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Abstract. In this study, image data features and machine
learning methods were used to calculate 24 h continuous
cloud cover from image data obtained by a camera-based
imager on the ground. The image data features were the
time (Julian day and hour), solar zenith angle, and statisti-
cal characteristics of the red–blue ratio, blue–red difference,
and luminance. These features were determined from the
red, green, and blue brightness of images subjected to a pre-
processing process involving masking removal and distortion
correction. The collected image data were divided into train-
ing, validation, and test sets and were used to optimize and
evaluate the accuracy of each machine learning method. The
cloud cover calculated by each machine learning method was
verified with human-eye observation data from a manned ob-
servatory. Supervised machine learning models suitable for
nowcasting, namely, support vector regression, random for-
est, gradient boosting machine, k-nearest neighbor, artificial
neural network, and multiple linear regression methods, were
employed and their results were compared. The best learning
results were obtained by the support vector regression model,
which had an accuracy, recall, and precision of 0.94, 0.70,
and 0.76, respectively. Further, bias, root mean square error,
and correlation coefficient values of 0.04 tenths, 1.45 tenths,
and 0.93, respectively, were obtained for the cloud cover cal-
culated using the test set. When the difference between the
calculated and observed cloud cover was allowed to range
between 0, 1, and 2 tenths, high agreements of approximately
42 %, 79 %, and 91 %, respectively, were obtained. The pro-
posed system involving a ground-based imager and machine
learning methods is expected to be suitable for application as
an automated system to replace human-eye observations.

1 Introduction

In countries, including South Korea, that have not introduced
automated systems, ground-based cloud cover observation
has been performed using the human eye, in accordance with
the normalized synoptic observation rule of the World Me-
teorological Organization (WMO), and recorded in tenths
or oktas (Kim et al., 2016; Yun and Whang, 2018). How-
ever, human-eye observation of cloud cover lacks consis-
tency and depends on the observer conditions and the obser-
vation term (Mantelli Neto et al., 2010; Yang et al., 2016).
Further, although continuous cloud cover observation dur-
ing both day and night is important, there is a lack of data
continuity (observations with at least 1 h intervals) because
a person must perform direct observations (Kim and Cha,
2020). In addition, construction of a dense cloud observation
network from observation environments with low accessibil-
ity, such as mountaintops, is difficult. Therefore, meteorolog-
ical satellites and ground-based remote observation equip-
ment that can continuously monitor clouds while overcoming
these problems are now being employed (Yabuki et al., 2014;
Yang et al., 2015; Kim et al., 2016; Kim and Cha, 2020).

Geostationary satellites can observe clouds on the global
scale at intervals of several minutes; however, their spatial
resolution is as large as several kilometers (Kim et al., 2018;
Lee et al., 2018). Polar satellites have spatial resolutions of
several hundred meters, i.e., high resolution; however, they
can observe the same area only once or twice per day (Kim
and Lee, 2019; Kim et al., 2020a). For both geostationary
and polar satellites, geometric distortion problems occur dur-
ing cloud cover estimation on the ground, depending on the
cloud height (Mantelli Neto et al., 2010). As cloud heights
and thicknesses vary, the cloud detection uncertainty also
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varies depending on the position of the sun or satellite (Ghon-
ima et al., 2012). In general, cloud cover estimation using
satellite data differs from the approach used for human-eye
observation data, because the wide grid data around the cen-
tral grid are averaged or calculated as fractions (Alonso-
Montesinos, 2020; Sunil et al., 2021).

Radar, lidar, ceilometers, and camera-based imagers can
be used as ground-based observation instruments (Boers et
al., 2010). With regard to radar, cloud radar technology such
as Ka-band radar is suitable for cloud detection but has the
disadvantage of reduced detection accuracy with increased
distance from the radar apparatus (Kim et al., 2020b; Yoshida
et al., 2021). For lidar and ceilometers, the uncertainty is very
large because the cloud cover is calculated from the signal
intensity of a narrow portion of the sky (Costa-Surós et al.,
2014; Peng et al., 2015; Kim and Cha, 2020). In contrast,
for a camera-based imager, the sky in the surrounding hemi-
sphere can be observed through a fisheye lens (180◦ field
of view – FOV) mounted on the camera. Further, depending
on the performance of the imager and the operation method,
clouds can be observed continuously for 24 h, i.e., through
the day and night. The data can be stored as images, and the
cloud cover can be calculated from these data (Kim and Cha,
2020; Sunil et al., 2021).

Many studies have attempted to use camera-based imagers
for automatic cloud observation and cloud cover calculation
on the ground (Dev et al., 2016; Lothon et al., 2019; Shields
et al., 2019). Those results can be used for numerical weather
analysis and forecasting; they are also very economical and
ideal for cloud monitoring over local areas (Mantelli Neto
et al., 2010; Kazantzidis et al., 2012; Ye et al., 2017; Valen-
tín et al., 2019). In general, cloud cover can be calculated
based on the brightness of the red, green, and blue (RGB)
colors of the image taken by the imager. In detail, the RGB
brightness varies according to the light scattering from the
sky and clouds, and, using the ratio or difference between
these colors, cloud can be detected and cloud cover can be
calculated (Long et al., 2006; Shields et al., 2013; Liu et al.,
2014; Yang et al., 2015; Kim et al., 2016). For example, when
the red–blue ratio (RBR) is 0.6 or more or the red–blue differ-
ence (RBD) is less than 30, the corresponding pixel is clas-
sified (i.e., using a threshold method) as a cloud pixel and
incorporated in the cloud cover calculation (Kreuter et al.,
2009; Heinle et al., 2010; Liu et al., 2014; Azhar et al., 2021).
However, using these empirical methods, it is difficult to dis-
tinguish between the sky and clouds under various weather
conditions (Yang et al., 2015). This is because the colors of
the sky and clouds vary with the atmospheric conditions and
because the sun position and threshold conditions can change
continuously (Yabuki et al., 2014; Blazek and Pata, 2015; Ca-
zorla et al., 2015; Calbó et al., 2017). Therefore, methods of
cloud detection and cloud cover calculation involving appli-
cation of machine learning methods to images are now being
implemented, as an alternative to empirical methods (Peng et

al., 2015; Lothon et al., 2019; Al-lahham et al., 2020; Shi et
al., 2021).

Cloud cover can be calculated from camera-based im-
ager data using a supervised machine learning method ca-
pable of regression analysis (Al-lahham et al., 2020). Su-
pervised learning is a method through which a prediction
model is constructed using training data which already con-
tain the labeled data. Examples include support vector ma-
chines (SVMs), decision trees (DTs), gradient boosting ma-
chines (GBMs), and artificial neural networks (ANNs) (Çınar
et al., 2020; Shin et al., 2020). Deep learning methods that
repeatedly learn data features by sub-sampling image data at
each convolution step for gradient descent are also available,
such as convolutional neural networks (Dev et al., 2019; Shi
et al., 2019; Xie et al., 2020). However, this approach is dif-
ficult to utilize for nowcasting because considerable physical
resources and time are consumed by the learning and predic-
tion processes (Al Banna et al., 2020; Kim et al., 2021).

In this study, cloud cover was calculated continuously for
24 h from image data obtained by a camera-based imager on
the ground, using image data features and machine learning
methods. ANN, GBM, k-nearest neighbor (kNN), multiple
linear regression (MLR), support vector regression (SVR),
and random forest (RF) methods suitable for nowcasting
were used for calculation. For each of these methods, an
optimal prediction model is constructed by setting hyper-
parameters. The machine learning model most suitable for
cloud cover calculation is then selected by comparing the
prediction performance of each model on training and vali-
dation datasets. The cloud cover calculated from the selected
machine learning model is then compared with human-eye
observation data and the results are analyzed. The remainder
of this paper is organized as follows. The image and observa-
tion data used in this study are described in Sect. 2, and the
machine learning methods and their sets are summarized in
Sect. 3. The prediction performance evaluation for each ma-
chine learning method and the calculation result verification
are reported in Sect. 4. Finally, the summary and conclusion
are given in Sect. 5.

2 Research data and methods

2.1 Ground-based imager

In this study, a digital camera-based automatic cloud obser-
vation system (ACOS) was developed using a Canon EOS
6D camera to detect and calculate cloud cover for 24 h, as
shown in Fig. 1. This system was developed by the Na-
tional Institute of Meteorological Sciences (NIMS)/Korea
Meteorological Administration (KMA) and A & D · 3D Co.,
Ltd. (Kim and Cha, 2020). The ACOS was installed at the
Daejeon Regional Office of Meteorology (DROM; 36.37◦ N,
127.37◦ E), a manned observatory in which cloud cover ob-
servation by human eye is performed. The detailed ACOS
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Figure 1. ACOS appearance (a) and installation environment (b)
(Kim and Cha, 2020).

Table 1. Detailed ACOS specifications.

Function Description

Size 264 mm (L)× 264 mm (W )× 250 mm (H ), 6.5 kg
Pixels 2432× 2432
Focal length 8 mm, 180◦ fisheye lens
Sensor CMOS
Aperture F8 (day)–F11 (night)
Shutter speeds 1/1000 s (day)–5 s (night)
ISO 100 (day)–25 600 (night)
Observation periods 24 h operation, 10 min interval observation
Additional settings 24 h automatic heating (below −2◦) and ventilation

specifications are listed in Table 1. The International Orga-
nization for Standardization (ISO) values of the complemen-
tary metal oxide semiconductor (CMOS) sensor employed
in the camera are 100 (day)–25 600 (night), and the sensi-
tivity is adjusted according to the image brightness. In this
study, the camera shutter speed was set to 1/1000 s (day)–
5 s (night), considering the long exposure for object detec-
tion required at night. The F-stop value was set to F8 (day)–
F11 (night), and the sky-dome object was taken with a large
depth of field (Peng et al., 2015; Dev et al., 2017). The cam-
era lens was installed at a height of 1.8 m, similar to human-
eye height, and a fisheye lens (EF 8–15 mm F/4L fisheye
USM) was installed to capture the entire surroundings, in-
cluding the sky and clouds, within a 180◦ FOV. To perform
24 h continuous observation, heating (below−2 ◦C) and ven-
tilation devices were installed inside the ACOS body to facil-
itate image acquisition without manned management (Dev et
al., 2015; Kim and Cha, 2020).

2.2 Cloud cover calculation and validation

The image data captured by ACOS were processed by con-
verting each RGB channel of each image pixel to a bright-
ness of 0–255. Although the camera-lens FOV was 180◦,
only pixel data within the zenith angle of 80◦ (FOV 160◦)
were used. This condition was in consideration of the perma-
nent masking area of the horizontal plane due to surround-

ing objects (buildings, trees, equipment, etc.) (Kazantzidis
et al., 2012; Shields et al., 2019; Kim and Cha, 2020).
For cloud cover calculation using the ACOS images, im-
age data taken at 1 h intervals from 1 January to 31 De-
cember 2019 were used. The cloud cover was calculated
using the statistical characteristics of the RGB brightness
ratio (i.e., the red–blue ratio – RBR), difference (i.e., the
blue–red difference – BRD), and luminance (Y ), which vary
for each image (Sect. 2.3), as well as supervised machine
learning methods (Sect. 3). Here, Y was calculated as Y =
0.2126R+0.7152G+0.0722B (Sazzad et al., 2013; Shimoji
et al., 2016). The calculated cloud cover was compared with
human-eye observation data from DROM. As the cloud cover
was calculated as a percentage between 0 % and 100 %, the
result was converted to an integer (tenth) between 0 and 10
(Table 2) for comparison with the human-eye-based cloud
cover values. As the ACOS was installed at DROM, there
were no location differences between observers; thus, the
same clouds were captured (Kim and Cha, 2020). At DROM,
night observations were performed at 1 h intervals during in-
clement weather (rainfall, snowfall, etc.), but otherwise at
3 h intervals. The night period varied with the season. Con-
sidering this, a total of 7402 images of concurrent human
observations were collected, excluding missing cases, from
the ACOS.

The entire collected dataset was randomly sampled with-
out replacement. Overall, 50 % (3701 cases) of the total data
elements were configured as a training set, 30 % (2221 cases)
as a validation set, and 20 % (1480 cases) as a test set (Xiong
et al., 2020). The training set was used to train the machine
learning algorithms, and the prediction performance of each
machine learning method was assessed using the validation
set. Optimal hyper-parameters were set for each machine
learning method through the training and validation sets. The
results of each machine learning method were compared. In
this process, the test set was input to the machine learning
model that exhibited the best prediction performance, and the
calculated results and human-eye observation data were com-
pared. The accuracy, recall, precision, bias, root mean square
error (RMSE), and correlation coefficient (R) were analyzed
according to Eqs. (1)–(6); hence, the prediction performance
of each machine learning method was determined and com-
pared based on the human-eye observation data.

Accuracy=
TP+TN

TP+TN+FP+FN
(1)

Recall=
TP

TP+FN
(2)

Precision=
TP

TP+FP
(3)

Bias=
∑
(M −O)

N
(4)
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Table 2. ACOS cloud cover (%) to DROM human-eye-observed cloud cover (tenths) conversion table.

% ≤ 5 5–15 15–25 25–35 35–45 45–55 55–65 65–75 75–85 85–95 < 95

Tenth 0 1 2 3 4 5 6 7 8 9 10

RMSE=

√∑
(M −O)2

N
(5)

R =

∑(
M −M

)(
O −O

)√∑(
M −M

)2√∑(
O −O

)2 (6)

Here, TP, TN, FP, and FN are the number of true positives
(reference: yes, prediction: yes), true negatives (reference:
yes, prediction: no), false positives (reference: no, predic-
tion: yes), and false negatives (reference: no, prediction: no),
respectively. Further,M ,O, andN are the cloud cover calcu-
lated by the employed machine learning method, the human-
eye-observed cloud cover, and the number of data, respec-
tively.

2.3 Machine learning input data

The data input to the machine learning algorithms for cloud
cover calculation using the ACOS images were produced as
follows. First, as the ACOS image was taken with a fisheye
lens, the image was distorted. That is, objects at the edge
were smaller than those at the center of the image (Chauvin
et al., 2015; Yang et al., 2015; Lothon et al., 2019). There-
fore, the relative size of each object in the image was adjusted
through orthogonal projection distortion correction accord-
ing to the method expressed in Eqs. (7)–(11) (Kim and Cha,
2020).

r =

√
(x− cx)2+ (y− cy)2, (7)

θ = asin(r/radi), (8)
φ = asin((y− cy)/r), (9)
x′ = cx+ r × θ × cos(φ), (10)
y′ = cy+ r × θ × sin(φ), (11)

where r is the distance between the center pixel (cx, cy) of
the original image and each pixel (x, y), θ is the solar zenith
angle (SZA), “radi” is the image radius (distance between
center and edge pixel of circular images), φ is the azimuth,
and x′ and y′ are the coordinates of each pixel after distortion
correction.

Second, surrounding masks such as buildings, trees, and
equipment, as well as light sources such as the sun, moon,
and stars, were removed from the image (building, tree, and
equipment: masking was performed when the mean RGB
brightness was less than 60 in the daytime on a clear day;
light source: masking was performed when the mean RGB
brightness exceeded 240). These objects directly mask the

sky and clouds or make it difficult to distinguish them; there-
fore, they must be removed when calculating cloud cover
(Yabuki et al., 2014; Kim et al., 2016; Kim and Cha, 2020).
Third, the RBR, BRD, and Y frequency distributions were
calculated using the RGB brightness of each pixel of im-
age data subjected to pre-processing (i.e., masking removal
and distortion correction). The class interval sizes of the
RBR, BRD, and Y frequency distributions were set to 0.02,
2, and 2, respectively, and classes with frequencies of less
than 100 were ignored. Statistical characteristics of the mean,
mode, frequency of mode, kurtosis, skewness, and quantile
(Q0–Q4: 0 %, 25 %, 50 %, 75 %, and 100 %) data obtained
for each frequency distribution were used as input for each
machine learning method. As input data for machine learn-
ing, time information (Julian day and hour) allowed differ-
entiating seasons and day and night. Further, SZA should be
considered because the colors of the sky and clouds change
according to the position of the sun (Blazek and Pata, 2015;
Cazorla et al., 2015; Azhar et al., 2021). As these image data
features have different appearances under different condi-
tions (cloud cover, day, night, etc.), they constitute an impor-
tant variable in machine learning regression for cloud cover
calculation (Heinle et al., 2010; Li et al., 2011).

Figure 2 shows distortion-corrected images for day and
night cloud-free, overcast, and partly cloudy cases and the
RBR, BRD, and Y relative frequency distributions. The fre-
quency distributions were expressed as percentages over ap-
proximately 310 000 px excluding the masked area. Human-
eye observations at DROM yielded cloud-free (Fig. 2a
and g), overcast (Fig. 2b and h), and partly cloudy (Fig. 2c
and i) case values of 0, 10, and 5 tenths, respectively. As for
the RBR frequency distribution during the day, larger RBR
distributions were observed for the overcast than cloud-free
case, and bimodal distributions including both (i.e., over-
cast and cloud-free) distributions were obtained for the partly
cloudy case. The variance was large in the partly cloudy case.
With regard to the BRD frequency distribution, the blue-
channel brightness increased with Rayleigh scattering, such
that the cloud-free case with many sky pixels had larger BRD
distribution than the overcast case (Ghonima et al., 2012;
Kim et al., 2016). In contrast, the Y frequency distribution
was relatively large for the overcast case, which involved
many cloud pixels. Although the RBR frequency distribu-
tions at night and day were similar, the RBR was larger at
night because the red-channel brightness increased under the
influence of Mie scattering (Kyba et al., 2012; Kim and Cha,
2020). A negative BRD distribution was obtained from the
cloud pixels. At night, there is no light source such as the sun.

Atmos. Meas. Tech., 14, 6695–6710, 2021 https://doi.org/10.5194/amt-14-6695-2021



B.-Y. Kim et al.: 24 h cloud cover calculation using a ground-based imager with machine learning 6699

Figure 2. Distortion-corrected images and RBR (d, j), BRD (e, k), and Y (f, l) relative frequency distributions for cloud-free (0 tenths),
overcast (10 tenths), and partly cloudy (5 tenths) cases at day and night. The daytime cloud-free (a), overcast (b), and partly cloudy (c) data
were obtained at 14:00 LST on 8 March, 12:00 LST on 15 July, and 15:00 LST on 28 September 2019. Cloud-free (g), overcast (h), and
partly cloudy (i) nighttime data were obtained at 03:00 LST on 24 January, 20:00 LST on 18 February, and 22:00 LST on 30 April 2019.
The green and red areas are masked to remove surrounding masks (i.e., buildings, trees, and equipment) and light sources (i.e., the sun and
moon), respectively.
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Therefore, in this study, RGB brightness close to black (0, 0,
0) was distributed in the cloud-free case, yielding small Y .
As the images obtained through ACOS had different RBR,
BRD, and Y frequency distribution classes and shapes for
each case, it was necessary to train these data features (i.e.,
the mean, mode, frequency of mode, kurtosis, skewness, and
quantile of each frequency distribution) on a machine learn-
ing model to calculate the cloud cover.

3 Machine learning methods

Depending on the machine learning method, even if the ac-
curacy, recall, precision, and R of the trained model are
high and the bias and RMSE are small, overfitting prob-
lems may occur when data other than training data are used
for prediction; these problems can yield low prediction per-
formance (Ying, 2019). Therefore, in this study, optimal
hyper-parameters were set by iteratively changing the hyper-
parameter for each machine learning method using the train-
ing and validation sets (Bergstra and Bengio, 2012). The
optimal hyper-parameter was determined based on the ac-
curacy, recall, precision, bias, RMSE, and R, which were
prediction performance indicators for each iteration. The de-
tails and hyper-parameter settings of each supervised ma-
chine learning method used in this study are described in
Sect. 3.1 to 3.6. The prediction results of each machine learn-
ing method are compared in Sect. 4.1.

3.1 Multiple linear regression (MLR)

The method in which the relationship of the dependent vari-
able to the independent variable is regressed by considering
one independent variable only is called simple linear regres-
sion, and the method in which the change in the dependent
variable is predicted based on the changes in two or more
independent variables is called MLR. An MLR model with
k independent variables predicts the dependent variable as
shown in Eq. (12), using the least squares method which min-
imizes the predictor variable and the sum of squared errors
(Fig. 3a) (Olive, 2017). In this study, we used the R “glm”
package (Geyer, 2003).

Yi = β0+β1X1i +β2X2i + ·· · +βkXki , i = 1,2, · · ·, N, (12)

where βk are the population coefficients (i.e., parameters),
and Xki is the kth predictor of the ith observation (a value
that describes the variable Yi to be predicted). In this study,
the independent variables were the RGB, BRD, and Y mean,
mode, frequency of mode, skewness, kurtosis, quantile, as
well as the Julian day, hour, and SZA. The dependent variable
was the cloud cover observed by human eyes.

3.2 k-nearest neighbor (kNN)

The kNN method involves non-parametric, instance-based
learning and is one of the simplest predictive models in
machine learning. The kNN algorithm finds the k-nearest
neighbors to the query in the data feature space, as shown
in Fig. 3b, and then predicts the query with distance-based
weights (S. Zhang et al., 2018). That is, a set of indepen-
dent variables is constructed as a cluster, and values corre-
sponding to each neighbor are weighted according to the Eu-
clidean distance and predicted (Martínez et al., 2019). In this
study, the R “class” package (Ripley and Venables, 2021a)
was used, and the hyper-parameter setting was k = 15.

3.3 Support vector regression (SVR)

SVR is an extended method that can be used for regres-
sion analysis by introducing an ε-insensitive loss function
to an SVM. As shown in Fig. 3c, a hyperplane consisting
of support vectors that can classify the maximum margin
for the distance between vectors is found (Gani et al., 2010;
Taghizadeh-Mehrjardi et al., 2017). The optimal hyperplane
is obtained by finding w and b that minimize the mapping
function (8(w)), as shown in Eq. (13) (Meyer, 2001). The
constraints are shown in Eq. (14). Then, as in Eq. (15), the
kernel is applied and mapped to a higher dimension. Here,
ε determines the threshold of margin, ξ is a slack variable to
allow error, and C is the allowable cost that can violate the
constraint of Eq. (14). In this study, the R “e1071” package
(Meyer et al., 2021) was used, the SVR kernel was set as a ra-
dial basis function (RBF), and the hyper-parameters were set
to epsilon (ε)= 0.12, gamma (γ )= 0.04, and cost (C)= 5.

8(w)=min
1
2
‖w‖2+C

n∑
i=1

(
ξi + ξ

∗

i

)
, (13)(

wT xi + b
)
− yi ≤ ε+ ξi,

yi −
(
wT xi + b

)
− yi ≤ ε+ ξ

∗

i ,

ξi,ξ
∗

i ≥ 0, (14)

K
(
xi,xj

)
= exp

(
−γ

(
xi − xj

)2)
, (15)

where subscript i and j are ith and j th data point, respec-
tively, and γ is a parameter that controls the RBF kernel
width.

3.4 Artificial neural network (ANN)

An ANN is a mathematical model that mimics a neuron; i.e.,
the signal transmission system of a biological neural net-
work. As shown in Fig. 3d, this model consists of an input
layer that receives input data, an output layer that outputs
prediction results, and an invisible hidden layer between the
two layers (Rosa et al., 2020). The hidden node of the hidden
layer acts like a neuron in a neural network and is composed
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Figure 3. Schematic of each machine learning method: MLR (a), kNN (b), SVR (c), ANN (d), RF (e), and GBM (f).

of weight, bias, and an activation function. In this study, we
used the R “nnet” package (Ripley and Venables, 2021b),
which is based on feed-forward neural networks with a sin-
gle hidden layer that can rapidly learn and predict while con-
sidering nowcasting. The hyper-parameters of this package
were set as follows: size (number of hidden nodes)= 7, maxit
(maximum number of iterations)= 700, and decay (weight
decay parameter)= 0.05.

3.5 Random forest (RF)

The RF method composes N decision trees by combining
randomly selected variables from each node to grow a re-
gression tree, as shown in Fig. 3e. An ensemble of the results
of each decision tree is obtained, and hence a prediction re-
sult is provided (Wright and Ziegler, 2017). That is, in the

RF ensemble learning method, every individual tree of the
decision tree contributes to the final prediction (Shin et al.,
2020; Kim et al., 2021). In this study, the R “Ranger” pack-
age (Wright et al., 2020) was used, and the hyper-parameters
were set to num.trees (the number of trees)= 510, mtry (the
number of variables randomly sampled from each node)= 7,
and min.node.size (minimal node size)= 5.

3.6 Gradient boosting machine (GBM)

The GBM uses boosting instead of bagging during resam-
pling and ensemble processes. As shown in Fig. 3f, a model
with improved predictive power is created by gradually im-
proving upon the parts that the previous model could not
predict while sequentially generating weak models. The fi-
nal prediction is calculated from the weighted mean of these
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Table 3. Prediction performance for all cloud cover of machine learning methods using training and validation sets.

Model Set Accuracy Recall Precision Bias RMSE R

SVR
Training 0.94 0.70 0.76 0.07 1.05 0.96
Validation 0.88 0.41 0.51 0.06 1.51 0.93

RF
Training 0.93 0.67 0.76 0.02 0.71 0.98
Validation 0.86 0.35 0.53 −0.03 1.55 0.92

GBM
Training 0.89 0.47 0.59 −0.00 1.03 0.97
Validation 0.86 0.36 0.50 −0.06 1.58 0.92

kNN
Training 0.88 0.41 0.57 0.15 1.41 0.94
Validation 0.87 0.37 0.51 0.12 1.78 0.90

ANN
Training 0.86 0.33 0.49 0.03 1.69 0.91
Validation 0.85 0.31 0.46 0.01 1.92 0.88

MLR
Training 0.84 0.27 0.46 −0.02 1.90 0.88
Validation 0.84 0.27 0.46 −0.02 1.94 0.87

results (Friedman, 2001). In other words, gradient boost-
ing updates the weights iteratively to minimize the differ-
ence from the function f (x) that predicts the actual observa-
tion using gradient descent (Ridgeway, 2020). In this study,
the R “gbm” package (Greenwell et al., 2020) was used;
the GBM kernel was set to a Gaussian distribution func-
tion; and the hyper-parameters were set to n.trees (number
of trees)= 500, interaction.depth (maximum depth of binary
tree)= 5, and shrinkage (learning rate)= 0.1.

4 Results

4.1 Training and validation results of machine learning
methods

Figure 4 shows the cloud cover prediction results obtained
using the training set for each machine learning method. The
hyper-parameters were optimized using the training and val-
idation sets. Each box in the figure denotes the ratio (%)
of the number of observations for each cloud cover in the
DROM and the number of predictions for each cloud cover
in the SVR model. The higher the frequency in the diagonal
one-to-one boxes, the better the agreement between the ob-
served and predicted cloud cover. In other words, the closer
the diagonal one-to-one boxes are to red (i.e., 100 %), the
higher is the agreement. For the training set, the highest
human-eye observation data frequency by cloud cover was
26.80 % at 0 tenths; this was followed by 19.97 % at 10 tenths
and 3.65 %–11.92 % at 1–9 tenths. For the SVR model, the
0- and 10-tenth frequencies were 71.88 % and 92.15 %, re-
spectively, with the agreement being greatest among the ma-
chine learning models. As detailed in Table 3, the SVR ac-
curacy, recall, and precision for all cloud cover were 0.94,
0.70, and 0.76, respectively, indicating the best prediction
performance. The accuracy was in the range of 0.91–0.98 for

each cloud cover, whereas recall and precision were in the
ranges of 0.42–0.92 and 0.24–0.99, exhibiting low predictive
power in the partly cloudy case. The bias was 0.07 tenths,
the RMSE was 1.05 tenths, and R was 0.96. In the case of
the RF model, the 0- and 10-tenth frequencies were 61.79 %
and 80.65 %, respectively, being lower than those of the SVR
model; however, the prediction for 1–9 tenths exhibited high
agreement to within ±1 tenth. The accuracy, recall, and pre-
cision were 0.93, 0.67, and 0.76, respectively, which is lower
than SVR model, but the bias and RMSE were the smallest
at 0.02 and 0.71 tenths, respectively, and the R value was
the highest at 0.98. However, for the validation set, the SVR
model prediction performance (accuracy: 0.88, recall: 0.41,
precision: 0.51, bias: 0.06 tenths, RMSE: 1.51 tenths, and
R: 0.93) was better than that of the RF model. In other words,
the RF model exhibited a tendency to overfit in this study.
The accuracy of these results exceeds that of the classifica-
tion machine learning method (0.60–0.85) presented by Dev
et al. (2016) using day and night image data, and it is higher
than or similar to the accuracy (0.91–0.94) achieved using
the regression and deep learning machine learning methods
proposed by Shi et al. (2019, 2021) for day and night im-
age data. Apart from the SVR and RF methods, the machine
learning methods exhibited similar frequency distributions;
however, the accuracy, recall, precision, and R were lower
and the RMSE values were higher in the order of GBM,
kNN, ANN, and MLR. In particular, the MLR model had
very poor predictive power (accuracy: 0.75, recall: 0.08, and
precision: 0.78) for 0 tenths using the training set.

The relative importance of the input variable of the SVR
method, which exhibited the best predictive performance in
this study, is shown in Fig. 5. BRDQ4 had the highest rela-
tive importance at 8.54 %, whereas RBRmode had the low-
est importance at 0.55 %. Among the RBR data features,
RBRQ0 had the highest importance at 7.06 %, and, among the
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Figure 4. Scatter plots of observed cloud cover and that predicted by machine learning methods – SVR (a), RF (b), GBM (c), kNN (d),
ANN (e), and MLR (f) – on the training set. The number of observations for each observed cloud cover are 0: 992, 1: 136, 2: 141, 3: 156,
4: 149, 5: 135, 6: 221, 7: 271, 8: 320, 9: 441, and 10: 739.

Y data features, YQ0 had the highest importance at 3.78 %. In
terms of the cumulative relative importance, the BRD-, RBR-
and Y -related data features contributed 38.25 %, 31.44 %,
and 26.20 % of the total (100 %), respectively, to the cloud
cover prediction, and the remaining data features contributed
4.10 %. The relationship between input data features is com-
plex to determine the optimal hyperplane of the SVR model,
and the variable importance is determined so that the cloud
cover can be calculated with the smallest error using the ob-
served cloud cover (Singh et al., 2020). Even if the BRD-
related data features have the same RBR characteristics, they
contribute to machine learning more comprehensively by
day, night, and cloud presence depending on the BRD value;

therefore, they are critical to cloud cover calculation. By
contrast, the Y -related data feature is sensitive to the RGB
brightness (especially the G brightness) in the image, but
the difference in the Y characteristics according to the cloud
cover during the day was not large; thus, their importance
was relatively low. Although time information and SZA can
provide information such as daytime, nighttime, and sun-
set/sunrise images, they have the lowest importance because
they do not have statistical characteristics that can be used
to directly calculate cloud cover. The importance of these
data features may vary depending on the camera’s sensor
(Kazantzidis et al., 2012).
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Figure 5. Variable relative importance of the SVR model on training
set.

4.2 Test set results for SVR model

Figure 6 shows the total cases and seasonal scatter plots of
the DROM cloud cover and the ACOS cloud cover prediction
calculated from the SVR model using the test set. In the Ko-
rean Peninsula, the winter cloud cover is sparse (< 5 tenths)
as the weather is generally clear because of the Siberian air
mass. In summer, the rainy season is concentrated under the
influence of the Yangtze River and Pacific air masses, and
the cloud cover is dense (> 5 tenths) until fall because of
typhoons (Kim and Lee, 2018; Kim et al., 2020a). Further-
more, the Korean Peninsula experiences a westerly wind, cu-
mulus heat generated in the western sea moves inland, and
the cloud cover changes rapidly and continuously (Kim et
al., 2021). The cloud cover distributions calculated for all test
set cases exhibited good agreement with the observed cloud
cover, with accuracy, recall, and precision of 0.88, 0.42, and
0.52, respectively. Further, the bias, RMSE, and R were 0.04
tenths, 1.45 tenths, and 0.93, respectively. In fall, the bias,
RMSE, and R were −0.12 tenths, 1.30 tenths, and 0.95,
respectively, indicating that the difference between the ob-

served and calculated cloud cover was small. In winter and
summer, the RMSE was larger and R was lower than in the
other seasons. This is because the cloud cover calculation er-
ror is large at sunrise and sunset (100◦≥SZA> 80◦), i.e.,
where daytime (SZA≤ 80◦) and nighttime (SZA> 100◦) in-
tersect (Lalonde et al., 2010; Alonso et al., 2014; Kim and
Cha, 2020).

For the test set daytime cases, the bias, RMSE, and
R were 0.10 tenths, 1.20 tenths, and 0.95, respectively, and
0.08 tenths, 1.59 tenths, and 0.93, respectively, for the night
data. However, for sunrise and sunset, these values were
−0.22 tenths, 1.71 tenths, and 0.90, respectively. Relatively,
the bias and RMSE were large and R was low. In spring and
autumn, sunrise and sunset images were learned at similar
times (sunrise: 06:00–07:00 LST, sunset: 18:00–19:00 LST);
however, differences between the winter (sunrise: 07:00–
08:00 LST, sunset: 17:00–18:00 LST) and summer (sunrise:
05:00–06:00 LST, sunset: 19:00–20:00 LST) results are ap-
parent because sunrise and sunset occurred late or early and
exhibited different features from the data features learned
for those times (Liu et al., 2014; Li et al., 2019). That is,
owing to the sunrise/sunset glow, high cloud cover calcu-
lation errors are obtained at sunrise/sunset, when it is dif-
ficult to distinguish between the sky and clouds because of
the reddish sky on a clear day and the bluish cloud on a
cloudy day (Kim et al., 2021). Therefore, for the test set,
the bias, RMSE, and R for sunrise and sunset in spring and
autumn were −0.24 tenths, 1.46 tenths, and 0.93, respec-
tively. However, in winter and summer, the bias, RMSE, and
R were −0.21 tenths, 1.93 tenths, and 0.86, respectively.
Nevertheless, the results of this study surpass those of Kim et
al. (2016) for daytime (08:00–17:00 LST; bias:−0.36 tenths,
RMSE: 2.12 tenths, R: 0.87) and Kim and Cha (2020)
for nighttime (19:00–06:00 LST; bias: −0.28 tenths, RMSE:
1.78 tenths, R: 0.91) cases. Shields et al. (2019) employed
different day and night cloud cover calculation algorithms.
In that approach, cloud cover calculation errors may occur at
sunrise and sunset. Therefore, if a day and night continuous
cloud cover calculation algorithm is considered, the calcu-
lation error for this discontinuous time period should be re-
duced (Huo and Lu, 2009; Li et al., 2019). Figure 7 shows
the daily mean cloud cover results based on the observed
and calculated cloud cover for the test set. For the observed
and calculated cloud cover, a bias of 0.03 tenths, RMSE of
0.92 tenths, and R of 0.96 were obtained. The coefficient of
determination (R2) was 0.92, and the result calculated from
the SVR model constructed in this study explained approxi-
mately 92 % of the observed data in the test set.

Figure 8 shows the frequency distribution of the differ-
ences between ACOS and DROM by season and time. In
this frequency distribution, the higher the 0-tenth frequency,
the higher the agreement between the observed and calcu-
lated cloud cover. The highest 0-tenth frequency was ob-
tained in winter (46.05 %) and the lowest in spring (35.58 %),
but 41.69 % agreement was obtained for all seasons. Con-
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Figure 6. Scatter plots of total (a) and seasonal (b–e) cloud cover based on observed (DROM) and calculated (ACOS) cloud cover for the
test set. Parentheses values are the number of observations for each cloud cover in DROM.

Figure 7. Daily mean time series of observed (DROM) and calcu-
lated (ACOS) cloud cover for the test set.

ditioned on the time of day, high agreement of approxi-
mately 44 % was obtained for both daytime and nighttime,
but the lowest agreement (30.49 %) was obtained for sun-
rise and sunset. Previous studies obtained a difference of
approximately 2 tenths from the observed cloud cover for
the cloud cover calculated based on the ground-based im-
ager data (Kazantzidis et al., 2012; Kim et al., 2016; Kim
and Cha, 2020; Wang et al., 2021). When a difference of
up to 2 tenths was allowed between the observed and cal-
culated cloud cover, the agreement was 90.95 %, as detailed
in Table 4. When a difference up to 1 tenth between both
cloud cover results was allowed for all cases, the agreement
was 79.05 %. When the difference was within 2 tenths, high
agreement of 86.59 % to 94.41 % by season and by time
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Figure 8. Relative frequency distributions of differences between observed (DROM) and calculated (ACOS) cloud cover by season and time
for the test set.

was obtained. These results reveal greater agreement than
those obtained by Cazorla et al. (2008), Kreuter et al. (2009),
Kazantzidis et al. (2012), Kim et al. (2016), Krinitskiy and
Sinitsyn (2016), Fa et al. (2019), Kim and Cha (2020), Xie
et al. (2020), and Wang et al. (2021). In those works, 80 %–
94 % agreement was achieved when the allowed difference
between the observed and calculated cloud cover was 2 ok-
tas (2.5 tenths) or 2 tenths for day, night, and day and night
cases.

5 Conclusions

In this study, data features of images captured using ACOS,
a camera-based imager on the ground, were used in conjunc-
tion with machine learning methods to continuously calcu-
late cloud cover for 24 h, at day and night. The data features
of the images used as the machine learning input data were
the mean, mode, frequency of mode, skewness, kurtosis, and
quantile (Q0–Q4) of the RBR, BRD, and Y frequency dis-
tributions, respectively, along with the Julian day, hour, and
SZA. The RBR, BRD, and Y data features were calculated
through pre-processing using the methods described by Kim
and Cha (2020) (masking removal and distortion correction).
These features indicate the sky and cloud colors depending
on the light scattering characteristics in the day and night,
along with the presence or absence of clouds and the posi-
tion of the sun (Heinle et al., 2010; Blazek and Pata, 2015;
Li et al., 2019). The collected image data (100 %) were com-
posed of training (50 %), validation (30 %), and test (20 %)
sets and were used for optimization of the models produced
by the machine learning methods, comparative analysis of
the prediction results of each machine learning method, and
verification of the predicted cloud cover. In this study, the
SVR, RF, GBM, kNN, ANN, and MLR supervised machine
learning methods were used. Among these methods, the SVR
model exhibited the best prediction performance, with accu-
racy, recall, and precision of 0.94, 0.70, and 0.76, respec-
tively. The cloud cover calculation results produced by the
SVR on the test set had a bias of 0.04 tenths, RMSE of

1.45 tenths, and R of 0.93. With respect to this calculation
result, when a difference of 2 tenths from the observed cloud
cover was allowed, the agreement was 41.69 %, 79.05 %, and
90.95 % for 0-, 1-, and 2-tenth difference, respectively.

Using the image data features and machine learning meth-
ods (best: SVR, worst: MLR) considered in this study, high-
accuracy cloud cover calculation can be expected; further,
this approach is suitable for nowcasting. The cloud informa-
tion obtained from such cloud detection and cloud cover cal-
culation makes it possible to calculate the physical properties
of various clouds (Wang et al., 2016; Román et al., 2017; Ye
et al., 2017; J. Zhang et al., 2018). In other words, it is pos-
sible to calculate cloud-based height and cloud motion vec-
tor through the geometric and kinematic analysis of contin-
uous images using single or multiple cameras (Nguyen and
Kleissl, 2014), which can be used for cloud type classifica-
tion according to cloud cover, cloud-based height, and cloud
color feature (Heinle et al., 2010; Ghonima et al., 2012).
Ground-based observation of clouds using a camera-based
imager, accompanied by cloud characteristic calculation, is
an economical method that can replace manned observations
at synoptic observatories with automated (unmanned) obser-
vations. In addition, objective and low-uncertainty cloud ob-
servation is expected to be possible through widespread dis-
tribution of instruments such as those used in this study to
unmanned as well as manned observatories. Therefore, active
research and development of imager-based cloud observation
instruments is merited.
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