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Abstract. The ability of the hyperspectral satellite-based
passive infrared (IR) instrument IASI to resolve elevated
moist layers (EMLs) within the free troposphere is investi-
gated. EMLs are strong moisture anomalies with significant
impact on the radiative heating rate profile and typically cou-
pled to freezing level detrainment from convective cells in the
tropics. A previous case study by Stevens et al. (2017) indi-
cated inherent deficiencies of passive satellite-based remote
sensing instruments in resolving an EML. In this work, we
first put the findings of Stevens et al. (2017) into the context
of other retrieval case studies of EML-like structures, show-
ing that such structures can in principle be retrieved, but re-
trievability depends on the retrieval method and the exact re-
trieval setup. To approach a first more systematic analysis of
EML retrievability, we introduce our own basic optimal esti-
mation (OEM) retrieval, which for the purpose of this study
is based on forward-modelled (synthetic) clear-sky observa-
tions. By applying the OEM retrieval to the same EML case
as Stevens et al. (2017), we find that a lack of independent
temperature information can significantly deteriorate the hu-
midity retrieval due to a strong temperature inversion at the
EML top. However, we show that by employing a wider
spectral range of the hyperspectral IR observation, this issue
can be avoided and EMLs can generally be resolved. We in-
troduce a new framework for the identification and character-
ization of moisture anomalies, a subset of which are EMLs,
to specifically quantify the retrieval’s ability to capture mois-
ture anomalies. The new framework is applied to 1288 syn-
thetic retrievals of tropical ocean short-range forecast model
atmospheres, allowing for a direct statistical comparison of
moisture anomalies between the retrieval and the reference

dataset. With our basic OEM retrieval, we find that retrieved
moisture anomalies are on average 17 % weaker and 15 %
thicker than their true counterparts. We attribute this to the
retrieval smoothing error and the fact that rather weak and
narrow moisture anomalies are most frequently missed by
the retrieval. Smoothing is found to also constrain the magni-
tude of local heating rate extremes associated with moisture
anomalies, particularly for the strongest anomalies that are
found in the lower to mid troposphere. In total, about 80 %
of moisture anomalies in the reference dataset are found by
the retrieval. Below 5 km altitude, this fraction is only of the
order of 52 %. We conclude that the retrieval of lower- to
mid-tropospheric moisture anomalies, in particular of EMLs,
is possible when the anomaly is sufficiently strong and its
thickness is at least of the order of about 1.5 km. This study
sets the methodological basis for more comprehensively in-
vestigating EMLs based on real hyperspectral IR observa-
tions and their operational products in the future.

1 Introduction

The vertical structure of tropospheric water vapour is an im-
portant driver for dynamical processes due to its effect on
the radiative heating profile. In particular, Muller and Bony
(2015) found that the spatial variability of the radiative heat-
ing profile gives rise to spatial self-aggregation of convec-
tion, which is thought to be a key factor in uncertainties in cli-
mate projections (Bony et al., 2015; Mauritsen and Stevens,
2015). A contributing phenomenon to the spatial variability
in radiative heating profiles is the occurrence of moisture in-
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versions in the tropical lower to mid free troposphere, so-
called elevated moist layers (EMLs). To our best knowledge,
EMLs were first identified by Haraguchi (1968) over the
tropical eastern Pacific and independently by Ananthakrish-
nan and Kesavamurthy (1972) over India. A first systematic
connection of these EMLs to the freezing level was brought
to attention by Johnson et al. (1996), who formally distin-
guished between the commonly referred to trade wind inver-
sion between 2 and 3 km (Cao et al., 2007) and another stable
layer aloft that manifests during summer months just below
the freezing level. Both the trade wind inversion and the sta-
ble layer at the freezing level are capable of trapping mois-
ture beneath and forming strong vertical humidity gradients.
The stable layer around the freezing level has recently been
brought to attention again within the framework for assessing
the tropical lower-tropospheric moisture budget introduced
by Stevens et al. (2017).

While the general role of EMLs within their meso-scale
environment has not yet been assessed conclusively, there
are conceptual ideas about the emergence of EMLs and their
impact on meso-scale atmospheric dynamics. Johnson et al.
(1996) and Stevens et al. (2017) both hypothesize that EMLs
preferably emerge in the vicinity of moist convective cells
that penetrate the freezing level, where enhanced stability
leads to detrainment of the saturated air. Stevens et al. (2017)
further highlight the stabilizing effect of glaciation above the
freezing level within the initial convective cell on the en-
vironment, which further impedes nearby convection from
penetrating the freezing level, leading to increased cloudi-
ness and moisture. Studies investigating vertical modes of
cloudiness in the tropics further support the idea of preferred
convective detrainment near the freezing level (Zuidema,
1998; Johnson et al., 1999; Posselt et al., 2008). Following
the findings of Muller and Bony (2015), EMLs may also con-
tribute to the maintenance and aggregation of convection via
the strong vertical gradient they induce in the radiative heat-
ing profile. The strong cooling at the EML top induces subsi-
dence and horizontal mass convergence, while near the sur-
face a mass divergence is induced. The mass divergence near
the surface in the vicinity of convection may act to maintain
the convection.

Stevens et al. (2017) conducted an observational case
study of an EML present during the NARVAL-2 (Next Gen-
eration Remote Sensing for Validation Studies) measurement
campaign. One method they deployed was a satellite retrieval
analysis based on passive microwave and hyperspectral in-
frared (IR) observations, both of which showed poor perfor-
mance in capturing the EML structure, suggesting that EMLs
present a somewhat fundamental blind spot for passive satel-
lite observations.

We start out by providing additional scientific context to
the findings of Stevens et al. (2017) by briefly reviewing the
results of other hyperspectral IR retrieval studies that inves-
tigated EML-like cases in Sect. 1.1. In Sect. 2, we introduce
our own basic optimal estimation (OEM) retrieval setup that
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we extensively use later on to investigate a physical cause of
missing the EML structure and to attempt a first quantitative
and comprehensive analysis of moist layer retrievability. This
study is based on forward-modelled (synthetic) observations
to reduce the complexity of error sources (e.g. by colloca-
tion uncertainty, clouds, or forward-modelling errors) and to
rather assess inherent limitations in resolving vertical mois-
ture structures with hyperspectral IR observations. Section 3
introduces a framework for identifying and characterizing
moisture anomalies, which we use to specifically quantify
the retrieval’s ability to capture the moisture anomalies’ ver-
tical position, their thickness and their strength. In Sect. 4, we
first apply our OEM retrieval to the EML scenario discussed
by Stevens et al. (2017) to assess whether the strong temper-
ature inversion at the EML top, when not properly resolved,
is capable of masking the EML in the humidity retrieval. We
want to note that we do not aim to reproduce the results of
Stevens et al. (2017) but discuss a possible physical reason
for their found EML blind spot. Then the retrieval is applied
to forward-simulated (synthetic) IASI observations based on
an ensemble of 1288 clear-sky atmospheric profiles over the
tropical ocean, which are part of the ECMWF diverse profile
database introduced by Eresmaa and McNally (2014). Based
on that, the absolute retrieval error and the smoothing error
are quantified statistically in Sect. 5. Based on the framework
introduced in Sect. 3 for identifying and characterizing mois-
ture anomalies, the retrieval’s ability to capture the moisture
structures of the test dataset and their footprint on the heating
rate profile is assessed in Sect. 6. The results are summarized
and final conclusions are drawn in Sect. 7.

1.1 Previous moist layer retrievals

Since mid-tropospheric moist layers are no uncommon phe-
nomenon in the tropics (Johnson et al., 1996), they have
shown up in hyperspectral IR retrieval case studies in the
past. Although none of these studies were explicitly dedi-
cated towards a comprehensive and quantitative analysis of
retrieving EMLs, they still give a qualitative impression of
the possibilities and limitations in resolving these features
based on various retrieval methods and give some context to
the results of Stevens et al. (2017).

A particularly performant and versatile retrieval approach
was introduced by Smith et al. (2012) that is based on em-
pirical orthogonal function (EOF) regression and combines
a clear-sky and cloud-trained retrieval to allow for retrievals
above clouds and below thin or broken clouds. The method
is commonly referred to as dual-regression (DR) retrieval. In
a case study of retrieving temperature and humidity profiles
in the eye of Hurricane Isabel in 2003, Smith et al. (2012)
demonstrate the retrieval’s ability to capture the general tro-
pospheric moisture structure in the presence of shallow cu-
mulus clouds that go along with a vertically extended EML
between 850 and 550 hPa. However, no highly resolved refer-
ence soundings are available for this case study. Weisz et al.
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(2013) further elaborate on the DR retrieval methodology,
with particular focus on cloud top height retrieval, and they
present some additional case studies for clear-sky and cloudy
scenes. The NCEP (National Center for Environmental Pre-
diction) GDAS (Global Data Assimilation System) analysis
product is used as a reference for the retrieved profiles, and
particularly large deviations are found for the clear-sky case,
where a less pronounced moist layer is not resolved by the
retrieval in the mid troposphere.

The latest advances in the DR retrieval with regard to ver-
tical resolution are presented by Smith and Weisz (2018),
who try to account for the effect that the regression tends to
alias the retrieval towards the mean state of the test database,
suppressing vertical variability. They do so by applying their
DR retrieval to forward-simulated spectra of NCEP GDAS
analysis, the resulting profiles of which are used to dealias
the observational retrieved profiles. Smith and Weisz (2018)
show in a case study that the DR retrieval by itself is not able
to resolve a significant mid-tropospheric moist layer, but the
dealiasing method allows them to resolve its general struc-
ture. For this study a well-collocated radiosonde serves as a
reference.

Another EML retrieval case study is conducted by Zhou
et al. (2009), who use a slightly different retrieval scheme
than the previously introduced DR method. While Zhou et al.
(2009) also apply an EOF regression retrieval with clear-
sky and cloud-specific regression coefficients in a first step,
they additionally apply a physical OEM retrieval in a sec-
ond step. The retrieval is applied to IASI observations from
the Joint Airborne TASI Validation Experiment (JAIVEX),
where dedicated collocations between in situ soundings and
IASI onboard MetOp-A were achieved. A particularly well-
collocated dropsonde profile shows a strongly pronounced
EML between 3 and 6 km altitude, which the IASI retrieval
is able to capture well given the expected smoothing error
due to limited vertical resolution. It may well be that the
additional physical retrieval step is what makes the differ-
ence in being able to retrieve an EML when compared to the
previously discussed results of the DR retrieval. This is sup-
ported by results of Calbet et al. (2006), who investigated the
ability of different retrieval algorithms implemented in the
EUMETSAT (European Organisation for the Exploitation of
Meteorological Satellites) IASI L2 processor to resolve ver-
tical moisture and temperature structures based on AIRS (At-
mospheric Infrared Sounder) data. In particular, Calbet et al.
(2006) use a collocated clear-sky radiosonde that shows a
mid-tropospheric moist layer. While the EOF regression re-
trieval shows no hint of the moist layer, the iterative physical
retrieval scheme is able to resolve the structure quite well.

As a final reference, Chazette et al. (2014) investigated
EUMETSAT’s IASI L2 product performance based on collo-
cated ground-based Raman lidar observations from two field
experiments. The comparison is done for clear-sky condi-
tions and from the ground up to about 6 km altitude. Some
significant vertical moisture variability, including moist lay-
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ers, is captured by the lidar in the mid troposphere in sev-
eral cases but appears to not at all be resolved by the TASI
retrieval. In their conclusions, Chazette et al. (2014) report
that the TASI L2 processor would be complemented by mi-
crowave sounder data from the MetOp instrument suite in a
future version, in particular to improve vertical resolution.
We can confirm that this has been implemented in the cur-
rent IASI L2 processor (EUMETSAT, 2017), but we are not
aware of a dedicated follow-up study on retrievability of the
vertical moisture structure.

From this discussion of mid-tropospheric moist layer re-
trieval case studies, we conclude that such atmospheric fea-
tures do not generally appear to pose a blind spot for hy-
perspectral IR observations. While purely EOF regression-
based methods seem to systematically struggle to resolve
non-trivial moisture structures, OEM-based methods show
clear capabilities of resolving them. Hence, the absence
of the strongly pronounced EML investigated by Stevens
et al. (2017) in their OEM retrievals rather motivates a re-
investigation of the exact retrieval setup that was applied
rather than being interpreted as a consequence of inherent
limitations in passive remote sensing observations. By ap-
plying the basic OEM retrieval scheme introduced in the next
section to synthetic IASI observations of the dropsonde pro-
files discussed by Stevens et al. (2017), we want to analyse
whether temperature-induced errors act as a plausible physi-
cal cause of the absence of the EML in the retrieval in Sect. 4.

2 The retrieval

Extracting atmospheric state variables such as the temper-
ature or concentrations of atmospheric constituents from
passive satellite observations generally poses an under-
constrained inverse problem. Sophisticated methods are re-
quired to regularize the problem, some of which were al-
ready mentioned in the previous section. The OEM approach
showed the most promising results for resolving non-trivial
moisture structures in the studies discussed in Sect. 1.1 but
was also used for the missed EML case of Stevens et al.
(2017). This motivates the introduction of our own OEM re-
trieval setup to more systematically assess possibilities and
limitations in resolving EMLs. Note that we do not aim our
retrieval to be particularly performant or as versatile as op-
erational retrieval schemes (EUMETSAT, 2017; Smith and
Barnet, 2020; Berndt et al., 2020). Instead, we use the re-
trieval as a tool to assess basic moist layer retrievability on a
low level of complexity. The formalism used in this work
strongly follows the comprehensive framework introduced
by Rodgers (2000). Within the next subsections the techni-
cal implementation of the retrieval setup used in this study is
introduced.
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2.1 Spectral setup

The retrieval setup of this study aims at resolving the ver-
tical structure of water vapour in the troposphere, with par-
ticular focus on EML scenarios. The rotational—vibrational
water vapour absorption band centred around 6.25um
(1594.78 cm™ 1) (see Fig. 1) offers rich vertically distributed
information. We use all IASI channels in the range between
1190 and 1400 cm™!, following the work of Schneider and
Hase (2011), who demonstrated the suitability of this spec-
tral range for retrieving profiles of water vapour and its sec-
ondary isotopologues.

The spectral signal of water vapour depends not only on
the atmospheric water vapour itself, but also on the temper-
ature, surface emissivity and temperature, methane and ni-
trous oxide. Schneider and Hase (2011) and Borger et al.
(2018) concurrently found that temperature-induced errors
can yield up to 15 % relative error for the lower- to mid-
tropospheric H>O retrieval, which is significant compared to
other sources of error, such as interfering species. Therefore,
unresolved temperature features may falsely be interpreted as
water vapour signals. We assume that this is particularly rele-
vant for EML scenarios because the strong vertical humidity
gradients typically go along with temperature inversions. To
reduce this error, we add independent temperature informa-
tion to the retrieval from the spectral range between 645 and
800cm™!, which is part of the CO, absorption band cen-
tred around 15 um (666.67 cm™!). The shading in Fig. 1 in-
dicates the H>O degrees of freedom (DOFs) calculated as the
trace of the averaging kernel matrix when only each respec-
tive channel is used (Rodgers, 2000). It is apparent that water
vapour absorption is significant throughout most of the ther-
mal IR spectrum, yielding DOF values close to unity. Blue
shading indicates where water-vapour-independent informa-
tion can be extracted from the spectrum, which is desirable
for maximizing temperature information content. Note that
channels are highly redundant, so DOFs of individual chan-
nels do not add up. The total DOF for water vapour in the
used channel set is approximately 12.9, for temperature 23.5
and for surface temperature 0.99. Interestingly, Fig. 1 visu-
ally shows that the shortwave CO, band is associated with
less water vapour interference in its flank between around
2200 and 2300 cm ™! than the longwave CO, band. However,
due to known daytime-dependent non-LTE-associated biases
and a worse signal-to-noise ratio in the shortwave channels
of IASI (Razavi et al., 2009; Matricardi et al., 2018; Clerbaux
et al., 2009), we only use the longwave CO; channels.

To ensure that the radiative background of the surface
is represented well in the retrieval, five window channels
are added to the spectral setup that have been identified by
Boukachaba et al. (2015) as suited window channels. The
channels are located at wavenumbers 901.5, 942.5, 943.25,
962.5 and 1115.75cm™!. The complete spectral setup en-
compasses 1464 channels.
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As a final note on the channel selection, the aim with our
retrieval is not to make it computationally efficient but to use
it as a tool to explore the limitations in resolving vertical
moisture features with IASI. Hence, we do not employ any
channel selection method, although we are aware of the rich
literature in this context (Fourrié and Thépaut, 2003; Four-
rié and Rabier, 2004; Collard, 2007; Martinet et al., 2013;
Chang et al., 2020, among others).

2.2 Retrieval quantities

The quantities targeted for retrieval in this study are the pro-
files of water vapour volume mixing ratio (VMRp,0), tem-
perature (T') and the surface temperature (7). They are rep-
resented by the retrieval state vector x:

log (VMR;,0)
x= T : (M
T

The water vapour profile is retrieved in natural logarithmic
units, which is favourable for two reasons. Firstly, VMRy,0
is a quantity that ranges over several orders of magnitude
from a few percent near the surface to O (107°) in the upper
troposphere and above, which is numerically inconvenient
for the optimization algorithm. Secondly, the transformation
to logarithmic units avoids the possibility of physically im-
plausible negative VMR values.

The major interfering trace gas species in the chosen spec-
tral region that are not part of the retrieval state vector x are
CH4 and N> O. Based on the error budget analysis conducted
by Schneider and Hase (2011), it is not expected that these
species are significant sources of error compared to errors
in the temperature profile. Hence, for simplicity, we include
CH4 and N>O in the absorption setup but use fixed profiles
and do not retrieve them.

2.3 Optimal estimation algorithm

Besides the state vector depicted in Eq. (1), our OEM setup
includes profiles of other atmospheric absorption species,
namely Nj, N2O, CHy, O, CO; and O3 as fixed forward-
model parameters. To account for nonlinearity, an iterative
Levenberg—Marquardt (LM) solver (Levenberg, 1944; Mar-
quardt, 1963) is used, which as input, besides the (synthetic)
spectrum, needs a priori and measurement covariance matri-
ces, an a priori state vector and Jacobians, calculated for each
iteration step by a forward model. We follow the notation in-
troduced by Rodgers (2000), who provides an elaborate de-
scription of the procedure.

2.4 The forward model and representation of IASI

The radiative transfer model used in this study is ver-
sion 2.5.0 of the Atmospheric Radiative Transfer Simula-
tor (ARTS). A comprehensive and compact description of
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Figure 1. Forward-simulated spectrum in the spectral range of the IASI instrument. Colours denote the water vapour information content of
individual channels calculated as the trace of the averaging kernel matrix when only each respective channel is used. Hence, the coloured
shading does not account for redundancy of information between channels but simply conveys where water vapour absorption is significant.

ARTS is provided by Eriksson et al. (2011) and Buehler
et al. (2018), and more documentation can be found on
the ARTS website (https://www.radiativetransfer.org, last ac-
cess: 21 October 2021). Here, only the features that are di-
rectly relevant for the conducted retrieval calculations are
presented.

ARTS calculates the emitted radiation and its transmission
through a given atmospheric state on a line-by-line basis.
Spectral line data were taken from the HITRAN (High Reso-
lution Transmission) molecular spectroscopic database (Gor-
don et al., 2017), and continuum absorption of water vapour,
oxygen, nitrogen and CO; is represented by the MT_CKD
model (Mlawer et al., 2012).

The radiative transfer simulations are conducted as
monochromatic pencil beams on a frequency grid with a res-
olution of 0.25 cm™!, which coincides with the spectral sam-
pling interval of IASI. The obtained spectra are then con-
volved with a Gaussian weighting function with a full width
at half maximum (FWHM) of 0.5cm™! to mimic the spec-
tral response function of IASI. These technical specifications
are taken from Coppens et al. (2019). Gaussian noise with a
standard deviation of 0.1 K is added to the forward-simulated
spectra to represent the radiometric noise of IASI within the
spectral range used in this study (Clerbaux et al., 2009). The
sensor is assumed to be at 850km altitude and to have a
nadir-viewing direction. The atmospheric cases simulated are
limited to clear sky and are above ocean surfaces, where the
surface emissivity in the spectral region covered by IASI is
assumed to be 1.

The ARTS internal OEM module, which is part of ARTS
as of version 2.4.0, is used to conduct the actual retrieval
calculations.

2.5 A priori assumptions

The a priori assumptions about the atmospheric state are de-
fined as the knowledge about the state prior to the measure-
ment. Although the true state is always known within the
framework of this model study, the a priori knowledge is cho-
sen based on information that would also be available in the
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situation of a real measurement. The a priori knowledge is
represented by an a priori state vector x, and a covariance
matrix S,. For the definition of the a priori state, the tropical
mean atmospheric state from the profile database of Ander-
son et al. (1986) is used as a basis, which from now on will be
referred to as the tropical FASCOD (Fast Radiative Signature
Code) atmosphere.

Where not stated otherwise, the a priori surface tempera-
ture is assumed to be the true surface temperature with an
added Gaussian noise of 1.5K. The Gaussian noise aims
to simulate the accuracy of a real a priori surface temper-
ature estimate, which can for example be obtained from
the AVHRR (Advanced Very High Resolution Radiometer),
which together with IASI is part of the MetOp satellite’s
payload. Here, 1.5K is a conservative assumption for tropi-
cal ocean surfaces since uncertainties in AVHRR sea surface
temperature data records are typically an order of magnitude
lower, e.g. estimated at 0.18 K in the dataset of Merchant
et al. (2019).

The a priori temperature profile is assumed to be moist
adiabatic up to around 100 hPa. The a priori surface temper-
ature is used as a starting point for the moist adiabat. A moist
adiabatic tropospheric temperature profile is a reasonable as-
sumption because the temperature lapse rate is mostly set to
be moist adiabatic within the tropics by deep convection and
by the homogenization of the temperature field by gravity
waves due to the lack of a Coriolis force (Sobel and Brether-
ton, 2000). Around 100 hPa and above, the moist adiabat is
relaxed to the tropical FASCOD atmosphere with a hyper-
bolic tangent weighting function to represent the tropopause
and the atmosphere above. The a priori VMR, o profile is
defined by combining a fixed relative humidity profile (RH)
and the a priori temperature profile. This is done by using the
relation

RHe(T)
P

The fixed tropical FASCOD RH profile is used and the
equilibrium pressure of water vapour es(7) is calculated
based on the a priori temperature profile. p is the atmospheric

VMRy,0 = (2)
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pressure at a given altitude. es(7T') is calculated as the equi-
librium pressure over water for temperatures above the triple
point and over ice for temperatures more than 23 K below the
triple point. For intermediate temperatures the equilibrium
pressure is computed as a combination of the values over
water and ice according to the IFS documentation (ECMWEF,
2018).

The a priori assumption about the variability of the re-
trieval quantities is encoded by S,, which consists of blocks
for each retrieval quantity. For the surface temperature, a
variance of 100K? is assumed. The diagonal elements of
the temperature profile block of S, (Fig. 2b) are calculated
based on tropical ocean profiles from the database provided
by Eresmaa and McNally (2014), which is based on the
ECMWEF IFS forecast model with a focus on a broad sam-
pling of temperature profiles. The non-diagonal elements
are calculated based on a correlation length that linearly in-
creases from 2.5 km at the surface to 10 km at and above the
tropopause.

For the water vapour covariances (Fig. 2c), the approach
of Schneider and Hase (2011) is adapted, where the diagonal
elements of the log-scale water vapour covariances are set
to 1 in the troposphere and linearly reduce to 0.25 within
the stratosphere. An adjustment made here is that below
2 km, which is a crude estimate for the boundary layer height
above ocean surfaces, the diagonal value linearly decreases
to 0.1 at the surface. This better represents the generally fixed
moisture structure near the tropical ocean surface. The non-
diagonal elements are calculated based on the same correla-
tion length approach as for the temperature covariances.

An additional constraint about the atmospheric variability
is introduced by filling in values for the cross-covariances
between the three retrieval quantities. The diagonals of the
cross-covariance blocks are calculated as the product of the
diagonals of the two respective covariance blocks, multi-
plied by a scale factor that exponentially decreases from 1
at the surface to 1/e at a given altitude. This altitude is cho-
sen to be 100m for the cross-covariance between surface
temperature and temperature to represent the dependence of
the atmospheric temperature on the surface temperature. Be-
tween temperature and water vapour the altitude is chosen
to be 1000 m to represent the dependence of water vapour
on temperature within the boundary layer, where the water
vapour content is mainly constrained by the saturation pres-
sure, which is mainly a function of temperature. The non-
diagonal elements of the cross-covariances are calculated
with the same correlation length approach as for tempera-
ture and water vapour. Figure 2a shows the resulting cross-
covariance matrix, which only has significant values within
the boundary layer.

Atmos. Meas. Tech., 14, 7025-7044, 2021

M. Prange et al.: Moist layer retrieval

3 Definition and characterization of moisture
anomalies

This section introduces a quantitative framework to identify
and characterize EMLs. This framework aims to provide an
intuitive description of moisture anomaly features through a
number of scalar moisture anomaly characterization metrics
and allows for a more targeted evaluation of retrieval results
in Sects. 4 and 6.

At the core of this moisture anomaly identification method
is the definition of a reference humidity profile, against which
the anomalies occur. There are several ways a reference pro-
file can be constructed, and the suitability of a definition de-
pends on the aim of the analysis. For example, a simple cli-
matological mean profile may be a suited reference if one is
interested in the mean anomaly (e.g. the bias) of a test dataset
of humidity profiles. However, for the purpose of this study
it is not of interest whether a humidity profile is generally
rather moist or dry, but instead only anomalous vertical vari-
ability of humidity is of interest. This is because the vertical
moisture variability is what manifests as a footprint on the
heating rate profile (Q) and thereby affects the vertical sta-
bility or even yields vertical motion (Albright et al., 2021).

To capture moisture anomalies closely related to the
vertical moisture variability, the reference profile is con-
structed by least-square fitting a quadratic function to the
log(VMRHy,0) profile up to 100hPa. A quadratic function
is preferable over a linear function because in many cases
the VMRy, o profile shows large-scale non-exponential vari-
ability which should not interfere with the more small-scale
anomalies we want to characterize. The following function is
used as the reference water vapour profile:

log (VMRu,0, ref) = az” +bz +c. 3)

The humidity at the surface is represented by
VMRH,0,ref(z = 0) =exp(c) and is fixed to the surface
value of the actual humidity profile. The altitude z is used as
a height coordinate for fitting because compared to pressure
it has the benefit of z = 0 at the surface. The coefficients a
and b are determined by least-square fitting to the logarithm
of the humidity profile between the surface and 100hPa
because the assumed relation becomes less valid closer
to the tropopause. After calculating the reference profile,
moisture anomalies can be identified and characterized.

To visualize the moisture anomaly identification and char-
acterization procedure, we show an atmospheric scenario
in Fig. 3 that includes an EML as an example. The EML-
associated structures include a distinct moisture inversion
(increase in VMRpy,o with height) with maximum humid-
ity at around 650 hPa. Temperature inversions at the EML
top and at the distinct drop of moisture at around 900 hPa are
also present (not shown).

Figure 3b shows the close relation between the verti-
cal humidity structure and the net heating rate Q (long-
wave + shortwave), which is calculated with the radiative
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Figure 3. Humidity profile (a) of an atmospheric case with a strong
EML and the associated net heating rate (longwave + shortwave)
profile (b). The reference humidity profile used to identify humid-
ity anomalies is depicted as the dashed line in (a). Layers of moist
anomalies are highlighted by blue shading, dry anomalies by or-
ange shading. Anomalies that intersect with the grey-shaded re-
gions are excluded to restrict anomalies to the free troposphere. The
green lines and brackets conceptually display the definition of mois-
ture anomaly characteristics from Table 1 for the strong positive
anomaly at around 650 hPa.

transfer model RRTMG (Rapid Radiative Transfer Model
for GCMs, Mlawer et al., 1997) through its implementation
in the radiative convective equilibrium model konrad (Kluft
and Dacie, 2020). Q is calculated for all conducted retrievals
throughout this study to assess whether the vertical humidity
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structure is captured in a way in which Q is also represented
well.

The blue and orange shadings associated with moist and
dry anomalies depicted in Fig. 3 visualize that by defini-
tion layers of positive and negative moisture anomalies al-
ternate in the vertical. Each such layer can be viewed as a
moisture anomaly object, which we characterize by means
of the scalar metrics introduced in Table 1. These met-
rics include the vertical bounds of the moisture anomaly in
terms of altitude (zpot and ztop), the difference of which de-
notes the anomaly’s thickness (A Zanom)- The anomaly height
(Zanom) 1s defined as the mean over the anomaly’s height in-
terval, weighted by the anomalous humidity within the al-
titude bounds. Finally, the anomaly strength (sanom) 1S de-
fined as the mean anomalous VMRy,o within the anomaly’s
vertical bounds. We only consider positive (moist) anoma-
lies that are fully captured in the pressure range between
100 and 900 hPa; e.g. the positive anomalies at the very top
and bottom of Fig. 3 are neglected (grey shading) to avoid
tropopause and boundary-layer-related anomalies.

4 Case study of a moist layer retrieval

In this section the retrieval introduced in Sect. 2 is applied
to synthetic IASI observations of the dropsondes that sam-
pled the EML discussed by Stevens et al. (2017). This case
study is of particular interest because the found EML blind
spot of Stevens et al. (2017) contradicts the results of other
OEM-based studies discussed in Sect. 1.1. Here we first want
to specifically assess the importance of temperature informa-

Atmos. Meas. Tech., 14, 7025-7044, 2021
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Table 1. Characterization metrics of moisture anomalies, their definitions and short descriptions. VMR, 0, ref denotes the reference water

vapour profile.

Metric Definition Description
Bounds Zbots Ztop Lower and upper altitude bounds of the anomaly
Thickness A Zanom = Ztop - Zbot Altitude interval of the anomaly
Strength Sanom = m Zi;::f (VMRp,0 — VMR, 0, ref) dz  Mean anomalous VMRy, o within the anomaly
Ztop
. P 2 (VMRy,0— VMR dz . .
Height Zanom = Ei’ép ( o H0. 1) Weighted mean altitude of the anomaly

ooy (VMR 0—VMRH, 0, ref) dz

tion for properly resolving the moisture structure in an EML
scenario. While in general it is well known that the humidity
retrieval depends on the quality of the assumed or retrieved
temperature profile, we argue that for EMLs this effect is of
particular relevance. In a next step, the averaging kernels for
the EML scenario and a mean tropical ocean atmosphere are
compared to estimate the retrieval’s vertical resolution and
its dependence on the atmospheric state.

4.1 Importance of temperature information for
retrieving a moist layer

We assess the possibility of whether a lack of independent
temperature information can cause the EML to not be re-
solved by running our retrieval in slightly altered setups.
Each row of panels in Fig. 4 represents a variation of the
retrieval. The setup introduced in Sect. 2 is used for the first
row and serves as a basis for the other two setups. We refer
to this setup as retrieval setup 1. Retrieval setup 2 (Fig. 4,
second row) only deviates from retrieval setup 1 by using
the narrower spectral region that was used by Lacour et al.
(2012) and Stevens et al. (2017), which is limited to 1193
to 1223 and 1251 to 1253 cm™!. Retrieval setup 3 (Fig. 4,
third row) only deviates from retrieval setup 2 by omission
of the temperature retrieval and instead setting the a priori
temperature to the true reference state. The profiles that the
synthetic observations are based on are denoted as “true”
and the same for all retrieval setups. Based on these pro-
files, forward-simulated synthetic IASI observations are cal-
culated, synthetic Gaussian noise is added (see Sect. 2.5) and
the retrieval is performed. As a technical note, we extrapo-
late the dropsonde profiles (launched at about 350 hPa) into
the upper troposphere and above by fitting a tropical mean
atmospheric state (Anderson et al., 1986). We fit these pro-
files onto a 137-level vertical pressure grid of the ECMWF
IFS model atmospheres that also come with an associated al-
titude grid (Eresmaa and McNally, 2014).

As a note on comparability of our results to Stevens et al.
(2017), we want to be cautious. There are several differences
in the exact way the retrieval is set up, e.g. in the assumed
a priori states and covariances, the iteration scheme (Gauss—
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Newton vs. LM) and also the radiative transfer model (At-
mosphit vs. ARTS). Besides, our study is conducted in a
synthetic framework, since we aim to assess the retrieval of
EMLs more fundamentally than the discussed case studies
did up to now. With this in mind, we tried to seek out a re-
trieval feature of the study of Stevens et al. (2017) that is
capable of masking the EML in our setup. This feature is the
used spectral region that is closely tied to the temperature
information content, as we want to show in the following.

Looking at the retrieval results of Fig. 4, the EML struc-
ture is found to be resolved well with retrieval setup 1, while
retrieval setup 2 misses the EML almost completely, com-
parable to the results of Stevens et al. (2017). We hypothe-
size that the missing EML with retrieval setup 2 is caused by
the fact that with the limited spectral setup, there is no suffi-
cient independent temperature information available for the
retrieval to separate the moisture from the temperature signal,
causing large retrieval errors in both quantities. While other
previous retrieval studies deliberately try to account for this
issue by deploying either a simultaneous retrieval approach
(Smith et al., 2012; Weisz et al., 2013; Irion et al., 2018) or a
sequential retrieval approach (Smith and Barnet, 2019, 2020;
Susskind et al., 2014), we want to highlight the importance
of doing so, specifically in an EML scenario.

We find that the large water vapour and temperature er-
rors obtained with retrieval setup 2 around the EML altitude
compensate radiatively. While the underestimated humidity
at the EML altitude yields an increased spectral radiance in
the used water vapour band due to a lower emission height
associated with a higher emission temperature, the under-
estimated temperature yields a decreased spectral radiance.
Since this compensation leads to comparatively low y costs
in the OEM scheme, it explains why retrieval setup 2 finds
an optimal solution that is associated with relatively large re-
trieval errors in both temperature and water vapour.

We introduce retrieval setup 3 to exclude the possibility
that resolving the EML with retrieval setup 2 is simply lim-
ited by vertical resolution of the moisture retrieval, e.g. lim-
ited humidity information content. The retrieval results of re-
trieval setup 3 show that with a perfect prior temperature pro-
file, the limited spectral range is also sufficient to resolve the
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Figure 4. Columns show profiles of temperature (T'), temperature differences of a priori and retrieved states to the true state, VMRy, 0,
relative humidity (RH) and net heating rates (Q) for the dropsonde profiles that sampled the EML discussed by Stevens et al. (2017) (labelled
as “true’ here). Displayed are the true states that are used as a basis for the forward-modelled synthetic IASI observation, the a priori states of
the retrieval and the retrieved states. The VMRy, o reference profiles defined in Sect. 3 are also depicted. Rows show retrieval results based

on different retrieval setups that are introduced in the text.

general EML structure, albeit with reduced EML amplitude.
Hence, the EML blind spot of retrieval setup 2 and possibly
of Stevens et al. (2017) is a consequence of the ambiguity
that lies in the limited spectral range with respect to temper-
ature and water vapour.

To exemplify the concept of the moisture anomaly identifi-
cation and characterization method introduced in Sect. 3, we
apply the procedure to this case study and present the derived
EML characteristics for each of the different retrieval setups
in Table 2. To identify the EML centred around 650 hPa in
the true and retrieved profiles in Fig. 4, we introduce the re-
spective reference profiles against which positive VMRy,0
anomalies can be identified. While retrieval setups 1 and 3
yield a moisture anomaly that can be characterized by our
method and compared to the characteristics of the true EML,
retrieval setup 2 does not show a positive moisture anomaly
around 650 hPa.

Table 2 shows that the EML in the true state is centred
around 3.6 km altitude and has a vertical extent of 2.3 km.
Retrieval setup 1 captures these characteristics reasonably
well, while retrieval setup 3 shows a strongly overestimated
EML thickness of about 3.7 km, reflecting stronger smooth-
ing caused by the limited spectral range used in this setup.
Both retrieval setups show a slightly increased EML height
when compared to the true state of about 200 m for reasons
we can only speculate on. We could see this being a system-
atic effect caused by a less pronounced effect of smoothing
at the EML bottom due to higher optical density than aloft.

https://doi.org/10.5194/amt-14-7025-2021

Since the atmosphere is optically more dense near the sur-
face, smoothing may smear the EML over a larger altitude
interval at the top than at the bottom, positively biasing the
EML altitude in the retrieval.

While the EML strength sanom may appear to be the least
trivial moisture anomaly characteristic, being without units
due to its definition based on VMRp,0, it becomes more in-
tuitive when values are put into relation to each other. The
true EML strength of 2.8 x 10’3, which reflects the mean
anomalous VMRy,0 within the EML, is about 30 % greater
than the EML strength derived from retrieval setup 1 and
about 2.5 times greater than the EML strength derived from
retrieval setup 3. This reflects the notion that while retrieval
setup 1 is able to resolve the EML well, retrieval setup 3
yields a strongly smoothed EML that is significantly less pro-
nounced than its true counterpart.

We conclude that, while the EML investigated by Stevens
et al. (2017) does not appear to be a general blind spot for
hyperspectral IR satellite observations, we are able to find
a retrieval configuration that reproduces a similar result to
theirs. The deciding property of that configuration is the lack
of independent temperature information, which in an EML
scenario can yield radiatively compensating errors in temper-
ature and water vapour. With retrieval setup 1, on the other
hand, we present a retrieval setup that is able to capture both
temperature and humidity profiles well, including the EML,
which is in line with other OEM-based moist layer case stud-
ies (Zhou et al., 2009; Calbet et al., 2006).

Atmos. Meas. Tech., 14, 7025-7044, 2021
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Table 2. Moisture anomaly characteristics of the EML shown in Fig. 4. This table is analogous to Table 1, where the exact definitions of the
different metrics are explained. The EML characteristics displayed here are calculated for the true state and the retrieval results of retrieval
setups 1 and 3, corresponding to upper and lower rows of Fig. 4, respectively. Retrieval setup 2 does not feature a moisture anomaly object

as defined in Sect. 3.

Metric Variable name  True state Retrieval setup 1 Retrieval setup 3
Bounds Zbot Ztop 25,48km 3.0,5.1km 2.3,6.0km
Thickness A Zanom 2.3km 2.1km 3.7km

Strength  Sanom 28x1073 22x1073 1.1x1073
Height Zanom 3.6km 3.8km 3.8km

4.2 Retrieval resolution

With OEM, a more quantitative estimation of vertical re-
trieval resolution can easily be deduced with the aid of the
averaging kernel matrix A (Rodgers, 2000). The rows of A
describe the response of the retrieved state to a perturbation
in the true state, taking into account the specifications of the
observing system. The averaging kernels presented here are
based on the spectral setup and a priori assumptions intro-
duced in Sect. 2.

Several previous studies showed IASI averaging kernels
for mean atmospheric states (Lerner, 2002; Schneider and
Hase, 2011; Smith and Weisz, 2018). Here we want to high-
light the dependence of vertical resolution on the atmo-
spheric state by contrasting the averaging kernels of a tropi-
cal mean atmosphere to the reference EML case discussed
in the previous subsection. Smith and Barnet (2020) also
considered the dependence of A on the atmospheric state,
which they find can be quite severe. In contrast to their more
general study, we want to focus on comparing the variabil-
ity of A with respect to a well-characterized mean and EML
state. While we focus on discussing the water vapour averag-
ing kernels in this section, similar conclusions can be drawn
about the temperature averaging kernels which are appended
in Appendix A.

Figure 5a and c depict the rows of the H>O averaging ker-
nel matrix as coloured lines for two different atmospheric
setups. The more blue lines correspond to kernels closer to
the surface, while the more yellow lines correspond to ker-
nels higher up in the atmosphere. Figure 5a and b are based
on an average tropical ocean atmosphere, namely the tropical
FASCOD atmosphere introduced in Sect. 2.5. Figure 5c and
d only differ in their base atmospheric state by the introduced
EML, as described in Sect. 3. The vertical width of a kernel
is a measure of the retrieval’s vertical resolution at a specific
height, which is shown in terms of the FWHM of the respec-
tive kernels in Fig. 5b and d. A measure of the retrieval’s
ability to detect and respond to a water vapour disturbance in
the true state at a given height is the measurement response,
which is defined as the sum over all kernel rows and depicted
as the black line in Fig. 5a and c. Values close to unity indi-
cate that the retrieval is sensitive to disturbances in the true
profile (Rodgers, 2000).
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Figure 5. Panels (a) and (c) show rows of the water vapour aver-
aging kernel matrix (Arows(VMRH,0)) as coloured lines and their
sum as a black line, which denotes the measurement response. The
rather blue lines correspond to kernels closer to the surface, and the
more yellow lines correspond to kernels at higher altitudes. Panels
(b) and (d) show the FWHM of the averaging kernel rows, which is
a measure for the vertical resolution of the observing system. Panels
(a) and (b) are based on a mean tropical ocean atmosphere, specifi-
cally the tropical FASCOD atmosphere. The atmospheric setup used
for (¢) and (d) differs only by the introduction of EML features, as
described in Sect. 3.

The averaging kernels of the mean tropical ocean atmo-
sphere in Fig. 5a expectably show a very smooth behaviour
with height, and the deduced vertical resolution is similar
to that of Smith and Weisz (2018); e.g. it is of the order of
1.5 km throughout the free troposphere between around 200
and 800 hPa. In the upper troposphere (p <200 hPa) a signif-
icant decrease in vertical resolution is found. In the bound-
ary layer, the vertical resolution does not appear to diminish
but to improve, which is in agreement with Smith and Weisz
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(2018). However, we find this to be misleading because the
shape of the averaging kernels associated with these altitudes
is distorted due to the strong signal of the surface, not al-
lowing for a robust calculation of the FWHM. Rather than
the FWHM, the measurement response is a more informa-
tive measure of the retrieval’s sensitivity to disturbances in
the boundary layer. For the tropical ocean atmosphere, the
measurement response is close to unity throughout most of
the free troposphere and shows a sharp decrease within the
boundary layer, indicating limited sensitivity to water vapour
disturbances in the true state only in the boundary layer.

The EML has a significant impact on all averaging kernels
in the lower and mid troposphere as shown in Fig. 5c and
d. Around the humidity maximum at the EML top the aver-
aging kernels show distinct peaks, which are caused by the
strong radiative signal associated with the EML. The EML
signal is so strong that it also affects the more sensitive chan-
nels that usually sample higher altitudes and therefore de-
crease the vertical resolution from about 1.5 to 2.5km be-
tween the EML top and about 200 hPa compared to the tropi-
cal mean atmosphere. As the moisture decreases beneath the
EML humidity maximum, a clear reduction in vertical res-
olution down to about 2.5km at around 800 hPa is found,
indicating a more limited ability to resolve additional mois-
ture features beneath the EML. This state dependence of the
averaging kernel reflects the nonlinear nature of the retrieval
problem and the limited expressiveness of the vertical reso-
lution deduced with this method. Retrievability of a moisture
feature not only depends on its vertical extent, but also on the
atmospheric state it is embedded in. This motivates the sta-
tistical analysis presented in the next section of analysing the
retrieval’s performance with regard to its ability to capture
moisture anomalies as introduced in Sect. 3.

5 Retrieval performance

After the exemplified investigation of an EML case in the
previous section, the retrieval performance is now assessed
based on a larger test dataset. The major aim with this sec-
tion is to first assess the validity of our simple retrieval setup
before using the synthetic retrieval dataset in the next section
to showcase some of the possibilities with our new method
for identifying and characterizing moisture anomalies intro-
duced in Sect. 3. In the following, we first introduce the
test dataset and investigate the vertical distribution of the re-
trieval error in temperature and water vapour. Afterwards, the
smoothing error, which is an intrinsic source of error for a
given observing system and a set of a priori assumptions, is
calculated and discussed in the context of the overall retrieval
error.

https://doi.org/10.5194/amt-14-7025-2021
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5.1 Reference dataset and retrieval error

The retrieval is applied to tropical ocean atmospheres (be-
tween 30° S and 30° N) that are part of the ECMWF IFS di-
verse profile database made available by Eresmaa and Mc-
Nally (2014). The database consists of 25000 short-range
forecasts, which are divided into five even subsets that focus
on representing diversity in a particular atmospheric quan-
tity, such as temperature, specific humidity or precipitation.
For the purpose of this work, only the tropical ocean atmo-
spheres of the subset that focuses on a diverse sampling of
specific humidity is considered. This yields a total number
of 1599 atmospheric setups, for 1288 of which the retrieval
converges to a solution. The following analysis is based on
these converged cases.

A statistical overview of the variability of temperature and
humidity profiles covered by the tropical ocean dataset is pro-
vided in Fig. 6a, b and c. The temperature profiles show very
limited variability, as is typical for tropical ocean regions.
However, despite this very smooth appearance of the vertical
temperature structure, the individual profiles do include sig-
nificant temperature inversions, for example the very promi-
nent inversion at about 2 km height in the trade wind region
(not shown). The humidity profiles show weak variability
within the boundary layer, where the ocean acts as a humid-
ity source and humidity is mostly set by the saturation vapour
pressure controlled by temperature. The median RH is about
82 % at the surface and reaches its maximum at about 500 m
height in the transition to the shallow cloud layer. In the free
troposphere, the typical “C”-shaped structure of the RH pro-
file is followed (Romps, 2014). An interesting feature in the
75th and 90th percentiles of the RH profiles is the presence
of positive RH anomalies in the layer between around 500
and 700 hPa, indicating moisture anomalies that may be tied
to the freezing level.

Figure 6d, e and f show an overview of the retrieval’s de-
viations from the reference dataset, from now on referred
to as the retrieval error. In the context of these figures, the
term bias refers to a difference of the median values of the
retrieved and true datasets. The temperature profile shows
a positive bias close to the surface, which we attribute to
the limited signal from these heights in the satellite obser-
vation. The negative bias near the surface in RH is associated
with this positive temperature bias and with the slightly neg-
ative VMRpy,o bias near the surface. Between around 900
and 700 hPa the VMRpy,0 and RH biases are positive, while
the temperature bias is slightly negative. This positive mois-
ture bias in the lower troposphere is associated with an in-
creased variability of the error, particularly towards strong
positive errors that indicate an overestimation of moisture in
the lower troposphere by the retrieval. This may be caused by
the typical hydrolapse that is coupled to the trade inversion
in the trade wind regions, which can in its sharpness not be
captured by the retrieval.

Atmos. Meas. Tech., 14, 7025-7044, 2021
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Figure 6. Panels (a), (b) and (c) give a statistical overview of temperature, VMRy, and RH over 1288 tropical ocean model atmospheres
from the dataset of Eresmaa and McNally (2014), upon which the retrieval is performed. Colour scheming is based on Fig. 5 of Eresmaa and
McNally (2014), where bright orange indicates the 10th and 90th percentiles and dark orange indicates the 25th and 75th percentiles. The
median is depicted by a solid black line. Panels (e), (f) and (g) show the respective statistics on the deviations of the retrieved to true profiles.
Note the exception of relative differences for VMRy, o, which is more suited for the dynamical range of this quantity.

In the mid troposphere between about 700 and 300 hPa,
which is where typical EMLs are expected, no significant
temperature or humidity biases are found. A positive skew-
ness in the VMRy, o error distribution towards strong posi-
tive errors is found, indicating that positive errors in retrieved
VMRy,0 are rare but large compared to the negative errors
that occur. As an explanation for this error pattern, we pro-
pose the idea that positive (moist) moisture anomalies tend
to be captured with a slight underestimation in their strength,
while occasionally strong negative (dry) moisture anomalies
beneath are associated with a strong overestimation of mois-
ture by the retrieval due to a lack of signal beneath a positive
moisture anomaly (as shown in Fig. 5). This could explain
less frequent but strong positive retrieval errors and more fre-
quent but relatively weak negative errors that have a net bias
close to zero.

In the upper troposphere errors in temperature and humid-
ity are generally larger. We believe that this has two causes.
Firstly, the a priori moist adiabatic temperature assumption
becomes worse closer to the tropopause. Secondly, Fig. 5

Atmos. Meas. Tech., 14, 7025-7044, 2021

shows that there is only a weak radiative signal from the up-
per troposphere, as indicated by strongly smoothed averag-
ing kernels and a decreased vertical resolution. While this
may be improved by adjusting the a priori assumptions for
the upper troposphere and including even stronger absorption
features of water vapour, the upper troposphere is no major
concern of this study.

5.2 Smoothing error

Part of the retrieval error shown in Fig. 6 can be attributed to
the so-called smoothing error (SE, Rodgers, 2000). Given a
specific observing system and a priori assumptions about the
quantity to be observed, the SE is a source of error that cannot
be avoided without changing the observing system or a priori
assumptions themselves. In the framework of the averaging
kernel matrix, the SE expresses the error in the retrieval that
is associated with the non-delta-function shape of the aver-
aging kernel rows (see Fig. 5) and the thereby limited ability
to resolve vertical features. Here, it is calculated as
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Figure 7. Smoothing error (SE) as calculated by Eq. (4) of retrieved
temperature (a), logarithmic VMRy, o (b) and RH (c) profiles over
1288 tropical ocean atmospheres. Lines and shadings are defined as
in Fig. 6.

SE=(x—x))A-1,), 4)

where I, denotes the identity matrix of order n and n is the
number of vertical levels of the profile retrieval.

Figure 7 shows the SE statistics associated with the re-
trieved temperature and humidity profiles of the tropical
ocean dataset. The median of the SE with respect to the tem-
perature profile (SE(7)) is close to zero throughout most of
the free troposphere, similar to the retrieval bias shown in
Fig. 6d. The positive retrieval bias in temperature found near
the surface is of smaller magnitude also found in SE(T'), in-
dicating that this pattern is caused by a systematically un-
resolved vertical feature. The variability of the temperature
retrieval error found in Fig. 6d in the lower and mid tropo-
sphere cannot be attributed to smoothing, since the variabil-
ity in SE(T') is very small. In conclusion, this indicates that
temperature error sources are unlikely to be caused by un-
captured vertical temperature variability but rather vertically
constant errors, which do not show up in SE(T). In the upper
troposphere, SE(T') increases towards the tropopause, where
smoothing becomes the major contribution to the retrieval
temperature error.

For the water vapour profile in the lower and mid tropo-
sphere, smoothing is a greater source of error than for the
temperature profile (Fig. 7b). While the median of the water
vapour smoothing error (SE(log(VMRy,0))) is low through-
out the lower and mid troposphere, its variability (e.g. the
shown percentile ranges) is on a similar scale to the vari-
ability of the retrieval error shown in Fig. 6e. This indi-
cates that a major contribution of error in the water vapour
retrieval is to capture vertical variability. The distribution
of SE(log(VMRHy,0)) in the mid troposphere also reflects
the positive skewness that was found in the overall error in
Fig. 6e. This is consistent with the previously described idea
that this skewness is linked to the retrieval’s ability to cap-
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ture vertical moisture anomalies. In the upper troposphere,
the median SE(log(VMRH,0)) increases to a similar magni-
tude to the retrieval error, while its variability even exceeds
that of the retrieval error, indicating that other sources of er-
ror are compensating.

The SE(RH) statistics show the combined effect of the
smoothing errors in temperature and humidity (Fig. 7¢). It is
apparent that also in terms of RH the smoothing error has a
strong contribution to the retrieval error in the lower and mid
troposphere, similar to the VMRRp, o error. In the upper tro-
posphere the median SE(RH) is of the same order as the re-
trieval error, while its variability appears to be even stronger,
following the behaviour found for SE(log(VMRH,0)).

6 Retrieval of moisture anomalies

In this section the retrieval results for the previously intro-
duced tropical ocean test dataset (Sect. 5) are assessed with
specific focus on the characteristics of moisture anomalies
as introduced in Sect. 3. First, the moisture anomaly char-
acteristics of the tropical ocean dataset and of the retrieved
dataset are compared to look for systematic limitations of
the retrieval to resolve specific kinds of moisture anomalies.
Then, the impact of moisture anomalies on the heating rate
profile is assessed and the retrieval’s ability to capture this
impact is investigated.

6.1 Moisture anomaly characteristics

Figure 8 shows probability density distributions of the mois-
ture anomaly characteristics (defined in Sect. 3) for the tropi-
cal ocean dataset (green) and the associated retrieved dataset
(orange). The dashed lines indicate the mean values of the re-
spective distributions. The distributions of moisture anomaly
height (zZanom) displayed in Fig. 8a show that most moisture
anomalies occur in the mid to upper troposphere, which is
somewhat surprising since EMLs are typically thought to be
coupled to the freezing level at around 5 km height (Johnson
et al., 1996; Stevens et al., 2017). However, note firstly that
strong EMLs and very slight moisture anomalies are treated
evenly here. Secondly, the distributions reflect the statistics
of the underlying dataset, which is based on the ECMWF IFS
atmospheric model. This dataset appears as a suitable start-
ing point to assess the retrieval’s ability to capture moisture
anomalies; however, the analyses of the dataset’s moisture
anomaly statistics themselves are not the focus of this study.

Figure 8a shows a bias between true and retrieved Zanom
of about 0.9 km, indicating that the found zapom biases in the
case study of Sect. 4 do indeed appear to be systematic and
even greater in amplitude. Besides the earlier proposed cause
of a varying effect of smoothing with height, we believe this
bias is also caused by a systematic underestimation of the
fraction of moisture anomalies below 5 km altitude by the re-
trieval, while the fraction of anomalies above 10 km is over-
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Figure 8. Probability density functions (PDFs) of moisture anomaly
characteristics of the tropical ocean reference dataset (denoted as
“true”) and the retrieved dataset.
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Figure 9. Frequency distributions of moisture anomaly thickness
of the tropical ocean reference dataset, split up into cases where a
moisture anomaly could be retrieved and could not be retrieved.
Panels (a), (b) and (c) reflect three altitude regions, namely the
lower (0-5 km), mid (5-10km) and upper (10-15 km) troposphere.

estimated. Only a fraction of about 52 % of the total number
of moisture anomalies below 5km in the reference dataset
is captured by the retrieval. We attribute this deficiency to
the fact that moisture anomalies are typically narrower in
the lower to mid troposphere than further aloft, as shown in
Fig. 9.

Figure 9a, b and ¢ show the number of moisture anoma-
lies of the reference dataset in the lower, mid and upper
troposphere, respectively, as a function of anomaly width
(A zZanom) and separated into subsets of anomalies that either
could or could not be retrieved. An anomaly of the reference
dataset is considered retrieved if there is a retrieved positive
moisture anomaly with an anomaly height within the vertical
bounds of the anomaly of the reference dataset. While it is
apparent that the narrower moisture anomalies are most fre-
quently missed in all three altitude regions, this means a par-
ticular shortcoming for the retrieval between 0 and 5 km be-
cause cases with A zanom 22 km are especially rare. A techni-
cal cause of this is the fact that we exclude all anomalies that
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reach as close to the surface as 900 hPa (see Sect. 3). How-
ever, the lower to mid troposphere is also subject to more
small-scale variability due to its link to the boundary layer
and low-level convection, making it more prone to small-
scale moisture anomalies than the free troposphere aloft.

The distribution of the moisture anomaly strength (Sanom)
depicted in Fig. 8b has a similar dynamical range to VMRp,0
since the anomalous VMRp, 0 scales with its absolute value.
The distribution of s;,om Of the retrieved dataset is over-
all shifted towards lower values, yielding a negative bias
of about —8.2 x 1075 (17 %) against the reference dataset,
which can mostly be attributed to the smoothing error of the
retrieval. The smoothing error generally acts by a weaken-
ing and thickening of anomalies, which also partly explains
the significant positive bias of about 0.4 km (15 %) in mois-
ture anomaly thickness (A zanom) depicted in Fig. 8c. An-
other contributing effect towards the found biases in sanom
and A Zanom 18 the fact that particularly weak and narrow
moisture anomalies are more often completely missed by the
retrieval, as shown by Fig. 9.

6.2 Implications of moisture anomalies for the heating
rate profile

Moisture anomalies affect the heating rate profile by absorb-
ing and emitting IR radiation. Because of the exponential de-
crease in water vapour with height, emission at the anomaly
top is particularly efficient and can yield a strong local radia-
tive cooling rate (see Fig. 3). We consider this cooling effect
to be the moisture anomaly’s most prominent footprint on the
heating rate profile. In the following, we quantify this cooling
effect by considering the minimum heating rate within the
vertical bounds of a moisture anomaly, min(Qanom)- Since
min(Qanom) 1S & scalar metric, it can intuitively be viewed as
a function of moisture anomaly characteristics.

Figure 10a and b show the joint frequency distributions of
the moisture anomaly strength (sapom) and min(Qanom) for
the tropical ocean dataset and the retrieval dataset, respec-
tively. Both datasets show a clear correlation between the
two quantities, namely that stronger anomalies are associated
with a stronger peak in radiative cooling. While moisture
anomalies with Sanom 510_4 show similar minimum cooling
rates down to about —2.5 K d~! in both the reference and re-
trieval datasets, larger differences between the two datasets
are apparent for stronger anomalies. The reference dataset
(Fig. 10a) shows min(Qanom) values between about —1 and
—5Kd~! for moisture anomalies with sanom210_4, while
the retrieval dataset barely shows any min(Qanom) values
smaller than —3 K d~!.

We hypothesize that the increased variability in
min(Qanom) for samleO’4 in the reference dataset
can be attributed to the variability in the exact vertical shapes
of the moisture anomalies. Anomalies with a strong negative
moisture gradient at their top yield a stronger minimum
in radiative cooling, while more smooth anomalies are
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Figure 10. Panels (a) and (b) show the joint frequency distribu-
tions of anomaly strength and minimum heating rate within the
anomaly layers of the reference dataset and the retrieved dataset,
respectively. Panels (¢) and (d) show the joint frequency distribu-
tions of the anomaly strength and the anomaly height for the two
respective datasets.

associated with a less pronounced radiative cooling peak.
This effect introduces more variability in min(Qanom) the
stronger the anomalies are. It also explains why retrieved
moisture anomalies do not show as extreme min(Qanom)
values as the reference dataset, since the vertical shape of
retrieved anomalies is always bound by the smoothing error.

In the real world, much more extreme vertical moisture
gradients associated with moisture anomalies can be ob-
served than in the model-based reference dataset used here.
Albright et al. (2021) discuss an EML scenario over the
Northern Atlantic Trades with a significant moisture drop
that is associated with a minimum cooling rate of about
20K d~!. The results of Fig. 10 indicate that while the re-
trieval is able to broadly distinguish between differently
strong moisture anomalies and their associated heating rates,
it is unable to properly represent such extreme cooling rate
minima due to smoothing.

Figure 10c and d show the joint frequency distributions
of the moisture anomaly strength and height (zanom). A clear
relation between sanom and Zanom 1S found in both datasets,
namely that anomalies are weaker the higher up they are
in the troposphere. We explain this by the dependence of
Sanom On the absolute humidity, which decreases exponen-
tially with height. Combining this with the relation found be-
tween anomaly strength and minimum heating rate, it is clear
that the radiatively most significant moisture anomalies occur
in the lower to mid troposphere. As pointed out in Sect. 6.1
when discussing Fig. 9, the retrieval has particular deficien-
cies in resolving the rather narrow lower- to mid-tropospheric
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moisture anomalies. It is now apparent that this deficiency
is particularly relevant, since it affects the strongest and ra-
diatively most significant moisture anomalies. However, the
EML test case investigated in Sect. 4.1 shows that when
the anomaly is relatively strong and the atmosphere aloft
has a simple structure, lower- to mid-tropospheric moisture
anomalies can also be retrieved well. It may be worth inves-
tigating different cases of EMLs that are embedded in a more
complex tropospheric humidity structure in the future.

7 Summary and conclusions

The question implicitly raised by the findings of Stevens et al.
(2017), whether or not passive satellite retrievals are capable
of resolving EMLs, is investigated based on a synthetic re-
trieval framework where the IASI instrument is represented
by the forward model ARTS. An EML test case based on
dropsonde profiles from the NARVAL-2 measurement cam-
paign (Konow et al., 2019) and a set of 1288 tropical ocean
model atmospheres are used as input for the forward model
and as a reference to evaluate the retrieval results against.
The scenes are limited to clear sky.

To characterize an EML quantitatively (e.g. by strength,
thickness and height), the concept of a moisture anomaly
against a loosely fitted but clearly defined reference humid-
ity profile is introduced. Following the ideas of Johnson et al.
(1996) and Stevens et al. (2017) about a coupling of EMLs
to the freezing level, EMLs would in this framework consti-
tute a subset of rather strong, vertically confined, lower- to
mid-tropospheric positive moisture anomalies. However, for
the scope of this work no clear specification of what distin-
guishes an EML from other moisture anomalies is attempted,
which would require a more dedicated selection and analy-
sis of the test dataset. Instead, the aim of this study is a first
systematic evaluation of EML retrievability based on hyper-
spectral IR observations.

Based on the EML case of Stevens et al. (2017), we
show that with sufficient independent temperature and water
vapour information, a combined retrieval of the moisture and
temperature profiles and the surface temperature is capable
of resolving the vertical EML structure. This result is in line
with previous OEM-based case studies of similar moisture
structures (Calbet et al., 2006; Zhou et al., 2009). We show
that limited independent temperature information can cause
the EML to not be resolved by the retrieval due to compen-
sating water vapour and temperature errors. We suggest this
as a possible reason for the EML blind spot found by Stevens
et al. (2017).

The EML signal for the IASI instrument is further charac-
terized by the averaging kernel and the deduced vertical res-
olution, which is of the order of 1.5km for an average trop-
ical ocean atmosphere, which is in agreement with previous
studies (Lerner, 2002; Smith and Weisz, 2018). However, in
the presence of an EML, the strong signal from the EML top

Atmos. Meas. Tech., 14, 7025-7044, 2021



7040

weakens the signal from below and introduces a strong gra-
dient in vertical resolution from 0.5km at the EML top to
2.5km at the EML bottom. This state dependence of verti-
cal resolution motivates a statistical approach to evaluate the
retrieval’s ability to resolve moisture anomalies in various at-
mospheric states.

When applying the retrieval to the tropical ocean test
dataset, it is found that a large fraction of the absolute re-
trieval error in humidity can be attributed to smoothing.
In particular, in the transition region between the boundary
layer and the free troposphere, the smoothing error intro-
duces a bias to the retrieved humidity and temperature pro-
files, which is most likely connected to the sharp humidity
drop associated with the stratified barrier between the moist
boundary layer and the dry free troposphere in the trade wind
region. In the free troposphere, say above 800 hPa, the re-
trieval shows no significant moisture bias but a positively
skewed error variability, indicating that moist anomalies are
typically associated with smaller errors than dry anomalies.
This is coherent with the idea that dry anomalies that oc-
cur beneath moist anomalies are prone to larger errors due to
the reduced sensitivity of the satellite measurement below a
moist anomaly.

The study is completed by a specific evaluation of the
moisture anomaly retrievability based on the new charac-
terization method introduced in Sect. 3. It is found that the
retrieved moisture anomalies are on average 17 % weaker
and 15 % thicker than the anomalies of the reference dataset,
which we attribute to smoothing and the fact that rather weak
and narrow anomalies are missed by the retrieval more often.
While overall about 80 % of the total number of moisture
anomalies in the reference dataset are found by the retrieval,
a systematic underrepresentation of anomalies below 5 km is
found, where the retrieval only identifies about 52 % of the
anomalies present in the reference dataset. Since it is shown
that moisture anomalies in the lower to mid troposphere are
typically the strongest and radiatively most significant, this
issue may be quite significant.

The analysis of capturing the moisture anomalies’ foot-
print on the heating rate profiles shows that the retrieval is
able to capture the general relation between anomaly strength
and minimum cooling rate. However, the retrieval shows a
particular shortcoming in capturing the most extreme cool-
ing rates associated with strong lower- to mid-tropospheric
anomalies. We attribute this shortcoming to the retrieval’s
limited ability to resolve strong vertical moisture gradients
that are necessary for the most extreme local cooling rates.
Vertical moisture gradients in the real world can be a lot
stronger than the ones available from the model test dataset
(Albright et al., 2021), which means that retrieval errors with
respect to peaks in the cooling rates can be large for rather
extreme but realistic cases.
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In summary, the retrieval result of the EML case study
shows that hyperspectral IR satellite instruments are in prin-
ciple capable of resolving a sufficiently strong EML in an
otherwise simply structured atmospheric profile. The statis-
tical evaluation of retrieved moisture anomaly characteris-
tics shows that the retrieval is able to represent moisture
anomalies of various thickness, height and strength. Signifi-
cant shortcomings are found in the lower to mid troposphere,
where about half of the moisture anomalies are missed by
the retrieval and with regard to capturing particularly strong
vertical gradients, causing limitations in resolving extreme
cooling rates. It would be interesting to apply a similar anal-
ysis to operational retrieval products, such as the TASIT L2
product (EUMETSAT, 2017), the NUCAPS product (NOAA
Unique Combined Atmospheric Processing System; Berndt
et al., 2020) or the CLIMCAPS product (Community Long-
term Infrared Microwave Combined Atmospheric Product
System; Smith and Barnet, 2020). The benefit of our new
method for analysing moisture anomalies is that it allows for
a direct statistical evaluation of the different product’s capa-
bilities to resolve EMLs and vertical humidity structures in
general by being easy to apply to large datasets. As a next
step we plan to apply our retrieval and evaluation techniques
introduced in this work to real hyperspectral IR observations,
with a focus on EML-like cases that we identify based on
dropsonde observations from the NARVAL and EUREC*A
(Stevens et al., 2021) measurement campaigns. This may also
serve as a good first test bed of data to assess operational
products’ capabilities to resolve the vertical moisture struc-
tures of interest.

Appendix A: Temperature averaging kernels

Since we highlight the importance of sufficient independent
temperature information to resolve the water vapour struc-
ture, Fig. Al shows the temperature averaging kernels and
deduced vertical resolution based on the retrieval setup in-
troduced in Sect. 2.
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Figure A1. Same as Fig. 5 but for temperature.
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