5 km as a function of truth IWV, for the three distinct DAR column
retrieval types (top: lowest column between surface and last cloud return; middle: partial columns within/between cloud layers; bottom:
uppermost column between top-of-atmosphere and first detected range bin). Each vertical histogram is normalized to have a peak value
of 1 for display purposes. Solid black lines correspond to the median bias when using Hρ = 2.5 km, while dashed lines are the same for
Hρ = 1.5 km. (c) Retrieval precision scaling with along-track averaging, where the in-cloud curves (top panel) correspond to a profiling
height of 3.9 km. For each LES case, this profiling height is chosen to lie well within the average cloud and precipitation volume to avoid
sparse sampling near the lower and upper boundaries. Dashed lines correspond to an intelligently scanned radar (see text). Solid circles
represent the humidity precision scaling for a hypothetical along-track path that pieces together nadir-pointing transects for x = 21.1, 42.3,
63.1, and 84.3 km.
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along-track positions for which the cloud-to-surface column
will be retrieved.

The retrieval results for the RICO case are presented in
Fig. 5 in a nearly identical format to the GATE simulations
of the previous section. Because of the reduced sampling of
IWV bias vs. truth relative to GATE, which is a result of
the decreased cloud and precipitation amount, we present the
bias results as scatter plots instead of histograms for both
the Hρ = 1.5 km (Fig. 5b) and Hρ = 2.5 km (Fig. 5c) cases.
An important feature of the in-cloud profiling retrievals to
highlight is the ability of the DAR to resolve the inversion
layer thickness and capture the water vapor profile near the
top of the PBL, where there is a rapid change with height
of the hydrometeor fields and therefore strong potential for
systematic error. In fact, in separate end-to-end simulations
run using a radar range resolution of 200 m (not shown), we
find a systematic, large negative bias in this regime, which
is due to non-uniform hydrometeor filling of range bins near
the cloud top. Because the retrieval algorithm interprets re-
flectivity signals as representing an average throughout the
bin, this non-uniformity tends to diminish the differential ab-
sorption between the first two cloud bins, causing the nega-
tive humidity bias. However, by oversampling the humidity
retrieval resolution by a factor of O = 4 here (see Sect. 2.4),
this non-uniform range-bin-filling issue is mitigated, and bi-
ases are significantly reduced.

By comparing the retrieval biases forHρ = 1.5 and 2.5 km
in Fig. 5b and c, we see that the humidity scale height
choice mostly affects the top-column retrievals. This is be-
cause the in-cloud and cloud-to-surface columns are of such
short length that the choice of humidity interpolation func-
tion is unimportant, and the retrieval is only sensitive to bulk
IWV in the partial columns. Furthermore, even if one uses an
inappropriate retrieval scale height of 2.5 km, the top-column
biases remain fairly small, with a clear-sky TCWV bias of at
most 2 mm, or about 5 % (see the rightmost cluster of top-
column retrievals in Fig. 5c).

The retrieval precision analysis in Fig. 5d and e reveals
similar performance as in GATE, where in this case we
present in-cloud precision results at a profiling height of
1.3 km. However, because in RICO the clouds are limited
to the lowest 2.5 km of the atmosphere, the top-column re-
trievals are always associated with a column that is nearly
the depth of the atmosphere, resulting in reduced uncertainty
relative to GATE. In this case, it is only necessary to average
in the along-track direction for 1 km to achieve a top-column
precision of 1 mm IWV and for 20–30 km to realize the same
precision for the cloud-to-surface column, depending on the
scanning strategy.

3.3 Non-precipitating shallow cumulus: BOMEX

The BOMEX case of non-precipitating shallow cumulus
clouds is a particularly challenging one for in-cloud DAR
observations, and for cloud radar in general, due to the rela-

tively low volume cloud fraction and therefore limited sam-
pling. This fact is highlighted by the forward simulation re-
sults in Fig. 6, where the 2D map of cloud liquid water path
(LWP) in panel a suggests that the radar will primarily en-
counter clear-air columns down to the ocean surface, espe-
cially without intelligent scanning capabilities. In Fig. 7c and
d, we show the cloud LWC profiles and observed reflectivi-
ties at 155.5 and 174.8 GHz for the dashed line path in panel
a.

The BOMEX retrieval results are summarized in Fig. 7 in a
format identical to that for RICO. Unsurprisingly, the limited
in-cloud sampling in this case results in increased variance of
the profiling bias shown in panel a. Furthermore, the in-cloud
profiling precision is diminished, even for the intelligently
scanned system, which reaches a precision of 2 g m−3 only
after an along-track averaging distance of 300 km. We con-
clude from these results that any hope of obtaining in-cloud
profiles in non-precipitating shallow cumulus requires an in-
telligent scanning capability. Furthermore, even a scanned
measurement is unable to resolve the PBL inversion as can
be done in the RICO case due to the weak cloud scattering
from within the inversion layer. Nevertheless, the notional
DAR can retrieve cloud-to-surface and top-column IWV val-
ues with good accuracy and precision, especially for the in-
telligently scanned system, with biases below 0.5 mm for
Hρ = 1.5 km and averaging distances of 30 and 3 km nec-
essary to achieve 1 mm IWV precision, respectively.

3.4 Drizzling stratocumulus: VOCALS

The VOCALS case represents the ubiquitous light precipi-
tation and drizzle that is found in marine stratocumulus, for
example in areas of open cellular convection. Because of the
increase in area cloud fraction relative to shallow cumulus,
and general horizontal homogeneity of the cloud field, both
VOCALS and DYCOMS-II simulations will reveal little dif-
ference between a fixed-nadir and intelligently scanned radar
system. Furthermore, the position of the cloud layer atop a
shallow PBL with strong temperature inversion and hydro-
lapse permits a natural division of the atmospheric column
into separate regions for the DAR retrieval. Specifically, the
top column between the radar and the stratocumulus cloud
top always provides a bulk measure of the amount of water
vapor in the dry, free troposphere, while the cloud-to-surface
column of variable depth ≤ 1 km quantifies the IWV in the
moist PBL.

The forward simulation results for the VOCALS case are
detailed in Fig. 8. In panel a, we show the model LWC at
the peak cloud height of 1.25 km, highlighting the high area
cloud fraction in this case, with resulting observed reflectiv-
ity map at the same height in panel b. Even at the online fre-
quency f2, all horizontal columns contain a significant cloud
detection. Figure 8c and d show profiles of model cloud and
drizzle LWC profiles and corresponding observed reflectivity
for the along-track path indicated in panel a with a dashed
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Figure 4. Selected results from RICO forward simulations. Simulated observed ocean surface NRCS at 174.8 GHz before (a) and after (b)
filtering for instrument horizontal resolution and detection sensitivity. (c) LWC profiles for the along-track transect indicated by the dashed
line in panels (a) and (b). (d) Corresponding observed reflectivity profiles at 174.8 GHz. Positions where cloud-to-surface partial-column
water vapor retrievals can be performed are highlighted with gray shading.

Figure 5. RICO DAR retrieval results. (a) Comparison of mean-retrieved and model in-cloud humidity profiles, depicted as in the GATE
case (Fig. 3a). (b–c) IWV retrieval bias vs. truth for the three distinct column types and two different humidity retrieval scale heights of
1.5 and 2.5 km. (d–e) Retrieval precision scaling with along-track averaging, similar to Fig. 3c, except sequential along-track transects are
executed by cycling through all possible cross-track (x) positions.

line. Because of the reduced water vapor burden in the free
troposphere relative to the previous cases of deep and shallow
convection, there is greatly reduced atmospheric attenuation
at f2 permitting increased cloud sampling in the PBL. Note
that as with the GATE case, we apply a multiple-scattering
mask to the simulated observations, where we assume that
range bins with a multiply scattered signal that is 3 dB higher
than the single-scattering value can be filtered out. Regions
where this mask has been applied are indicated with gray
shading in Fig. 8d and are likely the result of multiple scat-
tering from drizzle droplets within the cloud layer.

The VOCALS retrieval results are presented in Fig. 9.
While in-cloud profiling is not expected to be a major
strength of DAR for stratocumulus clouds, the retrievals re-
veal quite promising bias and precision capabilities in this
regard, with random uncertainty at the 1 g m−3 level after
50 km of along-track averaging (see Fig. 9c). Furthermore,
the free tropospheric column and cloud-to-surface column

results, with or without intelligent scanning, suggest that the
notional DAR can provide very useful IWV estimates in this
drizzling stratocumulus scene that could, for instance, be
used to constrain near-surface humidity.

3.5 Non-drizzling stratocumulus: DYCOMS-II

The forward simulation results for the final case, DYCOMS-
II, involving a non-drizzling stratocumulus cloud layer of
thickness≈ 200 m are shown in Fig. 10. As for the VOCALS
case, we plot the model cloud LWC field in Fig. 10a for the
peak cloud height of 820 m and the corresponding radar re-
flectivity map in Fig. 10b, revealing that the radar detects
cloud in each sampled atmospheric column. From the ob-
served reflectivity profiles in Fig. 10d, we can see that each
retrieval will feature three distinct water vapor quantities: the
free tropospheric column between the radar and cloud top, a
single in-cloud humidity measurement of 200 m vertical res-
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Figure 6. Selected results from BOMEX forward simulations. (a) Liquid water path (LWP) map for the shallow cumulus scene highlighting
the low cloud area fraction. (b) Simulated observed ocean surface NRCS at 174.8 GHz at the radar resolution. (c) Cloud LWC profiles
corresponding to the dashed line in panel (a). (d) Observed reflectivity profiles at 155.5 (left) and 174.8 (right) GHz.

Figure 7. BOMEX DAR retrieval results. (a) Comparison of mean-retrieved and model in-cloud humidity profiles, depicted as in the GATE
case (Fig. 3a). (b–c) Retrieved IWV bias vs. truth for assumed humidity scale heights of 1.5 and 2.5 km. (d–e) Retrieval precision scaling
with along-track averaging, where the in-cloud results correspond to a retrieval height of 1.5 km.

olution, and a cloud-to-surface column of length 600 m rep-
resenting the sub-cloud bulk humidity in the PBL.

The results of the retrieval are presented in Fig. 11 in
an identical format to the VOCALS case, where we again
see that the added utility of an intelligently scanned radar
is minimal due to the high area cloud fraction. However,
due to the reduced SNR of the cloud targets for the non-
drizzling stratocumulus case, the in-cloud profiling and sub-
cloud IWV precision feature a less favorable scaling with
along-track distance. In realistic measurement scenarios the
required > 100 km averaging distance may suffice due to
the typically large horizontal extents of stratocumulus cloud
structures.

4 Discussion

In the previous section, we presented the basic outputs of the
end-to-end simulations and analyzed them from a statistical

perspective with a focus on disentangling systematic and ran-
dom retrieval uncertainty. Here, we provide example science
case studies for utilizing the DAR observations and begin the
discussion with a summary of the DAR retrieval capabilities
within the context of the subtropical to tropical cloud transi-
tion.

4.1 Retrieval performance summary

In order to synthesize a coherent picture of DAR retrieval ca-
pabilities for all five LES cases, we generate the following
three quantities from the basic retrieval product of partial-
column IWV and its associated uncertainty, assuming an
intelligently scanned radar system and variable along-track
averaging distance. First, we transform the cloud-to-surface
IWV retrieval for each along-track position into an estimate
of the surface humidity, assuming a well-mixed boundary
layer for all cases except GATE, where the partial columns
often extend from the anvil cloud bottom to the surface and
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Figure 8. Selected results from VOCALS forward simulations. (a) Model LWC field for z= 1250 m. (b) Corresponding observed reflectivity
map at 174.8 GHz for the range bin centered at 1250 m height. (c) Vertical LWC profiles for the along-track path indicated by the dashed line
in panel (a), with drizzle clearly visible below cloud base, and (d) corresponding 174.8 GHz observed reflectivity profiles. The gray shaded
region in panel (d) indicates where the multiple-scattering mask has been applied, using the same criteria as in the GATE case.

Figure 9. VOCALS DAR retrieval results. Panels (a), (b), (d), and (e) are as in Figs. 5 and 7, while panel (c) shows retrieval bias histograms
for Hρ = 1.5 km (solid lines) and Hρ = 2.5 km (dashed lines). In panels (d) and (e), note the insensitivity of the precision to choice of
scanning strategy (circles: fixed nadir, dashed line: intelligently scanned) because of the horizontal uniformity of the cloud field.

therefore would not be well captured by a well-mixed as-
sumption. Therefore, for the GATE case we assume an ex-
ponential humidity distribution with a scale height of 2.5 km.
Second, we again filter the in-cloud retrievals for only those
with 200 m vertical resolution. Third, we transform the top-
column IWV estimate into a representative estimate of the
humidity 500 m above the highest in-cloud profiling posi-
tion, for which we use the same exponential profile and hu-
midity scale height as was used in the retrieval. Note that
it should be expected that this third quantity does not agree
with the model humidity value at the same height, because
the upper-tropospheric humidity profile shape is typically not
well captured by an exponential profile. These three mea-
sured quantities and their uncertainties are then combined
using a weighted mean and variance approach for sequential
along-track grid cells to produce average observed profiles
with associated random uncertainty.

Figure 12 shows the results of this analysis, with an over-
laid schematic depiction of the marine trade-wind subtropical

to tropical cloud transition. The variable along-track averag-
ing distances, indicated by the respective 1y values in the
figure, are determined based on the following criteria. For the
surface and upper-tropospheric humidity estimates, the av-
eraging distance that produces a 10 % relative measurement
error is used, with a minimum distance of 10 km imposed to
ensure that potential systematic error is also accounted for.
Then, for the in-cloud profiles, we again use the along-track
distance that produces a specified relative uncertainty for at
least one profiling height but vary this number depending on
the case to account for differences in cloud sampling and
SNR. The minimum relative uncertainty criteria for the five
cases in Fig. 12 are as follows: 15 % (GATE), 10 % (RICO),
20 % (BOMEX), 10 % (VOCALS), and 20 % (DYCOMS-II).

These results constitute a concise summary of the exten-
sive simulations for the notional DAR instrument and what
its humidity measurement capabilities would be in these var-
ious cloud scenarios. It is important to note that both the
high-resolution in-cloud profiles and the high-precision sub-
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Figure 10. Selected results from DYCOMS-II forward simulations. (a) Model cloud LWC field for z= 820 m. (b) Corresponding observed
reflectivity map at 174.8 GHz for the range bin centered at 800 m height. (c) Vertical LWC profiles for the along-track path indicated by the
dashed line in panel (a) (note the reversed color scale with respect to a) and (d) corresponding 174.8 GHz observed reflectivity profiles.

Figure 11. DYCOMS-II DAR retrieval results. Because of the limited vertical extent of cloud volume, every horizontal grid cell features just
a single in-cloud profiling retrieved value and identical upper- and lower-tropospheric column lengths. All panels have identical descriptions
to those in Fig. 9.

cloud humidity observations in Fig. 12 are inaccessible with
other sensor platforms, with the possible exception of GNSS
radio occultation (RO) techniques. Specifically, GNSS RO
systems can provide high-resolution vertical profiles of re-
fractivity in clouds but must partition that refractivity signal
between temperature and water vapor. Furthermore, GNSS
RO retrievals struggle to profile below strong inversions due
to the associated hydrolapse and in general measure an aver-
age over clear-air and cloudy regions with 100 km scale hor-
izontal resolution. DAR, on the other hand, is not affected
by sharp thermodynamic profile gradients and can utilize the
surface echoes to probe water vapor all the way to the sur-
face.

4.2 Constraining near-surface RH

The surface relative humidity (RH) is a critical quantity in
determining PBL structure. It sets the lifting condensation
level and thus the cloud base and governs the magnitude of
the surface moisture fluxes. As an example application of the

DAR observations, we examine the ability to constrain the
near-surface RH using the surface humidity estimates from
Fig. 12. Recall that these estimates themselves are derived
from the cloud-to-surface IWV column retrievals by assum-
ing a well-mixed boundary layer. Therefore, two independent
potential sources of bias in estimating near-surface RH are
the retrieval IWV biases for the cloud-to-surface column and
deviations of the atmospheric profile from the well-mixed
state. The results are presented in Table 3, where we use
the DAR-inferred surface humidity ρv,DAR and assume per-
fect knowledge of the surface temperature from the model
to derive the DAR RH estimate. Then, the sensitivity of this
RH estimate to the surface temperature assumption is quan-
tified by computing ∂RH/∂T . While there is clearly RH sen-
sitivity in the DAR cloud-to-surface column measurement,
the relatively large uncertainty of σv,DAR/ρv,DAR ≈ 0.1 and
noticeable biases compared to the model values, even when
assuming perfect knowledge of temperature, imply that the
sub-cloud DAR moisture observations should be applied ju-
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Figure 12. Summary of humidity retrieval capabilities for an intelligently scanned DAR system displayed within the context of the
subtropical-to-tropical cloud transition regimes. For each LES case, we present the in-cloud profiles and surface humidity estimates cal-
culated using the cloud-to-surface partial column with error bars representing 1σ random error. In-cloud estimates in the lower troposphere
with relative uncertainty greater than 100 % are excluded. The along-track averaging distances for the different retrieval quantity estimates
are listed above. The top-column representative water vapor density value (orange circles) is compared to the model truth value (open black
circles). While the retrieval biases are nearly identical for the fixed-nadir case with large along-track averaging, the precision is degraded and
can be assessed by examining the precision scaling plots in Figs. 3d, 5d, 7d, 9d, and 11d.

diciously to the problem of constraining surface RH. An ob-
vious approach to improve the constraint from the sub-cloud
measurements on RH would be to relax the assumption of
the well-mixed sub-cloud layer; however, this is beyond the
scope of this paper.

4.3 Inferring in-cloud temperature

The second example application of DAR retrievals explored
here involves utilizing the high-resolution profiles of water
vapor inside of clouds and precipitation to estimate vertical
temperature profiles by assuming that the volume is satu-
rated with respect to liquid water. In the low latitudes it is
observed that the spatial variability in temperature is sig-
nificantly smaller than the variability in water vapor due to
the large Rossby radius of deformation (Schneider, 1977).
Therefore a constrain on the in-cloud temperature profile in
the subtropical marine boundary layer will provide a strong
constraint on the domain mean. For this application, we focus
on the retrievals from the RICO case, which involves only
liquid clouds and provides roughly 2 km of continuous hu-
midity profiling within the PBL. Generally, we expect an RH

of 100 % inside of cloud layers, but for precipitating volumes
this can deviate significantly from saturation. Of course, from
the perspective of the DAR, it is difficult to unambiguously
distinguish between radar returns coming from range bins
that are mostly cloud versus mostly rain. Furthermore, within
a single radar footprint, it is likely that both cloudy and rainy
regions are averaged together at a single height, in which case
the rain signal will likely dominate due to the much larger
average particle size. Therefore, by using the average DAR
humidity profile acquired after a large along-track averaging
distance, we are likely to be combining fully saturated and
sub-saturated volumes and therefore potentially complicat-
ing the conversion from water vapor density to temperature.

In the fully saturated case, the temperature T inferred
from the DAR measurement at each height is simply the
one that satisfies the relationship ρv(z)= ρs(T ), where ρv(z)

is the retrieved humidity value and ρs(T )= es(T )R
−1
v T −1

is the saturated absolute humidity. Here es(T ) is the satu-
ration vapor pressure curve for liquid water determined by
the Clausius–Clapeyron relation, and Rv = 461.5 K−1 kg−1

is the water vapor gas constant. The results of this analysis
using the RICO LES and simulated DAR retrievals are pre-
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Table 3. Estimating near-surface water vapor density (ρv,DAR) and RH using the cloud-to-surface partial-column DAR humidity measure-
ment. Reported DAR RH values assume perfect knowledge of surface temperature, and sensitivity to this assumption is quantified by the
term ∂RH/∂T . Note that for the GATE case, the partial column often extends well into the middle and upper troposphere, and therefore the
inferred surface RH is highly dependent on the assumed sub-cloud humidity profile shape. For all other cases, a well-mixed PBL is assumed
for the shallow sub-cloud column.

LES case ρv,DAR σv,DAR DAR DAR ∂RH/∂T Model mean Model SD
(gm−3) (gm−3) RH (%) σRH (%) (% K−1) RH (%) RH (%)

DYCOMS-II 10.6 1.1 69 7 −4.2 76.0 1.6
VOCALS 9.5 1.0 64 7 −3.9 66.3 2.4
BOMEX 18.3 1.8 71 7 −4.1 78.1 1.2
RICO 18.0 1.8 74 7 −4.3 76.0 1.4
GATE 16.7 1.7 76 8 −4.5 87.0 2.9

sented in Fig. 13, where we perform the conversion of hu-
midity to temperature for three different profiles: the DAR
retrieval, including random uncertainty, from Fig. 12; the
conditionally sampled DAR truth profile from Fig. 5a; and
the model humidity profile conditioned on grid cells with
LWC> 0.01 g m−3. Note that the temperature profiles in-
ferred from the DAR retrieval and truth humidity profiles in-
corporate non-uniform beam-filling effects, both in the hor-
izontal and range dimensions, while the conditional model
profile is at the model spatial resolution. Furthermore, the
DAR truth and conditional model temperature profiles repre-
sent two different ideal measurements, with the former cor-
responding to a perfectly unbiased measurement made using
the notional radar parameters in Table 2 and the latter a hypo-
thetical measurement at the LES resolution requiring range
and horizontal resolutions that are practically achievable.

For comparison with the humidity-inferred temperature
profiles, we present in Fig. 13a the LES mean RH pro-
file, as well as the range at each height, both conditioned
on LWC> 0.01 g m−3. Below the lifting condensation level
around 500 m, we do not expect even the ideal humidity-
inferred temperature measurements to agree with the model
profile, as the liquid within this region is purely precipitation
falling through a sub-saturated volume. Furthermore, while
the mean conditional model RH profile remains near 100 %
between the lifting condensation level (0.5 km) and cloud top
(2.5 km), the conditional RH range is quite wide in this re-
gion, with the minimum conditional RH decreasing rapidly
with height. We infer from this that there exist in the LES
grid cells that are horizontally displaced from the saturated
updraft region, especially near the cloud top, that consist of
rain, but not cloud, liquid water. This is likely the result of
vertical wind shear within the model forcing a horizontal
separation between updrafts and downdrafts and has impor-
tant consequences for the DAR measurement. Specifically,
because the plumes are not highly resolved by the radar foot-
print, there will be many instances in which a single footprint
encompasses updraft and downdraft regions and therefore
both sub-saturated and fully saturated volumes. However, be-
cause the radar backscatter from precipitation particles is so

much larger than for cloud droplets, the measured signal is
heavily weighted towards the sub-saturated region within the
footprint. This non-uniform beam-filling bias towards lower
humidity implies a negative temperature bias when assum-
ing that the local environment is fully saturated, leading to
the divergence of the DAR retrieval and truth profiles from
the model values above 1 km in Fig. 13b.

While it is theoretically possible to mitigate this negative
temperature bias by decreasing the radar footprint size sig-
nificantly, such a solution would require an unrealistically
large antenna. Therefore, for practical applications, it would
be necessary to incorporate knowledge of the degree of non-
uniform beam-filling and precipitation amount in order to
adjust the RH= 100 % assumption as a function of height
within the cloud layer. Furthermore, this approach in general
requires knowledge of the lifting condensation level – which
could in principle be estimated from the DAR cloud-to-
surface column IWV – in order to identify the sub-saturated
region below the cloud base. Note, however, that we do not
expect that similar non-uniformity biases will occur in non-
precipitating clouds because all of the radar reflection will
be coming from saturated volumes. Therefore, much care
must be taken in inferring in-cloud temperature from DAR
observations to account for the presence of precipitation. In
fact, such studies would benefit greatly from airborne DAR
observations of real precipitating liquid clouds with coinci-
dent, in situ observations of thermodynamic profiles from,
for instance, dropsondes. In this case, the very high horizon-
tal resolution offered by the airborne system would allow for
systematic study of this non-uniform beam-filling effect as
a function of horizontal averaging by combining along-track
observations to form a larger effective footprint of variable
size.

5 Conclusions

Spaceborne DAR holds considerable promise to fill gaps
in the existing observing system for water vapor measure-
ments, especially in the presence of clouds and precipitation.
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Figure 13. Using DAR humidity observations to estimate temperature profiles in RICO. (a) LES relative humidity profiles conditioned on
LWC> 0.01 gm−3, including the conditional mean (black line) and full model conditional range (gray region). (b) Comparison of model
temperature profiles, including the conditional (LWC> 0.01 gm−3) mean and full range, with the values inferred from the following profiles
assuming saturation: (dashed line) the model humidity profile conditioned on LWC< 0.01 gm−3, (red circles) the conditionally sampled
DAR truth profile from Fig. 5a, and (blue circles) the DAR retrieval from Fig. 12.

Through extensive LES and end-to-end radiative modeling,
we have provided a high-fidelity assessment of the spatial
coverage and systematic and random uncertainties that can
be expected from a G-band DAR with realistically attainable
performance metrics. Basic scaling arguments based on ex-
isting airborne G-band radar technology, as well as output
from the radar simulator, suggest that a radar transmit power
of at least 200 W and antenna diameter of 2 m are necessary
for achieving adequate sampling of all cloud types explored
in this work. Despite a fine range resolution of 50 m, which is
necessary for mitigating non-uniform range-bin-filling biases
from the water vapor retrievals, a radar with these parame-
ters is able to probe well into deep convection, as well as
sensitively detect non-drizzling marine stratocumulus cloud
layers with a thickness of only 200 m. Future investigations
focused on specific instrument architectures and radar wave-
form parameters are necessary to fully assess the impact of
range-bin-to-range-bin correlations introduced by the range
weighting function.

The notional DAR frequency channels are most sensitive
to PBL humidity, with high-value water vapor retrieval prod-
ucts including in-cloud vertical profiles at 200 m resolution,
sub-cloud IWV utilizing the strong surface reflection, and an
upper-tropospheric IWV column between the radar and first
cloud target. Additionally, the system provides a high preci-
sion measurement of total column water vapor when clouds
are absent, which can be performed over land or ocean. As
a general summary of the DAR capabilities for the five dif-
ferent LES cases, we find that in-cloud profiles with 10 %–
20 % relative uncertainty can be retrieved for horizontal reso-
lutions of 100–200 km, depending on the cloud type, and that
upper-tropospheric and sub-cloud IWV measurements with
10 % uncertainty require along-track averaging on the scale

of tens of kilometers. For all retrieval products, we find the
systematic uncertainty to be generally much smaller than the
random error, thanks to the improved spectral fitting routine
that incorporates a third DAR frequency and new fit parame-
ter (Battaglia and Kollias, 2019).

In addition to a detailed retrieval performance assessment,
we have outlined several potential science applications of
DAR observations, including the estimation of near-surface
relative humidity using the sub-cloud IWV column, and in-
ference of in-cloud temperature profiles using the DAR hu-
midity profiles and assumption about the average saturation
state. While much work remains to explore the limits of DAR
for studies like these, the results demonstrate useful signals
in the DAR observations for these applications. Beyond these
examples and the basic utility of high-vertical-resolution wa-
ter vapor information for modeling and assimilation applica-
tions, there are exciting opportunities to exploit DAR obser-
vations for probing the horizontal variability of water vapor
in deep convective cold pools below the cloud anvil. Both
continued simulation studies and instrument deployment on
high-altitude airborne campaigns with in situ validation are
essential for understanding the applicability of DAR obser-
vations to these science questions.

While this study chose the subtropical-to-tropical marine
cloud transition to evaluate the potential capabilities of a
spaceborne DAR, we can speculate as to the expected per-
formance in different cloud regimes. We expect two primary
limitations. First, we expect significant degradation of the
radar sampling due to attenuation in the most heavily pre-
cipitating storms (e.g., mesoscale convective systems, hurri-
canes, and strong midlatitude frontal systems. Second, rel-
ative to the subtropical ocean many land regions will have
insufficient scattered cumulus to acquire significant samples
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to perform vapor retrievals even with a scanning system. On
the other hand, we expect that DAR retrievals will be quite
useful in the midlatitude storm track regions over ocean in re-
gions of post-frontal convection and stratocumulus which are
frequently multi-layered and lightly precipitating, thereby
providing ideal targets. In addition, cloudy polar and high-
latitude scenarios will be particularly well suited to the DAR
technique because of the relatively small amount of attenua-
tion that the radar would experience.

Appendix A: Single-scattering properties

This appendix summarizes the approaches used to model
all relevant single-scattering properties for the radar forward
simulations.

– Atmospheric gases. At millimeter-wave frequencies in
the troposphere, the only relevant beam interaction with
atmospheric gases is absorption by molecular oxygen
and water vapor. We calculate the absorption proper-
ties using the millimeter-wave propagation model from
the Earth Observing System Microwave Limb Sounder,
which includes both line-by-line and continuum absorp-
tion contributions for each species (Read et al., 2004;
Read et al., 2006).

– Liquid hydrometeors. We treat the two LES liquid hy-
drometeor species, cloud and rain, as dielectric spheres
and calculate the single-scattering properties using Mie
scattering theory (Bohren and Huffman, 2004). The di-
electric constant of pure water is calculated using the
parameterization described in Liebe et al. (1991), which
is an updated version of the classic model by Ray
(1972). The particle size distributions (PSDs) for all hy-
drometeor species are parameterized using the modified
gamma distribution,

N(D)=
N0

0(ν)

(
D

Dn

)ν−1 1
Dn
e−D/Dn , (A1)

where N0 is the number concentration with units of
particle number per unit volume, ν is the distribution
shape parameter which can vary with species, and Dn
is a characteristic diameter. Because the LES mod-
els used in this work include both single-moment and
double-moment microphysics schemes, our radar for-
ward simulator features two different parameterizations
for calculating volume scattering quantities by integrat-
ing the single-particle, single-scattering quantities over
a given PSD. For the two-moment schemes, the prog-
nostic species number concentration and mass mix-
ing ratio uniquely determine Dn once ν is prescribed
and therefore permit straightforward calculation of the
PSD-integrated quantities. For models employing one-
moment schemes, however, an additional microphysical

constraint is needed. In this work, all such constraints
take on the form

N0 = x1D
x2
n e
−x3(T−T0), (A2)

where the parameters x1, x2, and x3 have been deter-
mined from studies of comprehensive in situ micro-
physical observations, and T0 = 273.15 K. All particle
species except for cloud have one-moment parameteri-
zations that assume an exponential PSD, or ν = 1. For
the cloud species, we assume a constant N0 that is con-
sistent with observations (Miles et al., 2000) and use the
same shape parameter as for the two-moment scheme.
The shape parameters and parameterization details for
the cloud and rain species are detailed in Table A1.

– Ice hydrometeors. While the majority of convective
regimes studied in this work include liquid-phase parti-
cles only, the case of deep convection necessitates mod-
eling of radar scattering from three species of ice-phase
particles: ice, snow, and graupel. Unlike cloud and rain
droplets, the ice hydrometeors feature non-trivial rela-
tionships between particle mass m and maximum linear
dimension D, so-called mass-dimensional relations:

m(D)= amD
bm . (A3)

The mass-dimensional relation and PSD shape parame-
ters for the two-moment implementation described here
are taken from the Regional Atmospheric Modeling
System (RAMS) two-moment microphysics parameter-
ization (Walko et al., 1995; Meyers et al., 1997; Oue
et al., 2020) and are presented in Table A1. While this
implies that the microphysical parameterizations in the
radar simulator differ from those in the LES models, this
difference should have little impact on the fidelity of the
forward simulated observations, since the LES models
provide only bulk parameters describing the PSD.

Before calculating single-particle scattering quantities,
we must specify details of the three-dimensional shape
and composition of the ice species. For graupel, we
assume a homogeneous spherical geometry with re-
duced density relative to solid ice that is determined
by the mass-dimensional relation, and we calculate ef-
fective dielectric and scattering properties using the
Maxwell Garnet effective medium approximation and
Mie scattering theory, respectively. For the ice and
snow species, we assume particle shapes of hexagonal
columns and dendrites, respectively, and generate dis-
cretized, three-dimensional crystal models using the ap-
proach of Leinonen and Szyrmer (2015). In this case,
the mass-dimensional relations given in Table A1 pro-
vide the necessary constraint to fix the size-dependent
aspect ratios of the columnar and dendritic crystals. We
then calculate the scattering properties for ice and snow
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Table A1. Summary of microphysical parameterizations for liquid- and ice-phase hydrometeors.

Species am bm Particle shape ν ν x1 x2 x3 One-moment
(kg m−bm ) (two-mom.) (one-mom.) (m−3−x2 ) (K−1) reference

Cloud 524 3 Sphere 4 4 7.4× 107 0 0 Miles et al. (2000)
Rain 524 3 Sphere 2 1 26 −0.57 0 Abel and Boutle (2012)
Ice 110.8 2.91 Hex. column 2 1 2.0× 106 1 0.12 Cox (1988)
Snow 2.74× 10−3 1.74 Dendrite∗ 2 1 1.4× 104 1 7.2× 10−2 Wood (2011)
Graupel 157 3 Sphere 2 1 7.9× 109

−3.58 0 Field et al. (2019)
∗ The dendrite growth model uses the Leinonen and Szyrmer (2015) implementation of the algorithm presented in Reiter (2005).

Figure A1. Comparison of DDA, T-matrix, and Mie backscattering cross-section calculations for the two solid-phase hydrometeor species
described in this work. The ice (a) and snow (b) species are treated as hexagonal columns and pristine dendrites for DDA calculations and
as cylinders and oblate spheroids for the T-matrix approach, respectively. For the snow T-matrix calculations, a maximum diameter greater
than 1.5 mm results in a spheroid aspect ratio that is beyond the convergence criteria for the T-matrix routine.

using the discrete dipole approximation (DDA) as im-
plemented in the Amsterdam DDA (ADDA) solver of
Yurkin and Hoekstra (2011). Since we expect the DDA
results to converge to those of the T-matrix method
(Mishchenko et al., 1996) for sufficiently small parti-
cle size, we specify an alternative bulk representation
of the ice and snow species as homogeneous cylinders
and spheroids with effective dielectric properties calcu-
lated again using the Maxwell Garnet approximation,
and with the same size dependence of the aspect ra-
tio as the 3D models. T-matrix calculations are then
performed using the solver of Mishchenko and Travis
(1998) as implemented in the Python package PyTMa-
trix by Leinonen (2014). Once convergence of DDA
to T-matrix is established at some minimum particle
size, the T-matrix values are used for all subsequent
smaller particle sizes. For all ice hydrometeor species,
the frequency-dependent dielectric constant values of
solid ice are taken from Warren and Brandt (2008).

Comparisons of the size-dependent backscattering cross
section calculated using the Mie, T-matrix, and DDA
methods for ice and snow are shown in Fig. A1. We
note that DDA calculations for a particular particle size
are performed for a single orientation that is chosen ran-

domly for each particle realization and therefore do not
correspond to orientation-averaged quantities. Instead,
it is assumed that the integration over the PSD to derive
volume scattering coefficients provides sufficient aver-
aging over particle orientation.

– Ocean surface. Scattering from the ocean surface is
treated within the geometrical optics (GO) approxi-
mation, in which backscatter is dominated by quasi-
specular reflection from normally oriented wave facets
(Kodis, 1966; Barrick, 1968; Valenzuela, 1978). At
nadir incidence within the GO approximation, the ocean
surface normalized radar cross section (NRCS) σ 0 de-
pends only on the mean square slopes of the ocean sur-
face in the upwind and crosswind directions and the
transmit frequency via the seawater dielectric constant.
Here we use the classic parameterization of Cox and
Munk (1954) to express the mean square slopes in terms
of the near-surface wind and the millimeter-wave di-
electric constant model of Meissner and Wentz (2004),
for which we assume a constant salinity of 35 ppt.
Lastly, we apply a fixed offset of +1.5 dB to the GO
prediction for all frequencies and wind speeds in order
to match recent airborne observations of σ 0 at low wind
speeds using the VIPR instrument (Roy et al., 2021).
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Appendix B: Pulse-to-pulse correlations

In this appendix, we recount the derivation of the Doppler
frequency, or equivalently velocity, spectrum and associated
pulse-to-pulse correlations that result from the combined ef-
fects of the finite antenna beam width and fast satellite mo-
tion. Our approach is similar to previous treatments (e.g.,
Tanelli et al., 2002) but with modified notation to elucidate
only the essential points. To begin, we examine the power
spectral density observed by the spaceborne receiver due to
radar backscatter from a stationary, volumetric target at a spe-
cific range r , assuming a transmit frequency of f0:

S(r,f )∝

∞∫
−∞

∞∫
−∞

r+1r/2∫
r−1r/2

dr ′dy′dx′ηobs(f0,r
′)

|F(f0,x
′,y′, r ′)|4δ(f − f0− δfD(y

′, r ′)). (B1)

Here we have again used the relation z′ ≈ R− r ′ due to the
narrow width of the beam and have assumed that the range
weighting function can be approximated by a box of width
1r . Note that satellite-motion-induced Doppler shifts are in-
troduced through the integration over the along-track dis-
tance variable y′ using a delta function in frequency, where
the shift itself is given by

δfD(y
′, r ′)=

2vsat

λ0
sinθ(y′, r ′)

≈
2vsaty

′

λr ′
. (B2)

Next, we assume a Gaussian beam shape with one-way in-
tensity pattern

|F(f0,x
′,y′, r ′)|2 = exp

(
−
x′

2
+ y′

2

r ′2θ2
0 (f0)

)
, (B3)

where θ0 = Cθλ0/Da and Cθ is a constant of order 1 that de-
pends on the specific antenna implementation. Here, we as-
sume a beam withCθ = 0.7. Then, the power spectral density
in Eq. (B1) becomes, up to a constant multiplicative factor,

S(r,f )= S(r,f0)exp

(
−
(f − f0)

2

2σ 2
f

)
, (B4)

where the spectrum width is given by

σf =
vsatθ0

λ0
=
vsatCθ

Da
. (B5)

Equation (B5) reveals the important fact that the spectral
width resulting from differential Doppler shifts in the along-
track dimension for a fixed antenna size Da is indepen-
dent of the radar frequency. To get the corresponding width
of the Doppler velocity spectrum, we use the relationships
δfD = 2v/λ0 and σ 2

v = (∂v/∂δfD)
2σ 2
f to get σv = vsatθ0/2.

With the form of the power spectral density in hand, we
calculate the signal autocorrelation function by invoking the
Wiener–Khinchin theorem:

R(t)=

∞∫
−∞

S(r,f )e2πif tdf

= R(0)e−2π(σ 2
f t

2
−if0t), (B6)

where t is the time lag between two sample sequences, and
the power spectral density and autocorrelation functions in
Eq. (B6) are intended to represent statistical ensemble av-
erages. Finally, recognizing the signal voltage autocorrela-
tion coefficient as ρs(t)= R(t)/R(0), we calculate the power
autocorrelation coefficient according to ρp(t)= |ρs(t)|

2
=

exp(−4πσ 2
f t

2) and obtain an estimate of the number of
statistically independent radar samples Ni from (Papoulis,
1965; Doviak and Zrnić, 1993)

Ni =

Np−1∑
m=−(Np−1)

Np− |m|

N2
p

ρp(mTp), (B7)

where Np is the number of pulses transmitted and Tp is
the pulse repetition interval. Note that the power autocor-
relation coefficient provides a natural timescale for signal
decorrelation, referred to as the time to independence, τi =

(2
√
πσf )

−1. Then, Eq. (2) follows directly from Eq. (B7)
and the definition of ρp(t).

Appendix C: Retrieval humidity profile interpolation
example

In this appendix, we utilize a single-footprint measurement
from the GATE case to clarify details of the interpolation-
based humidity retrieval algorithm detailed in Sect. 2.4.
These ideas are explored in Fig. C1. The essential task of
the grid-selection and interpolation procedure is to take as
an input profiles of observed reflectivity at the three DAR
frequencies and calculate in an algorithmic fashion the re-
sulting measurement axis r = Prr

′ and humidity retrieval
axis z= Pzz

′. To determine the measurement axis, we iden-
tify range-bin locations for which the observed reflectivity at
all three frequencies is above the instrument detection limit
dBZmin(f ) (solid black circles in Fig. C1b and c). Then, we
must decide on the humidity profile vertical spacing, which
we force to be an integer multiple of the radar range reso-
lution. Recall that in Sect. 2.4 we defined this integer as the
range-bin oversampling factor O = 4. Given the set of pos-
sible humidity retrieval positions z′, we identify actual posi-
tions for humidity retrieval (open black circles in Fig. C1b
and c) as those for which there is at least one element of r in
the list [z′−1r,z′,z′+1r,z′+21r]. Note the offset of size
1r of the first humidity position in Fig. C1c from the surface
position. This is due to the fact that the forward model must
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compute absorption for a given level using information from
levels above it, and therefore the lowest level in the humidity
profile is one range bin displaced above the actual surface.

Figure C1. Humidity interpolation procedure for the DAR retrieval, using an example from the GATE case. (a) Vertical profiles of observed
reflectivity at the three DAR frequencies for the y = 100 km position in Fig. 2c. In this case, the surface NRCS (not shown) is above the
sensitivity threshold for all three frequencies. (b) Graphical depiction of the procedure for determining the projected measurement axis
(r = Prr

′ – solid black circles) and humidity retrieval axis (z= Pzz
′ – open black circles), as well as the humidity interpolation functions,

which are the columns of the matrix A (differently colored, partial exponential profiles). (c) Close-up of panel (b) for clarity. (d) Resulting
retrieved humidity profile (uncertainty not shown), including the N retrieved humidity elements of the state vector (x2 – black circles) and
the corresponding interpolated humidity profile Ax2 (blue circles).
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