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Abstract. Quantitative calibration of analytes using chemical
ionization mass spectrometers (CIMSs) has been hindered by
the lack of commercially available standards of atmospheric
oxidation products. To accurately calibrate analytes without
standards, techniques have been recently developed to log-
linearly correlate analyte sensitivity with instrument oper-
ating conditions. However, there is an inherent bias when
applying log-linear calibration relationships that is typically
ignored. In this study, we examine the bias in a log-linear-
based calibration curve based on prior mathematical work.
We quantify the potential bias within the context of a CIMS-
relevant relationship between analyte sensitivity and instru-
ment voltage differentials. Uncertainty in three parameters
has the potential to contribute to the bias, specifically the in-
herent extent to which the nominal relationship can capture
true sensitivity, the slope of the relationship, and the voltage
differential below which maximum sensitivity is achieved.
Using a prior published case study, we estimate an average
bias of 30 %, with 1 order of magnitude for less sensitive
compounds in some circumstances. A parameter-explicit so-
lution is proposed in this work for completely removing the
inherent bias generated in the log-linear calibration relation-
ships. A simplified correction method is also suggested for
cases where a comprehensive bias correction is not possi-
ble due to unknown uncertainties of calibration parameters,
which is shown to eliminate the bias on average but not for
each individual compound.

1 Introduction

The time-of-flight chemical ionization mass spectrometer
(Tof-CIMS) has been widely used for online characterization
of organic compounds in the atmosphere. Gas-phase analytes
are reacted with reagent ions to form analyte ions and then
detected and classified by mass spectrometry. Many reagent
ions have been examined, with some of the most popular be-
ing hydronium (Yuan et al., 2016; Lindinger et al., 1998), ac-
etate (Bertram et al., 2011; Brophy and Farmer, 2016), nitrate
(Jokinen et al., 2012; Krechmer et al., 2015), CF3O (Crounse
et al., 2006; St Clair et al., 2010), and iodide (Lee et al., 2014;
Slusher, 2004). Each reagent ion accesses a different region
of chemical space (Riva et al., 2019; Isaacman-Vanwertz et
al., 2017) and differs in its range of sensitivities, from rela-
tively universal to highly variable. For example, proton trans-
fer reaction is commonly used for measurements of less oxi-
dized compounds with a sensitivity that varies only by a fac-
tor of up to 3 or 4 for most analytes (Sekimoto et al., 2017).
In contrast, iodide is most useful for semivolatile, oxidized
compounds, but sensitivity varies by several orders of mag-
nitude (Iyer et al., 2016; Lopez-Hilfiker et al., 2016).

Unfortunately, these wide ranges in sensitivity pose signif-
icant issues in the quantitative measurement of ambient at-
mospheres. For many atmospheric constituents, it is not pos-
sible or not feasible to calibrate using authentic standards,
due to a lack of commercial availability and/or chemical in-
stability (thermal lability, flammability, etc.) (Brophy, 2016).
Several approaches have consequently been developed to es-
timate the sensitivity of a CIMS instrument to a given analyte
based on either its physicochemical properties (e.g., dipole
moment and polarizability) (Sekimoto et al., 2017) or its ob-
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served response (e.g., induced dissociation) to changing in-
strument conditions (Zaytsev et al., 2019; Lopez-Hilfiker et
al., 2016). Estimating instrument sensitivity based on derived
relationships between sensitivity and other properties inher-
ently carries some uncertainty, as the relationship is unlikely
to be ideal and typically includes some scatters. Neverthe-
less, this approach of “derived sensitivity” is often the best
(or only) tool available for calibration, so a close look is war-
ranted into the implications of this approach for the error of
a single analyte, as well as the combined error of the sum of
many analytes.

Previous work, which we discuss in detail in the follow-
ing section, has examined the uncertainty in estimating a
parameter from a derived relationship (i.e., using a regres-
sion model to predict a value). Specifically, prediction of a
value (e.g., sensitivity) from a linear model introduces no
bias and has normally distributed error, but in more complex
relationships (involving log-transformations, step functions,
etc.), bias and other errors may be introduced. Many of the
derived sensitivity relationships used for CIMS have more
complex forms, so the overarching goal of this work is to
evaluate and correct for biases and other errors in the types
of relationships used for estimating CIMS sensitivities.

We focus in this work on the calibrations of analytes in
an iodide CIMS because (1) this measurement technique is
widely used, (2) it has orders of magnitude variance in sen-
sitivities (Iyer et al., 2016), and (3) estimating its sensitivity
often relies on a complex (log-linear, piece-wise) sensitivity
relationship. Iyer et al. (2016) have shown that the sensitivi-
ties of analytes in an iodide CIMS are log-linearly correlated
with the binding enthalpy of the iodide-analyte adduct, with
some maximum sensitivity that is limited by the rate of colli-
sions between the analyte and the reagent ion. Lopez-Hilfiker
et al. (2016) further suggested that modulating voltage differ-
ences in certain components of the mass spectrometer (i.e.,
between the skimmer of the small-segmented quadrupole and
the entrance of the big-segmented quadrupole) can introduce
de-clustering of the iodide-molecule adduct. The parameter,
dV50, which is the voltage difference where signals of a com-
pound are at half-maximum, is reported to be an indicator
of the binding enthalpy of the adduct (Lopez-Hilfiker et al.,
2016; Iyer et al., 2016). Therefore, the iodide-CIMS sensitiv-
ities can be predicted by dV50 based on a log-linear relation-
ship, up to a plateau of maximum sensitivity at sufficiently
high binding enthalpies.

The objective of this study is to understand the error in the
calibrated mass of an analyte or the sum of multiple analytes
measured by a CIMS. The work here focuses on sensitivi-
ties that are predicted using log-transformed derived relation-
ships as in the case of the iodide-CIMS voltage scan method,
but any calibration approach that relies on mathematically
transformed relationships should be studied in this manner,
and biases should be corrected. We first examine the prob-
lem by comparing simple linear and log-linear models used
to estimate instrument sensitivity, then expand these ideas to

the more complex relationship used in iodide-CIMS voltage
scanning, and finally provide and evaluate corrections to re-
duce or even remove the bias.

2 Prior work on uncertainty analysis

2.1 Linear fits

In some cases, the sensitivity of an instrument can be esti-
mated from a direct linear fit to a property or parameter. For
example, sensitivity of a flame ionization detector is linearly
correlated with oxygen-to-carbon content of an analyte (Hur-
ley et al., 2020). In a linear model such as this, the average
residual of the fit (i.e., the difference between the true sensi-
tivity and the predicted sensitivity) will necessarily be equal
to zero. In other words, there is no difference between aver-
age true and average modeled sensitivity. The sensitivity of
any given analyte might be uncertain, but those uncertainties
are normally distributed around the model, so the potential
overprediction is equal in scale to the potential underpredic-
tion. The average sensitivity measured for each analyte is
therefore unbiased, and the summed mass of multiple ions
is consequently unbiased. Specifically, relative uncertainty,
σsum, in the summed mass or concentration, Csum, of N an-
alytes is the sum of the squares of the relative uncertainty in
each individual analyte, σi , and their individual concentra-
tions, Ci :

σsum =

√∑N
i C

2
i σ

2
i

Csum
. (1)

In cases where relative uncertainty of each analyte is equal
(e.g., “instrument uncertainty is 20 %”), σ1 = σ2 = . . .= σN
and Eq. (1) can be re-written as

σsum =

√∑N
i C

2
i

Csum
σi . (2)

This equation has two extreme conditions. When one com-
pound dominates total mass, Csum is essentially equal to Ci ,
and this equation collapses to

σsum =

√
C2
i

Ci
σi = σi . (3)

In this case, relative uncertainty is equal to that of a single
analyte. At the other extreme condition, when all N analytes
are equal in concentration, this equation collapses to

σsum =

√
NC2

i

NCi
σi =

σi
√
N
. (4)

In most cases, neither a single analyte will dominate summed
mass, nor will all analytes be evenly distributed, so uncertain-
ties in the summed mass of real-world measurements likely
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fall between the extremes of σi/
√
N and σi . From Eqs. (3)

and (4) it is clear then that, when calibration relies on linear
fits, relative uncertainty in summed mass is generally lower
than uncertainty in the mass of an individual analyte. In other
words, as a set of analytes gets larger, their average predicted
sensitivities are increasingly well described by the average
model.

2.2 Log-transformed fits

It is tempting to assume that the conclusions drawn from
linear fits are generalizable: that the sum of many analytes
is less uncertain than any given analyte. However, this con-
clusion has some truth, as well as some limitations, when a
mathematical transformation (e.g., the logarithm) is applied
to data to linearize it. The case we address here is specif-
ically when log(sensitivity), not sensitivity, is correlated to
some other parameter, as in the case of iodide-CIMS voltage
scanning. What we present here is substantively similar to the
treatment by Miller (1984) of the case of linear fits to natural-
log-transformed data, through the lens of its implications for
atmospheric measurements.

A linear fit through log-transformed data can be described
as

log(Y )= α+βX+ ε, (5)

where the log-transformed value of Y is described by two
coefficients (α and β) describing a linear relationship with X
and an error term, ε, describing deviation in the true value
from the fit. In such a fit, the error term is assumed to be
normally distributed in logarithmic terms, meaning it is log-
normally distributed in linear terms (i.e., ε is normally dis-
tributed).

To understand the effect of this error term on a real instru-
ment, we consider a thought experiment presented in Fig. 1,
though the discussion here applies to linear fits through any
log-transformed data. A distribution of points is shown with
a normal distribution of “scatter” around an average linear fit
describing the relationship between log(sensitivity) and the
parameter, dV50, that is an empirical description of the bind-
ing enthalpy of the analyte with the reagent ion. Sensitiv-
ity and dV50 of 100 analytes are back-calculated from a pre-
defined log-linear fit (i.e., slope and intercept of the line) with
a distribution of scatter described by σscatter = 0.4 log units
(i.e., a factor of 2.5, similar to previously estimated uncer-
tainty in an iodide CIMS; Isaacman-Vanwertz et al., 2018).
Consider two analytes of dV50 = 5.0 V (i.e., blue circles in
Fig. 1), which have an equal probability of occurring at one
sigma above or below this fit. Using this log-linear fit, the
sensitivity that would be assigned to both analytes is 100

= 1
(in units of signal per mass, scaled arbitrarily). However, one
analyte has a true sensitivity of 100.4

= 2.5 signal/mass while
the other has a true sensitivity of 10−0.4

= 0.4 signal/mass.
The average sensitivity of these two components is therefore
1.45 signal/mass, 45 % higher than the predicted value. In

Figure 1. Simulated samples between log(sensitivity) and dV50
for an iodide CIMS based on an assumed log-linear relationship
(i.e., slope=−1 log unit/V, maximum sensitivity= 10 dV50 ≥ 6 V).
Nominal relationship is the black line, with simulated sensitivities
for 100 analytes around this relationship as circles. Blue markers
demonstrate bias in the average value as described in the text. The
shading indicates the probability density of sensitivities around the
fitted relationship.

other words, uncertainty in log terms is implicitly “factor”-
based uncertainty as opposed to “percentage”-based uncer-
tainty, and a factor of 2.5 times (i.e., 0.4 log unit) larger is
a higher difference than a factor of 2.5 times smaller. Tak-
ing this example one step further, consider an environment in
which both analytes are present in equal mass, e.g., one mass
unit each is equal to two mass units total. Signal generated
by this instrument from both analytes would equal 0.4+ 2.5
signal units= 2.9 signal units. In turn, the 2.9 signal units
would be interpreted using the predicted sensitivities of 1 sig-
nal/mass, calculating a total mass of 2.9 mass units, 45 %
higher than the true mass of 2 mass units. Summing increas-
ingly large numbers of ions does not remove this bias. In-
stead, a correction must be made to the log-linear model to
account for this difference between true and predicted aver-
age sensitivity.

Correcting this bias requires a proper consideration of the
true average of the error term, ε, in linear terms. The true
value of Y can be calculated as

Y = 10α10βX10ε. (6)

The median of a log-normal distribution is equal to the me-
dian of the log-transformed distribution, so the median value
of Y is correctly represented by this equation. However, as
observed in the example shown in Fig. 1, the mean value
of a log-normal distribution is higher than the mean of the
log-transformed distribution. Specifically, the mean value of
a log-normal distribution with a width of σ and a median of
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Figure 2. Average of bias (percentage) in mass of one or multiple
analytes with and without bias correction.

0, for any logarithm base, B, is

mean of a base-B-log-normal distribution

= e
1
2 (ln(B)σscatter)

2
= B ln(B) 1

2σ
2
scatter . (7)

Both forms of this equation given are equivalent, and for
a natural-log-normal distribution, it collapses to the expected
form of e

1
2σ

2
scatter (Miller, 1984). Equations (6) and (7) can be

combined to yield a full equation for accurately estimating
the mean expected value of Y using a linear fit through base-
10-log-transformed data:

Ŷ = 10α10βX10ln(10) 1
2σ

2
scatter . (8)

Implementation of this error-correction term removes the ex-
pected bias. Figure 2 demonstrates the bias in average mass
in the simple scenario discussed above as a function of the
scatter around a log-linear model. Inherent bias in the sen-
sitivity, and thus measured mass, of ions is reasonable for
small values of σscatter but quickly becomes substantial with
increasing σscatter. Introducing the bias correction term re-
moves bias entirely. The magnitude of this bias is indepen-
dent of assumptions about the relationship shown in Fig. 1,
such as its slope or the range of dV50 across which it is ap-
plied.

3 Method for quantifying error in sums of analytes

Equations (4) and (8) suggest two important conclusions:
(1) summing multiple analytes reduces the uncertainty in the
summed concentration, and (2) analytes and sums of analytes
calibrated using log-transformed relationships are inherently
biased. To explore the combined effects of these two conclu-
sions, we perform a Monte Carlo analysis that simulates the

Figure 3. Probability distribution of percent error in the summed
mass of N analytes based on the Monte Carlo analysis described in
the text. Distributions of 5, 50, and 500 analytes are shown (a) with-
out bias correction and (b) with bias correction using Eq. (8).

real-world application of log-transformed sensitivity models.
N number of simulated analytes are generated with a ran-
domly assigned “true sensitivity” defined by the relationship
shown in Fig. 1 with a Gaussian distribution of error, σ . Each
analyte is assigned a random “true sampled mass” spanning
6 orders of magnitude (i.e., 10−3 to 103 arbitrary mass units).
A simulated signal produced by each analyte is calculated by
multiplying its true sensitivity by its true sampled mass. The
nominal log-linear model is used to estimate a fitted sensi-
tivity for each analyte, which is used to convert the signal to
the fitted mass of an analyte. The summed fitted mass of all
N analytes is compared to the summed true sampled mass
to calculate the error in the fitted mass; 100 000 such simu-
lations of N analytes yield a probability distribution of ex-
pected error.

The combined effects of the two statistical trends implied
by Eqs. (4) and (8) are clear in Fig. 3. As the number of
analytes,N , increases, the sum of the mass converges toward
a tighter distribution of uncertainty (i.e., the sum becomes
less uncertain). However, the mass to which the distribution
converges is inherently biased. In other words, the sum of
five analytes may span a wide range of potential error, but on
average they will be biased high by ∼ 50 %. Increasing the
number of analytes just improves the probability that the sum
is ∼ 50 % too high. The sum of 500 analytes, each with an
uncertainty of a factor of 2.5 has high precision but inherently
biased accuracy.

This approach assumes that true sensitivities are not per-
fectly represented by the nominal relationship (i.e., scatter is
“real”); this is in contrast to the case in which each analyte
is actually truly described by the fit and deviations are due to
measurement uncertainties (i.e., scatter is measurement er-
ror). If the latter is discovered in subsequent literature to be
the case, no bias would truly exist and the work in this paper
would be extraneous. However, we believe the more likely
case is that the scatter is a real consequence of the calibration
approach for two reasons. Firstly, it is unlikely that an empir-
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Figure 4. Nominal (black line) log-linear relationship between sen-
sitivity and dV50 following a typical iodide-CIMS calibration form,
with labels on the four sources of uncertainty described in the text.
Each circle represents one simulated ion generated from the log-
linear relationship determined by Isaacman-Vanwertz et al. (2018)
within a distribution of uncertainty defined by the values listed in
the figure. The dashed line illustrates one possible relationship rep-
resenting 1 standard deviation away from each nominal value. Note
that the use of 1dV50 in Eq. (9) has changed the sign of the slope
compared to when it is plotted against dV50.

ically derived relationship captures with perfect fidelity the
sensitivity of an analyte. Secondly, because an iodide CIMS
classifies analytes by elemental formula with no regard to
molecular structure, the dV50 of each analyte (i.e., ion) is typ-
ically some combination of multiple compounds (Bi et al.,
2021). It therefore inherently represents some composite of
a distribution of analytes and is unlikely to equally represent
all analytes in the mixture. Nevertheless, scatter measured by
a real instrument provides some insight into true scatter; im-
perfect measurements of many compounds scattered around
the nominal relationship would yield the nominal relation-
ship with some uncertainty that represents the true variabil-
ity (at least to some greater or lesser degree). For the pur-
poses of real-world instruments, then, we suggest that it is
reasonable to use observed uncertainty in model parameters
as an estimate of their true variability and will do so through-
out this work. However, we note that the sensitivity of some
compounds predicted by the log-linear relationship between
sensitivity and dV50 may have high uncertainty, likely due to
the empirical nature of the relationship (Bi et al., 2021).

4 Expanding to CIMS-specific parameters

4.1 Sources of uncertainty

So far, this work has treated a fairly simple case: normally
distributed error in log-transformed data. However, in the
case of an iodide-CIMS calibration using voltage scans, this
may not accurately represent the form of uncertainty. The

true relationship between log(sensitivity) and dV50 has sev-
eral parameters, each of which could be uncertain or may
represent a central tendency of an inherently imperfect rela-
tionship. Figure 4 shows the nominal relationship between
sensitivity and dV50 of a form that is typically considered for
an iodide CIMS using voltage scans, as well as an illustra-
tive potential spread of true sensitivities around this relation-
ship. At some dV50, max, the instrument reaches maximum
sensitivity, Smax, and it might be reasonable to expect that
analytes closer to this value adhere more closely to the gen-
eral relationship than compounds that diverge significantly
from maximum sensitivity. In this case, variability in sensi-
tivity may itself be partly (but perhaps only partly) a function
of dV50 (i.e., heteroscedastic). Note that while compounds
near maximum sensitivity are generally well predicted, the
nominal relationship in Fig. 4 assumes that sensitivities of
low-sensitivity analytes may diverge by roughly an order of
magnitude from the general trend.

The relationship shown in Fig. 4 is defined by four critical
parameters that may have some uncertainty or may deviate
from the nominal relationship. The distribution of sensitivi-
ties can be described by some distribution in each of the four
parameters, in the units and forms they have been previously
considered (Isaacman-Vanwertz et al., 2018).

1. σscatter is the scatter in true sensitivity around the nom-
inal relationship (i.e., the extent to which the average
relationship inherently describes the data). Units are log
units of sensitivity.

2. σslope is the variability in the slope of the relationship
between log(sensitivity) and dV50. Units are log units of
sensitivity per volt.

3. σdV50,max is the variability in the inflection point, the
dV50 voltage at which sensitivity reaches its maximum.
The unit is volts.

4. σSmax is the extent to which the nominal maximum sen-
sitivity describes the sensitivity of compounds that are
expected to be maximally sensitive. The unit is percent.

Each deviation from the nominal relationship will lead to
inherent bias as in the simple log-transformed example dis-
cussed above. The exception to this issue is the fourth source
of variability, variability in maximum sensitivity. Because
this parameter is typically known reasonably well, uncer-
tainty is low and best considered as a percentage. Uncertainty
in this parameter is therefore not in log terms and does not
introduce bias (i.e., 10 % lower and 10 % higher are equally
different from the nominal maximum sensitivity).

4.2 Bias correction

To correct for the three potential sources of bias, we intro-
duce Eq. (9) to calculate the expected sensitivity, S, of an
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analyte of a given dV50.

Ŝ =Smax

(
10slope×1dV50

)(
10ln(10) 1

2σ
2
scatter

)
(

10ln(10) 1
2 (1dV50×σslope)

2)
(

10
ln(10) 1

2

(
slope×σdV50,max

)2
)

(9)

A critical term in this calculation is the extent to which the
dV50 of an analyte is below the nominal inflection point
dV50,max, which is defined as going to 0 in the region of maxi-
mum sensitivity,1dV50 =max(dV50,max− dV50, 0). The use
of 1dV50 has changed the sign of the slope compared to
when it is plotted against dV50 (top x axis in Fig. 4). The
slope is defined as change in log(sensitivity) per unit 1dV50
and is therefore necessarily a negative value (i.e., sensitiv-
ity decreases with 1dV50). The first two terms in this equa-
tion (i.e., Smax

(
10slope×1dV50

)
) constitute the nominal rela-

tionship, while the last three terms introduce corrections for
bias due to σscatter, σslope, and σdV50,max, respectively. We note
that the first two terms are identical in form to the sensi-
tivity equation used in previous work (Isaacman-Vanwertz
et al., 2018), except Eq. (9) excludes an additional correc-
tion term (“S0”) that is outside the scope of the present work
but is typically included to account for partial declustering at
1dV50 = 0.

Unlike in the simple case of σscatter, note that bias correc-
tion factors for σslope and σdV50,max are not independent of
parameters in the nominal relationship. Bias caused by σslope
increases with the range of dV50 across which the relation-
ship is applied. Bias caused by σdV50,max increases with the
slope, which makes sense when considered at its extreme –
if there were no decrease in sensitivity with dV50, then the
inflection point is irrelevant. Given these dependencies, the
scope of bias and the efficacy of the bias correction term
must be explored using some approximation of typical CIMS
conditions. For this work we use the calibration parameters
used by Isaacman-Vanwertz et al. (2018): dV50,max = 6.3 V,
slope=−0.9 log units sensitivity per volt, up to a maximum
1dV50 = 2.3 (a minimum effective sensitivity was applied
by Isaacman-Vanwertz et al. (2018), which is irrelevant to
this work). Using these bounding conditions, the bias intro-
duced by the model parameters is shown in Fig. 5, in which
the other sources of variability are held at 0 to isolate the
effect of each parameter. As in Fig. 2, bias quickly increases
with σ for all parameters except σSmax (as expected). The cor-
rection factors introduced in Eq. (9) almost fully remove all
bias.

To examine the combined effect of variability in all four
parameters, we investigate the conditions described for a
real-world iodide CIMS by Isaacman-Vanwertz et al. (2018).
Uncertainty was estimated based on reported values in that
work: σscatter = 0.2 log units, σslope = 0.125 log units per
volt, σdV50,max = 0.125 volts, and σSmax = 85 % (calculated

Figure 5. The influence of σscatter, σslope, σdV50,max, and σSmax
on the average percent bias in analytes calibrated using the typical
iodide–CIMS relationship shown in Fig. 4. Each curve is calculated
empirically using a simulation of N = 106 analytes, with operat-
ing conditions of dV50,max = 6.3 V, slope=−0.9 log units sensitiv-
ity per volt, up to a maximum 1dV50 = 2.3, following Isaacman-
VanWertz et al. (2018). Uncertainty in each parameter not being
investigated is held at 0.

Figure 6. Errors in summed mass of ions with and without bias
corrections in the case study of the CIMS conditions described
by Isaacman-VanWertz et al. (2018), represented by the listed un-
certainties and number of analytes. Probability distributions of er-
rors are shown for calibration without including any bias correction
(red), including the parameter-explicit bias correction described by
Eq. (9) (blue) and including the simplified bias correction described
by Eqs. (10) and (11) (green).

as the approximate standard deviation of their two reported
possible values for Smax). No value for σscatter was actually
reported as no measurements were available to constrain the
inherent scatter in sensitivity, so 0.2 log units is assigned here
as an estimate that produces approximately the same average
uncertainty reported in that work for individual ions (a factor
of ∼ 2.5).
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The example shown in Fig. 6 provides a case study to ex-
amine the importance and the limitations of bias correction.
Without introducing the correction parameters, the sum of
225 analytes (ions measured by iodide CIMS) is expected to
yield a mass roughly 30 % too high, with a range of possi-
ble measurements spanning from negative error to nearly a
factor of 2. As described in Sect. 2.2, this 30 % bias in the
sum is caused by an average 30 % in each individual analyte,
so the bias exists for one analyte as well as for the sum of
analytes. Introducing the correction parameters in Eq. (9) re-
moves this bias and tightens the distribution, but the range of
possible sums is still substantial. In the work upon which this
case study is based, Isaacman-VanWertz et al. (2018) used a
similar Monte Carlo approach to calibrate all ions, explic-
itly considering a distribution of uncertainty in calibration
parameters, so likely avoided introducing bias. Notably, they
estimated that a factor of 3 uncertainty in any given analyte
led to an uncertainty of ∼ 60 % in the sum of the 225 ions
measured, comparable to the width of the distribution shown
in Fig. 6. The approach described here alleviates the need to
perform a full Monte Carlo approach in future work seeking
to calibrate large numbers of ions, instead using Eq. (9) to
remove the bias in average sensitivities.

5 Corrections in real-world applications

To remove bias in CIMS calibration, the correction terms in
Eq. (9) should be included in the calculation of an analyte’s
sensitivity. However, in many real-world cases, the number
of calibrants to establish the log-linear relationship is limited
(e.g., fewer than 10 in Lopez-Hilfiker et al., 2016; Mattila et
al., 2020), so it may not be feasible to separately treat un-
certainty in all four parameters. A simplification of the de-
tailed, parameter-explicit approach here could instead treat
all forms of uncertainty as some average residual between
the nominal and true sensitivities with an effective scatter,
σ eff

scatter. Such an approach would apply only the first correc-
tion term using this average scatter, ignoring the terms de-
pendent on dV50 and slope and implicitly assumes that un-
certainty is homoscedastic. This simplified approach, shown
below in Eq. (10), is mathematically equivalent to the basic
log-transformed case of Eq. (8) and roughly works for low to
moderate σ eff

scatter but loses skill as the slope and the range in
dV50 increase.

Ŝ = Smax

(
10slope×1dV50

)(
10ln(10) 1

2σ
eff
scatter

2
)

(10)

Application of Eq. (10) represents a more feasible approach
to the implementation of bias correction under many real-
world scenarios than the full, parameter-explicit form of
Eq. (9) but requires a careful consideration of the best ap-
proach to estimate σ eff

scatter. In the specific case that σscatter is
the only source of uncertainty (i.e., σslope= σdV50,max = 0),
σ eff

scatter must equal σscatter and error is homoscedastic. Be-

cause σscatter is by definition a description of the error in the
model relationship, it can be estimated as the standard devi-
ation of the residual of the log-linear fit (σresidual), and this
value must represent a reasonable estimate of σ eff

scatter. How-
ever, a non-negligible caveat to this approach is that σSmax

quantitatively impacts the residual of the log-linear fit but
does not introduce bias and thus should not influence the
bias correction term. Consequently, the effect of σSmax needs
to be removed from the residual before using it as an esti-
mate of σ eff

scatter. Fortunately, uncertainty in Smax is often rea-
sonably well constrained based on experimental parameters
(e.g., uncertainty in the calibration of a maximum sensitivity
analyte), so σ eff

scatter can be estimated as

σ eff
scatter =

√
σ 2

residual− σ
2
Smax(log), (11)

where σSmax(log) is the log-equivalent uncertainty in Smax,
which is typically considered in linear terms. For example
in the case of σSmax = 10 % (i.e., a factor of 0.9), the log-
equivalent uncertainty σSmax(log) is log(0.9)× (−1)= 0.045.
This linear-to-log conversion is only meaningful for rela-
tively low uncertainty (/ 50 %), for which σSmax(log) can be
estimated as

σSmax(log) = − log
(
1− σSmax

)
. (12)

For uncertainty in σSmax beyond 50 %, the conversion is pro-
vided as Eq. (S1), but uncertainty is probably sufficiently
high that it should be considered in log terms in any case.
In some cases, σSmax may not be available, so in the Supple-
ment, we examine alternative statistical parameters as σ eff

scatter
but find that Eq. (11) is most effective in eliminating the bias.

As shown in Fig. 6 (green line), the average bias in the cali-
brated mass of analytes can be fully eliminated using the sim-
plified σ eff

scatter bias corrections. However, a significant short-
coming of this simplified approach is its implicit assumption
of homoscedastic error. Some single average correction will
necessarily underestimate the bias in some analytes and over-
estimate the bias in others. Because uncertainty is expected
to increase with decreasing sensitivity, this simplified cor-
rection will lead to a systematic bias toward overcorrecting
high-sensitivity analytes and undercorrecting low-sensitivity
analytes. This issue is demonstrated in Fig. 7, in which the
simplified bias correction (green line) represents some av-
erage representation of the true bias correction (blue). The
effect of this issue is strongly dependent on the relative im-
portance of each source of error. Limitations of the simpli-
fied approach are more severe in cases where heteroscedas-
tic errors (e.g., σslope) are significant (Fig. S5). Not enough
data are yet available in the literature to determine the rel-
ative importance of uncertainties in each parameter, so the
potential downsides of the simplified approach are not yet
well constrained. Therefore, parameter-explicit bias correc-
tion should be implemented in cases where all four parame-
ters can be reasonably estimated, but a simplified approach
remains reasonable.
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Table 1. Step-by-step guidance to apply the simplified bias correction method.

Step 1 : Fit the log-transformed sensitivities with obtained dV50 using a linear relationship.

Step 2 : Calculate σresidual, the standard deviation of the residuals of the fit, log(Smeasured,i) – log(Sfitted,i ).

Step 3: Calculate σSmax(log)
∗: σSmax(log) = − log

(
1− σSmax

)
.

Step 4 : Calculate σ eff
scatter using obtained σresidual and σSmax(log) σ

eff
scatter =

√
σ 2

residual− σ
2
Smax(log).

Step 5 : Calculate bias-corrected sensitivity by adding a correction term, 10ln(10) 1
2σ

eff
scatter

2
, to the nominal fit:

Ŝ = Smax
(

10slope×1dV50
)(

10ln(10) 1
2σ

eff
scatter

2
)

.

∗ Equation (S1) should be used to calculate σSmax(log) when σSmax>50 %.

Figure 7. The nominal (black line), parameter-explicit bias-
corrected (blue line), and σ eff

scatter bias-corrected (green line) log-
linear relationship between sensitivity and dV50. Each pink circle
represents one simulated ion generated from the log-linear relation-
ship determined by Isaacman-Vanwertz et al. (2018) with uncertain-
ties replaced with those listed in the figure.

An additional value of σ eff
scatter is that it can be considered an

indicator of magnitude of the potential bias in retrospective
analyses of past datasets. In two previous studies implement-
ing the voltage scan calibration, we found that the calculated
σ eff

scatter can be as low as 0.012 (Mattila et al., 2020), or as high
as 0.29 (Lopez-Hilfiker et al., 2016; Iyer et al., 2016). Based
on the log-linear fit and the calculated σ eff

scatter in the two previ-
ous studies, the average bias in the summed mass of 100 sim-
ulated ions would be approximately 2 % and 28 % in Mattila
et al. (2020) and Lopez-Hilfiker et al. (2016), respectively, if
sensitivities were determined by voltage scanning. However,
these two extremes represent voltage scanning of two differ-
ent instrument voltage regions and are calculated using a lim-
ited number of calibrants. The potential range of the σ eff

scatter
therefore remains unclear, and future work is needed to ex-
amine this approach in real-world applications, and the real
potential for bias in voltage scanning approaches. Further-

more, the number of calibrants in a voltage scan calibration is
often limited due to the lack of commercially available stan-
dards covering the entire sensitivity range, so σresidual (and
thus σ eff

scatter) may not adequately capture the true scatter of
residuals.

Uncertainty of instrumental measurements is frequently
reported in the literature, which is typically a measure of
the combined instrument precision and accuracy. In con-
trast, bias represents a systematic error in the accuracy and is
distinct from these reported uncertainties. It is theoretically
worth comparing the relative magnitude of the two types of
errors, as a small bias would likely be negligible in the case
of large uncertainty. However, this is difficult as bias may
vary significantly depending on the uncertainties of the log-
linear fit, with examples shown in Fig. S5 ranging from 8 %
to 300 % bias in summed mass of analytes. Recent work by
Bi et al. (2021) found uncertainties of a factor of 3–10 for
individual ions and ∼ 30 % for the sum of many ions us-
ing the voltage scanning method. This summed uncertainty is
comparable in scale to the bias determined for the data from
Isaacman-VanWertz et al. (2018), indicating bias is likely
non-negligible. For individual ions, the importance of bias
correction depends strongly on the dV50 of the compound and
the scale of the bias correction, though a parameter-explicit
bias correction always increases accuracy.

6 Conclusions

In this work, we examine uncertainty in the case where in-
strument sensitivity is itself a function of some parameter,
with a focus on uncertainty in the summation of multiple
analytes. We show that when sensitivity is a linear function
of a parameter, the sum of multiple analytes necessarily has
lower relative uncertainty than any given analyte. However,
when an iodide CIMS is calibrated by the voltage scanning
method utilizing the linear relationship between log trans-
formation of sensitivity and a parameter, an inherent bias is
introduced into the sensitivity of analytes. While summing
multiple analytes increases the precision of the sum, the bias
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can only be eliminated by specifically introducing correction
terms to the relationship. Although the discussions of this
work mainly focus on iodide CIMS, we believe that this cor-
rection can be applied to other CIMSs or more broadly other
atmospheric measurement instruments using log-linear cali-
bration relationships.

The correction terms introduced in this work for both the
general case of log-transformed relationships and the special
case of an iodide CIMS (i.e., Eq. 9), fully remove this bias.
We propose that these correction terms should be introduced
into any such calibration schemes in future work in order to
minimize bias and reduce uncertainty in the literature. Given
that real-world calibration scenarios are complex and conse-
quently not all parameters have known uncertainties, we sug-
gest that, at least, a term to correct for the average observed
scatter around the nominal relationship, i.e., Eq. (10), should
be incorporated in calibrations to remove a major portion of
the bias. For the convenience of method users, we summarize
correction procedures as a step-by-step guidance to apply the
simplified bias correction method in Table 1.

However, we do recommend that this simplified approach
be used cautiously to avoid overcorrections of sensitivity for
more sensitive analytes and undercorrections for less sen-
sitive ones. While data are limited on the uncertainty in
each calibration parameter and the relative merits of simpli-
fied vs. parameter-explicit correction, bias-corrected results
are expected to be more accurate than uncorrected values,
and some form of bias correction should be introduced into
instrument calibrations relying on log-transformed calibra-
tions.
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