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Abstract. Instrumental global temperature records are de-
rived from the network of in situ measurements of land
and sea surface temperatures. This observational evidence
is seen as being fundamental to climate science. Therefore,
the accuracy of these measurements is of prime importance
for the analysis of temperature variability. There are spatial
gaps in the distribution of instrumental temperature measure-
ments across the globe. This lack of spatial coverage intro-
duces coverage error. An approximate Bayesian computa-
tion based multi-resolution lattice kriging is developed and
used to quantify the coverage errors through the variance
of the spatial process at multiple spatial scales. It critically
accounts for the uncertainties in the parameters of this ad-
vanced spatial statistics model itself, thereby providing, for
the first time, a full description of both the spatial coverage
uncertainties along with the uncertainties in the modeling of
these spatial gaps. These coverage errors are combined with
the existing estimates of uncertainties due to observational
issues at each station location. It results in an ensemble of
100 000 monthly temperatures fields over the entire globe
that samples the combination of coverage, parametric and
observational uncertainties from 1850 to 2018 over a 5◦×5◦

grid.

1 Introduction

Instrumental surface temperature data sets are frequently
used to determine the variability in changing surface tem-
peratures on Earth (e.g., Hansen et al., 2010; Morice et al.,
2012; Menne et al., 2018). Climate models also use instru-
mental observations for accurate assessment of various cli-
mate phenomena (e.g., Glanemann et al., 2020). Temperature
databases are generally created by blending the land and sea
surface temperature records. The land component of the data
sets is mostly collected from the global historical network
of meteorological stations (e.g., Jones et al., 2012). Much of
these data are derived from the World Meteorological Or-
ganization (WMO) and Global Climate Observing System
(GCOS) initiatives. On the other hand, sea surface temper-
atures are largely compiled by the International Compre-
hensive Ocean-Atmosphere Data Set (ICOADS; Woodruff
et al., 2011). These are collected from ships and drifting
buoys (e.g., Kennedy et al., 2011b).

These raw temperature estimates are post-processed by re-
moving biases from them (Dunn et al., 2014). In a first step
of quality control, noise originating from instrumental or ob-
server error is removed (Dunn et al., 2016). After this, sys-
tematic biases that arise from station movements or incorrect
station merges, changes in instruments and observing prac-
tices and land use changes around stations (more commonly
known as urbanization impacts) are removed (Dunn et al.,
2016). Such a homogenization process (Domonkos and Coll,
2017) aims to remove or at least reduce the non-climatic sig-
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nals that will likely affect the genuine data characteristics
(e.g., Hausfather et al., 2016; Cao et al., 2017).

Blended land and sea surface temperature data are gen-
erated by a variety of organizations. These include the fol-
lowing: the National Oceanic and Atmospheric Adminis-
tration (NOAA) Global Surface Temperature (NOAAGlob-
alTemp) data set (Smith et al., 2008; Vose et al., 2012;
Zhang et al., 2019; Vose et al., 2021), the Goddard Insti-
tute for Space Studies (GISS) surface temperature anoma-
lies by the National Aeronautics and Space Administra-
tion (NASA; Hansen et al., 2010; Lenssen et al., 2019), tem-
perature anomalies provided by the Japanese Meteorological
Agency (JMA; Ishihara, 2006), the HadCRUT5 temperature
anomalies by the Met Office Hadley Centre and the Univer-
sity of East Anglia Climatic Research Unit (Morice et al.,
2012, 2021) and the Berkeley Earth Surface Temperature
(BEST) project by Rohde and Hausfather (2020). Each group
compiles these monthly temperature products using some-
what different input data and extensively different quality
control and homogenization procedures (e.g., Rohde, 2013;
Jones, 2016).

The GISS temperatures make substantial use of satel-
lite nightlight data (Hansen et al., 2010; Lenssen et al.,
2019) for bias adjustment of urban areas. However, NOAA-
GlobalTemp, HadCRUT5 and BEST use no satellite data at
all (Rohde and Hausfather, 2020; Vose et al., 2021; Morice
et al., 2021). These data sets are also different in terms
of their starting years, namely 1850–present for HadCRUT
and BEST, 1880–present for GISS and NOAA, and 1891–
present for JMA. The spatial resolution is different as well.
Each group also employs different methods of averaging to
derive gridded temperature products from in situ measure-
ments (Jones, 2016; McKinnon et al., 2017).

In addition to these methodological differences, spa-
tial coverage is also being treated differently by these
groups (Huang et al., 2020). The HadCRUT4 data set does
not interpolate over grid boxes having missing observa-
tions. The sea component of JMA grid estimates are based
on optimally interpolated (i.e., kriging) sea surface tem-
perature anomalies (Ishii et al., 2005; Kennedy, 2014). On
the other hand, no spatial interpolation is performed on
HadSST3 (Rayner et al., 2006) and CRUTEM4 (Jones et al.,
2012), which are the land and sea components of HadCRUT4
data set. The NOAAGlobalTemp (Vose et al., 2021) data set
is based on a nonparametric smoothing process and empirical
orthogonal teleconnections. The reconstruction combines a
low-frequency spatial running average and a high-frequency
reduced space analysis. For broader spatial coverage, the
GISS uses a linear distance weighting with data from all the
stations up to 1200 km of the prediction location (Hansen
et al., 2010). The weight of each sample point decreases lin-
early from unity to zero. This interpolation scheme computes
estimates by weighting the sample points closer to the pre-
diction location greater than those farther away without con-
sidering the degree of autocorrelation for those distances. On

the other hand, the JMA (Ishii et al., 2005) ocean records
use covariance structure of spatial data and are based on
traditional kriging. Formal Gaussian process regression is
used by the BEST to produce spatially complete tempera-
ture estimates (Rohde et al., 2013). Cowtan and Way (2014)
also handle the issue of missing observations and provide a
data product that is based on HadCRUT4 temperature esti-
mates (Morice et al., 2012). This data set (Cowtan and Way,
2014) consists of spatially dense fields. The unobserved grid
cells of HadCRUT4 spatial fields are estimated using a spa-
tial interpolation approach, i.e., ordinary kriging. A newer
and more refined version (HadCRUT5) of this data set has re-
cently been created (Morice et al., 2021). HadCRUT4 is not
interpolated, but the recently published HadCRUT5 is inter-
polated (Morice et al., 2012, 2021). Additionally, the compi-
lation of the new HadCRUT5 data set involves a conditional
simulation step that incorporates analysis uncertainties into
an ensemble. It is important to note that simulation is not in-
volved in the other data sets discussed before for calculating
the uncertainty estimates in their interpolation.

Recently, a new monthly temperature data set was cre-
ated (Ilyas et al., 2017). It employs the multi-resolution
lattice kriging approach (Nychka et al., 2015) that captures
variation at multiple scales of the spatial process. This
multi-resolution model quantifies gridded uncertainties in
global temperatures due to the gaps in spatial coverage.
It results in a 10 000 member ensemble of monthly tem-
peratures over the entire globe. These are spatially dense,
equally plausible fields that sample the combination of
observational and coverage uncertainties. The data are open
access and freely available at https://oasishub.co/dataset/
global-monthly-temperature-ensemble-1850-to-2016 (last
access: 7 November 2021).

This paper provides a substantial update on the Ilyas et al.
(2017) data set. Here, a new version of this data set is pro-
duced that incorporates the uncertainties in the statistical
modeling itself (i.e., parametric uncertainties) in addition to
the observational and coverage errors. To account for the
model parametric uncertainties, an approximate Bayesian
inference methodology is proposed that extends the multi-
resolution lattice kriging (Nychka et al., 2015). It is based on
the variogram, which is a measure of spatial variability be-
tween spatial observations as a function of spatial distance.

2 Methods

2.1 Multi-resolution lattice kriging using ABC

The multi-resolution lattice kriging (MRLK) model was in-
troduced by Nychka et al. (2015). It models spatial observa-
tions as a sum of a Gaussian process, a linear trend and a
measurement error term. The MRLK can flexibly adjust to
complicated shapes of the spatial domain and has the prop-
erty of approximating standard covariance functions. This
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methodology extends spatial methods to very large data sets
accounting for all the scales and for the goals of spatial in-
ference and prediction. Indeed, it is computationally efficient
for large data sets by exploiting sparsity in precision matri-
ces. The underlying spatial process is a sum of independent
processes, each of which is a linear combination of the cho-
sen basis functions. The basis functions are fixed and coeffi-
cients of the basis functions are random.

Consider observations y(x) at n spatial locations
x1,x2, . . .,xn in the spatial domain D. The aim is to predict
the underlying process at an arbitrary location x ∈D and to
estimate the uncertainty in the prediction. For x ∈D, in the
following:

y(x)= d + g(x)+ ε(x), (1)

where d is the mean, and ε is the error term. The unknown
spatial process g(x) is assumed to be the sum of L indepen-
dent processes having different scales of spatial dependence.
Each process is a linear combination of m basis functions,
where m(l) is the number of basis functions at level l, as fol-
lows:

g(x)=

L∑
l=1

gl(x)=

L∑
l=1

m(l)∑
j=1

cljφj,l(x). (2)

The basis functions (φj,l) are fixed. These are constructed
at each level using the unimodal and symmetric radial basis
functions. Radial basis functions are functions that depend
only on the distance from the center.

The inference methodology (Nychka et al., 2015) is the
direct consequence of maximizing the likelihood function.
This inference framework does not account for the uncer-
tainty in the model parameters within the MRLK (Nychka
et al., 2015). Here, we estimate the MRLK parameters and
quantify uncertainty in these parameters. For this purpose, a
Bayesian framework is created in which the posterior densi-
ties of the multi-resolution lattice kriging parameters are esti-
mated using the approximate Bayesian computation (ABC).
Our new technique allows for the spatial predictions to be ac-
companied by a quantification of uncertainties in these pre-
dictions that reflect not only the coverage gaps but also the
uncertainties in the MRLK parameters.

2.1.1 ABC posterior density estimation

Consider a n-dimensional spatial random variable y(x). The
multi-resolution lattice kriging model depends on the un-
known p-dimensional parameter θ . The probability distribu-
tion of the data, given a specific parameter value θ , is denoted
by f (y|θ). If the prior distribution of θ is denoted as π(θ),
then the posterior density is given by the following:

f (θ |y)∝ f (y|θ) π(θ). (3)

Here, θ = [λ,a.wght]T , where λ and a.wght are, respectively,
the smoothing parameter and autoregressive weights (Ny-
chka et al., 2019). These are the two main parameters of the

MRLK. The autoregressive weight (a.wght) is the key covari-
ance parameter. More precisely, it is the spatial autoregres-
sive (SAR) parameter that controls the spatial dependence
among lattice points. It is essential for specifying and fitting
the spatial model. The smoothness parameter , λ, represents
the signal-to-noise ratio; an inappropriate estimate can lead
to over- or underfitting a spatial model and can result in im-
precise interpolated values and prediction uncertainties (Ny-
chka et al., 2015). The posterior distribution of these param-
eters, given data, f (θ |y), is approximated using ABC. The
ABC acceptance–rejection technique, based on a variogram
as a summary statistic, is developed in the next section that
is used to approximate the posterior densities.

2.1.2 Variogram-based ABC algorithm

The approximate Bayesian computation (e.g., Busetto and
Buhmann, 2009; Beaumont, 2010; Dutta et al., 2017; Beau-
mont, 2019) is a family of algorithms that deals with the
situations where the likelihood of a statistical model is in-
tractable, whereas it is possible to simulate data from the
model for a given parameter value. ABC bypasses the eval-
uation of the likelihood function by comparing observed and
simulated data. Additionally, it offers algorithms that are
very easy to parallelize. There are several forms of ABC
algorithms. The standard rejection algorithm is the classi-
cal ABC sampler (e.g., Pritchard et al., 1999; Beaumont
et al., 2002). It is widely used, e.g., for model calibration
by Gosling et al. (2018). The algorithm is based on drawing
values of the parameters from the prior distribution. The data
sets are simulated for each draw of parameters, each resulting
in a chosen summary statistic. A distance metric is computed
between the summary statistic of the observed and simulated
data. The parameters that produce distances less than a toler-
ance threshold are retained. These accepted parameters form
a sample from the approximate posterior distribution.

The basic idea of ABC is to simulate from the multi-
resolution lattice kriging model for a given set of parame-
ters θ . Simulations are run for a large number of parame-
ters to be able to produce meaningful posterior distributions.
The parameter values are retained for simulated data y∗ that
match the observed data y up to a tolerance threshold. For
the similarity metric, we choose the sum of the squared dif-
ferences between the semivariance at various lag distances
of observed (γ (h)) and simulated (γ ∗(h)) data. Indeed, these
semivariances are traditional descriptors of the correlations
across space.

The empirical semivariogram is typically computed by ag-
gregating spatial pairs with similar distances. For this, the
distances are partitioned into intervals called bins. The av-
erage distance between each bin is referred as lag distance
h. The semivariance is half of the average squared differ-
ences between the observations for the point pairs falling in
each bin. The standard rules are observed while computing
the semivariogram. For example, the number of point pairs
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Figure 1. ABC acceptance–rejection algorithm using a variogram
as a summary statistic for multi-resolution lattice kriging.

at each lag distance is at least 30. The semivariogram is
computed up to half of the maximum distance between the
points over the whole spatial domain. The retained θ∗ = [λ∗,
a.wght∗]T are such that θ∗ ∼ ft (θ |γ ).

2.2 Spatial estimate based on ABC posteriors

The existing MRLK inference methodology (Nychka et al.,
2015) uses maximum likelihood estimators of smoothing pa-
rameter , λ, and autoregressive weights, a.wght. The ABC-
based inference methodology proposed here accounts for
the posterior densities (not joint pointwise estimates) while
making spatial predictions. For the full spatial estimate, the
ABC posterior distributions of the MRLK model parameters
(θ = [λ,a.wght]T ) are used to determine the conditional dis-
tribution of the coefficient c in Eq. (2). For the kth posterior
sample, in the following:[
ck|y,d,ρ,θk

]
∼Nm(µck ,6ck ). (4)

Here, the mean (d) and process variance (ρ) are estimated
using the maximum likelihood approach. The ABC posteri-
ors of these parameters (ρ and d) are not considered in this
paper. Hence, the spatial predictions in ABC-based multi-
resolution lattice kriging are carried out using Eq. (5) and the
associated uncertainties are evaluated based on Eq. (6) below,
as follows:

ŷ =

∑K
k=1

(
1(n)d̂ +8µ̂ck

)
K

(5)

Var(ŷ)=

∑K
k=1

(
86̂ck8

T
)

K
. (6)

3 HadCRUT4 data

The primary data used in this paper are the well-known
HadCRUT4 (version 4.5.0.0) temperature anomalies (Morice

et al., 2012). It is a combination of global land surface air
temperature (CRUTEM4; Jones et al., 2012) and sea surface
monthly temperatures (HadSST3; Kennedy et al., 2011a, b;
Kennedy, 2014). The HadCRUT4 database consists of tem-
perature anomalies with respect to the baseline (1961–1990).
Monthly temperatures are provided, beginning from 1850,
over a 5◦×5◦ grid. The average temperature anomalies of the
stations falling within each grid are provided (Morice et al.,
2012). The data set is updated on monthly basis to provide
the updated climatic state. The gridded temperature estimates
and time series can be downloaded from the Met Office web-
site (https://www.metoffice.gov.uk/hadobs/hadcrut4/; last ac-
cess: 7 November 2021).

3.1 Ensemble members

Errors in weather observations can either be random or sys-
tematic. They can lead to a complex spatial and temporal
correlation structures in the gridded data. An ensemble ap-
proach is used by Morice et al. (2012) to represent the ob-
servational uncertainties in HadCRUT4 data. The ensemble
methodology characterizes the uncertainties that are spatially
and temporally correlated. The realizations of an ensemble
are typically formed by combining the observed data with
multiple realizations drawn from the uncertainty model. This
uncertainty model describes spatial and temporal interdepen-
dencies. This allows one-to-one blending of 100 realizations
of HadSST3 and 100 realizations of CRUTEM4, resulting in
100 realizations of the HadCRUT ensemble data. Together,
these HadCRUT ensemble members represent the distribu-
tion of observational uncertainties that arise due to the non-
climatic factors.

3.2 Observational uncertainties

Systematic observational errors emerge from the non-
climatic factors. The HadCRUT ensemble data are created
by blending the sea surface temperature anomalies from
HadSST3 (Kennedy et al., 2011b, a; Kennedy, 2014) and
land temperature anomalies from CRUTEM4 (Jones et al.,
2012). This approach follows the use of ensemble method-
ology to represent a range of observational uncertainties.
HadSST3 is an ensemble data that is based on the Rayner
et al. (2006) uncertainty model. CRUTEM4 is not available
as an ensemble data set (Jones et al., 2012). Therefore, it was
converted to an ensemble data set by Morice et al. (2012)
using the Brohan et al. (2006) uncertainty model.

The sea surface temperature anomalies are typically being
measured using engine room intake measurements, bucket
measurements and drifting buoys. The HadSST3 ensemble
is used as the sea component of HadCRUT data. This en-
semble is generated by drawing the bias adjustment realiza-
tions for three measurement types. Therefore, the ensemble
samples the systematic observational errors in sea surface
temperature anomalies (Rayner et al., 2006; Kennedy et al.,
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2011a; Kennedy, 2014). Below are the components of the
error model used to characterize the observational uncertain-
ties in the land measurements of HadCRUT. This error model
also generates an ensemble version of CRUTEM4 (Morice
et al., 2012).

– Homogenization adjustment error. Systematic biases
occur due to changing station locations, measurement
time, equipment and methods to calculate monthly av-
erages. Homogenization adjustments are applied to the
data to remove these non-climatic signals. These adjust-
ments typically do not fully capture the systematic bi-
ases. This residual error is referred to as the homoge-
nization adjustment error. It is modeled using a Gaus-
sian distribution (Brohan et al., 2006; Morice et al.,
2012).

– Climatological error. For each station, temperature
anomalies are computed with respect to the base pe-
riod 1961–1990. Typically, data are not available for all
the months in the 30-year climatological period. These
missing observations introduce climatological error in
the estimates of the base period. The climatological er-
ror is modeled using a Gaussian distribution (Morice
et al., 2012).

– Urbanization bias. The urban areas absorb and store
more heat than the rural areas (as evidenced during the
last few decades). This creates a heating effect that is
known as the urban heat effect. The urbanization ef-
fect induces a warming bias in the temperature records.
The error model represents the effects of potential resid-
ual biases when using station records that have been
screened for urbanization. This bias is referred to as ur-
banization bias. In HadCRUT, the effects of urbaniza-
tion are modeled on a global scale instead of consid-
ering these effects on measurement stations. For this, a
truncated Gaussian distribution is used. The large-scale
urbanization bias in temperatures is adjusted for all the
years beyond 1900 (Morice et al., 2012).

– Exposure bias. It has been observed that bias in tem-
peratures can be introduced due to the station site and
exposure. Changes in instrumentation can broadly be
grouped into two broad classes. There were few stan-
dards for thermometer exposure or instrument shelters
before the 19th century. By the early 20th century, these
thatched (or covered) enclosures were largely replaced
by free-standing louvered shelters or Stevenson-type
screens (Trewin, 2010). A Stevenson-type screen is a
shelter or enclosure that protects meteorological instru-
ments from precipitation and direct heat radiation. How-
ever, it allows free circulation of the air. Changes in the
thermometers, exposure to the atmosphere and shelters
from direct or indirect solar radiation introduces expo-
sure bias in temperatures (Parker, 1994; Moberg et al.,

2003). This error in temperatures is modeled on a re-
gional scale in HadCRUT using a Gaussian distribu-
tion (Morice et al., 2012).

In addition to the large-scale bias terms that are discussed
above, Morice et al. (2012) provide the measurement and
grid sampling uncertainty components. These are particu-
larly important for marine regions, as ship/buoy movement
leads to spatially correlated errors. HadCRUT4 does not in-
clude these in the ensemble. These are provided as additional
spatial error covariance matrices. The data set (Sect. 4) cre-
ated in this paper uses HadCRUT4 ensembles only. Stated
differently, all the components of the HadCRUT4 uncertainty
model are not used in this study, and only the uncertainties
encoded in the HadCRUT4 ensemble members are used.

4 Hyperparameter temperature ensemble data

The ensemble temperature data set created by Ilyas et al.
(2017) presumed perfect knowledge of multi-resolution
lattice kriging covariance parameters. The approximate
Bayesian computation based on multi-resolution lattice krig-
ing developed in Sect. 2.1 is applied to the sparse HadCRUT4
ensemble data (Sect. 3; Morice et al., 2012). As a result of
this, a new 100 000 member ensemble data set is created. It
is an update to the data set discussed in Ilyas et al. (2017).

The key difference between the two data sets is the infer-
ence methodology. The updated data set is produced by using
the ABC-based posterior densities of the multi-resolution lat-
tice kriging covariance parameters, whereas the first data set
used pointwise estimates obtained via a likelihood approach.
The use of the posterior distribution of the model parameters
creates a data set that accounts for the multi-resolution lattice
kriging parametric uncertainties.

4.1 ABC posteriors and model parameters

The HadCRUT ensemble data set samples observational un-
certainties in the instrumental temperature records (Morice
et al., 2012). Similar to the first version of Ilyas et al. (2017),
the updated data set is based on HadCRUT4 ensemble mem-
bers. For the updated version, the ABC posterior densities of
the smoothing parameter and autoregressive weights are de-
termined. These are identified for each of the 2028 months
from January 1850 to December 2018. The ABC algorithm
(Fig. 1) based on the variogram is used to compute the
posterior distributions. Uniform priors are considered, i.e.,
U(0.001,4) andU(1,4) for the smoothing parameter and au-
toregressive weight, respectively. In particular, priors put on
autoregressive weight assume that ω (Nychka et al., 2019)
follows a uniform distribution over the interval [−4.5, 0.55].
This choice covers a useful span of spatial correlations when
ω is translated back into the a.wght (i.e., a.wght= 1+exp2ω)
parameter and, subsequently, into the dependence of the field
at the lattice points. The tolerance threshold t is chosen to
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correspond to the 4 % acceptance rate with 250 iterations. It
results in 10 hyperparameter sample draws from the posterior
densities.

Fitting the multi-resolution lattice kriging model requires
a choice of the basis functions and marginal spatial vari-
ance. The multi-resolution basis is the same as the one that
was chosen for the earlier version of the ensemble (Ilyas
et al., 2017). So, a three-level model is chosen such that
the number of basis function is greater than the num-
ber of spatial locations. The value of α, i.e., the marginal
spatial variance (Nychka et al., 2015), is estimated as
α = (0.2451,0.01606,0.7389)T . This is computed over the
field with the maximum available information, i.e., Febru-
ary 1988. This varies slightly across time. The values of the
α parameter for February 1988 are the relative variances be-
tween different resolution levels. The decay of these for a
finer resolution fix the smoothness of the field, and because
these are difficult to estimate, they were not emphasized in
the analysis, and the correlation range parameter, a.wght, was
given more attention. February 1988 has the most complete
data field. Therefore, it was assumed that the smoothness
reflected in the α parameters are consistent across different
times. It results from the maximum likelihood estimation as
the algorithm in Fig. 1 is not yet extended to obtain poste-
riors of α, as this parameter has little influence on the un-
certainties compared to the others. Other parameters are es-
timated for each monthly field since the spatial characteris-
tics can vary considerably. The geodesic grid and the great
circle distance is used to handle the spherical domain. To
implement multi-resolution lattice kriging, the LatticeKrig
R package version 6.4 is used. As an example, the poste-
rior densities of smoothing parameter , λ, and autoregressive
weight , a.wght, are shown in Fig. 2 for one spatial field.
There are two other examples that are presented in the ap-
pendix (Figs. A1 and A2). These posterior distributions re-
sult from the HadCRUT4 median spatial field with the min-
imum spatial coverage, i.e., May 1861. The month with the
poorest spatial coverage was chosen to illustrate the advan-
tages (Figs. 3 and 4) of using a more refined spatial approach
(Sect. 2.1). It is important to note that hyperparameter esti-
mates are global. These are estimated independently for each
field without using any regional estimates. Additionally, tem-
perature anomaly variability is assumed identical at all loca-
tions over land and sea. Also, it is a space-only model (not
space–time). There is no accounting for the persistence of
temperatures used to aid reconstruction or accounted for in
uncertainty estimates.

4.2 Spatial field with minimum coverage

ABC-based multi-resolution lattice kriging (Fig. 1) is used
to predict this sparse spatial field. The spatial predictions
and associated uncertainties are shown in Figs. 3a and 4a,
respectively. The spatial predictions (Fig. 3a) are computed
using the available spatial observations, multi-resolution ba-

sis functions (Sect. 4.1) and ABC posterior distributions of
autoregressive weights, a.wght, and smoothing parameter , λ,
(Fig. 2). Equation (5) is used for the calculation of the spa-
tial predictor. For comparison with the previous reconstruc-
tion (Ilyas et al., 2017) of this spatial field, the spatial predic-
tions based on the profile maximum likelihood approach are
presented in Fig. 3b.

The value of autoregressive weight, a.wght, used in the
old ensemble is 8.95. This value is much greater than the
range of the posterior distribution of a.wght (Fig. 2). This
is due to the fact that the versions of the LatticeKrig pack-
age used here and in old ensemble (Ilyas et al., 2017) are 6.4
and 6.2, respectively. LatticeKrig version 6.4 is mainly an
update on the LKrig function for spherical spatial domains.
The minimum value of autoregressive weights in version 6.2
is restricted to be greater than 6 to avoid artifacts in the co-
variance. This restriction is removed in version 6.4, and the
weights are updated for improved specification of covariance
over the sphere (Nychka et al., 2019).

The differences in these reconstructions (Fig. 3c) indi-
cate that the spatial predictions using ABC-based multi-
resolution lattice kriging (Fig. 3a) generally show anoma-
lies in temperature from the baseline climate that are smaller
in magnitude compared to the likelihood-based reconstruc-
tion (Fig. 3b). The uncertainties in predictions are shown in
Fig. 4a that result from ABC-based multi-resolution lattice
kriging. These uncertainties in the predictions are computed
using Eq. (6). Figure 4c compares these uncertainties with
those resulting from the previous reconstruction (Fig. 4b).
It can be observed that ABC-based multi-resolution lattice
kriging is producing higher uncertainty estimates close to the
observed spatial sites. This was expected since there is now
account of more sources of uncertainty. However, the unob-
served grid locations are showing less uncertainties that are
resulting from ABC-based multi-resolution lattice kriging.

It seems like the ABC-based multi-resolution lattice krig-
ing is leaning towards more of the observational noise vari-
ance and less process variance. Additionally, it is possibly
due to the fact that LKrig function of LatticeKrig R pack-
age has undergone substantial modifications. The spatial es-
timates and uncertainties of two more fields are presented
in Figs. B1 to B4. These fields generally show a similar
story, as seen in May 1861. The ABC-based predictions have
collapsed to be more certain about a weaker temperature
anomaly than seen in the Ilyas et al. (2017) data set. Ad-
ditionally, the model parameters change with time (Figs. 2,
A1, A2). Therefore, the corresponding uncertainty estimates
(Figs. 4, B2, B4) for these temperature fields also vary with
time, particularly for unobserved spatial sites.

4.3 The 100 000 member hyperparameter ensemble

The ABC posterior distributions and model parameters of
the multi-resolution lattice kriging model (Sect. 4.1) are
used to generate an ensemble. These ensemble data are
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Figure 2. Posterior densities of (a) the smoothing parameter, λ, and (b) the autoregressive weight, a.wght, for a HadCRUT4 spatial field with
the minimum spatial coverage, i.e., May 1861.

based on HadCRUT4 temperature data. The HadCRUT4
monthly data set consists of 100 sparse ensemble members.
For each of 100 monthly spatial fields of HadCRUT4, a
spatially complete 1000 member ensemble is created that
samples the coverage and parametric uncertainties of multi-
resolution lattice kriging. The resulting 100 000 ensemble
members are referred to as a hyperparameter temperature en-
semble data set. The 1000 members of the ensemble gen-
erated from each of the 100 HadCRUT4 ensemble mem-
bers (thus eventually creating 1000× 100= 100000 fields)
are the random fields drawn from the multivariate condi-
tional normal distribution. These are drawn by conditioning
on the available HadCRUT4 field measurements, and sam-
pling the multi-resolution lattice kriging covariance model,
namely the variogram-based ABC posteriors of autoregres-
sive weights and smoothing parameter. In other words, 100
fields are drawn from the multivariate conditional normal dis-
tribution. These are sampled corresponding to each of the 10
draws from the ABC posterior distributions of smoothing pa-
rameter and autoregressive weights.

This ensemble data set is generated using high-
performance computing due to the computational expense.
The HadCRUT4 sparse monthly data set spans from 1850
to 2018, which is 2028 months in total. For each month,
the posterior of autoregressive weight, a.wght, and smooth-
ing parameter, λ, are computed using the median ensemble
member. Given these posteriors, 1000 coverage samples are
drawn for each of 100 HadCRUT4 ensemble members. To
achieve sufficiently fast computation, different parts of the
data are handled in parallel on different nodes. For this, 100
HadCRUT4 ensemble members are divided into sets of five.
It results in 20 sets, each consisting of five members. For
one time point, the sampling for 100 HadCRUT4 ensemble
members is performed in parallel by submitting 20 shared

memory parallel jobs with five threads. Therefore, a single
job that performs computations over five ensemble mem-
bers of a month runs in parallel and takes approximately
66 min. The total number of parallel jobs are 20× 2028=
40560. Therefore, the time required to run these jobs is
40560× 66min= 2676960min= 61.97 months. Typically,
six or seven parallel jobs run simultaneously, so it took ap-
proximately 8 months of wall clock time to perform these
computations.

5 Uncertainties in global mean temperature

The global mean temperature time series is computed for the
100 000 member hyperparameter ensemble data described in
Sect. 4.3. For each ensemble member, the global mean time
series is calculated. Figure 5 represents the annual median
time series along with the 95% credible interval. For com-
parison, Fig. 5a also presents the median time series and the
uncertainties resulting from an earlier version of the ensem-
ble data (Ilyas et al., 2017) which sampled only the combina-
tion of observational and coverage uncertainties without un-
certainty in the MRLK model. The impact of including para-
metric uncertainties can be observed from Fig. 5 at a global
scale. The overall features of the time series resulting from
the hyperparameter ensemble and the first version of the data
(Sect. 4.3) are mostly similar (Fig. 5b). Uncertainty ranges
appear to be roughly comparable, and of similar magnitude
to the quantization in the plot of roughly 0.01 ◦C, but slightly
skewed one way or another. The smoothing parameter, λ, is
processed to the noise ratio (Nychka et al., 2015). Sampling
into high values of the smoothing parameter can give a pro-
cess with low variance and large measurement noise, which
can lead to smaller uncertainties arising from sampling limi-
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Figure 3. Median spatial predictions (in degrees Celsius) for May 1861 using multi-resolution lattice kriging based on (a) ABC, using a
variogram (Sect. 2.1), and (b) the profile maximum likelihood approach (Nychka et al., 2015) used to create data in Ilyas et al. (2017). (c)
The difference in panels (a) and (b), i.e., panels (a)–(b). The × signs show observed spatial sites (purple).

tations. The lower variance in the ABC analysis field (Fig. 3)
suggests that this might be the case.

6 Subsample of hyperparameter ensemble data

For easy handling of this large data, a subsample of this hy-
perparameter ensemble is created using conditioned Latin
hypercube sampling (cLHS; Minasny and McBratney, 2006).
In practice, Monte Carlo and Latin hypercube sampling ap-
proaches are used to draw samples that approximate the un-
derlying distribution. Usually, a large number of samples
are required to achieve good accuracy in traditional Monte
Carlo (e.g., Pebesma and Heuvelink, 1999; Olsson and Sand-
berg, 2002; Olsson et al., 2003; Diermanse et al., 2016). Ad-
ditionally, the Monte Carlo samples can contain some points
clustered closely, while other intervals within the space ob-
tain no sample. On the other hand, the Latin hypercube sam-

pling provides a stratified sampling framework for improved
coverage of the k-dimensional input space (e.g., McKay
et al., 2000; Helton and Davis, 2003; Iman, 2008; Clifford
et al., 2014; Shields and Zhang, 2016; Shang et al., 2020).
Conditioned Latin hypercube sampling is an attempt to draw
a sample that captures the variation in multiple environmen-
tal variables. This sample accurately represents the distribu-
tion of the environmental variables over the full range.

To draw a subsample from 100 000 ensemble members,
we considered a set of prominent environmental variables,
i.e., monthly area averages and the Intergovernmental Panel
on Climate Change (IPCC) AR5 regional means. The con-
ditional Latin hypercube sample is being drawn from the
distribution of these environmental variables. The subsam-
ple accurately approximates the variation in the set of en-
vironmental variables over the full range of these variables.
Stated differently, the distributions of the set of environ-
mental variables in the conditioned Latin hypercube sample
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Figure 4. Standard error (uncertainties) in degrees Celsius associated with spatial predictions for median May 1861, using multi-resolution
lattice kriging based on (a) ABC, using a variogram (Sect. 2.1), and (b) the profile maximum likelihood approach (Nychka et al., 2015) used
to create data in Ilyas et al. (2017). (c) The difference in panels (a) and (b), i.e., panels (a)–(b). The × signs show observed spatial sites
(purple).

of size 100 is approximately similar to the distributions of
these variables over the full range based on 100 000 ensem-
ble members. It can be observed from the distribution of a
grid box that is shown in Figs. 6, C1, and C2 for three dif-
ferent time points. The full ensemble distribution is based on
100 000 grid boxes (Sect. 4.3). The subsample distribution
results from the conditioned Latin hypercube subsample of
100 grid boxes. Both the distributions overlap mostly. How-
ever, the extreme values at the tails are not being captured
by the subsample. Also, it is important to note that the sub-
sample ensemble only captures the variation in the specified
environmental variables discussed above (i.e., AR5 regional
means and monthly area averages). This subsample may not
be suitable for exploring any other locations outside of those
regions. In those situations, it might be wise to perform a
check using the full hyperparameter ensemble.

7 Discussion and conclusion

Uncertainty in gridded temperature comes from a variety of
sources, of which instrumental error is only one. Uncertain-
ties associated with the lack of spatial coverage are under-
standably more important in the early portion of the record,
i.e., when observations were sparse. Many approaches can be
used to fill in the grid boxes with missing observations, some
of which also quantify the associated coverage uncertainties.
There is a debate as to which model is the most appropri-
ate. For the first time, this research considers the uncertainty
in that model itself. We demonstrate that this is achievable
through Monte Carlo sampling of perturbations in the hyper-
parameters in the model. The method described is compu-
tationally intensive and results in a data set that is somewhat
unwieldy, i.e., the large ensemble. We have demonstrated that
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Figure 5. Global mean and annual average temperature anomalies
in degrees Celsius with respect to the (a) 1961–1990 baseline and
(b) median. The 95% credible (purple) and confidence (gray) in-
terval estimates are based on the data set created in Ilyas et al.
(2017) and the hyperparameter ensemble and the data set created
in Sect. 4.3.

this latter point can be overcome by conditional sampling un-
der some circumstances.

The hyperparameter ensemble (i.e., an update on Ilyas
et al., 2017) has provided an improved version of the global
temperature anomalies since 1850. Instead of the classical or
frequentist approach, a Bayesian methodology for the quan-
tification of uncertainties in large data settings is developed
for characterization of uncertainties. The impact of includ-
ing parametric uncertainties is evident at a regional (Fig. 4)
and global scale (Fig. 5). However, the overall impact of
parametric uncertainties makes little substantive advance in
our general understanding of global average temperature es-
timates since 1850. The hyperparameter sampling approach
described here results in an ensemble that is an order of mag-
nitude larger than that of Ilyas et al. (2017) and 3 orders
of magnitude larger than the original HadCRUT4 ensemble
of Morice et al. (2012). Our analysis here has focused on
changes in the mean climate, and perhaps this hyperparam-
eter ensemble may be better suited for studies that aim to
explore changing climate variability (Beguería et al., 2016).

Figure 6. The distribution of the grid box (long and lat are 72.5◦

and 32.5◦, respectively) that includes Lahore for May 1861. The
full ensemble consists of 100 000 grid boxes (Sect. 4.3), and the
subsampled ensemble consists of 100 grid boxes based on Latin
hypercube sampling.

The inclusion of parametric uncertainties does not have
a substantial impact on the uncertainties in global average
temperature estimates. However, parameter uncertainty esti-
mates may be important at regional scales. We strongly rec-
ommend that, before embarking on future efforts, people ex-
plore this data set to see if there will be any tangible benefit.
It may be possible that alternate methodologies could be de-
vised that do not require such an outlay of resources during
creation and analysis. For example, there may be approaches
to sample hyperparameters and uncertainty mappings simul-
taneously, without running the risk of undersampling key el-
ements of parameter space. Or, a few example fields could be
created using the approach here, and then conditional Latin
hypercube sampling could be used to determine the hyperpa-
rameter settings for a reduced ensemble.
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Appendix A

Figure A1. Posterior densities of the smoothing parameter, λ, (a) and autoregressive weight, a.wght (b), for a HadCRUT4 spatial field with
a 50 % spatial coverage, i.e., February 1932.

Figure A2. Posterior densities of the smoothing parameter, λ, (a) and autoregressive weight, a.wght (b), for a HadCRUT4 spatial field with
a maximum (78 %) spatial coverage, i.e., February 1988.
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Appendix B

Figure B1. Spatial predictions (in degrees Celsius) for February 1932, using multi-resolution lattice kriging based on (a) ABC, using a
variogram (Sect. 2.1), and (b) the profile maximum likelihood approach (Nychka et al., 2015) used to create data in Ilyas et al. (2017). (c)
The difference in panels (a) and (b), i.e., (a)–(b). The × signs show observed spatial sites (purple).
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Figure B2. Standard error (uncertainties) in degrees Celsius associated with spatial predictions for the median in February 1932, using multi-
resolution lattice kriging based on (a) ABC, using a variogram (Sect. 2.1), and (b) the profile maximum likelihood approach (Nychka et al.,
2015) used to create data in Ilyas et al. (2017). (c) The difference in panels (a) and (b), i.e., (a)–(b). The × signs show observed spatial sites
(purple).
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Figure B3. Spatial predictions (in degrees Celsius) for February 1988, using multi-resolution lattice kriging, based on (a) ABC, using a
variogram (Sect. 2.1), and (b) the profile maximum likelihood approach (Nychka et al., 2015) used to create data in Ilyas et al. (2017). (c)
The difference in panels (a) and (b), i.e., (a)–(b). The × signs show observed spatial sites (purple).
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Figure B4. Standard error (uncertainties) in degrees Celsius associated with spatial predictions for the median in February 1988, using multi-
resolution lattice kriging, based on (a) ABC, using a variogram (Sect. 2.1), and (b) the profile maximum likelihood approach (Nychka et al.,
2015) used to create data in Ilyas et al. (2017). (c) The difference in panels (a) and (b), i.e., (a)–(b). The × signs show observed spatial sites
(purple).
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Appendix C

Figure C1. Distribution of the grid box (long and lat are 72.5◦ and 32.5◦, respectively) that includes Lahore for February 1932. The full
ensemble consists of 100 000 grid boxes (Sect. 4.3), and the subsampled ensemble consists of 100 grid boxes based on Latin hypercube
sampling.

Figure C2. Distribution of the grid box (long and lat are 72.5◦ and 32.5◦, respectively) that includes Lahore for February 1988. The full
ensemble consists of 100 000 grid boxes (Sect. 4.3), and the subsampled ensemble consists of 100 grid boxes based on Latin hypercube
sampling.
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