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Section S1. Condensation sink estimation 

The condensation sink, CS (Lehtinen et al., 2003; Dal Maso et al., 2002) in s-1 is 

calculated as 

𝐶𝑆 = 2𝜋𝐷 ∫ 𝑑𝑝 ∙ 𝛽𝑀(𝑑𝑝) ∙ 𝑁(𝑑𝑝) ∙ 𝑑𝑑𝑝
∞

0
      Eq. (S1) 

where D is the vapor diffusivity, dP is the particle diameter, the N(dP) is the number of particle 

of diameter dp, and βM(dP) is the Fuchs-Sutugin correction factor for gas-phase diffusion over 

particles in the transition regime. Using a discrete particle size distribution as measured by the 

SMPS, we calculate CS using an approximation of the integral, namely 

𝐶𝑆 = 2𝜋𝐷 ∑ 𝛽𝑖𝑑𝑝𝑖𝑁𝑖𝑖          Eq. (S2) 

The lifetime for gaseous condensation in the presence of a CS is (Markku Kulmala and 

Wagner 2001) 

𝜏𝑐𝑜𝑛𝑑 =
1

𝐶𝑆
          Eq. (S3) 

As an approximation, D can be assumed to be 6 to 7 x 10-6 m2 s-1 for condensable 

organic vapors (Palm et al., 2016; Krechmer et al., 2017). A more nuanced estimation is 

described below. The Fuchs-Sutugin correction factor β, is calculated  

𝛽 =
𝐾𝑛+1

0.377∙𝐾𝑛+
4

3
∙𝛼−1∙𝐾𝑛+

4

3
∙𝛼−1∙𝐾𝑛

2+1
                Eq. (S4) 

where α is the mass accommodation coefficient. In lieu of empirical values, unity is assumed 

for α (Markku et al., 2001). Recent experimental results support this unity assumption 

(Krechmer et al., 2017; Liu et al., 2019). Kn is the Knudsen number,  

𝐾𝑛 =
2𝜆

𝑑𝑝
          Eq. (S5) 

where the particle radius (dp / 2) is used as the characteristic length; λ is the effective free mean 

path of vapor molecules. The mean free path in dry air varies slightly in the literature, e.g. 6.53 

to 6.673 x 10-8 m (Jennings 1988). The mean free path of any organic compound can be 

calculated if its gas-phase diffusion coefficient (at the bath gas pressure), DPr, and average 

molecular speed c, are known, 

𝜆 =
3𝐷𝑝𝑟

𝑐
          Eq. (S6) 

𝑐 = √
8𝑅𝑇

𝜋𝑀𝑊
          Eq. (S7) 

where R is the ideal gas constant (8.314 J mol-1 K-1), T is the temperature in K, and MW is the 

molar mass (kg mol-1). Note that Dpr is a function of bath gas pressure, P (Torr), and the gas 

diffusivity, D (Torr cm-2 s-1) 

𝐷𝑝𝑟 =
𝐷

𝑃
          Eq. (S8) 

For a trace gas A in a bath gas B, the gas diffusivity could be estimated using Fuller’s 

method (Fuller et al., 1966; Tang et al., 2015),  



𝐷(𝐴, 𝐵) =
1.0868×𝑇1.75

√𝑚(𝐴,𝐵)( √𝑉𝐴
3 + √𝑉𝐵

3 )
2       Eq. (S9) 

where VA and VB are dimensionless diffusion volumes of A, and B; m(A,B) is the reduced mass 

of the A-B pair and can be calculated based on the molecular masses (g mol-1) of A and B, mA 

and mB, respectively 

𝑚(𝐴, 𝐵) =
2

(1/𝑚𝐴+1/𝑚𝐵)
        Eq. (S10) 

VA may be estimated from the molecular formula of the trace gas 

𝑉 = ∑ 𝑛𝑖𝑉𝑖          Eq. (S11) 

where ni is the number of atoms with diffusion volume of Vi, which is 15.9 for C, 2.31 for H, 

6.11 for O, and 4.54 for N (Reid et al., 1987). Subtracting 18.3 from the total diffusion volume 

accounts for the effect of the aromatic ring. For compounds containing multiple aromatic rings, 

it maybe be best to correct only for independent aromatic rings, based on limited experimental 

data (Tang et al., 2015). Alicyclic rings are not expected to have an effect on the diffusion 

volume (Tang et al., 2015). Diffusion volumes of common bath gasses are known instead of 

estimated: N2 (18.5), O2 (19.7), H2O (13.1). For inorganic and slightly oxygenated organic 

compounds, the mean free path of condensable vapors may be quite uniform (within 20%), 

where the Knudsen number can be estimated based on pressure and particle diameter alone 

(Tang et al., 2015), 

𝐾𝑛 =
2

𝑑𝑃
×

𝜆𝑃

𝑃
          Eq. (S12) 

where P is the pressure of air in atm, and λP is the pressure normal mean free path equal to 100 

nm atm. The deviation of Kn estimated using Eq. S12 for a 100 nm particle (i.e. Kn = 2) with 

respect to that estimated using Eq. S5 for selected compounds is shown in Table S1 with the 

corresponding gas diffusivity D, estimated using Eq. S9. All compounds are assumed to be 

non-aromatic unless indicated otherwise. For C5 to C10 VOCs (e.g. isoprene, monoterpenes) 

and their oxidation products (e.g. C5 to C10 monomers and C20 dimers), the estimated 

diffusivities differ less than a factor of 2 from 6.5·10-6 cm2 s-1. Diffusion volume correction for 

(single) aromatic rings results in minor differences (< 5%) of the estimated D values. The 

estimated Knudsen numbers agree within 15%, as do the estimated Fuchs-Sutugin correction 

factors, β, between the simplified and the more rigorous estimation methods, assuming either 

a mass accommodation coefficient of 1 (3.08·10-1 for all compounds) or 0.1 (3.67·10-2 for all 

compounds), estimated using Eq. S4 and Eq. S12.  

  



Table S1. Knudsen number and gas diffusivity  

Gas  Kn %Diffa Diffusivity (m2 s-1) β (α=1)b β (α=0.1)b 

C3H6  1.83 9.30 1.18 x 10-5 3.29 x 10-1 4.00 x 10-2 

C3H6O2  2.05 -2.44 9.97 x 10-6 3.02 x 10-1 3.58 x 10-2 

C3H6O4  2.20 -9.26 8.96 x 10-6 2.85 x 10-1 3.34 x 10-2 

C3H6O6  2.32 -13.77 8.27 x 10-6 2.73 x 10-1 3.18 x 10-2 

C5H8  1.77 13.02 8.98 x 10-6 3.38 x 10-1 4.13 x 10-2 

C5H8O2  1.94 3.00 8.13 x 10-6 3.15 x 10-1 3.78 x 10-2 

C5H8O4  2.07 -3.55 7.55 x 10-6 2.99 x 10-1 3.54 x 10-2 
C5H8O6  2.18 -8.19 7.12 x 10-6 2.88 x 10-1 3.38 x 10-2 

C5H8O8  2.26 -11.67 6.77 x 10-6 2.79 x 10-1 3.25 x 10-2 

C7H8O1
c  1.94 2.88 7.83 x 10-6 3.14 x 10-1 3.77 x 10-2 

C7H8O1  1.83 9.41 7.36 x 10-6 3.30 x 10-1 4.00 x 10-2 

C7H8O2  1.89 5.55 7.12 x 10-6 3.21 x 10-1 3.87 x 10-2 

C7H8O4  2.01 -0.45 6.73 x 10-6 3.06 x 10-1 3.65 x 10-2 

C7H8O6  2.10 -4.91 6.42 x 10-6 2.96 x 10-1 3.49 x 10-2 

C7H8O8  2.18 -8.37 6.16 x 10-6 2.87 x 10-1 3.37 x 10-2 

C7H8O10  2.25 -11.12 5.93 x 10-6 2.80 x 10-1 3.27 x 10-2 

C9H12
d  1.81 10.46 6.92 x 10-6 3.32 x 10-1 4.04 x 10-2 

C9H12  1.72 16.08 6.58 x 10-6 3.44 x 10-1 4.24 x 10-2 
C9H12O2  1.84 8.65 6.25 x 10-6 3.28 x 10-1 3.98 x 10-2 

C9H12O4  1.94 3.13 5.98 x 10-6 3.15 x 10-1 3.78 x 10-2 

C9H12O6  2.02 -1.13 5.76 x 10-6 3.05 x 10-1 3.63 x 10-2 

C9H12O8  2.10 -4.54 5.57 x 10-6 2.97 x 10-1 3.51 x 10-2 

C9H12O10  2.16 -7.33 5.40 x 10-6 2.90 x 10-1 3.41 x 10-2 

C10H16  1.70 17.36 6.11 x 10-6 3.47 x 10-1 4.29 x 10-2 

C10H16O2  1.81 10.41 5.85 x 10-6 3.32 x 10-1 4.04 x 10-2 

C10H16O4  1.90 5.13 5.63 x 10-6 3.20 x 10-1 3.85 x 10-2 

C10H16O6  1.98 0.96 5.44 x 10-6 3.10 x 10-1 3.70 x 10-2 

C10H16O8  2.05 -2.42 5.28 x 10-6 3.02 x 10-1 3.58 x 10-2 

C10H16O10  2.11 -5.21 5.13 x 10-6 2.95 x 10-1 3.48 x 10-2 
C10H16O12  2.16 -7.57 5.00 x 10-6 2.89 x 10-1 3.40 x 10-2 

C10H16O14  2.21 -9.58 4.88 x 10-6 2.84 x 10-1 3.33 x 10-2 

C10H16O16  2.26 -11.32 4.77 x 10-6 2.80 x 10-1 3.26 x 10-2 

C20H32O6  1.83 9.56 3.98 x 10-6 3.30 x 10-1 4.01 x 10-2 

C20H32O8  1.87 6.86 3.92 x 10-6 3.24 x 10-1 3.91 x 10-2 

C20H32O10  1.91 4.49 3.85 x 10-6 3.18 x 10-1 3.83 x 10-2 

C20H32O12  1.95 2.38 3.80 x 10-6 3.13 x 10-1 3.75 x 10-2 

C20H32O14  1.99 0.49 3.74 x 10-6 3.09 x 10-1 3.69 x 10-2 

C20H32O16  2.02 -1.21 3.69 x 10-6 3.10 x 10-1 3.63 x 10-2 

(a). Percent difference of Kn =2, estimated using Eq. S12, with respect to the Kn estimated using Eq. S5. (b). Fuchs-

Sutugin correction factors estimated using Eq. S4 assuming different values for mass accommodation coefficients; 

the Kn used here was estimated using Eq. S5 (c) o-Cresol (d) 1,2,4-trimethylbenzene 



Section S2. Oxidation flow reactor schematic 

A schematic of the experiment setup is shown in Figure S1 along with the physical 

dimensions of the oxidation flow reactor (OFR). VOC precursor and seed particles are injected 

near the entrance region of the OFR, whereas O3 is injected coaxially in the direction of the 

flow through a 6 mm outer diameter stainless-steel tubing about 61 cm downstream of the 

entrance region. Instruments sampled from near the exit region of the OFR. The cross-sectional 

area of the OFR is approximately 4.3·10-3 m2. At 12 L min-1, the plug flow velocity is roughly 

4.65·10-2 m s-1. The residence time within the oxidation region (i.e. 39 cm) is roughly 8.38s, or 

an effective dilution rate of 0.12 s-1.  

 

Figure S1. Flow tube dimension. 

 

Section S3. Vocus-PTR Calibration  

 

Figure S2. Vocus-PTR calibration 

(a) The mass transmission efficiency curve for Vocus-PTR is fitted using a lognormal function., 

Eq. S13. Calibration of the mass transmission efficiency for PTR is described in details 

elsewhere (Holzinger et al., 2019). (b) Measured sensitivity as a function of the kinetic capture 

rate, kMH for compounds in a multicomponent calibration tank. The linear regression line with 

forced 0 intercept was used to estimate sensitivities for additional uncalibrated compounds. 

𝑀𝑇 =  0.20 + 0.96 × exp (−
𝑙𝑛(

𝑚/𝑧

95.98
 )

0.582 )      Eq. (S13) 



Section S4. AMS Vaporizer artifact correction 

The high-resolution aerosol mass spectrometer (AMS) determines the aerosol 

composition in terms of NO3, NH4, SO4, Chl, and Organics (OA). All experiments were 

conducted under low-NOx conditions using NH4NO3 seed particles. Therefore, all NH4
+ and 

NO3
- observed are attributed to NH4NO3. Due to the high inorganic concentrations used (up to 

11.6 mg m-3), caution needs to be taken to account for vaporizer artifacts, where NOx
+ ions 

generated from nitrate particles during the electron impact ionization process could oxidize 

organic residues on the vaporizer surface, producing CO2
+ ions that are falsely attributed to 

organic aerosols (Pieber et al., 2016). The extent of this artifact is determined by injecting 

NH4NO3 seed particles into the OFR in the absence of any organic oxidation products. As 

shown in Figure S3a below, the correlation of the organic vaporizer artifact, Orgartifact, can be 

described by an exponential function of the NH4NO3 (i.e. combined mass concentrations of 

NO3
- and NH4

+). This correlation is used to correct for Orgartifact for all runs, as shown in Figure 

S3b to Figure S3d. Note that this correlation could change with the vaporizer history (Pieber et 

al., 2016). Here, the vaporizer artifact was characterized in the midst of the campaign. 

 

 

Figure S3. Inorganic salt-induced vaporizer artifact 

(a) Artefact organics concentration observed by the AMS when sampling nebulized NH4NO3 

in the absence of any organic oxidation products. An exponential function of NH4NO3 

concentration is used to estimate the organic signal attributable to the vaporizer artifact. The 



organic concentrations with and without applying this correction are shown in (b) for limonene 

ozonolysis, in (c) for the OH oxidation of o-cresol, and in (d) for the OH oxidation of 1,2,4-

trimethylbenzene. The correlation between condensed organics and NH4NO3 seed 

concentrations can be roughly described by a double exponential function. 

Section S5. Oxidation flow reactor model 

The organic vapor wall loss may be estimated from the OFR dimension and the gas-

diffusivities as proposed by McMurry and Grosjean (1995), 

𝑘𝑤𝑎𝑙𝑙 =
1

𝜏𝑤𝑎𝑙𝑙
=

𝐴

𝑉
 ∙

2

𝜋
√𝑘𝑒𝐷        Eq. (S14) 

when the vapor wall accommodation coefficient is greater than 10-5, i.e. eddy diffusion 

dominates. This is the case for oxidation flow reactors (OFR) of similar dimensions to the one  

used in this study (Brune 2019; George et al., 2007). A and V are the surface area (1.02 x 10-1 

m2) and volume (1.72 x 10-3 m3) of the OFR, respectively. ke is the coefficient of Eddy diffusion, 

which may be estimated as a function of the enclosure volume (Krechmer et al., 2016), 

𝑘𝑒(𝑠−1) = 0.004 + (5.6 × 10−3)(𝑉)0.74      Eq. (S15) 

which is 4.05 x 10-3 s-1. Due to their relatively small enclosure volume (relative to that of a 

typical smog chamber, ke would be close to 4·10-3 s-1 for most OFR designs. For estimated gas 

diffusivity, D ranging from 3.69·10-6 (C20H32O16) to 1.18·10-5 (C3H6) m
2 s-1, the corresponding 

kwall ranges from 4.60·10-3 s-1 to 8.22·10-3 s-1, resulting in a wall loss timescale, τwall between 

122 and 218 s. Two different vapor wall loss experiments conducted using a PTR-TOF and an 

acetate atmospheric pressure interface chemical ionization TOF-MS indicate a 50% vapor wall 

loss rate at 10 L min-1 flow rate, which suggest a τwall similar to that of the dilution lifetime, i.e. 

27 seconds, meaning that the actual kwall  is close to 3.7·10-2 s-1, roughly 4 to 8 times higher 

than Eq. S14 and Eq. S15 would suggest. For simplicity, a kw value of 0.04 s-1 is used as the 

base case scenario. The effects of higher kw (i.e. 0.4 s-1) and lower kw (i.e. 0.04 s-1) values on 

the gas- and particle-phase concentrations are simulated and shown in Figure 3a-c for generic 

oxidation products of differing saturation vapor concentrations ranging from 10-2 to 106 µg m-

3. The OFR wall is also assumed to be a perfect sink for organic vapors, i.e. no back-partitioning 

of organic vapor from the wall to the gas-phase is considered.  

The remaining gas-phase concentration, Gremain and the condensed particle-phase 

concentration, Pcond during seed injection are expressed in relative terms with respect to the 

steady gas-phase concentration prior to the seed injection, Gss (e.g. Gremain/Gss and Pcond/Gss). 

So that they are not dependent on the absolute value of Gss, and vice versa on the actual 

production rate, provided that the production rate is not affected by the seed injection.  

The modeled gas-particle partitioning is shown below in Figure S4. A sensitivity 

analysis was performed by varying the organic aerosol concentration (OA), the condensation 

sink (CS), or the wall loss rate (kw) from the base condition (20 µg m-3 OA, 1 s-1 CS, and 0.04 

s-1 kw) in Figure S4a-c. The observed OA and CS values were used to simulate the partitioning 

behaviors as shown in Figure S4d-i. For each VOC system, the observed OA concentration and 

CS roughly followed a linear correlation. Figure S4d shows the Pcond normalized to the 

maximum value as a function of CS, and suggests that it may be possible to infer the saturation 

vapor concentration, C* of semi-volatile compounds based on the uptake trend without the 

knowledge of near-molecular particle-phase sensitivity or gas-phase concentration (as long as 

GSS remains constant in this case). However, compounds of different C* may exhibit similar 



trends, i.e. high inter-correlations, which cannot be numerically resolved due to noise. Visually, 

this is obvious for compounds with log(C*) > 2 or < -1 as shown in Figure S4d.  

To determine the range of log(C*) that could be in theory numerically resolved from the 

Pcond behaviors alone, we modeled the normalized Pcond for compounds with log(C*) ranging 

from -2 to 6 using OA and CS values observed for each system. The lower C* threshold is set 

at the point beyond which all compounds with lower C* would exhibit normalized Pcond trends 

with intercorrelation (R2 value from linear regression between the normalized Pcond values 

corresponding to any pair of C* values, i.e. any two “vertical slices” from Figure S4e and S4f) 

above 0.99. The decision to set the cutoff at R2 = 0.99 is arbitrary. The upper C* threshold is 

similarly defined in Figure S4g-i. The experimentally constrainable log(C*) ranges based on 

the uptake behavior alone are narrow: 1.25 to 2.02 for the cresol system, 1.18 to 2.09 for the 

TMB system, and 0.57 to 1.85 for the limonene system. The span of the constrainable C* range 

is wider for the limonene system due to the higher maximum CS range explored experimentally 

(>2 s-1 as compared to <1 s-1 for the anthropogenic systems). The upper constrainable C* range 

for limonene system (i.e. log(C*) =1.85) is lower compared to that for either cresol (i.e. log(C*) 

=2.02) or TMB system (i.e. log(C*) =2.09) due to the lower maximum OA uptake as a function 

of CS for the limonene system as compared to the anthropogenic systems. All else being equal, 

the constrainable range of log(C*) increases with the experimental CS range, which is limited 

by the maximum particle concentrations the instruments could accommodate before clogging 

or signal depletion becomes too severe.  

 

 



 

       

      

Figure S4. Modeled partitioning  

(a-c) Expected distribution of organic oxidation products of differing volatilities between the 

gas- and particle-phase during the seed injection period for a hypothetical base case scenario 

of 20 µg m-3 organic aerosol concentration (OA), 1 s-1 condensation sink (CS), and 0.04 s-1 

vapor wall loss rate (kw). Alternative scenarios assume higher or lower OA, CS, and kw. (d-i) 

Modeled ratio of Pcond to Gss for compounds of varying log(C*) under observed OA and CS 

conditions. (a) Ratio of condensed organic material during seed injection, Pcond to the steady-

state gas-phase concentration prior to seed injection, GSS. The ratio can exceed 1 under high 

CS conditions. (b) Ratio of Pcond to the sum of Pcond with the gas-phase concentration during 

the seed injection period, Gremain. Partitioning between Pcond and Gremain is invariant with respect 



to kw. (c) Ratio of Pcond to the sum of Pcond and GSS. (d) Normalized Pcond relative to the 

maximum expected value, Pcond,max as a function of CS for compounds of different volatility. 

Note again that observed CS and OA values from the anthropogenic experiments are used to 

simulate the uptake behavior shown in (d), whereas hypothetical CS, OA, and kw conditions are 

used to simulate the behaviors shown in (a-c). (e) Ratio of Pcond to GSS for compounds of 

varying log(C*) at different CS for the cresol and TMB systems, which exhibited similar 

intercorrelations between observed OA and CS. (f) Ratio of Pcond to GSS for compounds of 

varying log(C*) at different CS for the limonene system. (g) Inter-correlation of the expected 

normalized Pcond, similar to those shown in (d), for compounds of varying log(C*) under the 

uptake conditions in the cresol system. (h) Inter-correlation of the expected normalized Pcond, 

for compounds of varying log(C*) under the uptake conditions in the TMB system. (i) Inter-

correlation of the expected normalized Pcond, for compounds of varying log(C*) under the 

uptake conditions in the limonene system. (j) Similar to g, but with the maximum CS range 

extrapolated to 2 s-1 from ~0.8 s-1 to examine its effect on constrainable log(C*) range. Regions 

with R2 values exceeding 0.99 are shown in white in (g-j), where the log(C*) empirically 

determined from the normalized Pcond is considered as highly uncertain due to experimental 

noise and high intercorrelations of the normalized Pcond behavior with compounds of different 

log(C*). Behaviors of compounds with log(C*) below -1 or above 4 are not shown, as they are 

indistinguishable per our definition based on the intercorrelation value R2.   

  



Section S6. EESI-TOF vs Vocus-PTR Composition 

 

 

Figure S5. Average particle-phase composition 

Ion intensity of [M+Na]+ adducts observed during (a) OH-oxidation of cresol, (b) OH-

oxidation of TMB, and (c) ozonolysis of limonene. For each VOC and oxidant system, the 

average composition over all seed injection / organic aerosol uptake events is shown. Ion 

intensities are grouped by their carbon number (#C) and further distinguished by the oxygen 

number as shown in the legend. 



 

 

 

Figure S6. Comparison of major particle- and gas-phase oxidation products 

Intensities of selected [M+Na]+ adducts observed by the EESI-TOF for the particle-phase are 

shown for (a) C7 OH + cresol oxidation products, (c) C9 OH + TMB oxidation products, and 

(e) C10 limonene + O3 oxidation products. Intensities of selected [M+H]+ ions observed by 

the Vocus-PTR in the gas-phase are shown for (b) C7 OH + cresol oxidation products, (d) C9 

OH + TMB oxidation products, and (f) C10 limonene + O3 oxidation products. Average 

particle-phase signals over all uptake events are shown in (a), (c), and (e). Average steady-

state gas-phase concentrations prior to each uptake event are shown in (b), (d), and (f). Note 

that the color scales are only consistent within each of the (a-b), (c-d), and (e-f) pairs. Ion 



intensities are grouped by the number of hydrogens (#H) and further distinguished by the 

number of oxygen as indicated in the legends. The o-cresol is not included in (a) and (b) 

because it is the VOC precursor and not an oxidation product.  

Section S7. Parameterization and Model Validation 

The EESI-TOF response factor in ions s-1 ppb-1, RFx
*, can be estimated by performing 

a linear regression of Ix (in ions s-1) as a function of Pcond,x (in ppb-1) as described in the main 

text, and taking the slope. Because ordinary least square regression (OLS) minimizes only the 

vertical (i.e. Ix on the y-axis) distance of the dependent variable, it cannot account for 

uncertainties in the explanatory variable (i.e. Pcond,x on the x-axis) during error propagation. 

Propagation of uncertainties in the explanatory and dependent variables can be achieved by 

performing an orthogonal distance regression (ODR). The slope values obtained using either 

method agree within a factor of 2, as shown in Figure S7. 

  

Figure S7. Comparison of the response factor (RFx
*) values determined using ordinary least 

square (OLS) and orthogonal distance regression (ODR). Uncertainties in the explanatory and 

response variables are taken into consideration by ODR during fitting. Vertical and horizontal 

error bars shown represent the standard deviation of the fitted slope of EESI-TOF vs. Vocus-

PTR measurements, i.e. RFx
* 

Based on the elemental formulae measured by the EESI-TOF and the Vocus-PTR, 

several additional features could be derived from the number of carbon (nC), hydrogen (nH), 

and oxygen (nO), including the exact molecular mass (MW), the mass defect (∆m), the 

hydrogen-to-carbon ratio (H:C), the oxygen-to-carbon ratio (O:C), the double bond equivalent 

(DBE), and the double bond equivalent per carbon (DBEpC) 

𝐷𝐵𝐸 = 1 +
1

2
(2𝐶 − 𝐻 + 𝑁 + 𝑃)       Eq. (S16) 

The aromaticity index (AI) can be calculated as 

𝐴𝐼 =  
𝐷𝐵𝐸𝐴𝐼

𝐶𝐴𝐼
=

1+𝐶−𝑂−𝑆−0.5𝐻

𝐶−𝑂−𝑆−𝑁−𝑃
         Eq. (S17) 

Which has been reported to underestimate the aromaticity compared to the aromaticity 

equivalent (Xc) proposed by Yassine et al. (Yassine et al., 2014)  

𝑋𝐶 =  
𝐶−(𝐻−𝐶)

𝐷𝐵𝐸
+ 1         Eq. (S18) 



where, if DBE ≤ 0, Xc is set to 0. Note that for CHO compounds, Eq. S18 simplifies to 

𝑋𝐶 =  3 −
2

𝐷𝐵𝐸
          Eq. (S19) 

 In addition, the carbon-oxygen non-ideality (NICO) from Eq. (7) itself is an interaction 

term between the product of the number of carbon and oxygen atoms (PCO) and the inverse of 

the sum of carbon and oxygen atoms (ICO), 

𝑁𝐼𝐶𝑂 =  
𝑛𝐶𝑛𝑂

𝑛𝐶+𝑛𝑂
= 𝑃𝐶𝑂 × 𝐼𝐶𝑂        Eq. (S20) 

In addition to the aforementioned features, the log of effective saturation vapor concentration, 

log(C*) is included as a feature. 

 Preliminary ordinary least square (OLS) regressions of the near-molecular EESI-TOF 

response factor, RF*
x (which was obtained with ODR) as a function of nC, nO, MW, NICO, PCO, 

or ICO, are shown in Figure S8a-f for each of the three VOC systems studied. The RF*
x values 

estimated for cresol and TMB oxidation products appear to increase as the molecules increase 

in size (i.e. positive correlation with MW and nC) and/or become more functionalized (i.e. 

positive correlation with nO). The correlations also appear to be steeper for the TMB system 

than for the cresol system. In contrast, the RF*
x values estimated for limonene oxidation 

products do not appear to be well correlated with nC, nO, MW, PCO, ICO, or NICO. The 

discrepancies observed between the aromatic systems and the biogenic system are likely due 

to differences in the structure of the oxidation products as discussed in the main text. 



 

Figure S8. Preliminary regression analysis 

OLS regression analysis of the log of RF*
x with respect to (a) the number of carbon, nC, (b) the 

number of oxygen, nO, (c) the molecular weight, MW, (d) the carbon-oxygen non-ideality, NICO, 

(e) the product of nC and nO, PCO, and (f) the inverse of the sum of nC and nO, ICO. The red, blue, 

and green dashed lines correspond to the linear fitting lines for the log(RF*
x) values of TMB, 

cresol, and LMN oxidation products, respectively. The coefficient of determination, R2 of 

ordinary linear regression for the log(RF*
x) as a function of the feature is shown in brackets 

after the corresponding VOC label. 

  

The full regression analysis was performed on two types of datasets: The log of 

measured EESI sensitivity in ions s-1 ppb-1, log(RF*
x) from (1) the TMB system alone, or (2) 

all three VOC systems. Two approaches were taken for the combined dataset: (2a) the precursor 



VOC identity was not included as a feature or (2b) the VOC identity was one-hot encoded and 

included as a feature, i.e. limonene, TMB, and cresol products would have attributes of 

[VOCLMN:1, VOCTMB: 0, VOCCresol: 0],  [VOCLMN:0, VOCTMB: 1, VOCCresol: 0],  and 

[VOCLMN:0, VOCTMB: 0, VOCCresol: 1], respectively.  

 First, an exhaustive search over the feature space was performed to determine the 

optimal set of features for each regressor using their respective default hyperparameter values. 

Leave-one-out (LOO) cross-validation was used to evaluate the model performance in terms 

of the coefficient of determination, R2 

𝑅2 = 1 −
∑ (𝑦𝑖−�̂�𝑖)2𝑛

𝑖=1

∑ (𝑦𝑖−�̅�)2𝑛
𝑖=1

         Eq. (S21) 

where yi and �̂�𝑖 are the true and the predicted value for the i-th sample among a total of n 

samples, and �̅� is the mean of the n samples. If the model always predicts �̅�, the R2 will be 0, 

e.g. a naive model where all values are predicted to equal that of the sample mean regardless 

of input. The R2 can be negative if it performs worse than this naive model, i.e. assuming the 

mean value regardless of model input produces on average better results. For a dataset of size 

n, LOO involves setting aside each data point (yi) in turn as the test sample while the remaining 

(n-1) data points are used to train the model and make a prediction, �̂�𝑖 . yi and �̂�𝑖 are then used 

to estimate the R2 using Eq. (S21). LOO can be considered as performing a K-fold cross-

validation where the number of K is equal to the number of data points. Compared to the K-

fold cross-validation method, LOO is more computationally intensive to perform, but is 

nonetheless appropriate given the small size of the dataset used here (nsample = 28 for case 1 and 

70 for 2a and 2b). During cross-validation, a portion of the dataset is used to train the model 

(i.e. “train” set), while the remaining dataset is withheld to validate against the model 

predictions (i.e. “test” set). For each train-test set, the training feature values (n = nsample – 1) 

were standardized, which involves subtracting by their mean and dividing by their standard 

deviation. The same transformation was then applied to the feature values from the test set (n 

= 1), which was not included in deriving the transformation required for the standardization to 

prevent information leak between the training and test sets. 

The results of the feature optimization are shown in Figure S8 in terms of the best R2 

vs. the number of features used. The optimal feature sets are shown in Table S2. In addition to 

OLS, linear ridge regression (“Ridge”) and Bayesian ridge regression (BayRR) are included. 

Both Ridge and BayRR implement L2 regularization, making them more resilient against 

overfitting and feature co-linearity. Support vector regression (SVR) with linear kernel is also 

included as a linear regression model for comparison. Exploratory analysis using SVR with 

radial basis functions (rbf) yielded better R2, but the relative feature importance was not easily 

interpretable when rbf was used, hence the choice of linear kernel. Lastly, nonparametric 

regressions such as random forest regressor (RFR) and gradient boosting regressor (GBR) were 

included, as the RF*
x is likely not a linear function of features already included. While it is 

possible that RF*
x could be well-described by a linear combination of engineered features, it is 

not feasible to explore all nonlinear (e.g. nC
2) or interaction (ncnH) feature terms, hence the 

necessity of nonparametric regressors. For the purpose of feature selection and later 

hyperparameter tuning, the random state (which controls the permutation of features at each 

split within the decision tree) for RFR and GBR are fixed (i.e. given a seed value of 0) so that 

the models generate producible outputs. 

 

 



 

 

 

Figure S9. Feature selection 

The best R2 from LOO cross-validation test for each regressor using different permutations of 

features as a function of the number of features included for (a) Case 1, where only the TMB 

dataset is used, (b) Case 2a, where data from all the VOC systems were used without providing 

the digitized VOC identity as one of the input features, or (c) Case 2b, where data from all the 

VOC systems were used with the one-hot encoded VOC identity provided as one of the input 

features, hence the one extra feature over cases 1 and 2a.  

Table S2. Best R2 scores and their corresponding feature combination obtained using 

leave-one-out cross-validation with default model hyperparameters 

Case # OLS Ridge BRR SVR RFR GBR 

1 0.46 0.40 0.39 0.46 0.59 0.71 
 nO, 

ICO,  

log(C*) 
 

NICO NICO 
 

NICO,  
mW 

DBEpC, XC 

nO,  
nH,  

H:C 

nO,  
nH,  

H:C 

2a 0.33 0.32 0.32 0.35 0.19 0.21 
 XC,  

H:C, 
log(C*), 
NICO 

XC,  
H:C, 
log(C*), 
NICO 

XC,  
H:C, 
log(C*), 
NICO 

XC,  
H:C, 
log(C*), 
NICO 

nO 

H:C,  
NICO 

nC, 
XC, 
NICO 

2b 0.51 0.47 0.47 0.48 0.40 0.49 
 H:C, 

nO, 
∆m, 
XC 

VOC 

NICO, 
XC, 
log(C*), 
DBE, 
VOC 

NICO,  
DBE,  
XC, 
log(C*),  
VOC 

NICO,  
DBE,  
XC, 
log(C*), 
VOC 

H:C, 
nO, 
∆m,  
VOC 

H:C, 
O:C, 
PCO, 
VOC 



Note that in some cases (e.g. SVR in case 1 and 2a), the optimal feature set selected does not 

correspond to the set with the highest R2, but rather one with slightly lower R2 score but also 

(sometimes substantially) lower total number of features used. The feature abbreviations used 

are as followed: Carbon-oxygen non-ideality (NICO), product of the number of oxygen and 

carbon numbers (PCO), the inverse of the sum of the number of oxygen and carbon numbers 

(ICO), logarithm of saturation vapor concentration (log(C*)), aromaticity (XC), double bond 

equivalent per carbon (DBEpC), number of oxygen atoms (nO), number of hydrogen atoms 

(nH), molecular weight (MW), mass defect (∆m), hydrogen-to-carbon ratio (H:C), oxygen to 

carbon ratio (O:C), one-hot encoded precursor VOC label (VOC). 

 For Case 1, NICO and nO are identified as essential features in predicting the (log of) 

EESI-TOF response factor. For Case 2a, all model performances degrade due to the lack of 

knowledge of the VOC identity. The feature selection results that NICO (or relatedly nO) and XC 

(or relatedly H:C) are essential features to include. For Case 2b, inclusion of the VOC label as 

a feature results in substantial increase in R2 for all regressors, as shown in Figure S9 and Table 

S3 below. As the number of features increase beyond 5, regressor performances do not show 

any substantial improvement and may even deteriorate. As a trade-off between R2 and model 

feature complexity, the optimal number of features for linear models (OLS, Ridge, BRR, and 

SVR) is set to 5 and the optimal number of features for nonparametric models (RFR and GBR) 

is set to 4. 

Table S3. Best R2 scores for different feature combinations obtained using leave-one-out 

cross-validation with default model hyperparameters for Case 2b 

Feature # OLS Ridge BRR SVR RFR GBR 

1 0.12 0.12 0.12 0.14 0.09 0.06 

 ICO ICO ICO mW H:C H:C 

2 0.20 0.23 0.22 0.22 0.21 0.31 

 NICO, 

log(C*) 

NICO, 

VOC 

NICO, 

VOC 

NICO, 

log(C*) 

mW, 

VOC 

mW, 

VOC 

3 0.29 0.33 0.33 0.35 0.38 0.39 

 NICO, 

H:C, 
ICO  

NICO,  

XC,  
VOC 

NICO,  

XC,  
VOC 

NICO,  

XC,  
VOC 

H:C, 

nO, 
VOC 

H:C, 

mW, 
VOC 

4 0.40 0.40 0.38 0.39 0.40 0.49 

 ICO, 

XC, 

DBE, 

VOC 

NICO, 

XC, 

DBE, 

VOC 

NICO, 

XC, 

H:C, 

VOC 

NICO, 

XC, 

log(C*), 

VOC 

H:C, 

nO, 

∆m, 

VOC 

H:C, 

O:C, 

PCO, 

VOC 

5 0.51 0.47 0.47 0.48 0.41 0.50 

 H:C, 

nO, 

∆m, 

XC 

VOC 

NICO, 

XC, 

log(C*), 

DBE, 

VOC 

NICO, 

XC, 

log(C*), 

DBE, 

VOC 

NICO, 

XC, 

log(C*), 

DBE, 

VOC 

H:C, 

nO, 

∆m, 

XC 

VOC 

H:C, 

O:C, 

PCO, 

ICO,  

VOC 

 

 

 

 

 

 



Having identified the optimal feature sets, we then performed grid search to find the 

optimal model hyperparameters using R2 from LOO as the metric. The hyperparameter spaces 

explored for each regressor are listed in Table S4a-c below, along with the LOO R2 obtained 

using the default vs. the optimal model hyperparameters. 

Table S4a. Regressor hyperparameter grid search results for Case 1 

Regressor Hyperparameter Space Optimal R2 (Optimal) R2 (Default) 

RFR n_estimator: [10, 20, 30, 40, 50,100] 20 0.71 0.61 

 min_samples_split: [2, 3, 4, 5] 3   

 max_features: [“auto”, “sqrt”, “log2”] “sqrt”   
 bootstrap: [True, False] False   

SVR C: [0.1, 0.2, 0.5, 1, 2, 10, 100] 5 0.49 0.46 

 epsilon: [0.1, 0.2, 0.5, 1, 10, 100] 0.1   

GBR n_estimator: [5, 10, 20, 30, 40, 50, 100, 200] 200 0.83 0.71 

 loss: [“ls”, “lad”, “huber"] “lad”   

 learning_rate: [0.05, 0.1, 0.2, 0.5, 0.7] 0.7   

 subsample: [0.3, 0.5, 0.7, 1] 0.7   

 max_features: [“auto”, “sqrt”, “log2”] “auto”   

 min_samples_split: [2, 3, 4, 5] 4   

BRR n_iter: [100, 200, 300, 500, 1000] 100 0.39 0.39 

 alpha_1: [10-4, 10-5, 10-6, 10-7, 10-8]  10-4   
 alpha_2: [10-4, 10-5, 10-6, 10-7, 10-8] 10-8   

 lambda_1: [10-4, 10-5, 10-6, 10-7, 10-8] 10-8   

 lambda_2: [10-4, 10-5, 10-6, 10-7, 10-8] 10-4   

Ridge alpha: [0.1, 0.2, 0.5, 1, 2, 10, 100] 1 
 

0.40 0.40 

Note: Optimal hyperparameter values that are identical to the default values are underlined. The seed values used 

to generate the random state for decision tree-type ensemble models, i.e. RFR and GBR, are fixed during 

hyperparameter grid search to ensure that the models give reproducible outputs for a given set of inputs and model 

hyperparameters. 

Table S4b. Regressor hyperparameter grid search results for Case 2a 

Regressor Hyperparameter Space Optimal R2 (Optimal) R2 (Default) 

RFR n_estimator: [10, 20, 30, 40, 50,100] 10 0.22 0.19 

 min_samples_split: [2, 3, 4, 5] 4   

 max_features: [“auto”, “sqrt”, “log2”] “auto”   

SVR C: [0.1, 0.2, 0.5, 1, 2, 10, 100] 2 0.37 0.35 

 epsilon: [0.1, 0.2, 0.5, 1, 10, 100] 0.1   

GBR n_estimator: [5, 10, 20, 30, 40, 50, 100, 200] 10 0.34 0.21 
 loss: [“ls”, “lad”, “huber"] “lad”   

 learning_rate: [0.05, 0.1, 0.2, 0.5] 0.5   

 subsample: [0.3, 0.5, 0.7, 1] 1   

 max_features: [“auto”, “sqrt”, “log2”] “log2”   

 min_samples_split: [2, 3, 4, 5] 2   

BRR n_iter: [100, 200, 500, 1000] 100 0.32 0.32 

 alpha_1: [10-4, 10-5, 10-6, 10-7, 10-8]  10-4   

 alpha_2: [10-4, 10-5, 10-6, 10-7, 10-8] 10-8   

 lambda_1: [10-4, 10-5, 10-6, 10-7, 10-8] 10-8   

 lambda_2: [10-4, 10-5, 10-6, 10-7, 10-8] 10-4   

Ridge alpha: [0.1, 0.2, 0.5, 1, 2, 10, 100] 0.2 
 

0.33 0.32 

 

 

 

 



 

Table S4c. Regressor hyperparameter grid search results for Case 2b 

Regressor Hyperparameter Space Optimal R2 (Optimal) R2 (Default) 

RFR n_estimator: [10, 20, 30, 40, 50,100] 50 0.42 0.40 

 min_samples_split: [2, 3, 4, 5] 3   

 max_features: [“auto”, “sqrt”, “log2”] “sqrt”   

 bootstrap: [True, False] False   
SVR C: [0.1, 0.2, 0.5, 1, 2, 10, 100] 100 0.52 0.48 

 epsilon: [0.1, 0.2, 0.5, 1, 10, 100] 0.1   

GBR n_estimator: [5, 10, 20, 30, 40, 50, 100, 200, 

250, 300, 350, 400] 

350 0.52 0.49 

 loss: [“ls”, “lad”, “huber"] ls   

 learning_rate: [0.05, 0.1, 0.2, 0.5, 0.7] 0.05   

 subsample: [0.3, 0.5, 0.7, 1] 1   

 max_features: [“auto”, “sqrt”, “log2”] “auto”   

 min_samples_split: [2, 3, 4, 5] 4   

BRR n_iter: [100, 200, 500, 1000] 100 0.47 0.47 

 alpha_1: [10-4, 10-5, 10-6, 10-7, 10-8]  10-4   

 alpha_2: [10-4, 10-5, 10-6, 10-7, 10-8] 10-8   
 lambda_1: [10-4, 10-5, 10-6, 10-7, 10-8] 10-8   

 lambda_2: [10-4, 10-5, 10-6, 10-7, 10-8] 10-4   

Ridge alpha: [0.1, 0.2, 0.5, 1, 2, 10, 100] 0.1 
 

0.50 0.47 

 

The log(RF*
x) predicted from the LOO cross-validation test (see discussion around Eq. 

S21) by the linear ridge regressor (LRR) and the gradient boosting regressor (GBR) using their 

respective optimal features sets and hyperparameters for Cases 1, 2a, and 2b are shown in 

Figure S10 and compared to the measured log(RF*
x). Performance and fitting coefficients of 

all regressors used are summarized in Table S5. For a single VOC system (Case 1), the 

predicted and measured RF*
x values mostly agree within a factor of 5 using LRR or a factor of 

2 using GBR. When dealing with compounds from multiple VOC systems, where the VOC 

precursor identities are unknown (i.e. Case 2a), the predictions fare slightly better than simply 

assuming a uniform response factor equal to that of the sample mean, as shown in Figure S10b. 

If the VOC precursor identity is used as one of the features, GBR and LRR can produce 

reasonable predictions that agree with the measured values within a factor of 2-5, as shown in 

Figure S10c. Much of the scatter was related to the limonene dataset, which did not appear to 

have a clear predictor for log(RFx
*), as we have also shown during our preliminary regression 

analysis in Figure S8.  



 

 

Figure S10. Comparison of model performance for different cases 

Comparison of the log of the measured response factor, log(RF*
x) with those predicted using 

the leave-one-out cross-validation method by the linear ridge regressor (LRR) and the gradient 

boosting regressor (GBR) using their optimal feature sets and hyperparameters for (a) Case 1, 

(b) Case 2a, and (c) Case 2b. The VOC identity was made available to the regression models 

to use as a potential feature for Case 2b in (c), but not for Case 2a in (b). The 1-to-1 line is 

shown in solid black. The darker shaded region represents a factor of 2 deviation from the 1-

to-1 line. The lighter shaded region represents a factor of 5 deviation from the 1-to-1 line.  

  



Table S5. R2 for each regressor using their optimal features and model 

hyperparameters, and the weights/importance of fitted features. 

Case # OLS Ridge BRR SVR RFR GBR 

1 0.46 0.40 0.39 0.49 0.71 0.83 
 nO: 2.53 

ICO: -0.95 
log(C*): 2.96 
 

NICO: 0.42 NICO: 0.43 
 

NICO: 1.31 
mW: -1.12 
DBEpC: -0.79 
XC: 0.72 

nO: 0.52 
nH: 0.23 
H:C: 0.25 

nO: 0.30 
nH: 0.25 
H:C: 0.44 

2a 0.33 0.33 0.32 0.37 0.22 0.34 
 XC: 0.63 

H:C: 0.57 

NICO: 0.61 
log(C*): 0.84 

XC: 0.62 
H:C: 0.56 

NICO: 0.55 

log(C*): 0.77 

XC: 0.58 
H:C: 0.51 

NICO: 0.39 

log(C*): 0.61 

XC: 0.64 
H:C: 0.58 

NICO: 0.43 

log(C*): 0.64 

nO: 0.11 
H:C: 0.54 

NICO: 0.35 

XC: 0.38 
nC: 0.17 

NICO: 0.45 

2b 0.49 0.50 0.47 0.52 0.42 0.52 
 NICO: 1.92 

nH: 0.71 
XC: 0.57 
mW: -1.93 

VOCLMN: 0.18 
VOCTMB: -0.02 
VOCCresol: -0.18 

NICO: 1.13 
DBE: -0.50 
XC: 0.60 
log(C*): 0.81 

VOCLMN: 0.16 
VOCTMB: -0.01 
VOCCresol: -0.17 

NICO: 0.88 
DBE: -0.43 
XC: 0.56 
log(C*): 0.57 

VOCLMN: 0.16 
VOCTMB: -0.01 
VOCCresol: -0.18 

NICO: 1.23 
DBE: -0.59 
XC: 0.68 
log(C*): 0.91 

VOCLMN: 0.16 
VOCTMB: -0.03 
VOCCresol: -0.14 

H:C: 0.32 
nO: 0.22 
∆m: 0.28 
VOCLMN: 0.08 

VOCTMB: 0.04 
VOCCresol: 0.06 

H:C: 0.33 
O:C: 0.17 
PCO: 0.28 
VOCLMN: 0.15 

VOCTMB: 0.02 
VOCCresol: 0.05 

The R2 determined from the leave-one-out (LOO) cross-validation test is shown. For ordinary least square 

(OLS) regression, linear ridge regression (LRR), Bayesian ridge regression (BRR), and support vector 

regression (SVR), the weight for each feature is shown. For random forest (RFF) and gradient boosting 

regression (GBR), the importance is shown, which is a measure of the usefulness of a feature in constructing the 

decision tree. VOCLMN, VOCTMB, and VOCCresol are the one-hot encoded representation of the VOC identity. 

 Note that if we were to use the entire dataset to train and validate the model, the 

resultingR2 would be overly optimistic, as shown in Figure S11 especially for those obtained 

using the nonparametric regressors. 

 

Figure S11. Regression using the entire dataset 

Comparison of the predicted log(RF*
x) using the entire dataset with VOC label included as one 

of the features using (a) linear regression models and (b) nonparametric regression models. The 

optimal feature sets and hyperparameters used for each model are identical to those used for 

Figure S10 and Table S5, except that now each model was trained with the entire dataset to 

predict the entire dataset, instead of following the LOO procedure. The 1-to-1 line is shown in 

solid black. The darker shaded region represents a factor of 2 deviation from the 1-to-1 line. 

The lighter shaded region represents a factor of 5 deviation from the 1-to-1 line. 

 



For typical ambient measurements or chamber experiments with complex precursor 

mixtures, the VOC precursor identity is often not known without additional constraints (e.g. 

ion mobility or gas chromatography measurements supported with chemical reaction box 

models). The prediction capability of the regression model for an unknown VOC is examined 

in Figures S12a and S12b, using the TMB dataset as the “known” VOC system to predict the 

log(RF*
x) for the “unknown” cresol and limonene (LMN) systems. As shown in Figure S12a, 

while the regression models trained with TMB dataset tend to overestimate the log(RF*
x) for 

the cresol system, the predictions and observations are qualitatively consistent in terms of the 

relative log(RF*
x), likely due to the structural similarity of cresol and TMB, which would be 

reflected to varying degrees in their respective oxidation products. In contrast, regression 

models trained with the TMB dataset are unfit to predict the log(RF*
x) for the limonene 

oxidation products, as shown in Figure S12b.  

The effect of the VOC precursor on the predicted log(RF*
x) values, using the model 

trained in Case 2b (all data with digitized VOC label), for all CHO molecular formulae used 

for EESI-TOF spectral fitting is shown in Figures S12c and S12d. In general, the predicted 

log(RF*
x) trend in the same direction for all VOCs. The predicted effect of VOC precursor is 

distinct when a linear regressor is used, as shown in Figure S12d, where log(RF*
x) is treated as 

a linear combination of features, one of which is the digitized VOC precursor identity. When a 

decision-tree type regressor is used, the VOC precursor identity effect is not as simple, as 

shown in Figure S12c. Lastly, the combination of dataset from multiple VOC systems also 

affects the predicted log(RF*
x), as shown in Figure S12e and S12f for the TMB system. Linear 

models trained with the combined dataset (i.e. Case 2b) appear to (severely) underestimate the 

log(RF*
x) as compared to the models trained with a single VOC dataset (i.e. Case 1).  

Furthermore, regressors that performed reasonably well (e.g. LRR for Case 1) for the training 

dataset with a limited number of features (e.g. NICO) may be ill-equipped when predicting for 

a more diverse set of compounds, whose variabilities are only reflected in other features (e.g. 

optimal features for LRR in Case 2b, see Table S5). 

  



 

 

 

Figure S12. Prediction of all RF*
x  

(a) Comparison of the observed log(RF*
x) for cresol oxidation products with that predicted 

using gradient boosting regression (GBR) and the linear ridge regression (LRR) models trained 

with the TMB dataset (b) Same as (a) but for the limonene (LMN) system.  (c) Comparison of 

the log(RF*
x) for all molecular formulae used for EESI-TOF MS fitting predicted using the 

GBR model from Case 2b for different VOC systems, i.e. all feature values used during 



prediction were identical expect for that of the digitized VOC precursor identity. (d) Same as 

(c), but with the LRR model from Case 2b. (e) Comparison of the log(RF*
x) for all molecular 

formulae used for EESI-TOF MS fitting predicted using the GBR model from Case 1 and Case 

2b for TMB system only. (f) Same as (e), but with the LRR model from Case 1 and Case 2b. 

The optimal feature sets and hyperparameters used for each model are listed in Table S5. The 

1-to-1 line is shown in solid black. The darker shaded region represents a factor of 2 deviation 

from the 1-to-1 line. The lighter shaded region represents a factor of 5 deviation from the 1-to-

1 line. The case number indicated on the axis legend and in annotations indicate the how the 

model was trained as described throughout Tables S2-5. 

 

 

Figure S13. Comparison of estimated and observed OA concentration 

Comparison of the observed organic aerosol (OA) as measured by the AMS with the OA 

concentration estimated using EESI-TOF measurements converted from ions s-1 to μg m-3 

using the RF*
x (ions s-1 ppb-1) predicted using the gradient boosting regression (GBR) model. 

Conversion of ppb to molecules cm-3 is performed under standard conditions, i.e. 2.46∙1010 

molecules cm-3 per ppb. The 1-to-1, 2-to-1, and 3-to-1 lines are shown in solid black. Two 

versions of the regression models are used to predicted the RF*
x for TMB, one trained with 

single VOC dataset (Case 1) and one trained with combined VOC datasets where the VOC 

precursor identity is used as a training feature (Case 2b). 
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