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Abstract. Laser optics have long been used in pollen count-
ing systems. To clarify the limitations and potential new ap-
plications of laser optics for automatic pollen counting and
discrimination, we determined the light scattering patterns of
various pollen types, tracked temporal changes in these dis-
tributions, and introduced a new theory for automatic pollen
discrimination. Our experimental results indicate that differ-
ent pollen types often have different light scattering charac-
teristics, as previous research has suggested. Our results also
show that light scattering distributions did not undergo sig-
nificant temporal changes. Further, we show that the concen-
tration of two different types of pollen could be estimated
separately from the total number of pollen grains by fit-
ting the light scattering data to a probability density curve.
These findings should help realize a fast and simple auto-
matic pollen monitoring system.

1 Introduction

Pollen counting is a time-consuming and labor-intensive task
that requires professional skills. However, recent techno-
logical developments have made automatic pollen sampling
and identification possible (Buters et al., 2018), for exam-
ple, with recognition systems using microscopic images of
pollen grains (Boucher et al., 2002; Ranzato et al., 2007;
Oteros et al., 2015), pollen color patterns from pollen im-
ages (Landsmeer et al., 2009), fluorescence emission signals
(Swanson and Huffman 2018; Mitsumoto et al., 2009; Mit-
sumoto et al., 2010; Richardson et al., 2019), light scattering

(Crouzy et al., 2016; Šaulienė et al., 2019), holographic im-
ages (Sauvageat et al., 2020), size and morphological char-
acteristics (O’Connor et al., 2013), real-time PCR (Longhi et
al., 2009), texture and infrared patterns of microscopic im-
ages of pollen (Marcos et al., 2015; Gottardini et al., 2007;
Chen et al., 2006), or a combination of several of these. Many
studies applied machine learning algorithms to the problem
(Punyasena et al., 2012; Tcheng et al., 2016; Crouzy et al.,
2016; Gonçalves et al., 2016; Gallardo-Caballero et al., 2019;
Šaulienė et al., 2019). These automated pollen identification
methods have been applied not only to aerobiological re-
search but also to palynological studies for the identification
of fossilized pollen (France et al., 2000; Kaya et al., 2014; Li
et al., 2004; Zhang et al., 2004; Rodríguez-Daminán et al.,
2006).

Analysis using light scattering patterns has a particular fo-
cus, with several methods being developed for establishing
an automatic aerosol or bioaerosol counting system (Huff-
man et al., 2016). For example, polarization signals can be
used to discriminate Cryptomeria japonica from polystyrene
spherical particles (Iwai, 2013). Studies applying machine
learning algorithms have shown that light scattering pat-
terns can be used for automatic classification and counting
of multiple pollen taxa simultaneously (Crouzy et al., 2016;
Sauliene et al., 2019). Other studies have applied statisti-
cal techniques to compare the light scattering data and num-
ber of multiple taxa pollen grains (Kawashima et al., 2007,
2017; Matsuda and Kawashima, 2018). Surbek et al. (2011)
also studied the discrimination method for hazel, birch, wil-
low, ragweed, and pine pollen showing that they have distinct
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Figure 1. Schematic drawing of device set-up. Laser irradiates
pollen particles inside the KH-3000-01.

characteristics in the backward and sideward light scattering
patterns.

In the present study, light scattering patterns from vari-
ous pollen taxa are investigated with a KH-3000-01 to verify
whether they have different light scattering patterns. A novel
method, the automated multi-taxa pollen counting estimation
system (AME system), is also proposed to discriminate be-
tween two taxa with similar scattering patterns.

2 Materials and methods

A protection cylinder (radius= 5 cm, height= 30 cm) was at-
tached to the sampling tube of a KH-3000-01 laser-optics-
based automatic pollen counter (Yamatronics, Japan). The
KH-3000-01 is a widely used automatic pollen counting sys-
tem (e.g. Wang et al., 2014; Takahashi et al., 2001; Miki
et al., 2017, 2019; Kawashima et al., 2007, 2017; Matsuda
and Kawashima 2018). A laser irradiates particles that pass
through the sampling system and the forward and side scat-
tering signals from each particle are recorded. In this study
pollen grains from known taxa were injected through an in-
jection tube in the wall of the protection cylinder and sam-
pled in the KH-3000-01 (Fig. 1). The side and forward scat-
tering intensities were evaluated by converting the light in-
tensity into a voltage. The relationship between the light in-
tensity and the physical properties, which are the size and
roughness of the particle surface of sampled particle, was an-
alyzed (Matsuda and Kawashima, 2018).

2.1 Temporal changes in light scattering patterns

Alnus pollen grains were directly sampled from catkins on
a tree growing at the Swiss Federal Office of Meteorology
and Climatology on a sunny morning on 28 February 2019.
Light scattering measurements were taken using the fresh
pollen grains soon after they were collected. The remain-
ing pollen grains were stored in tubes, and scattering patterns
were reevaluated after storing them for 1 h, 2 h, 6 h, and 10 d.
Multiple comparisons using the Bonferroni method were per-
formed on the side and forward scattering data to assess

whether the light scattering distributions showed changes
after storage. Bonferroni method is a multiple comparison
method used for non-parametric data sets. In order to carry
out the multiple comparisons, 316 scattering data of each
taxa were picked up because the Bonferroni method requires
the same amount of data of each taxa, and 316 scattering
data were the smallest amount of data amongst each time
step (10 d).

2.2 Light scattering patterns of different pollen taxa

Dried pollen grains from Alnus, Ambrosia, Artemisia, Betula,
Castanea, Cedrus, Corylus, Fagus, Fraxinus, Helianthus,
Olea, Phleum, Quercus, Taxus, and Zea were sampled in
a similar way. These taxa are representative of the pollen
types commonly observed in Europe. After collecting the
light scattering distributions of each pollen type, multiple
comparisons using the Bonferroni method were performed to
evaluate whether these distributions differ significantly from
each other. In order to carry out the multiple comparisons,
210 scattering data of each taxa were picked up based on the
smallest amount of data amongst the taxon (Helianthus).

2.3 Automatic discrimination theory

To carry out simple and fast automatic pollen discrimination
in an AME system, the number of pollen grains of each type
from the total number of pollen grains was calculated as fol-
lows.

For two different types of pollen (A and B) in the side
scattering intensity range a–b and in the forward scattering
intensity range c–d , the following equation holds:

b∫
a

PAside(x)dx = pAside ,

b∫
a

PBside(x)dx = pBside ,

d∫
c

PAfront(x)dx = pAfront ,

d∫
c

PBfront(x)dx = pBfront , (1)

where P is the representative probability density function of
the scattering intensity. p is the representative probability of
the scattering intensity of each pollen grain lying in the inte-
gration intervals.

Next, the scattering intensity distribution that gives the
number of pollen grains at each scattering intensity was fit-
ted to a distribution function. In this experiment, the normal
distribution was fitted to the number of pollen grains at every

Atmos. Meas. Tech., 14, 685–693, 2021 https://doi.org/10.5194/amt-14-685-2021



K. Miki and S. Kawashima: Estimation of multi-taxa pollen counts from light scattering intensity 687

Figure 2. Light scattering distribution data from Alnus and
Artemisia used for the estimation test.

100 mV step. The Gaussian function is written as follows:

f(x) =
α
√

2π
exp

{
−
(x−µ)2

2σ 2

}
+ c, (2)

where α and c are coefficients, µ is the mean, and σ is the
standard deviation.

Fitting the data to the normal distribution function enables
one to calculate the probability of a pollen grain showing a
certain light scattering intensity. The probability density of
the normal distribution function (P ) is written as follows:

P(x) =
1

√
2πσ 2

exp

{
−
(x−µ)2

2σ 2

}
. (3)

Fitting was performed by nonlinear optimization. The nor-
mal distribution was chosen so that we can handle the light
scattering plots using a known function.

Equation (1) gives

C1pAsideNA+C2pBsideNB = nside a–b,

C3pAfrontNA+C4pBfrontNB = nfront c–d ,

NA+NB =Ntotal. (4)

Figure 3. Light scattering plots for Alnus pollen – fresh and after
1 h, 2 h, 6 h, and 10 d storage.

Here, N is the number of sampled pollen grains of each
pollen type, which are the values to be calculated. Ntotal is
the total number of sampled pollen grains and n is the total
number of sampled pollen grains in the integration interval,
which are known numbers. C is the correction factor defined
by the following equation:

C =

∫
+∞

−∞
P(x)dx∫ 4500

0 P(x)dx

=
1∫ 4500

0 P(x)dx
. (5)

C is needed for renormalization of the probability distribu-
tion because the device KH-3000-01 is able to detect the scat-
tering intensity only in the range of 0–4500 mV.

By solving two equations in Eq. (4), NA and NB will be
theoretically estimated.

In this paper, Alnus and Artemisia were chosen as ex-
amples to evaluate the usability of the theory above. Be-
cause fitting worked well in the range of 600–800 mV for the
side scattering and 300–500 mV for the forward scattering,
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Figure 4. Light scattering distribution of various pollen taxa.
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Figure 5. A fitted curve for side scattering for (a) Alnus and (b) Artemisia and a fitted curve for forward scattering for (c) Alnus and
(d) Artemisia.

a = 600, b = 800, c = 300, and d = 500 were substituted in
Eq. (4). The evaluation tests were carried out 5 times using
the light scattering data for both Alnus and Artemisia (Fig. 2).

The magnitude of the estimation error is calculated as fol-
lows.

error(%)=
|actual− estimation|

actual
× 100 (6)

3 Results

3.1 Temporal changes in light scattering pattern

The scattering distribution of Alnus pollen (Fig. 3) showed
no significant temporal changes in scattering distributions in
10 d (Table 1).

3.2 Light scattering distributions of different pollen
taxa

Pollen grains with smaller sizes tend to show smaller voltage
values (Fig. 4). The results of the multiple comparisons (Ta-
ble 2) indicated that there is always a significant difference
between side and forward scattering between two different
pollen types except between the following:

Table 1. Multiple comparisons between each time step (Alnus).

Side

1 h 2 h 6 h 10 d

Fresh 1.00 0.38 1.00 1.00
1 h – 1.00 1.00 1.00
2 h – – 0.71 1.00
6 h – – – 1.00

Forward

1 h 2 h 6 h 10 d

Fresh 1.00 1.00 1.00 1.00
1 h – 1.00 0.84 1.00
2 h – – 1.00 1.00
6 h – – – 0.31

– Side scattering: Alnus–Ambrosia, Alnus–Corylus,
Alnus–Olea, Ambrosia–Fraxinus, Betula–Phleum,
Betula–Quercus, Corylus–Olea, Fagus–Zea,
Artemisia–Fraxinus, Helianthus–Zea, Phleum–
Quercus;
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– Forward scattering: Alnus–Corylus, Alnus–Quercus,
Ambrosia–Artemisia, Ambrosia–Fraxinus, Artemisia–
Fraxinus, Betula–Phleum, Betula–Quercus, Castanea–
Olea, Cedrus–Helianthus, Corylus–Quercus, Fagus–
Helianthus, Fagus–Zea, Phleum–Quercus.

3.3 Automatic counting

Counting the number of pollen grains of each type can be
carried out by solving the two equations from Eq. (4), side
(nside a–b) and forward (nfront c–d), side (nside a–b) and total
(Ntotal), and forward (nfront c–d) and total (Ntotal). The pa-
rameters of the probability density curve of the side and the
forward (Fig. 5) light scattering distributions of Alnus and
Artemisia were estimated as follows:

– PAlnusside : (α,µ,σ,c)= (434,555,224,14.7),

– PArtemisiaside : (α,µ,σ,c)= (589,419,193,10.3),

– PAlnusfront : (α,µ,σ,c)= (600,349,160,16.3),

– PArtemisiafront : (α,µ,σ,c)= (1029,203,107,13.0).

The results (Fig. 6) show that the estimated number of pollen
grains had average errors of 47 %, 34 %, and 39 % for Alnus
and 31 %, 19 %, and 21 % for Artemisia (Table 3).

4 Discussion

Temporal changes in the shapes of pollen grains are expected
to affect the changes in light scattering patterns. However,
our experimental data indicate that light scattering patterns
show little to no changes over time (up to at least 10 d). Thus,
there should be no problem using pollen grains that are either
fresh or have been stored for several days for studies with
the KH-3000-01. Further investigation is required to under-
stand whether this is true for species other than Alnus and
for longer periods of time. Understanding the morphological
stability of each pollen type would be helpful to understand
the temporal stability of light scattering patterns.

Light scattering data from various pollen taxa indicate that
it is not possible to discriminate between the side scatter-
ing patterns of Alnus vs. Ambrosia, Alnus vs. Corylus, Al-
nus vs. Olea, Ambrosia vs. Fraxinus, Betula vs. Phleum, Be-
tula vs. Quercus, Corylus vs. Olea, Fagus vs. Zea, Artemisia
vs. Fraxinus, Helianthus vs. Zea, and Phleum vs. Quercus
and the forward scattering patterns between Alnus vs. Cory-
lus, Alnus vs. Quercus, Ambrosia vs. Artemisia, Ambrosia
vs. Fraxinus, Artemisia vs. Fraxinus, Betula vs. Phleum, Be-
tula vs. Quercus, Castanea vs. Olea, Cedrus vs. Helianthus,
Corylus vs. Quercus, Fagus vs. Helianthus, Fagus vs. Zea,
and Phleum vs. Quercus, all of which show similar scatter-
ing intensities. Although it is not clear if the classification
theory introduced above is applicable to these groups, the

Figure 6. Results of automatic counting of Alnus and Artemisia.
Red and black dots represent actual and estimated numbers of
pollen grains, respectively. The pairs of red and black dots with the
same shape are in the same test set.

theory should be applicable to other pairs as long as they
have different scattering intensity distributions.

The estimation of the pollen counts of Alnus and Artemisia
had average errors of approximately 40 % and 23 %, respec-
tively. Test 4 had the largest error, with approximately 134 %
for Alnus and approximately 44 % for Artemisia, which in-
creased the average error. It is difficult to identify an ob-
vious reason for these large values, but it is possible that
the pollen samples were contaminated by dust or that pollen
grains picked up for this experiment were biased in size or
shape. Additionally, other estimations derived from the fit-
ted curve of the forward and the side scattering distributions
showed that even when the pollen counts are estimated only
from scattering intensity data without using the total num-
ber of pollen grains, which is a known number, the pollen
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Table 2. Multiple comparisons between each pollen taxon.

Side

Ambrosia Artemisia Betula Castanea Cedrus Corylus Fagus Fraxinus Helianthus Olea Phleum Quercus Zea

Alnus 0.34 * * * * 1.00 * * * 1.00 * * *
Ambrosia – * * * * * * 0.08 * * * * *
Artemisia – – * * * * * 0.06 * * * * *
Betula – – – * * * * * * * 0.06 1.00 *
Castanea – – – – * * * * * * * * *
Cedrus – – – – – * * * * * * * *
Corylus – – – – – – * * * 0.49 * * *
Fagus – – – – – – – * * * * * 0.59
Fraxinus – – – – – – – – * * * * *
Helianthus – – – – – – – – – * * * 1.00
Olea – – – – – – – – – – * * *
Phleum – – – – – – – – – – – 1.00 *
Quercus – – – – – – – – – – – – *

Forward

Ambrosia Artemisia Betula Castanea Cedrus Corylus Fagus Fraxinus Helianthus Olea Phleum Quercus Zea

Alnus * * * * * 1.00 * * * * * 1.00 *
Ambrosia – 0.95 * * * * * 1.00 * * * * *
Artemisia – – * * * * * 1.00 * * * * *
Betula – – – * * * * * * * 1.00 1.00 *
Castanea – – – – * * * * * 1.00 * * *
Cedrus – – – – – * * * 1.00 * * * *
Corylus – – – – – – * * * * * 1.00 *
Fagus – – – – – – – * 0.14 * * * 1.00
Fraxinus – – – – – – – – * * * * *
Helianthus – – – – – – – – – * * * *
Olea – – – – – – – – – – * * *
Phleum – – – – – – – – – – – 0.10 *
Quercus – – – – – – – – – – – – *

∗ p < 0.05.

Table 3. Results of the estimation of the number of pollen grains of Alnus and Artemisia and the errors of each estimation.

Test 1 Test 2 Test 3

Alnus (error) Artemisia (error) Alnus (error) Artemisia (error) Alnus (error) Artemisia (error)

Estimation Side and forward 1183 (17 %) 881 (6.8 %) 2367 (0.17 %) 612 (3.2 %) 1855 (1.8 %) 1552 (5.4 %)
Total and side 1310 (30 %) 642 (32 %) 2386 (0.63 %) 577 (2.7 %) 1984 (8.8 %) 1310 (11 %)
Total and forward 1259 (25 %) 694 (27 %) 2378 (0.30 %) 585 (1.4 %) 1932(6.0 %) 1362 (7.5 %)

Actual 1008 945 2371 593 1823 1472

Test 4 Test 5

Alnus (error) Artemisia (error) Alnus (error) Artemisia (error)

Estimation Side and forward 1753 (157 %) 968 (58 %) 3469 (57 %) 489 (81 %)
Total and side 1458 (114 %) 1520 (34 %) 2567 (16 %) 2179 (14 %)
Total and forward 1577 (132 %) 1402 (39 %) 2929 (33 %) 1817 (29 %)

Actual 681 2297 2205 2542

counts are able to be calculated accurately. The KH-3000-01
has been widely used to estimate airborne concentrations of
Cryptomeria japonica. In this study, we found average errors
of 20 %–40 % for Alnus and Artemisia, values which are also

likely applicable to other taxa such as Cryptomeria japonica.
Other taxa should, however, be investigated in future.

Pollen counts can be estimated by solving Eq. (4), which
contains three equations, meaning that it is possible to make
estimates for three different pollen taxa simultaneously. If
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more integration intervals were picked up from the proba-
bility density curve of the scattering intensity and added to
the equation, in theory it would be possible to count more
pollen taxa. It is possible, however, that the accuracy of the
estimated values might decline due to the accuracy of the
fitted curve. Therefore, narrowing down a target to two or
three pollen types considering the season should be helpful
to make accurate automatic counts of several pollen taxa si-
multaneously.

In this study, the normal distribution function was chosen
for fitting because of its universal property. However, further
consideration is required to determine the best function for
fitting actual light scattering characteristics.

5 Conclusion

By applying the statistical analysis method, the Bonferroni
method, to the scattering patterns of Alnus at each time step,
our experiment showed that there seems to be no significant
temporal changes in the light scattering patterns. We also
confirmed that different pollen types do not always have dif-
ferent light scattering patterns. However, when two different
pollen types have different light scattering patterns, it was
possible to calculate the number of pollen grains of each taxa
using these light scattering patterns by solving the probabil-
ity density function of the pattern.
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L., Matavulj, P., Brdar, S., Panic, M., Sikoparija, B., Clot, B.,
Crouzy, B., and Sofiev, M.: Automatic pollen recognition with
the Rapid-E particle counter: the first-level procedure, expe-
rience and next steps, Atmos. Meas. Tech., 12, 3435–3452,
https://doi.org/10.5194/amt-12-3435-2019, 2019.

Sauvageat, E., Zeder, Y., Auderset, K., Calpini, B., Clot, B., Crouzy,
B., Konzelmann, T., Lieberherr, G., Tummon, F., and Vasilatou,
K.: Real-time pollen monitoring using digital holography, At-
mos. Meas. Tech., 13, 1539–1550, https://doi.org/10.5194/amt-
13-1539-2020, 2020.

Surbek, M., Esen, C., Schweiger, G., and Ostendorf,
A.: Pollen characterization and identification by elas-
tically scattered light. J. Biophotonics, 4, 49–56,
https://doi.org/10.1002/jbio.200900088, 2011.

Swanson, B. E. and Huffman, J. A.: Development and characteriza-
tion of an inexpensive single-particle fluorescence spectrometer
for bioaerosol monitoring, Opt. Express, 26, 3646–3660, 2018.

Takahashi, Y., Kawashima, S., Fujita, T., Ito, C., Togashi, R., and
Takeda, H.: Comparison between real-time pollen monitor KH-
3000 and Burkard sampler, Arerugi, 50, 1136–1142, 2001.

Tcheng, D. K., Nayak, A. K., Fowlkes, C. C., and Punyasena, S. W.:
Visual recognition software for binary classification and its ap-
plication to spruce pollen identification, Plos One, 11, e0148879.
https://doi.org/10.1371/journal.pone.0148879, 2016.

Wang, Q., Nakamura, S., Gong, S., Suzuki, M., Nakajima, D.,
Takai, Y., Lu, S., Sekiguchi, K., and Miwa, M.: Release be-
haviour of Cryptomeria japonica pollen allergenic cry j1 and
cry j2 in rainwater containing air pollutants, Int. J. Sustain.
Dev. Plann., 9, 42–53, https://doi.org/10.2495/SDP-V9-N1-42-
53, 2014.

Zhang, Y., Fountain, D. W., Hodgson, R. M., Flenley, J. R., and
Gunetileke, S.: Towards automation of palynology 3: pollen pat-
tern recognition using Gabor transforms and digital moments.
J. Quaternary Sci., 19, 763–768, https://doi.org/10.1002/jqs.875,
2004.

https://doi.org/10.5194/amt-14-685-2021 Atmos. Meas. Tech., 14, 685–693, 2021

https://doi.org/10.1002/jqs.874
https://doi.org/10.1016/j.micron.2014.09.002
https://doi.org/10.1016/j.atmosenv.2017.03.015
https://doi.org/10.1016/j.atmosenv.2019.01.039
https://doi.org/10.1007/s10453-009-9147-1
https://doi.org/10.1016/j.atmosenv.2013.07.051
https://doi.org/10.1159/000436968
https://doi.org/10.1111/j.1469-8137.2012.04291.x
https://doi.org/10.1016/j.patrec.2006.06.010
https://doi.org/10.1016/j.scitotenv.2019.133906
https://doi.org/10.1109/TSMCC.2005.855426
https://doi.org/10.5194/amt-12-3435-2019
https://doi.org/10.5194/amt-13-1539-2020
https://doi.org/10.5194/amt-13-1539-2020
https://doi.org/10.1002/jbio.200900088
https://doi.org/10.1371/journal.pone.0148879
https://doi.org/10.2495/SDP-V9-N1-42-53
https://doi.org/10.2495/SDP-V9-N1-42-53
https://doi.org/10.1002/jqs.875

	Abstract
	Introduction
	Materials and methods
	Temporal changes in light scattering patterns
	Light scattering patterns of different pollen taxa
	Automatic discrimination theory

	Results
	Temporal changes in light scattering pattern
	Light scattering distributions of different pollen taxa
	Automatic counting

	Discussion
	Conclusion
	Code and data availability
	Author contributions
	Competing interests
	Acknowledgements
	Financial support
	Review statement
	References

