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Abstract. Deriving large-scale and high-quality precipita-
tion products from satellite remote-sensing spectral data is
always challenging in quantitative precipitation estimation
(QPE), and limited studies have been conducted even using
China’s latest Fengyun-4A (FY-4A) geostationary satellite.
Taking three rainstorm events over South China as exam-
ples, a machine-learning-based regression model was estab-
lished using the random forest (RF) method to derive QPE
from FY-4A observations, in conjunction with cloud param-
eters and physical quantities. The cross-validation results in-
dicate that both daytime (DQPE) and nighttime (NQPE) RF
algorithms performed well in estimating QPE, with the bias
score, correlation coefficient and root-mean-square error of
DQPE (NQPE) of 2.17 (2.42), 0.79 (0.83) and 1.77 mmh−1

(2.31 mmh−1), respectively. Overall, the algorithm has a
high accuracy in estimating precipitation under the heavy-
rain level or below. Nevertheless, the positive bias still im-
plies an overestimation of precipitation by the QPE al-
gorithm, in addition to certain misjudgements from non-
precipitation pixels to precipitation events. Also, the QPE
algorithm tends to underestimate the precipitation at the rain-
storm or even above levels. Compared to single-sensor algo-
rithms, the developed QPE algorithm can better capture the
spatial distribution of land-surface precipitation, especially
the centre of strong precipitation. Marginal difference be-
tween the data accuracy over sites in urban and rural areas
indicate that the model performs well over space and has no

evident dependence on landscape. In general, our proposed
FY-4A QPE algorithm has advantages for quantitative esti-
mation of summer precipitation over East Asia.

1 Introduction

Precipitation is an important element of weather and cli-
mate systems, as well as the global cycling of water and
energy (Hobbs, 1989; Fu et al., 2017; Yang et al., 2021).
Accurate precipitation observations are important to indus-
trial and agricultural production, water use, and flood and
drought monitoring (Behrangi et al., 2014; Gan et al., 2016;
Lolli at al., 2018, 2020). Traditional ground-station observa-
tions of precipitation possess extremely high measurement
accuracy on the point scale, but they cannot accurately re-
flect the precipitation on the surface scale owing to the sparse
distribution and network density of stations (Li et al., 2013;
Liu et al., 2013). Ground-based radar observations can give
the spatial and temporal distribution of precipitation within
a 300 km radius range, but their spatial coverage cannot be
scaled up to the global scale (Lee et al., 2015). With the
rapid development of remote sensing, meteorological satel-
lites have become the only viable way to observe precipi-
tation globally at both high spatial and temporal resolution
(Tang et al., 2016; Hou et al., 2014). However, large-scale
and high-quality precipitation products derived from satellite
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remote-sensing spectral data have always been a challenging
issue in satellite quantitative precipitation estimation (QPE)
(Lensky and Rosenfeld, 1995; Min et al., 2019).

With the constant improvement of meteorological satel-
lites, satellite-based QPE technology has developed greatly.
QPE satellite spectrum precipitation retrieval algorithms
can be divided into visible/infrared (VIS/IR), microwave
and multi-combined spectral signals (Kidd, 2010; Leviz-
zani et al., 2007). VIS/IR precipitation retrieval algorithms
mainly include the Geostationary Operational Environmen-
tal Satellite (GOES) Precipitation Index algorithm (Arkin
and Meisner, 2009), the GOES Multispectral Precipitation
Algorithm (Ba and Gruber, 2001), the Griffith–Woodley al-
gorithm (Griffith et al., 1978) and the Climate Estimation
Centre Merged Analysis of Precipitation algorithm (Xie and
Arkin, 2001). Rosenfeld and Gutman (1994) explored the
relationship between the effective radius of cloud retrieved
by NOAA satellites and precipitation and proposed that an
effective radius greater than 14 µm should be the threshold
for precipitation in the cloud. Previous studies have shown
that different cloud microphysical parameters are closely
related to the ground-level precipitation intensity, such as
the substantially positive correlation between cloud optical
thickness/cloud liquid water content/cloud effective radius
and the surface rain rate, while there is basically a nega-
tive correlation between the cloud-top temperature and sur-
face rain rate (Fu, 2014; Nauss et al., 2008; Rosenfeld and
Gutman, 1994; Rosenfeld et al., 2012; Yang et al., 2018).
Microwave precipitation retrieval algorithms include passive
microwave (PMW) precipitation retrieval methods such as
the Ferraro algorithm (Ferraro, 1997), Goda profile algo-
rithm (Kummerow et al., 2001), and the Passive Microwave
Neural Network Precipitation Retrieval approach for the EU-
METSAT Satellite Application Facility on Support to Oper-
ational Hydrology and Water Management (H-SAF) (Mug-
nai et al., 2013) as well as active precipitation retrieval
methods based on the Precipitation Radar (PR) carried on-
board the Tropical Precipitation Measuring Mission satel-
lite (Iguchi et al., 2000) and the Global Precipitation Mea-
surement (GPM) Core Observatory spacecraft (Sharifi et al.,
2016; Tan and Duan, 2017). Based on the higher temporal
sampling frequency of geostationary satellites, VIS/IR al-
gorithms are suitable for retrieving continuous precipitation
(Kidd, 2010), while PMW algorithms are better for retriev-
ing instantaneous precipitation with higher accuracy (Ebert
and Manton, 1996; Bauer et al., 1995), although PR also has
the disadvantage of a limited observation range and uncertain
parameters (Iguchi et al., 2009). Therefore, the development
of multi-spectral joint precipitation inversion algorithms can
make up for the shortcomings of single-sensor algorithms
(Michaelides et al., 2009; Holl et al., 2010).

Because precipitation is a highly complex process, how-
ever, there is a nonlinear relationship between the sur-
face precipitation intensity and cloud-top optical physical
variables, resulting in certain limitations in the precipita-

tion estimation equation constructed with statistical methods
(Atkinson and Tatnall, 1997). Machine learning is widely
used in satellite QPE (Kühnlein et al., 2014; Min et al.,
2019; Chen et al., 2019; Zhang et al., 2019; Sanò et al.,
2015), and the random forest (RF) model is a modern
machine-learning technique for classification and regres-
sion, as well as a combined self-learning technique, which
can easily capture the complex nonlinear relationship be-
tween observational and meteorological–environmental el-
ements (Breiman, 2001; Bai et al., 2019a, b). It has been
widely applied to QPE. For instance, Kühnlein et al. (2014)
divided data from the Spinning Enhanced Visible and In-
frared Imager carried onboard the Meteosat Second Gener-
ation satellite into day, dusk and nighttime to establish an
RF model and carry out QPE research, the results of which
demonstrated a good effect on the estimation of rain area and
convective precipitation. Min et al. (2019) used Himawari-
8 real-time multi-band infrared brightness temperature and
the Global Precipitation Measurement product to establish
a QPE method based on the RF model, from which it was
found that the accuracy of distinguishing the precipitation
area reached 0.87 and its average absolute error and mean
square error were 0.51 and 2.0 mmh−1, respectively. Thus,
there is strong evidence that the RF model can be applied
effectively in precipitation monitoring and forecasting. The
Fengyun-4 satellite (FY-4A), launched in December 2016,
is China’s second-generation geostationary meteorological
satellite, and carried onboard is the Advanced Geostationary
Radiation Imager (AGRI) with 14 spectrum detection bands,
covering the visible light, shortwave infrared, midwave in-
frared and longwave infrared bands. Thus far, QPE-based re-
search using FY-4A remains limited, especially in terms of
the lack of an RF-based FY-4A QPE framework.

South China is one of the regions in the country with the
longest rainy season, the most abundant precipitation and fre-
quent heavy rains. Affected by the westerly wind system and
the East Asian subtropical monsoon, the period from April to
June each year is the first rainy season (or the first flood sea-
son) in South China. Therefore, it is important to strengthen
the study of precipitation estimation and monitoring meth-
ods in the first flood season in South China. In the present
work, taking South China (20–26◦ N, 109–118◦ E) as the re-
search area, an RF algorithm model for FY-4A QPE is pro-
posed by using the spectral reflectance observations of FY-
4A/AGRI, meteorological environmental physical quantities
from the fifth major global reanalysis produced by the Euro-
pean Centre for Medium-Range Weather Forecasts (ERA5)
and a precipitation dataset observed by a high-density auto-
matic station network with hourly resolution. The aims of
this study are to further improve the multi-spectral monitor-
ing level of the FY-4A satellite and provide a scientific basis
for improving the disaster prevention and mitigation capabil-
ities of the FY-4A satellite.
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2 Data and methods

2.1 Rainstorm cases

Rainstorms occurred frequently during the first flood sea-
son in South China in 2019, causing huge loss of life and
property. We selected three rainstorms in South China dur-
ing 2019 that had a long period of precipitation with a large
coverage area. They are as follows: Case 1, 11–12 April 2019
(China standard time; if not specified, China standard time is
used); Case 2, 12–13 June 2019; Case 3, 23–24 June 2019.
In addition to 215 national operated meteorological stations,
there are also 4706 automatic stations over the study re-
gion, with a mean distance between them of less than 10 km
(Fig. 1). Also, stations are deployed with higher density in
the urban built-up area relative to the rural area. For the
high-density automatic station precipitation data in the range
of 20–26◦ N and 109–118◦ E, after filtering and deleting the
missing and mis-detected data, the number of automatic sta-
tions for the three cases was 4263, 4610 and 4623, respec-
tively. The distribution of high-density automatic stations
throughout the country and in the research area is shown
in Fig. 1, and the spatial distributions of precipitation dur-
ing the three South China rainstorms are shown in Fig. 2.
The red shading in Fig. 1 shows the built-up area in South
China, which was extracted using nighttime light (NTL) data
obtained by the Visible Infrared Imaging Radiometer Suite
(VIIRS) on board the Suomi National Polar Orbiting Part-
nership (NPP) satellite. In Case 1 (Fig. 2a), large-scale heavy
precipitation mainly occurred in the southern coastal area of
Guangdong Province. From north to south, there were three
bands of precipitation extremes, and the accumulated precip-
itation gradually decreased from southwest to northeast. In
total, 159 automatic stations recorded precipitation exceed-
ing 100 mm within 48 h, and the maximum precipitation in
Jiujiang Town, Foshan City (22.83◦ N, 112.99◦ E), on the or-
der of 192 mm, reached rainstorm levels. (The specific rain-
fall classification of is supplied in Table S1 in the Supple-
ment.)

In Case 2 (Fig. 2b), there was a belt of accumulated heavy
precipitation in the northwest mountainous area and a large
area of heavy precipitation in the northeast of the central ur-
ban area. The 48 h automatic station precipitation amounts
in these two concentrated heavy-precipitation areas both ex-
ceeded 100 mm, which meant that the precipitation intensity
met the heavy-rain level (see Table S1, also regarding the fol-
lowing description of precipitation level). The precipitation
of 492 automatic stations exceeded 100 mm within 48 h, and
the maximum precipitation was 318.7 mm in Fogang County,
Qingyuan City (23.91◦ N, 113.93◦ E).

In Case 3 (Fig. 2c), there were three heavy-precipitation
areas that met the heavy-rain level. The heavy-precipitation
area on the west side extended from Yulin City to the
southeast to the north of Maoming City. The distribution of
high-density automatic stations in this area is sparse. The

longitude and latitude of the maximum precipitation sta-
tion were 22.59◦ N, 111.04◦ E, and the precipitation in 48 h
was 149.3 mm. A central heavy-precipitation area covered
Guangzhou and its surrounding urban areas with high pop-
ulation density, where the distribution of automatic stations
is extremely dense. The longitude and latitude of the maxi-
mum precipitation station were 23.28◦ N, 113.57◦ E, and the
precipitation in 48 h was 220.5 mm. On the east side, a strong
precipitation centre formed in the southwest of Longyan City
and connected with Meizhou City to the west. The underly-
ing surface is mountainous, meaning that the distribution of
automatic stations in this area is sparse. The longitude and
latitude of the maximum precipitation station were 24.65◦ N,
116.17◦ E, and the precipitation in 48 h was 239.4 mm. Three
strong rainfall areas obviously met the heavy-rain levels. The
precipitation of 644 automatic stations exceeded 100 mm
within 48 h, and the maximum precipitation was 239.4 mm
in the Haizhu District of Guangzhou (23.10◦ N, 113.30◦ E).

Among the three cases, Case 1 had a small distribution of
heavy precipitation, and the accumulated precipitation was
the smallest among the three cases. Case 2 had 29 stations
with a 48 h accumulated precipitation exceeding 200 mm and
with more extreme heavy precipitation. Case 3 had the largest
number of stations meeting the rainstorm level and had a
wide distribution. The types of underlying surface covered by
the precipitation were diverse, and the centre of the rainstorm
was located in the central urban agglomeration and densely
populated areas, which meant that the threat to human life
and property was high, so Case 3 is more typical and rep-
resentative and can serve as a case study for the other two
cases. This paper therefore takes the heavy-rain process of
23–24 June as an example to discuss the QPE method of FY-
4A based on the RF model and physical quantities. The esti-
mation and validation results of the RF model for Case 1 and
Case 2 are provided in the Supplement.

2.2 Data

The 14 bands of FY-4A/AGRI have different detection pur-
poses and can identify different spectral characteristics of
different surfaces, clouds or atmospheres (Table S2 in the
Supplement). FY4A/AGRI takes about 15 min to perform a
full-disk image observation and has a maximum spatial reso-
lution of 500 m. FY4A/AGRI provides a level-1 dataset with
resolutions of 500 m and 1, 2 and 4 km at nadir. For the level-
2 dataset, it provides a resolution of 4 km at nadir. These
values meet the requirements for the spatial and temporal
resolution of satellite monitoring of rainstorms. In order to
train the RF model, we used the FY-4A/AGRI full-disk data
with a temporal resolution of 1 h and spatial resolution of
4km×4 km during the study period, which contains 14 bands
of radiation brightness temperature and reflectance informa-
tion. At the same time, the combined channel information
was constructed based on the level-1 data.
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Figure 1. Distribution of automatically operated meteorological stations over the study area.

Figure 2. Spatial distribution of precipitation during the three South China rainstorms: (a) 11–12 April 2019; (b) 12–13 June 2019; (c) 23–
24 June 2019.

Due to the indirect link between the surface rain rate and
the cloud-top brightness temperature (Thies et al., 2008),
the inversion accuracy is limited. To ensure the stability of
training and estimation as well as improve the estimation
accuracy, according to existing research (Kühnlein et al.,
2014; Min et al., 2019), four level-2 cloud parameter prod-
ucts (cloud-top temperature (CTT), cloud-top height (CTH),
cloud type (CLT) and cloud phase (CLP)) observed in real
time from FY-4A were selected. For each cloud parameter
product, the temporal resolution is 1 h and the spatial resolu-
tion 4km× 4 km, which is consistent with the level-1 data.
CTT and CTH are the cloud-top temperature and height in-
formation of cloud pixels obtained by the inversion of AGRI
infrared channel data, which can be used to determine the
likelihood of cloud growth, extinction and precipitation. CLT
is four different cloud phases generated from AGRI infrared
channel data – namely, warm liquid water (> 0◦), super-
cooled liquid water, mixed phase and ice phase. CLP uses
data from multiple infrared channels of AGRI to obtain six
different cloud types through a series of spectral and spa-
tial tests: water, supercooled water, mixed, thick ice, thin ice

and multi-layer ice. CLT and CLP are commonly used to de-
tect and track changes in water vapour composition in clouds
and extreme weather estimation to improve extreme weather
warning capabilities.

In addition to the FY-4A/AGRI observation data, this pa-
per also uses physical quantities from ERA5 to further im-
prove the performance of the QPE algorithm. These data
have a horizontal resolution of 0.25◦× 0.25◦, a vertical res-
olution of 37 layers and a temporal resolution of up to
1 h. ERA5 is widely used in the study of weather and cli-
mate change. According to previous studies (Min et al.,
2019; Kanamitsu, 1989), we introduce some ERA5 re-
analysis data to further and better support QPE, includ-
ing six physical weather indexes, which can effectively de-
scribe the atmospheric heat (K index), dynamics (convective
available potential energy (CAPE); eastward turbulent sur-
face stress (EWSS)), humidity (total column water vapour
(TCWV); total column water (TCW)) and topographic fea-
tures (anisotropy of sub-gridscale orography (ISOR)). These
indexes are closely associated with the initiation and devel-
opment of clouds that produce rain (Zhang, 2003; Roman
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et al., 2016). In order to improve the generalisation ability
of the algorithm precipitation estimation and solve the differ-
ence of algorithm precipitation estimation in plain and moun-
tain areas, this paper introduces the digital elevation model
(DEM) as one of the input variables. It is the digital expres-
sion of surface morphology and contains rich topographic
and geomorphic information.

2.3 RF model design

A data-driven regression model was established between the
observed precipitation and satellite data as well as cloud pa-
rameters using the RF method. The essence of the RF data
estimation model is as follows.

The input variables to the RF model are shown in Ta-
ble 1, including geographic information, channel informa-
tion, combined channel information, cloud parameter prod-
ucts and ERA5 data. A daytime quantitative precipitation es-
timate (DQPE) algorithm and a nighttime quantitative pre-
cipitation estimate (NQPE) algorithm were constructed sep-
arately, due to different input variables between daytime and
nighttime. The DQPE algorithm is used to estimate the pre-
cipitation from 08:00 to 16:00, and the NQPE algorithm is
used to estimate the remaining time periods. The visible light
channel at nighttime cannot produce valid observational in-
formation, so the NQPE algorithm removes these variables.
The CTT gradient (CTTG) in the combined channel infor-
mation is closely related to the rain rate, defined as follows
Eq. (1):

CTTG =
{[

T (i+ 1,j)− T (i− 1,j)
]2

+
[
T (i,j + 1)− T (i,j − 1)

]2} 1
2
, (1)

where T represents the spectral brightness temperature of
10.7 µm and i and j represent the pixel position.

We selected the 1 h temporal resolution high-density auto-
matic station geographic and precipitation information, satel-
lite observation data, and ERA5 reanalysis data to input into
the QPE algorithm for precipitation estimation. The spatial
resolution of FY-4A/AGRI is 4km×4 km, the spatial resolu-
tion of ERA5 is 0.25◦× 0.25◦, and the spatial resolution of
DEM is 1km×1 km. Due to this difference in spatial resolu-
tion, the above-mentioned data needed to be interpolated to
construct a dataset that was synchronised in time and space.
According to a previous study (Liu et al., 2020), the differ-
ences between a diverse interpolation methods are small for
high-density automatic stations, with the effect of interpola-
tion depending mainly on the station distribution rather than
the interpolation method itself. In this paper, for matching
input variables with precipitation data, we employed spline
interpolation on the satellite data to match the in situ precipi-
tation measurement, while we used the averaged value of the
four nearest grids of ERA5 data and DEM data around each

weather station to match the in situ precipitation measure-
ment and satellite data at each pixel.

Ten indicators are defined to judge the accuracy of the
QPE algorithm (Table 2). In order to quantitatively eval-
uate the classification results of precipitation and non-
precipitation pixels, we introduce eight classical metrics:
bias score (Bias, Bias= 1 unbiased, Bias < 1 underesti-
mation, Bias > 1 overestimation), probability of detection
(POD, optimal= 1), false alarm ratio (FAR, optimal= 0), ac-
curacy (ACC, optimal= 1), Critical Success Index (CSI, op-
timal= 1), Heidke Skill Score (HSS, optimal= 1), Hanssen
and Kuiper (HK, optimal= 1), and Equitable Threat Score
(ETS, optimal= 1). Among them, when POD or FAR take
the optimal value, the algorithm cannot be determined as
the optimal estimation. When ACC or CSI take the optimal
value, the algorithm can be determined as the optimal esti-
mation. HSS, HK and ETS are all commonly used to evalu-
ate the estimating ability of algorithms as skill scores. HSS
compares the accuracy between the algorithm and a random
estimation as reference by the accuracy score ACC, and ETS
compares the accuracy between the algorithm and another
random estimation as reference by the accuracy score CSI.
When HSS > 0 or ETS > 0, the algorithm is skilful and its
estimation ability is better than random estimation as ref-
erence. HK is defined as the difference between POD and
probability of false detection (POFD). When HK > 0, the al-
gorithm is skilful, and when HK= HSS, the algorithm gives
an unbiased estimation. There are two other indicators that
can be used to quantitatively evaluate the accuracy of pre-
cipitation estimation based on the QPE algorithm. They are
the correlation coefficient (R, optimal= 1) and root-mean-
square error (RMSE, optimal= 0).

The establishment of the RF model needs to determine two
important parameters – namely, the number of input variables
of tree nodes, mtry, and the number of decision trees, ntree.
Besides, the larger the mtry, the smaller the overfitting effect
of the RF algorithm; while the larger the ntree, the smaller the
difference between the submodels. The value of mtry should
be smaller than the value of the input variable. In general,
mtry values are 1, k/2, 2√

k and log2(k)+ 1, etc., where k is
the number of variables input into the model. We selected
k/2 as the number of input variables of the tree node; that
is, mtry= 17. The number of decision trees, ntree, is ideally
classified when the value of ntree is between 500 and 800.
We set it to 550.

We randomly created mtry pieces of variables for the bi-
nary tree on the node, and the choice of the binary tree vari-
ables still meets the principle of minimum node impurity.
The bootstrap self-help method is applied to randomly select
ntree sample sets from the original dataset to form a decision
tree of ntree, and the unsampled samples are used for the
estimation of a single decision tree. Samples are classified
or predicted according to the RF composed of ntree decision
trees. The principle of classification is the voting method, and
the principle of estimation is the simple average.

https://doi.org/10.5194/amt-14-7007-2021 Atmos. Meas. Tech., 14, 7007–7023, 2021



7012 X. Li et al.: Leveraging machine learning for FY-4A QPE

Table 1. Variables used in the QPE algorithm.

Variables

Geographic information Longitude, latitude, DEM
Channel information of AGRI T0.47∗, T0.65∗, T0.825∗, T1.375∗, T1.61∗, T2.25∗, T3.75H, T3.75L, T6.25, T7.1, T8.5, T10.7,

T12.0, T13.5
Combined information of AGRI T6.25–T10.7, T8.5–T10.7, T7.1–T12.0, T12.0–T10.7, T3.75L–T7.1, T3.75L–T10.7, CTTG
Cloud parameters of AGRI CTT, CTH, CLT, CLP
ERA5 ISOR, CAPE, EWSS, K index, TCW, TCWV

Notation: asterisk (∗) indicates that the variable does not appear in the NQPE algorithm.

Table 2. Evaluation metrics used in this study.

Evaluation metric Equation

Bias Bias= A+B
A+C

POD POD= A
A+C

FAR FAR= B
A+B

ACC ACC= A+D
A+B+C+D

CSI CSI= A
A+B+C

HSS HSS= ACC−Aref1
1−Aref1

, Aref1 =
(A+B)(A+C)+(C+D)(B+D)

A+B+C+D

HK HK= POD−POFD= AD−BC
(A+C)(B+D)

, POFD= B
B+D

ETS ETS=
CSI− Aref2

A+B+C

1− Aref2
A+B+C

=
A−Aref2

A+B+C−Aref2
, Aref2 =

(A+B)(A+C)
A+B+C+D

R R =

∑n
i=1(Gi−Ḡ)(Si−S̄)∑n

i=1(Gi−Ḡ)
∑n

i=1(Si−S̄)

RMSE RMSE=

√
1
n

n∑
i=1

(Gi − Si)
2

Notation: A is the number of imagery pixels identified by both the stations and the QPE algorithm as
precipitation; B is the number of imagery pixels identified by the QPE algorithm as precipitation but not by
the stations; C is the number of imagery pixels identified by the stations as precipitation but not by the QPE
algorithm; D is the number of imagery pixels identified by both the stations and the QPE algorithm as
non-precipitation. Gi is the precipitation observed by stations; Si represents the precipitation estimated by the
QPE algorithm.

Finally, Fig. 3 summarises the flowchart for the QPE al-
gorithm using the RF model. According to previous stud-
ies (Yang et al., 2020; Zeng et al., 2020), a 10-fold cross-
validation (10-fold CV) method was used to test the model
estimation performance. The 10-fold CV method makes
maximum use of the existing sample data and ensures that
each sample is used as a training sample and a test sample, re-
spectively, effectively avoiding the result of overfitting. The
training set was input into the RF model, and the QPE algo-
rithm with the highest estimation accuracy was constructed
by performing 10-fold CV. The testing set was input into the
RF model to obtain the precipitation estimation of each pixel
and judge whether the pixel was a precipitation pixel. For a
pixel with precipitation intensity greater than 0.1 mmh−1, it

was judged as a precipitation pixel; otherwise, it was judged
as a non-precipitation pixel.

3 Results

3.1 RF model evaluation

This paper uses 10-fold CV to evaluate the accuracy of pre-
cipitation estimation. Figure 4 compares the precipitation ob-
servations of the high-density automatic stations in the train-
ing set and the testing set with the precipitation estimation of
the QPE algorithm in the 10-fold CV of the DQPE algorithm
and the NQPE algorithm, in which the colour bar represents
the occurrence frequency on a log scale with an interval of

Atmos. Meas. Tech., 14, 7007–7023, 2021 https://doi.org/10.5194/amt-14-7007-2021
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Figure 3. Flowchart for the QPE algorithm using the RF model.

0.5 mmh−1. In the training set, the Bias, R and RMSE of the
DQPE (NQPE) algorithm are 1.75 (1.95), 0.97 (0.98) and
0.77 mmh−1 (1.00 mmh−1), respectively. In the testing set,
the Bias, R and RMSE of the DQPE (NQPE) algorithm are
2.17 (2.42), 0.79 (0.83) and 1.77 mmh−1 (2.31 mmh−1), re-
spectively. For the heavy-rain level and below precipitation
observation samples, the large amount of precipitation obser-
vations and estimations are close to the 1 : 1 line. It reflects
that the algorithm has a high quantitative estimation ability
for precipitation of heavy-rain level and below. Bias values
are all greater than 1, reflecting that the QPE algorithm tends
to overestimate precipitation events. The feature of the al-
gorithm overestimating precipitation events is mainly mani-
fested in weak precipitation and non-precipitation pixels. For
example, there are obviously a large number of observation
sample points without precipitation in Fig. 4, and their pre-
cipitation estimation is too high. When the precipitation ob-
servations reach the rainstorm level and above, the QPE al-
gorithm tends to underestimate the precipitation. This kind of
estimation error can be reduced by secondary training. In ad-
dition, it is found that there exists a notable difference in the
performance between testing and training for the QPE algo-
rithm. This gap is suspected to be caused by overfitting that
is possibly related to the high complexity of the RF model
(Lao et al., 2021). The effect of the QPE algorithm on Case 1
and Case 2 is shown in Fig. S1 in the Supplement.

Table 3 shows the evaluation metrics in a training set and
a testing set of the DQPE (NQPE) algorithm. The POD of
the QPE algorithm is 0.98 and above, and the FAR is around
0.5. As to the precipitation pixels, the QPE algorithm can
accurately identify them; but for the precipitation pixels es-
timated by the QPE algorithm, the probability that the pixel
has precipitation is about 50 %. The ACC reaches 0.6 and
above, indicating that for more than 60 % of the data sam-
ples, the QPE algorithm can accurately distinguish between
precipitation and non-precipitation pixels. The CSI is 0.4 and
above, which means that the accurately estimated precipita-
tion pixel samples account for more than 40 % of all observed
and estimated precipitation pixel samples. HK reflects the
difference between POD and the probability of false detec-
tion (POFD). The HK of the QPE algorithm is around 0.5 and
above, indicating that the proportions of correct estimations
in all precipitation pixels are far greater than the proportions
of incorrect estimations in all non-precipitation pixels. HSS
(ETS) reaches 0.3 and above (0.2 and above), reflecting that
the QPE algorithm is skilful and better than random estima-
tion as a reference (Aref1 and Aref2 in Table 2). The evalua-
tion metrics of the QPE algorithm for Case 1 and Case 2 are
shown in Table S2 in the Supplement.
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Figure 4. Comparison of the precipitation measured by high-density automatic stations and that estimated by the QPE algorithm: (a) training
set of DQPE; (b) testing set of DQPE; (c) training set of NQPE; (d) testing set of NQPE. Colour bar: occurrence frequency (on a log scale)
at intervals of 0.5 mmh−1.

Table 3. Evaluation metrics in training set and testing set of DQPE (NQPE) algorithm.

Model name POD FAR ACC CSI HSS HK ETS

Training set of DQPE 1.00 0.43 0.78 0.57 0.57 0.69 0.39
Testing set of DQPE 0.98 0.55 0.65 0.45 0.37 0.50 0.23
Training set of NQPE 1.00 0.49 0.76 0.51 0.51 0.67 0.35
Testing set of NQPE 0.98 0.59 0.63 0.40 0.33 0.49 0.20

3.2 Application of the RF model to QPE

Figure 5 shows the hourly precipitation distribution as esti-
mated by the DQPE algorithm, and Fig. 6 shows the actual
precipitation observations at high-density automatic stations
in the daytime, with a temporal resolution of 1 h. Compari-
son of Figs. 5 and 6 shows that the precipitation estimation
of the DQPE algorithm is consistent with the actual precip-
itation observations at high-density automatic stations, and
the DQPE algorithm can capture the precipitation range well.
However, when the precipitation exceeds 20 mmh−1, the
algorithm obviously underestimates the precipitation. This
means that the algorithm can only roughly estimate the lo-

cation and range of extreme precipitation pixels but cannot
accurately and quantitatively estimate extreme precipitation.
This is similar to the results of previous studies (Kühnlein
et al., 2014; Min et al., 2019). At 11:00–16:00 on 24 June, the
precipitation centre gradually moved to the sea surface. Due
to the lack of geographic information provided by the high-
density automatic stations for training at the sea surface, the
accuracy of the estimation is low. However, for land-surface
precipitation, the size, location and coverage of the precipi-
tation estimated by the DQPE algorithm is highly consistent
with the actual precipitation observations. The precipitation
estimation in Case 1 and Case 2 by the DQPE algorithm is
shown in Fig. S2 in the Supplement. The distribution of the
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measured precipitation in the daytime from the high-density
automatic stations in Case 1 and Case 2 is shown in Fig. S3
in the Supplement.

Figure 7 shows the hourly distribution of precipitation as
estimated by the NQPE algorithm, and Fig. 8 shows the ac-
tual precipitation observed at the high-density automatic sta-
tions at nighttime. Comparing Figs. 7 and 8, a conclusion
similar to that from the DQPE algorithm can be obtained.
The precipitation estimation of Case 1 and Case 2 by the
NQPE algorithm is shown in Fig. S4 in the Supplement.
The distribution of precipitation at nighttime observed by
the high-density automatic stations in Case 1 and Case 2 is
shown in Fig. S5 in the Supplement. In general, the estima-
tion ability of the QPE algorithm is strong over the land sur-
face. This proves the applicability and feasibility of estab-
lishing an RF model and training the QPE algorithm based
on the model variables in Table 1.

3.3 Verification of the QPE

In order to further analyse the factors that affect the esti-
mation accuracy of the QPE algorithm, we selected three
city stations as research targets: Guangzhou (23.13◦ N,
113.30◦ E), Shantou (23.38◦ N, 116.50◦ E) and Zhuhai
(22.28◦ N, 113.57◦ E). At the same time, we selected
three rural stations as research targets: Datian (25.80◦ N,
117.93◦ E), Lianshan (24.63◦ N, 112.03◦ E) and Jinxiu
(24.09◦ N, 109.99◦ E). Figure 9 shows the actual precipita-
tion observations of these six stations and the accumulated
precipitation estimated by the QPE algorithm for 48 consec-
utive hours. Based on the precipitation observations and esti-
mations at each time of 48 h, we used Bias, R and RMSE to
evaluate the ability of the algorithm for precipitation estima-
tion. For the six research sites, Bias values are all greater than
1, reflecting that the algorithm tends to overestimate precipi-
tation events, which is consistent with the conclusion above.
Based on R and RMSE, there is no obvious difference be-
tween city sites and rural sites. The time and size of the cu-
mulative precipitation changes in the six research sites are
almost the same, reflecting that the algorithm has a strong
quantitative estimation ability and does not change with city
and rural areas. We may think that the precipitation estima-
tion ability of the algorithm is less affected by the difference
between city and rural areas.

Figure 10a presents the 48 h accumulated precipitation es-
timated by the QPE algorithm. Compared with Fig. 2c, all
three heavy-precipitation centres are estimated, and the area
and intensity in the precipitation estimations and in the ac-
tual observations are basically the same. It shows that the
algorithm has strong potential in accurately estimating the
intensity and range of precipitation. Figure 10b and c, re-
spectively, represent the actual precipitation frequency ob-
served by the high-density automatic stations and that esti-
mated by the QPE algorithm. The results indicate that the
frequency of precipitation in the northeast of the study area

is relatively greater and vice versa in the southwest. The pre-
cipitation frequency estimated by the QPE algorithm is gen-
erally greater than observed. This is because there are more
non-precipitation events for most stations and the algorithm
often incorrectly judges non-precipitation areas as weak pre-
cipitation stations as Bias is greater than 1, resulting in a pos-
itive bias in the precipitation frequency estimated by the QPE
algorithm at each station. The spatial distribution of accumu-
lated precipitation in Case 1 and Case 2 is shown in Fig. S6
in the Supplement.

Figure 11 shows the spatial distribution of evaluation indi-
cators of the QPE algorithm for all stations. Except that the
POD of almost all stations is close to 1 in Fig. 11a, the spatial
distribution of the rest of the evaluation indicators has obvi-
ous correlation. In Fig. 11b and i, the spatial distribution of
FAR and Bias has a significant negative correlation with ac-
cumulated precipitation. FAR is often lower and Bias tends
to 1 in areas with more accumulated precipitation, such as
the three heavy-precipitation centres in the precipitation pro-
cess mentioned above. By contrast, the FAR and Bias are
higher in areas with less accumulated precipitation, such as
the southwest coastal area. According to the FAR and Bias
calculation formula (Table 2), this reduces the FAR and Bias
by increasing the number of precipitation pixels detected by
both stations and the QPE algorithm. There is a low-FAR
and low-Bias zone in the mountainous area in the northwest
of the study area, which does not have the above character-
istics. Combined with the results shown in Fig. 8a–h, we can
see that there has been weak precipitation in the area for at
least 8 consecutive hours. According to the FAR and Bias
calculation formula (Table 2), this reduces the FAR by re-
ducing the number of precipitation pixels that are not de-
tected by the stations but are detected by the QPE algorithm.
Therefore, FAR and Bias are negatively correlated with pre-
cipitation intensity and duration. When the precipitation in-
tensity is greater and the duration is longer, the FAR of the
QPE algorithm is lower, the Bias gets closer to 1, and the de-
viation by which the QPE algorithm accurately distinguishes
between precipitation and non-precipitation pixels is smaller.

The spatial distribution of ACC, CSI, HSS, HK and ETS
has an obvious positive correlation with accumulated precip-
itation. According to Fig. 11c and d, the QPE algorithm cor-
rectly estimated that the precipitation pixels accounted for
a relatively high proportion in the three heavy-precipitation
centres and the northwest mountainous area, indicating that
for heavy convective precipitation and long-lasting strati-
graphic clouds precipitation, the QPE algorithm’s ability
to accurately distinguish between precipitation and non-
precipitation pixels is stronger. The higher value positions
in Fig. 11e, f and g are basically the same as Fig. 11c and d.
However, for areas with heavy precipitation in the northeast,
the values of HSS, HK and ETS are relatively low. This is be-
cause the heavy-precipitation area in the northeast has higher
precipitation frequency during the study period (Fig. 10b),
which makes the random estimation improve the probabil-
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Figure 5. Estimated precipitation of the DQPE algorithm at (a–i) 08:00–16:00 CST on 23 June and (j–r) 08:00–16:00 CST on 24 June.

Figure 6. Actual precipitation based on high-density automatic stations at (a–i) 08:00–16:00 CST on 23 June and (j–r) 08:00–16:00 CST on
24 June.

ity of accurately estimating the precipitation pixels. Then the
advantage of ACC and CSI over random estimation will be
weakened, and this results in low HSS and ETS values. The
higher precipitation frequency in the northeast leads to a de-
crease in the number of imagery pixels identified by both
the stations and the QPE algorithm as non-precipitation. This
results in high POFD values. When the POD remains un-
changed (Fig. 11a), the value of HK decreases. Comparing
Fig. 11e and f, the heavy-precipitation area in the northeast
basically satisfies HSS= HK, which means that the algo-
rithm in the northeast is an unbiased estimation. In summary,
although the values of HSS, HK and ETS in the northeast are
relatively low, the algorithm still has a high ability to distin-
guish between precipitation and non-precipitation pixels.

For Fig. 11h, there are 2660 stations with R > 0.8, ac-
counting for 59.45 %, and 600 stations with R < 0.6, ac-

counting for 14.41 %. Comparing Fig. 11b to g, the stations
with lower R have relatively higher FAR and Bias and lower
ACC, CSI, HSS, HK and ETS. The 48 h accumulated precip-
itation of these stations is less than 12.5 mm, and the accu-
mulated precipitation is less than 5 h. This basically means
that, during this precipitation process, these stations are in
atypical stratus cloud or a convective precipitation process,
and the precipitation efficiency is extremely low. For non-
precipitation areas in a heavy-precipitation process, the QPE
algorithm tends to judge them as weak precipitation areas,
this shows that the algorithm overestimations the precipita-
tion areas. Although the QPE algorithm tends to overesti-
mate the weak (non-) precipitation area and underestimate
the heavy-precipitation area, the absolute error for the under-
estimated heavy-precipitation area is much larger than the
overestimated weak (non-) precipitation area. Therefore, the
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Figure 7. Estimated precipitation of the NQPE algorithm at (a–h) 00:00–07:00 CST on 23 June, (i–o) 17:00–23:00 CST on 23 June, (p–
w) 00:00–07:00 CST on 24 June and (x) 17:00 CST on 24 June.

Figure 8. Actual precipitation based on high-density automatic stations at (a–h) 00:00–07:00 CST on 23 June, (i–o) 17:00–23:00 CST on
23 June, (p–w) 00:00-07:00 CST on 24 June and (x) 17:00 CST on 24 June.

spatial distribution of RMSE in Fig. 11j is highly consis-
tent with the spatial distribution of 48 h accumulated precip-
itation in Fig. 2c. The stations with an RMSE greater than
1.6 mmh−1 in Fig. 11j are basically connected together, and
their coverage is basically the same as the area covered by

the stations with a 48 h accumulated precipitation exceeding
50 mmh−1 in Fig. 2c.

In summary, the estimating ability of the QPE algorithm
is as follows: (1) for convective precipitation or stratus con-
vective mixed precipitation with long duration, high inten-
sity and high efficiency, such as in Guangzhou and nearby
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Figure 9. Accumulated precipitation in different areas: (a–c) city stations; (d–f) rural stations.

Figure 10. Spatial distribution of accumulated precipitation: (a) accumulated precipitation estimated by the QPE algorithm; (b) actual
precipitation frequency observed by high-density automatic stations; (c) precipitation frequency estimated by the QPE algorithm.

urban areas in Case 3, the algorithm has high POD, ACC,
CSI, HSS, HK and ETS, low FAR, and R and Bias close
to 1. The RMSE of such precipitation events is affected by
the precipitation intensity. In this precipitation process, the
QPE algorithm has the strongest estimating ability. (2) For
precipitation with long duration and weak intensity per unit
time, such as in the northwest mountainous area in Case 3,
the POD, FAR, ACC, CSI, HSS, HK and ETS of the algo-
rithm show roughly the same characteristics as the previous
type of precipitation. The R also declines slightly but is still
near 0.8. The RMSE is greatly reduced. The estimating abil-
ity of the QPE algorithm is second to the previous precipita-
tion process. (3) When the duration of precipitation is short
and the intensity is only light to moderate rain, such as in
the southwest coastal area in Case 3, the FAR and Bias es-
timated by the QPE algorithm are relatively high, the ACC,

CSI, HSS, HK, ETS and R are relatively low, and the relia-
bility of the estimating ability of the QPE algorithm is low.
For Case 1 and Case 2, the hourly spatial distribution of eval-
uation indicators for both QPE algorithms at each station is
shown in Fig. S7 in the Supplement.

Figure 12 shows the time series of evaluation indicators of
the QPE algorithm for all stations at each time. The red lines
represent the average values of the evaluation indicators,
from which we can see that the average values of POD, FAR,
ACC, CSI, HSS, HK, ETS, R, Bias and RMSE are 0.97, 0.60,
0.64, 0.40, 0.31, 0.47, 0.19, 0.70, 2.87 and 1.90 mmh−1, re-
spectively. From 01:00 to 14:00 on 24 June, the POD, ACC,
CSI, HSS, HK, ETS, R and RMSE are high, the FAR is low,
and the Bias tends to 1. According to Figs. 6j–p and 8q–w,
the intensity of the precipitation centre during this period ex-
ceeds 16 mmh−1, reaching rainstorm level. At this point, the
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Figure 11. Spatial distribution of evaluation indicators of the QPE algorithm for all stations: (a) POD; (b) FAR; (c) ACC; (d) CSI; (e) HSS;
(f) HK; (g) ETS; (h) R; (i) Bias; (j) RMSE.

Figure 12. Time series of evaluation indicators of the QPE algorithm for all stations at each time: (a) POD; (b) FAR; (c) ACC; (d) CSI;
(e) HSS; (f) HK; (g) ETS; (h) R; (i) Bias; (j) RMSE.

estimation accuracy of the QPE algorithm is strong. Not only
is the effect of the evaluation indicator good, but also the in-
tensity of the precipitation centre and the precipitation range
of these periods fit with a high accuracy, as can be seen by

comparing Fig. 5 with Figs. 6j–l and 7 with Fig. 8q–w. This
proves that, for the strong convective process with a short
precipitation duration and the precipitation intensity reach-
ing rainstorm level, the evaluation indicators show similar

https://doi.org/10.5194/amt-14-7007-2021 Atmos. Meas. Tech., 14, 7007–7023, 2021



7020 X. Li et al.: Leveraging machine learning for FY-4A QPE

characteristics to the first type of precipitation above. At the
same time, this means that when the precipitation intensity
is large enough, the precipitation duration is no longer the
main factor influencing the estimating ability of the QPE al-
gorithm. At 00:00–04:00 on 23 June, the POD, ACC, CSI,
HSS, HK, ETS, R and RMSE are higher than their average
values, while the FAR and Bias are lower than their average
values. The characteristics of each evaluation indicator dur-
ing this period are similar to the second type of precipitation
above. Comparing Fig. 7 with Fig. 8a–d, the precipitation in-
tensity and range are basically successfully fitted, but the es-
timation of precipitation in localised areas is not good. This
verifies the previous conclusion that the QPE algorithm’s es-
timating ability for long-duration and weak-intensity precip-
itation is inferior to that of strong convective precipitation.
From 17:00 to 20:00 on 23 June, the POD, ACC, CSI, HSS,
HK, ETS, R and RMSE are all lower than their average val-
ues, while FAR and Bias are higher than their average val-
ues. According to Fig. 8i–l, the precipitation duration during
this period is short, the precipitation intensity is weak, and
the precipitation process and characteristics are similar to the
third type of precipitation above. For Case 1 and Case 2, the
time series of evaluation indicators of the QPE algorithm for
all stations at each time are shown in Fig. S8 in the Supple-
ment.

4 Conclusions and discussions

In this study, a machine-learning-based regression model was
established using the RF method to derive QPE from FY-4A
observations, in conjunction with cloud parameters and phys-
ical quantities. The cross-validation results indicate that both
DQPE and NQPE RF algorithms performed well in estimat-
ing QPE, with a Bias, R and RMSE of DQPE (NQPE) of
2.17 (2.42), 0.79 (0.83) and 1.77 mmh−1 (2.31 mmh−1), re-
spectively. Overall, the algorithm has a high accuracy in esti-
mating precipitation at the heavy-rain level or below. Nev-
ertheless, the positive bias still implies an overestimation
of precipitation by the QPE algorithm, in addition to cer-
tain misjudgements from non-precipitation pixels to precip-
itation events. Also, the QPE algorithm tends to underesti-
mate the precipitation at the rainstorm level or even above.
Compared to the single-sensor algorithm, the developed QPE
algorithm can better capture the spatial distribution of land-
surface precipitation, especially the centre of strong precipi-
tation. Marginal differences between the data accuracy over
sites in urban and rural areas indicate that the model performs
well over space and has no evident dependence on landscape.

Further investigations revealed that the estimation accu-
racy of the QPE algorithm is mainly affected by the rain rate
and precipitation duration. More specifically, (1) with respect
to strong precipitation at a high rain rate, the QPE algorithm
has a high estimation accuracy, regardless of the duration.
Nevertheless, the RMSE is mainly affected by the rain rate,

implying that when the rain rate is large enough (rainstorm
level or above), the precipitation duration is no longer a fac-
tor affecting the accuracy of the QPE algorithm. (2) For pre-
cipitation processes with a long duration at a low rain rate,
the algorithm shows a roughly similar accuracy as the pre-
vious type of precipitation but with a slight degradation in
R, whereas there is a significant increase in RMSE. (3) For
precipitation with a short duration at a small to moderate in-
tensity, the QPE algorithm showed a relatively high FAR and
Bias but a relatively low ACC, CSI, HSS, HK, ETS and R,
implying a low accuracy of the QPE algorithm.

In general, by synergistically using high-density automatic
station data and meteorological physical quantity fields, the
QPE algorithm developed in this study provides a promis-
ing way for quantitative estimation of summer precipitation
over East Asia from FY-4A satellite observations. Our re-
sults also highlight the beneficial effect of satellite cloud pa-
rameters and meteorological physical variables that were ne-
glected in previous studies in improving the estimation ac-
curacy of QPE. Moreover, by replacing the ERA5 reanalysis
data that were used in this study with meteorological forecast
fields such as the global forecast system from China T639,
the European Centre for Medium-Range Weather Forecasts
(ECMWF) or the National Centers for Environmental Predic-
tion (NCEP) Global Forecast System (GFS), this RF model
framework can be easily adapted to quantitatively estimate
QPE in near-real time.

Code availability. The model in this paper is based on the random
forest data package in the R language, and our implementation and
analysis code are available upon request to the corresponding author
(yyj1985@nuist.edu.cn).

Data availability. All Fengyun-4 satellite data used in this paper
can be downloaded from the China National Meteorological Satel-
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