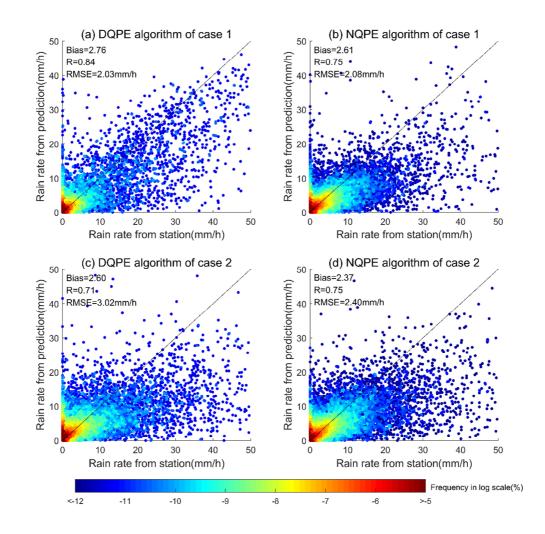


Supplement of

Leveraging machine learning for quantitative precipitation estimation from Fengyun-4 geostationary observations and ground meteorological measurements

Xinyan Li et al.

Correspondence to: Yuanjian Yang (yyj1985@nuist.edu.cn)

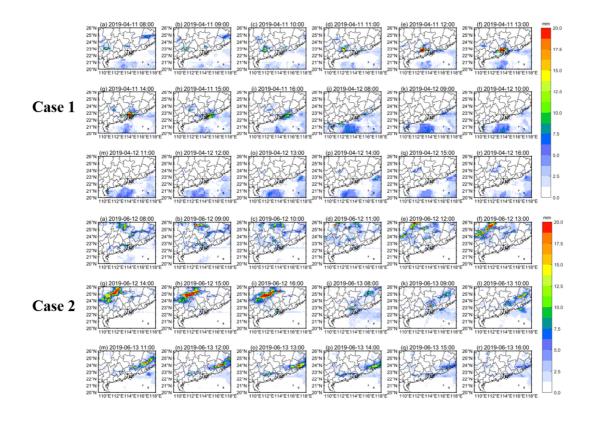

The copyright of individual parts of the supplement might differ from the article licence.

1 Figures and Tables

Level –	Rainfall in different periods		
	Rainfall in 1 hours	Rainfall in 24 hours	
light rainfall	< 0.1	< 0.1	
Light rain	0.1 ~ 1.5	0.1 ~ 9.9	
Moderate rain	$1.6 \sim 6.9$	$10.0 \sim 24.9$	
Heavy rain	$7.0 \sim 14.9$	$25.0 \sim 49.9$	
Rainstorm	15.0 ~ 39.9	$50.0 \sim 99.9$	
Heavy rainstorm	$40.0 \sim 49.9$	$100.0 \sim 249.9$	
Extraordinary rainstorm	≥50.0	≥250.0	

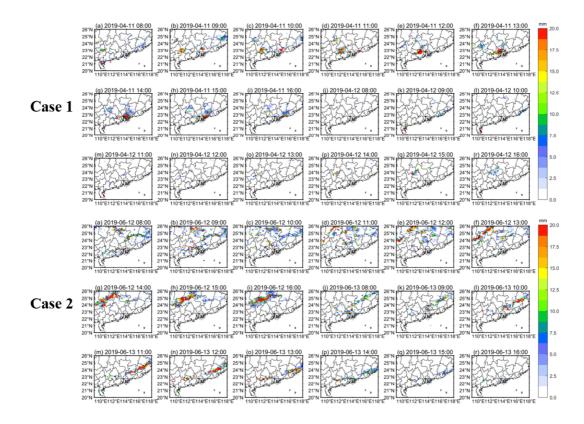
Channel	NO.	Band (µm)	Application
Visible&Near-Infrared	1	0.47	Cloud, Aerosol
	2	0.65	Cloud, Snow
	3	0.825	Cloud, Aerosol, Vegetation
	4	1.375	Cirrus
	5	1.61	Cloud, Snow
	6	2.25	Cirrus, Aerosol
Shortwave Infrared	7	3.75H	Fire
	8	3.75L	Clouds, Fog
Water Vapor	9	6.25	WV
	10	7.1	WV
Longwave Infrared	11	8.5	Sand dust
	12	10.7	Cloud
	13	12.0	Cloud
	14	13.5	Cloud

Table S2: Wavelengths of the 14 channels of the Fengyun-4 satellite and their application



8

9 Figure S1: Comparison of the precipitation measured by high-density automatic stations and that estimated by


10 the QPE algorithm: (a) DQPE algorithm of case 1; (b) NQPE algorithm of case 1; (c) DQPE algorithm of case 2;

- 11 (d) NQPE algorithm of case 2
- 12

15 Figure S2: Estimated precipitation of the DQPE algorithm: Case 1: (a–i) at 0800–1600 BJT on April 11; (j–r) at

16 0800–1600 BJT on April 12. Case 2: (a–i) at 0800–1600 BJT on June 12; (j–r) at 0800–1600 BJT on June 13.

- 20 Figure S3: Actual precipitation based on the high-density automatic stations: Case 1: (a-i) at 0800–1600 BJT on
- 21 April 11; (j–r) at 0800–1600 BJT on April 12. Case 2: (a–i) at 0800–1600 BJT on June 12; (j–r) at 0800–1600 BJT
- 22 on June 13.

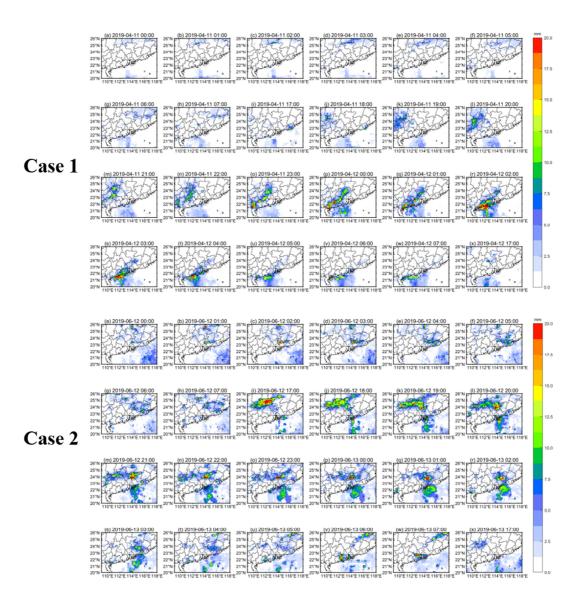
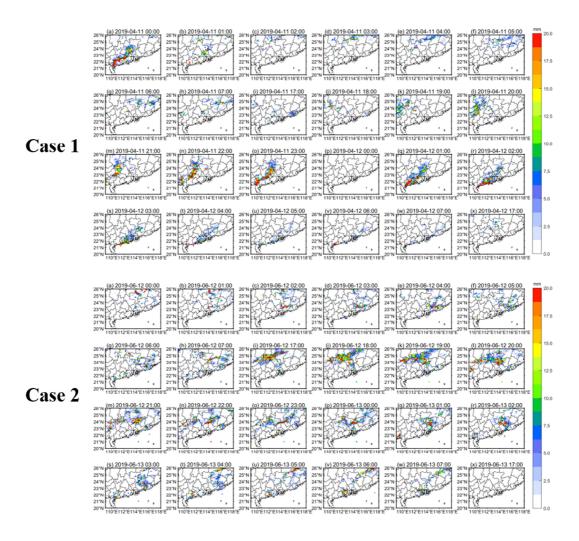
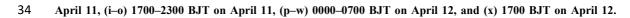




Figure S4: Estimated precipitation of the NQPE algorithm: Case 1: (a-h) 0000-0700 BJT on April 11, (i-o)
1700-2300 BJT on April 11, (p-w) 0000-0700 BJT on April 12, and (x) 1700 BJT on April 12. Case 2: (a-h)
0000-0700 BJT on June 12, (i-o) 1700-2300 BJT on June 12, (p-w) 0000-0700 BJT on June 13, and (x) 1700
BJT on June 13.

33 Figure S5: Actual precipitation based on the high-density automatic stations: Case 1: (a-h) 0000–0700 BJT on

- 35 Case 2: (a-h) 0000–0700 BJT on June 12, (i-o) 1700–2300 BJT on June 12, (p-w) 0000–0700 BJT on June 13,
- 36 and (x) 1700 BJT on June 13.

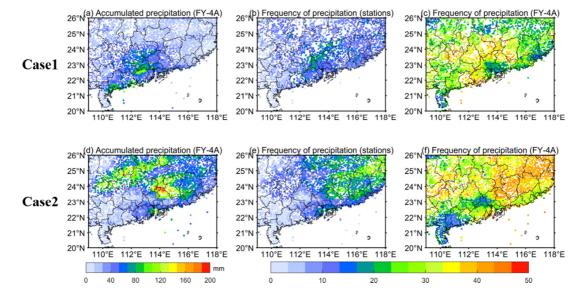
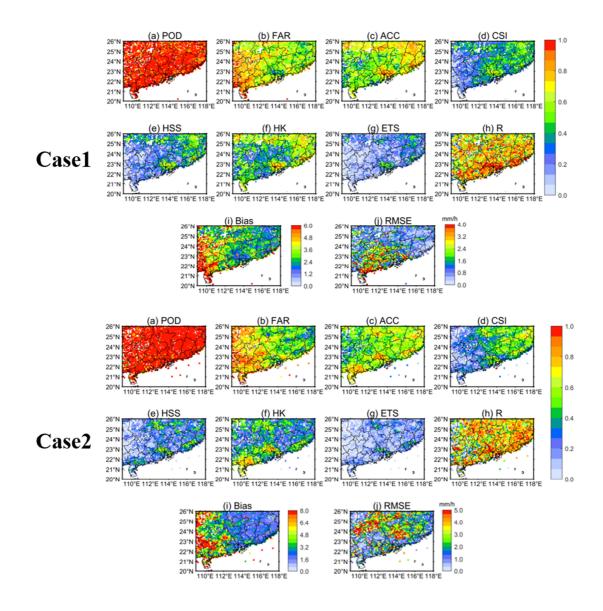



Figure S6: Spatial distribution of accumulated precipitation: (a) accumulated precipitation estimated by the QPE algorithm in case 1; (b) actual precipitation frequency observed by high-density automatic stations in case 1; (c) precipitation frequency estimated by the QPE algorithm in case 1; (d) accumulated precipitation estimated by the QPE algorithm in case 2; (e) actual precipitation frequency observed by high-density automatic stations in case 2; (f) precipitation frequency estimated by the QPE algorithm in case 2.

45

48 Figure S7: Spatial distribution of evaluation indicators of the QPE algorithm for all stations: Case 1: (a) *POD*; (b)

FAR; (c) *ACC*; (d) *CSI*; (e) *HSS*; (f) *HK*; (g) *ETS*; (h) *R*; (i) *Bias*; (j) *RMSE*. Case 2:(a) *POD*; (b) *FAR*; (c) *ACC*;

50 (d) *CSI*; (e) *HSS*; (f) *HK*; (g) *ETS*; (h) *R*; (i) *Bias*; (j) *RMSE*.

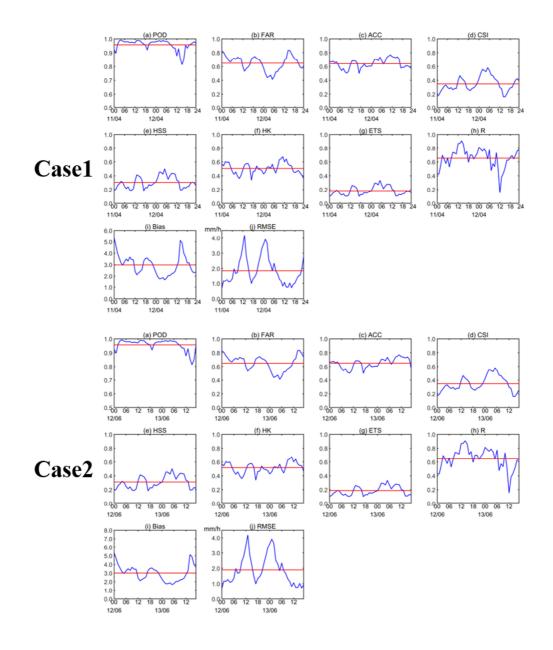


Figure S8: Time series of evaluation indicators of the QPE algorithm for all stations at each time: Case 1: (a) *POD*; (b) *FAR*; (c) *ACC*; (d) *CSI*; (e) *HSS*; (f) *HK*; (g) *ETS*; (h) *R*; (i) *Bias*; (j) *RMSE*. Case 2:(a) *POD*; (b) *FAR*;
(c) *ACC*; (d) *CSI*; (e) *HSS*; (f) *HK*; (g) *ETS*; (h) *R*; (i) *Bias*; (j) *RMSE*.