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Abstract. Mesoscale dynamics in the mesosphere and lower
thermosphere (MLT) region have been difficult to study from
either ground- or satellite-based observations. For under-
standing of atmospheric coupling processes, important spa-
tial scales at these altitudes range between tens and hundreds
of kilometers in the horizontal plane. To date, this scale size
is challenging observationally, so structures are usually pa-
rameterized in global circulation models. The advent of mul-
tistatic specular meteor radar networks allows exploration of
MLT mesoscale dynamics on these scales using an increased
number of detections and a diversity of viewing angles inher-
ent to multistatic networks. In this work, we introduce a four-
dimensional wind field inversion method that makes use of
Gaussian process regression (GPR), which is a nonparamet-
ric and Bayesian approach. The method takes measured pro-
jected wind velocities and prior distributions of the wind ve-
locity as a function of space and time, specified by the user or
estimated from the data, and produces posterior distributions
for the wind velocity. Computation of the predictive poste-
rior distribution is performed on sampled points of interest
and is not necessarily regularly sampled. The main bene-
fits of the GPR method include this non-gridded sampling,
the built-in statistical uncertainty estimates, and the ability
to horizontally resolve winds on relatively small scales. The
performance of the GPR implementation has been evaluated
on Monte Carlo simulations with known distributions using
the same spatial and temporal sampling as 1 d of real me-
teor measurements. Based on the simulation results we find
that the GPR implementation is robust, providing wind fields
that are statistically unbiased with statistical variances that

depend on the geometry and are proportional to the prior
velocity variances. A conservative and fast approach can be
straightforwardly implemented by employing overestimated
prior variances and distances, while a more robust but com-
putationally intensive approach can be implemented by em-
ploying training and fitting of model hyperparameters. The
latter GPR approach has been applied to a 24 h dataset and
shown to compare well to previously used homogeneous and
gradient methods. Small-scale features have reasonably low
statistical uncertainties, implying geophysical wind field hor-
izontal structures as low as 20–50 km. We suggest that this
GPR approach forms a suitable method for MLT regional and
weather studies.

1 Introduction

The mesoscale neutral dynamics of the mesosphere and
lower thermosphere (MLT) region are challenging to study,
despite their importance in global circulation models. Due
to the lack of observations, these scales are usually param-
eterized in models (e.g., Liu, 2019). MLT large-scale dy-
namics have been studied with monostatic specular meteor
radars (SMRs) by providing mean horizontal winds over ar-
eas with an approximately 200–300 km radius at MLT alti-
tudes and 1–2 h and 2–3 km temporal and vertical resolu-
tions, respectively (e.g., Hocking et al., 2001; Holdsworth
et al., 2004). These measurements have made significant
contributions to community understanding of the climato-
logical behavior of mean winds, planetary waves, and total
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tides over a variety of SMR monostatic sites (e.g., Mitchell
et al., 1999, 2002; Pancheva et al., 2002; Sandford et al.,
2006; Hoffmann et al., 2010). Moreover, when the winds
from more than one SMR widely separated in longitude at
a similar latitude are combined, spatiotemporal ambiguities
of tides and planetary waves have been successfully resolved
(e.g., Murphy, 2003; Murphy et al., 2006; He et al., 2018;
He and Chau, 2019). Monostatic SMRs have also been used
to study MLT gravity wave momentum flux with wide and
narrow beam observing configurations, with the caveat that
spatial and temporal contributions are combined (e.g., Hock-
ing, 2005; Fritts et al., 2012; Andrioli et al., 2013; Placke
et al., 2015).

Recently, multistatic configurations have been proposed to
complement these previous studies and to allow the inves-
tigation of MLT mesoscale dynamics. These configurations
include the MMARIA (Multistatic Multi-frequency Agile
Radar Investigations of the Atmosphere) concept (Stober
and Chau, 2015; Chau et al., 2017). This concept has been
further augmented by the SIMONe (Spread Spectrum In-
terferometric Multistatic meteor radar Observing Network)
approach (Chau et al., 2019). By using recent technolog-
ical developments in atmospheric radars, such as spread-
spectrum, MIMO (multi-input, multiple-output), and com-
pressed sensing approaches (Vierinen et al., 2016; Urco
et al., 2018, 2019b), SIMONe allows the implementation
of MMARIA with several attractive qualities: it is easier,
cheaper, and inherently expandable compared to original pro-
posed configurations using traditional pulsed systems. Exam-
ples of SIMONe implementations in Germany, Peru, and Ar-
gentina can be found in several studies (Vierinen et al., 2019;
Charuvil Asokan et al., 2020; Vargas et al., 2021; Chau et al.,
2021; Conte et al., 2021).

Multistatic observing approaches allow a large increase in
scattering detections per unit time along with observation of
the same volume from different viewing angles. These two
features unlock the possibility of estimating the spatial fea-
tures of the wind within the observed volume. Depending
on the resolutions and spatial scales covered, different as-
pects of MLT mesoscale dynamics and coupling can be stud-
ied with the technique. For example, at scales between a few
tens of kilometers to a few hundreds of kilometers, the con-
tributions of gravity waves and strongly stratified turbulence
can be studied with multistatic approaches (e.g., Roberts and
Larsen, 2014; Marino et al., 2015).

The spatial structure of horizontal winds has also been
pursued using a variety of other techniques including me-
teorological radars in the lower atmosphere, coherent scat-
ter radars in the mesosphere, and Fabry–Pérot interferome-
ters in the thermosphere (e.g., Browning and Wexler, 1968;
Chau et al., 2017; Meriwether et al., 2008). As in the case
of the initial MMARIA analysis, these techniques typically
approximate wind fields as analytic, differentiable polyno-
mials in order to obtain gradients of the horizontal winds.
Although they provide additional spatial information be-

yond direct single-point information, these methods can ag-
gressively smooth real spatial structure and, in some cases,
can introduce artificial structure, particularly in regions with
sparse or noisy measurements. In recent years, a variety of
analysis approaches using statistical inverse theory have been
applied to these and similar problems. These studies have the
goal of estimating the spatial structure of multi-point pro-
jected wind velocities and electric fields (e.g., Nicolls et al.,
2014; Hysell et al., 2014; Harding et al., 2015; Stober et al.,
2018). For example, a Tikhonov regularization originally de-
veloped for a optical network of Fabry–Pérot interferometers
(Harding et al., 2015) has been adapted to yield MLT wind
fields over Peru (Chau et al., 2021).

As in any statistical inverse theory problem, more indepen-
dent samples are desirable to reduce the impact of regulariza-
tion constraints and to improve the quality of the estimates.
In November 2018, a short observing campaign was con-
ducted in northern Germany, herein denoted SIMONe2018,
in which six existing MMARIA links were complemented
with eight additional SIMONe links. During this campaign,
we obtained on average 200 000 meteor scatter observations
per day (e.g., Vierinen et al., 2019; Charuvil Asokan et al.,
2020). For reference, a monostatic SMR obtains on average
10 000 meteors per day at a comparable latitude and seasonal
time.

Some previous analysis methods have been published on
multistatic observations of MLT mesoscale dynamics, such
as the gradient method and variants of Tikhonov regulariza-
tion (Chau et al., 2017; Stober et al., 2018; Chau et al., 2021).
However, given the novelty of multistatic measurements and
the lack of a reliable ground-truth observation, different wind
field approaches still need to be explored, particularly in the
properties of resulting statistical measures of bias and vari-
ance. In this work, we introduce a multistatic analysis tech-
nique based on Gaussian process regression (GPR) (Ras-
mussen and Williams, 2006). Some of the main benefits of
GPR are that analysis predictions essentially interpolate the
measurements (within error bounds) and that final output
products inherently include quantitative uncertainties.

GPR is a Bayesian and nonparametric approach currently
being used in many different machine-learning applications
(e.g., Wahlström et al., 2013; Foreman-Mackey et al., 2017).
As a Bayesian technique, a key user input is the speci-
fication of a prior distribution for the values to be esti-
mated, including hyperparameters of the distribution. De-
spite needing these hyperparameters, GPR is nonparametric
in the sense that it does not compress the training data into a
finite-dimensional parameter vector, in contrast to paramet-
ric methods like linear regression (Rasmussen and Williams,
2006). GPR is also known in other fields as kriging, and it has
a long history of use in geostatistics under that name (Math-
eron, 1973; Journel and Huijbregts, 1978; Daley, 1991).
Deep connections can be found between GPR and interpo-
lation techniques using reproducing kernel Hilbert spaces
(Scheuerer et al., 2013), including those that employ regu-
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larization. This ties GPR mathematically to the previously
mentioned wind field estimation techniques, but the Bayesian
viewpoint afforded by GPR can be more natural for express-
ing prior information and analyzing uncertainty. We direct
the reader to Rasmussen and Williams (2006) for a general
discussion of GPR and its place in the wider estimation land-
scape.

In this article, we start by introducing the wind estimation
problem and geometrical considerations. Next, we present
the wind field estimation method using GPR, including the
necessary mathematical expressions. The proposed estima-
tion is subsequently applied to both Monte Carlo simulations
and to measurements from the SIMONe2018 campaign in
Sects. 5 and 6, respectively. In the latter section, estimated
wind fields are compared to the winds obtained with the ho-
mogeneous and gradient methods, i.e., to the zero- and first-
order Taylor expansion approximations. Finally, we discuss
the benefits and challenges of the proposed estimation ap-
proach for MLT wind field studies.

2 Specular meteor radar measurements and geometry

SMRs receive echoes from meteor trails when the radar
Bragg vector (kB) points perpendicular to them. The Doppler
shift (f ) of the received signal of a meteor echo at time t and
location given by longitude, latitude, and altitude (3,8,z)
results from the projection of the atmospheric wind vec-
tor (u) in the Bragg vector kB (e.g., Hocking et al., 2001;
Holdsworth et al., 2004), i.e.,

f (3,8,z, t)=
1

2π

[
ku kv kz

]u(3,8,z, t)v(3,8,z, t)

w(3,8,z, t)

 , (1)

where ku, kv , and kw are the Bragg vector components of kB,
and u, v, andw are wind vector components of u in the zonal
(east), meridional (north), and vertical (up) directions, re-
spectively. The Bragg vector is given by the difference of the
scattered and incident wave vectors, i.e., kB = ks−ki. Using
interferometry on reception, the angle of arrival (AOA) is ob-
tained. In the case of MIMO systems, interferometry is also
implemented on transmission, allowing measurement of the
angle of departure (AOD) (e.g., Chau et al., 2019). By com-
bining these angles along with range information, the meteor
location (3,8,z) and Bragg wave vectors are obtained. In
the reductive case of monostatic systems, kB =−2ki and its
magnitude is equal to 4π/λ, where λ is the radar wavelength.

As mentioned above, traditionally a mean horizontal wind
has been obtained from analysis that simultaneously solves
N equations of the form of Eq. (1), with the assumption that
the wind is constant in the observed volume (zero-order Tay-
lor approximation or homogeneous method). The data for the
N equation set were obtained by binning desired observa-
tions with regular altitude and temporal resolutions. In gen-
eral, with a sufficient number of meteors and viewing angles,

the method yields spatial information on the wind inside the
observed volume. For example, Chau et al. (2017) imple-
mented a gradient method, whereby the wind field estimation
includes the first-order Taylor expansion terms.

In multistatic geometries, both the observed volumes and
separations of the multistatic links are relatively large. For
this reason, it is necessary to take the Earth’s geoid shape
into account. Moreover, the GPR model described in the next
section is directly dependent on calculating coordinate dis-
tances accurately. This implies that altitudes and horizontal
distances that account for the Earth’s curvature, which is the
measurement goal, must also try to minimize mapping dis-
tortions, particularly in distance scaling. Use of a naive ge-
ometric projection such as the equirectangular projection, in
which latitude and longitude are simply scaled to yield x–y
coordinates in meters, does not satisfy these requirements.
Therefore, in this work, we use a local azimuthal equidis-
tant projection centered in the observing region, with Earth
shape based on the well-known WGS84 geoid model. This
projection is used to transform longitude and latitude into lo-
cal x and y coordinates, where horizontal distance in x and
y reasonably approximates the true geodesic distance. Sub-
sequently, we use these (x,y) projected coordinates in place
of (3,8) geodetic coordinates from Eq. (1). Note that this
does not change the definitions of (u,v,w) and kB, which
remain aligned with a local east–north–up coordinate system
and not, in general, with the projected x and y coordinates.

To represent a set of Doppler wind measurements, we use
the following notation for the measurement equation. Let
xm = (tm,zm,ym,xm) denote the coordinates for a measure-
ment m of M . Then the ensemble of coordinates is given by
the matrix X as

X=

x
ᵀ
1
...

x
ᵀ
M

=
 t1 z1 y1 x1
...

...
...

...

tM zM yM xM

 , (2)

and the corresponding wind vectors are given by

u=

 u(x1)
...

u(xM)

 v =

 v(x1)
...

v(xM)

 w =

w(x1)
...

w(xM)

 . (3)

We group the Bragg vectors of a set of measurements by
component and combine with the 1

2π scaling to give u, v,
and w measurement vectors:

au =
1

2π

 ku1
.
.
.
kuM

 av =
1

2π

 kv1
.
.
.
kvM

 aw =
1

2π

 kw1
.
.
.

kwM

 . (4)

Finally, using � to denote the element-wise (Hadamard)
vector product, our measurement equation following from
Eq. (1) for the ensemble of Doppler measurements f is

f (X)=

 f (x1)
...

f (xM)

= au�u+ av � v+ aw�w+ ε, (5)
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where ε ∼N
(

0, 6n

)
is zero-mean Gaussian measurement

uncertainty with covariance 6n.

3 Estimation problem

The estimation task is to take a set of Doppler measure-
ments f and infer wind values u(x′), v(x′), w(x′) at a cho-
sen location x′ using the measurement model from Eq. (5).
We employ Gaussian process regression (GPR) to model
the winds and hence Doppler measurements as a stochastic
process. This approach allows estimation at arbitrary coor-
dinates (convenient for random meteor locations and non-
gridded prediction) and produces statistical uncertainty as an
output product.

Our GPR method is implemented as a three-stage process.
First, one defines the form for the model, which includes
mean and covariance functions and their hyperparameters.
Then, one fully specifies the model by setting hyperparame-
ter values, either through prior knowledge or a separate fit-
ting process. Finally, one applies the specified model to a set
of measurements to calculate the posterior predictive distri-
bution and make an estimate at points of interest. Figure 1
summarizes our implementation in a block diagram. In the
following paragraphs, we describe the method in detail.

3.1 Gaussian process definitions

For a function f (x) drawn from a Gaussian process, we write

f (x)∼ GP
(
m(x),κ(x,x′)

)
. (6)

This representation is fully defined by mean and covariance
functions, which describe the first- and second-order statis-
tics:

m(x)= E
[
f (x)

]
, (7)

κ(x,x′)= E
[(
f (x)−m(x)

)(
f (x′)−m(x′)

)]
, (8)

where E denotes the expected value. Gaussian processes are
convenient because evaluating them at a set of points leads to
a Gaussian random vector:f (x1)

.

.

.
f (xN )

∼N


m(x1)

.

.

.
m(xN )

 ,
κ(x1,x1) · · · κ(x1,xN )

.

.

.
. . .

.

.

.
κ(xN ,x1) · · · κ(xN ,xN )


 , (9)

which enables tractable computation. We recast this com-
pactly using matrix notation as

f (X)∼N
(
m(X),K(X,X)

)
. (10)

It might seem like this model is too simple to be use-
ful, but Gaussian processes have a lot of flexibility to fit a

wide variety of functions because the posterior distribution is
constructed nonparametrically and directly incorporates the
measurements. Additionally, a modeler has a lot of freedom
in applying Gaussian processes by choosing the form of the
mean and covariance functions, including specifying hyper-
parameters.

3.2 Wind component prior distributions

Since we want to estimate the wind components, we model
them as independent Gaussian processes.

u(x)∼ GP
(
mu(x),κu(x,x

′)

)
(11)

v(x)∼ GP
(
mv(x),κv(x,x

′)

)
(12)

w(x)∼ GP
(
mw(x),κw(x,x

′)

)
(13)

Assuming Gaussianity of the wind processes is not simply
for convenience (although it does enable closed-form compu-
tation). Given some mean and covariance, a Gaussian distri-
bution has the maximum entropy (Cover and Thomas, 2006).
In other words, assuming normality imposes the minimal
prior information about the wind processes within a second-
order statistical framework. The winds likely have more
structure than this, including cross-covariances between the
components, but this assumption ensures conservative esti-
mates without prior knowledge of the true statistical structure
of the wind processes.

Many choices for the mean functions are possible, but for
simplicity we restrict our attention to means that are fixed
without tunable hyperparameters. Even under this restriction,
one can use a standard parametric model for the mean func-
tions, and as long as the parameter-fitting is done with linear
regression prior to GPR analysis, no additional hyperparam-
eters are added to the GPR model. In general, the mean func-
tions have less impact on the GPR results than the covariance
functions, and we will see later how the posterior predictive
distribution is more strongly driven by the measurements and
the covariance functions. Often a zero mean is sufficient to
produce good results (Rasmussen and Williams, 2006), and
that holds for this case as well. Nevertheless, the mean can
be useful for including well-known effects. In the models for
subsequent sections, we have used two cubic splines taken
as a tensor product over altitude and time to produce a mean
that accounts for large-scale tidal components.

For the covariance functions, we choose a functional form
for which each wind component has an independent ampli-
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Figure 1. Block diagram of processing flow. The blocks in orange indicate input from the user; blocks in green belong to the GPR model,
and the estimates are obtained in the red block (see text for details).

tude multiplying a common distance kernel.

κu(x,x
′)= σ 2

uκd(x,x
′) (14)

κv(x,x
′)= σ 2

v κd(x,x
′) (15)

κw(x,x
′)= σ 2

wκd(x,x
′) (16)

Using a common distance kernel is convenient for simplify-
ing computations, and we expect that relaxing this assump-
tion in the future would allow for increased expressiveness at
the cost of computational burden. The distance kernel κd is
chosen to be the Matérn covariance with ν = 5

2 using length
scales given by δt , δz, δy , and δx for the coordinate dimen-
sions:

κd(x,x
′)=

(
1+
√

5r +
5
3
r2
)
e−
√

5r , (17)

with

r =

∥∥∥∥x− x′

δ

∥∥∥∥
2
, (18)

δ =
[
δt δz δy δx

]ᵀ
, (19)

where ‖.‖2 represents the Euclidean norm. Altogether, this
results in a hyperparameter set θ of

θ =
[
σ 2
u σ 2

v σ 2
w δt δz δy δx

]ᵀ (20)

for the GPR wind model. We chose the Matérn- 5
2 covariance

because it is twice-differentiable but not infinitely differen-
tiable, so it provides relatively smooth functions while still
allowing for rapid, geophysically driven changes that might
be expected in wind fields. It is a typical choice for physical
processes for this reason across a wide series of applications
(Rasmussen and Williams, 2006).

Jointly and in matrix notation, we then write the Gaussian
random vectors for the winds at a set of points X as[
u
v
w

]
∼N

([
mu(X)
mv(X)
mw(X)

]
,

[
Ku(X,X) 0 0

0 Kv(X,X) 0
0 0 Kw(X,X)

])
. (21)

Note that since we have defined the wind component pro-
cesses independently, the cross terms are zero in the joint
covariance matrix. However, this is not to say that we strictly
enforce zero cross-covariance between the wind terms with
this model. Rather, it is more accurate to say that we do not
require prior knowledge of the cross-covariance but also can-
not benefit from the improved estimation that such knowl-
edge would provide.

3.3 Doppler measurement prior distribution

Since we are taking the wind components as Gaussian pro-
cesses and Eq. (5) provides a linear relationship between the
wind components and Doppler measurements, the Doppler
measurements themselves also take the form of a Gaussian
process. For a set of measurements f corresponding to the
locations X, this produces a formulation as

f ∼N
(
mf (X), Kf (X,X)

)
, (22)

where

mf (X)= au�mu(X)+ av �mv(X)+ aw�mw(X)
Kf (X,X)= (auauᵀ)�Ku(X,X)+ (avavᵀ)�Kv(X,X)

+ (awaw
ᵀ)�Kw(X,X)+6n.

Note that the Gaussian process being measured is a linear
composition. This is only a minor concern for our applica-
tion, but it does make the formulation slightly different from
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the more typical examples. The following subsections pro-
vide the explicit formulas necessary to perform hyperparam-
eter fitting and wind estimation using this model.

3.4 Model hyperparameter fitting

Fitting for the model hyperparameters θ involves maximizing
the likelihood function for the marginal distribution pertain-
ing to a set of measurements. Assuming Doppler measure-
ments f coming from the distribution defined in Eq. (22),
the negative log-likelihood as a function of the hyperparam-
eters is

−l(θ)=
1
2
(f −mf )

ᵀKf
−1(f −mf )+

1
2

logdetKf −C,

(23)

where C is a fixed scaling constant. Minimizing this func-
tion requires evaluating the gradient of the negative log-
likelihood. For each hyperparameter θi, we thus have

∂

(
− l(θ)

)
∂θi

=
1
2

Tr
(
(ααᵀ−Kf

−1)
∂Kf

∂θi

)
, (24)

where

α =Kf
−1(f −mf ). (25)

Continuing down the derivative chain for each type of hyper-
parameter produces

∂Kf

∂σ 2
i
= (aiai

ᵀ)�Kd, (26)

∂Kf

∂δi
=

(
σ 2
u (auau

ᵀ)+ σ 2
v (avav

ᵀ)+ σ 2
w(awaw

ᵀ)
)
�
∂Kd
∂δi

,

(27)

and

∂κd(xj ,xk)

∂δi
=

5
3
(1+
√

5r)e−
√

5r 1
δi

(
(xj )i− (xk)i

δi

)2

, (28)

where

r =

∥∥∥∥xj − xkδ

∥∥∥∥
2
. (29)

With the objective and gradient known, fitting for θ then in-
volves feeding these functions into an appropriate optimiza-
tion routine. We have observed the most reliable convergence
using SciPy’s implementation of the L-BFGS-B and SLSQP
algorithms (Virtanen et al., 2020).

3.5 Wind estimation

Having defined the model hyperparameters either through fit-
ting or prior specification, estimating the winds at a set of

prediction points X∗ involves evaluating the posterior proba-
bility distribution given the measurements.

We start with the joint distribution between the measure-
ments and the winds at the prediction points, which from pre-
vious definitions is given by
f

u∗
v∗
w∗

∼N



mf (X)
mu(X∗)
mv(X∗)
mw(X∗)

 ,Ktot

 , (30)

where

Ktot =


Kf (X,X) au�Ku(X,X∗)

Ku(X∗,X)� au Ku(X∗,X∗)
Kv(X∗,X)� av 0
Kw(X∗,X)� aw 0



av �Kv(X,X∗) aw�Kw(X,X∗)

0 0
Kv(X∗,X∗) 0

0 Kw(X∗,X∗)

 . (31)

The posterior predictive distribution follows from condition-
ing on the measurements:u∗v∗
w∗

 |f ∼N (mpost,Kpost), (32)

where

mpost =

mu(X∗)mv(X∗)
mw(X∗)

+
Ku(X∗,X)� au

Kv(X∗,X)� av
Kw(X∗,X)� aw


Kf (X,X)−1(f −mf (X)) (33)

and

Kpost =

[
Ku(X∗,X∗) 0 0

0 Kv(X∗,X∗) 0
0 0 Kw(X∗,X∗)

]

−

[
Ku(X∗,X)� au
Kv(X∗,X)� av
Kw(X∗,X)� aw

]
Kf (X,X)−1 [au�Ku(X,X∗)

][
av �Kv(X,X∗) aw �Kw(X,X∗)

]
.

(34)

The mean of the posterior predictive distribution forms our
estimate for the winds at the chosen points of interest, and
this is given by the following.

û(X∗)= E[u∗|f ] =mu(X∗)+ (Ku(X∗,X)� au) (35)

Kf (X,X)−1(f −mf (X))
v̂(X∗)= E[v∗|f ] =mv(X∗)+ (Kv(X∗,X)� av) (36)

Kf (X,X)−1(f −mf (X))
ŵ(X∗)= E[w∗|f ] =mw(X∗)+ (Kw(X∗,X)� aw) (37)

Kf (X,X)−1(f −mf (X))

Here we can see that the estimates near measurement lo-
cations, where Ku,v,w(X∗,X) is large, are dominated by
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the prior covariance function specification. This is why the
choice of prior covariance function is more important than
the choice of prior mean function for making useful estimates
and why our subsequent analysis is concentrated on the co-
variance hyperparameters.

Similarly, we obtain an estimate of the prediction uncer-
tainty by using the posterior variance for each wind compo-
nent, given by the following.

σ 2
û(X∗)= Var[u∗|f ] = σ 2

u − diag
((

Ku(X∗,X)� au
)

Kf (X,X)−1
(
au�Ku(X,X∗)

))
(38)

σ 2
v̂(X∗)= Var[v∗|f ] = σ 2

v − diag
((

Kv(X∗,X)� av
)

Kf (X,X)−1
(
av �Kv(X,X∗)

))
(39)

σ 2
ŵ(X∗)= Var[w∗|f ] = σ 2

w − diag
((

Kw(X∗,X)� aw
)

Kf (X,X)−1
(
aw�Kw(X,X∗)

))
(40)

Since the measurement covariance Kf term includes the as-
sumed measurement noise, these equations effectively prop-
agate the Doppler uncertainty through the measurement ge-
ometry and meteor density to produce the wind estimate un-
certainty. However, we note that this uncertainty estimate ig-
nores the cross-terms in the covariance both between test lo-
cations and among the wind components. These factors can
also be included to give a more complete picture of how the
individual estimates are correlated at an increased computa-
tional cost. More detailed estimates could also be backed by
a fully Bayesian approach that involves Markov chain Monte
Carlo sampling of the posterior predictive distribution and
includes full distributions for the hyperparameters θ .

Evaluating the posterior mean and covariance is a straight-
forward numerical linear algebra problem. However, given
the potential sizes of the various covariance matrices, this
can be computationally expensive. Mitigation of this imple-
mentation burden can be achieved with both matrix-free and
approximate methods (e.g., Gardner et al., 2018; Wilson and
Nickisch, 2015). Application of these methods are the sub-
ject of future work, but we note that their use would make
practical fitting and evaluating more tractable.

4 SIMONe2018 campaign

Before describing and presenting the simulation and exper-
imental results, in this section we briefly describe the SI-
MONe2018 measurement campaign that was conducted in
northern Germany between 2 and 9 November 2018. As
mentioned in the Introduction, the SIMONe2018 campaign

added eight SIMONe links to six existing MMARIA links.
The MMARIA links consist of two pulsed transmitters lo-
cated in Juliusruh (13.37◦ E, 54.63◦ N) and Collm (13.00◦ E,
51.31◦ N) operating at 32.55 and 36.2 MHz, respectively.
The signals of these transmitters were received at four re-
ceiving stations located in Juliusruh, Neustrelitz (13.07◦ E,
53.33◦ N), Bornim (13.02◦ E, 52.44◦ N), and Collm.

For the SIMONe links, a coded continuous wave (CW)
transmitter was operated from Kühlungsborn (11.77◦ E,
54.12◦ N) at 32.55 MHz. The transmitter array consisted of
five two-element single polarization antennas arranged in a
Pentagon configuration. Each antenna transmitted a different
pseudo-random code sequence, with 1000 bauds and 10 µs
baud length. On reception, four single antennas were used,
yielding MISO (multi-input, single-output) links. In addition,
the same 32.55 MHz antennas and receiving systems located
in Neustrelitz and Bornim were used to receive the coded
CW signals, forming both MISO and SIMO (single-input,
multiple-output) links at both sites.

The meteor signals from the pulsed links were detected
and identified using a similar methodology as described in
Hocking et al. (2001). In the case of the SIMONe links, the
meteor signals were decoded and detected using the com-
pressed sensing approach introduced by Urco et al. (2019a).
Once the signals were detected, Doppler shift and interfer-
ometric angles were obtained from the autocorrelation and
cross-correlation (between channels), respectively, in a sim-
ilar manner as employed by Holdsworth et al. (2004). The
interferometric angles were obtained using a combination of
beam-forming and nonlinear complex fitting of the time se-
ries data following Clahsen (2018) and Chau and Clahsen
(2019), which includes estimating statistical uncertainties for
the Doppler measurements. Such uncertainty estimates are
used as quality checks or weights in fitting procedures. Loca-
tion of the meteors and representation of the Bragg vector in
the local meteor ENU coordinate system were performed us-
ing the WGS84 representation for an ellipsoidal Earth coor-
dinate frame. That procedure has been described previously
in Clahsen (2018) and Stober et al. (2018). More details of
the SIMONe2018 campaign can be found in Vierinen et al.
(2019) and Charuvil Asokan et al. (2020).

5 Monte Carlo simulations

Monte Carlo simulations of the wind field (u= u,v,w) are
essential to gauge the bias and variance properties of the GPR
method. To create realistic random wind fields with which
we could simulate meteor measurements and compare the
GPR estimate, we again made use of Gaussian processes. In-
stances of u(t,z,y,x)were drawn from the Gaussian random
vector distribution described by Eq. (21) for specified sample
locations, mean wind functions, and covariance amplitude
and length scale hyperparameters. The hyperparameters used
were as follows: σ 2

u = σ
2
v = 900 m2 s−2, σ 2

w = 90 m2 s−2,
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δx = δy = 50 km, δz = 3 km, and δt = 1800 s. These velocity
fields were used with observing geometries taken from 1 d of
the SIMONe 2018 campaign, specifically 5 November 2018.
At each real detection, the measured projected velocity was
replaced by a new projected simulation velocity taking into
account both the measured Bragg vector and the simulated
u(t,z,y,x). In this way, we are able to test the proposed GPR
method on actual measuring geometries.

Using the simulated measurements, we followed the GPR
method from Sect. 3 to estimate the 4D wind field for com-
parison to the simulated winds. We explored fitting with dif-
ferent cubic spline forms for the mean wind functions, and
qualitatively we found that the wind estimates were not sen-
sitive to the details of the fit as long as it was reasonable.
Even using a constant mean of zero produced qualitatively
similar results. Thus, to remove a confounding variable, all of
the estimation results presented in this section use the exact
mean functions that were used to simulate the winds, which
in turn are the same mean functions fitted to the SIMON2018
data as described in Sect. 6. Likewise, we fit for the covari-
ance hyperparameters from the simulated measurements and
found that the results were similar (within 10 %) to the values
used for the simulation. This was reassuring and showed that
the fitting procedure works, at least when the winds can be
described exactly by a Matérn covariance Gaussian process.
Similar to the mean, the estimated winds showed little qual-
itative sensitivity to small changes in the covariance hyper-
parameters, so for the subsequent estimation results we used
(as a baseline case) the same values for the amplitudes and
length scales between the simulation and estimation Gaus-
sian processes in order to remove fitting noise as a confound-
ing variable. These comparisons should be viewed as a best-
case scenario from the perspective of the model, and there-
fore they can be used primarily to explore the effects of me-
teor measurement spatial density and geometry on the quality
of the wind estimates.

5.1 Qualitative comparison of horizontal winds

Figure 2 shows an example of results for simulated (left) and
estimated (right) wind fields for three selected altitudes: 84,
90, and 96 km.

The horizontal wind magnitude is color-coded (blue–
green–yellow tones), while the direction is indicated by
the over-plotted streamlines. The estimated values are also
masked (altering transparency) in regions where the poste-
rior predictive variances are high. Such regions are naturally
where there are fewer meteor detections. Note that contrary
to traditional methods and despite the presentation here as
horizontal slices, the estimates are not confined to a regular
horizontal grid since solutions are inherently obtained in 4D.
At an overall level, there is very good agreement between
the horizontal wind magnitude and direction at all altitudes
in regions where the posterior predictive variance is reason-
ably low (full color areas).

5.2 Bias and error variance

For a more quantitative idea of the performance of the
GPR method, we have repeated the Monte Carlo simula-
tions 4700 times using 100 instances at each (t,z,y,x) lo-
cation for 47 different overlapping time intervals throughout
the day. This is equivalent to observing over 100 d with the
same measurement statistics at each of the 47 time intervals
of a given day. We estimated bias and error variance by cal-
culating the sample mean and variance of the error between
the estimated and simulated u,v, and w wind values over the
n= 4700 time or trial instances. In the case of the horizontal
winds, the bias is given as the magnitude of the mean error
vector composed of both the zonal u and meridional v wind
components, and the error variance is the sum of both the u
and v error variances.

Figure 3 shows the bias of the horizontal wind error (left)
color-coded with red tones and the error variance of the hori-
zontal wind (right) color-coded with purple–yellow tones, in
both cases for the same altitudes shown in Fig. 2.

In the mean error panels, the posterior predictive variance
is also indicated with green contours. A bias of less than
2 m s−1 is seen across the plots, and generally smaller biases
are seen in the regions of lower predictive variance where
there are more meteor detections. Note also that the uncer-
tainty contours (left) roughly match the shape of the actual
error variance (right), which gives confidence that the uncer-
tainty estimates are useful.

Similarly, the bias and variance results for the vertical
wind are shown in Fig. 4.

Again, we see low biases that are uniformly less that
1 m s−1 in magnitude, with the lowest biases in the regions
of low predictive variance. However, this region is smaller
than in the horizontal wind case. We are certain that this dif-
ference is mainly due to the configuration geometry that is
needed to get accurate vertical winds, and the low-variance
region provides a better observing geometry than the rest.
Given the differences in magnitudes and the typically ob-
served Bragg vectors, vertical wind estimates are relatively
less constrained and more susceptible to horizontal wind con-
tamination. Again, as in the case of the horizontal wind re-
sults, the uncertainty contours (left) roughly match the shape
of the actual error variance (right).

5.3 Effects of scaling the covariance amplitudes

Until now we have presented results using estimator prior
covariance amplitudes equal to the simulated values. In Fig-
ures 5 and 6, we show the biases and error variances while
varying over different values of the estimator covariance am-
plitudes: (a) half, (b) equal to, and (c) double the true value
of the simulated winds. Specifically, we took the same 47
observation windows as before, simulated 100 random trials
of measurements using covariance amplitudes of σ 2

u = 900,
σ 2
v = 900, and σ 2

w = 90 m2 s−2, and estimated the winds with
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Figure 2. Simulated wind field (a, c, e) compared to the resulting GPR estimate based on SIMONe-derived measurements (b, d, f). Each
panel shows the horizontal wind speed as a function of latitude and longitude overlaid by streamlines showing the wind flow. The estimated
wind speed is masked at 50 % transparency in areas where there are few meteor detections, and thus the estimate uncertainty is relatively
high (i.e., the improvement in posterior predictive variance over the prior variance is less than 4 dB).
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Figure 3. Statistics of the horizontal wind estimator error relative to the simulated truth. Each panel shows the bias (a, c, e) or error vari-
ance (b, d, f) as a function of latitude and longitude averaged over n= 100 trials at each of 47 measurement geometries taken throughout
1 d. Contours on the bias plots give the posterior predictive variance (in m2 s−2), indicating more confidence in the central areas where the
bias also tends to be a little lower. Contours on the error variance plots correspond to the sample error variance (matching the coloring).
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Figure 4. Statistics of the vertical wind estimator error relative to the simulated truth. Each panel shows the bias (a, c, e) or error variance (b,
d, f) as a function of latitude and longitude averaged over n= 100 trials at each of 47 measurement geometries taken throughout 1 d. Contours
on the bias plots give the posterior predictive variance (in m2 s−2), indicating more confidence in the central areas where the bias also tends
to be a little lower. Contours on the error variance plots correspond to the sample error variance (matching the coloring).
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Figure 5. Mean estimator error relative to the simulated truth when varying the covariance amplitudes. Each panel shows distributions
of the estimator error averaged over n= 100 random trials, for which the distribution is taken over estimates at time–space grid coor-
dinates where the estimated uncertainty shows meaningful improvement (defined as 1.5 dB). Relative to the simulated values, the esti-
mator covariance amplitudes were scaled by 1

2 , 1, and 2 to test nine different combinations by varying values for both the horizontal
(σ 2
u = σ

2
v = [450, 900, 1800]m2 s−2) and vertical (σ 2

w = [45, 90, 180]m2 s−2) wind components.

nine different covariance amplitude combinations by scal-
ing the horizontal and vertical values separately by 1

2 , 1,
and 2. Note that the horizontal amplitudes for the zonal and
meridional wind components were varied together such that
σ 2
u = σ

2
v . Finally, we computed the error between the esti-

mated and simulated winds, calculated the mean and variance
of the error over the random 100 trials (to give bias and error
variance, respectively), and plotted the resulting distributions
taken over time–space grid coordinates.

Figure 5 shows the GPR bias statistics for the zonal (top),
meridional (middle), and vertical (bottom) wind components,
with columns corresponding to halved (left), equal (center),
and doubled (right) covariance amplitudes for the given wind
component.

The remaining vertical and horizontal covariance ampli-
tude value is indicated with different colors. The salient fea-
tures of this figure are the following: (a) the mean error has
a tight distribution around zero, indicating little or no bias
regardless of covariance amplitude scaling; and (b) the dif-
ferences from scaling the covariance amplitudes are minor,
with a slightly tighter bias distribution for the vertical wind

component, a doubled vertical amplitude, and halved hori-
zontal amplitudes.

The posterior predictive uncertainties are plotted against
the error variance in Fig. 6 for both the horizontal (left) and
vertical (right) wind components.

In the horizontal case, we show the results of the total hor-
izontal wind speed, i.e.,

√
u2+ v2. Lines give the mean of

the error variance distribution, while the shaded region in-
dicates the 90 % confidence interval. For the horizontal and
vertical wind plot, different line styles and labeling indicate
the estimator values for the horizontal and vertical covari-
ance amplitude, while different colors indicate values for the
vertical and horizontal covariance amplitude, respectively.
The estimator covariance amplitudes match the simulated
covariance amplitudes at the middle-orange values shown
(σ 2
u = σ

2
v = 900 and σ 2

w = 90 m2 s−2), and those cases show
good linear agreement between uncertainty and error vari-
ance. Halving and doubling the prior covariance amplitude
of a given wind component similarly scales the posterior
estimator uncertainty, resulting in either underestimating or
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Figure 6. Estimator posterior uncertainty versus error variance relative to the simulated truth when varying the covariance amplitudes. Each
panel plots the mean (lines) and 90 % confidence interval (shading) of the distribution of the posterior predictive variance versus the error
variance calculated over n= 100 random trials, for which the distribution is taken over individual estimates at time–space grid coordinates.
Relative to the simulated values, the estimator covariance amplitudes were scaled by 1

2 , 1, and 2 to test nine different combinations by varying
values for both the horizontal (σ 2

u = σ
2
v = [450, 900, 1800]m2 s−2) and vertical (σ 2

w = [45, 90, 180]m2 s−2) wind components.

overestimating the uncertainty relative to the observed error
variance.

Based on these Monte Carlo simulations, we recommend
one of two approaches for applying GPR depending on the
requirements of precision. First, if computational speed is a
constraint and relatively large uncertainties are acceptable,
then using conservative overestimates of the wind variances
to specify the covariance amplitudes will still yield unbiased
wind estimates with uncertainties that can be treated as rough
upper bounds on the error variances. Second, if more preci-
sion is needed and computational time is not a problem, then
fitting on the incoming data to get more accurate estimates
of the prior covariance amplitudes will yield unbiased wind
estimates with more accurate uncertainties. This choice be-
tween specifying the covariance hyperparameters and fitting
for them is a critical decision for any user of the GPR method,
as already seen in the block diagram of Fig. 1.

5.4 Qualitative role of the covariance length scales

We have not yet conducted a systematic study of the co-
variance length scales in the same manner as our examina-
tion of the covariance amplitude hyperparameters. This is
because the degrees of freedom in perturbing the values are
greater, making the analysis more complex, but also because
the length scales are easier to interpret without detailed anal-
ysis. Because the model will enforce high correlation for co-
ordinates that are “close” relative to the length scales, the
covariance length scales set the effective resolution of the
wind estimates. So intuitively, increasing the length scales
will lose resolution and blur the estimates, while decreas-
ing the length scales will gain resolution at the cost of in-

creasing uncertainty (due to fewer measurements having a
strong effect at a given estimation location). This intuition
matches the informal testing that we have done in perturbing
the length scales from the fitted values.

We have found that fitting the length scale hyperparam-
eters generally does a good job of maximizing resolution
while maintaining a usefully low posterior predictive vari-
ance. Those optimal values are determined by both the true
covariance length scales of the wind field and the spatiotem-
poral density of the meteor measurements. For these simu-
lated data, we know that the measurement density can sup-
port smaller length scales because the fitted values for the
corresponding real data are roughly half for the x, y, and t
dimensions (see Sect. 6) compared to the values for the sim-
ulated winds. Nevertheless, fitting the estimation hyperpa-
rameters to the simulated data produced length scales close
to the simulation values, showing that the fitting is respon-
sive to the “true” wind covariance distances and does not just
tune to the meteor measurement density.

As an alternative to fitting, one always has the option of
setting the covariance length scales according to a desired es-
timation resolution. This is useful when one is content with
sacrificing potentially better resolution for the sake of com-
putational simplicity. In the case that the measurement den-
sity is not high enough to support analysis at those fixed
length scales, that fact will be made clear by having few or
no regions of low posterior predictive variance for the result-
ing winds. The estimates will likely not have the overall best
uncertainty, but they will still be valid and thus useful.
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Figure 7. Latitude–longitude slices of the winds estimated from SIMONe campaign data. Each panel represents a separate altitude and time
and shows the horizontal wind speed as a function of latitude and longitude overlaid by streamlines, which show the wind flow. The wind
speed is shown with 50 % transparency in areas where the estimate uncertainty is large (< 2 dB improvement relative to prior uncertainty,
i.e., where there are few meteor detections).

6 Experimental results

In this section we implement the proposed wind field estima-
tor on a dataset of 24 h observations collected on 5 Novem-
ber 2018 during the SIMONe2018 campaign. After initial
data quality control, almost 200 000 meteor detections were
obtained in 24 h. Using a conservative approach and perform-
ing further quality checks yielded 100 000 high-quality de-
tections. The filter criteria used in this second reduction re-
quired that detections were (a) within 3 standard deviations

of the zero-order residuals and (b) more than 30◦ above the
horizon to ensure that good interferometric angle of arrival
(AOA) or angle of departure (AOD) estimates were obtained
(e.g., Chau et al., 2019). Filtering by a minimum elevation
angle also has the effect of ensuring that the errors in AOA
and/or AOD, when projected into the vertical direction, have
a limited effect on the estimated altitude. Meteor location er-
rors are not incorporated into the current GPR method, so
their effect must be limited by ensuring that any potential
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coordinate deviations are much smaller than the covariance
length scales used.

Subsequently, GPR results were obtained by first deter-
mining mean wind functions by fitting a 6 knot (altitude) by
6 knot (time) tensor product cubic spline over the entire 24 h
of data. The 12 spline parameters were calculated by solv-
ing the standard least squares problem completely indepen-
dently of the GPR model. Then the covariance fitting proce-
dure was applied to overlapping 90 min windows spaced at
30 min intervals to estimate the covariance amplitudes and
length scales as they varied throughout the day. With the cur-
rent procedure that computes the full covariance matrix, lim-
iting to short time intervals like this is necessary for com-
putational feasibility. The hyperparameters were found to be
constant enough throughout the day that approximate overes-
timates would suffice and allow proceeding with a single set
of hyperparameters. The resulting covariance hyperparame-
ters are σ 2

u = σ
2
v = 900 m2 s−2, σ 2

w = 90 m2 s−2, δx = δy =
26 km, δz = 3 km, and δt = 900 s. Finally, the wind estimates
were produced by selecting a fixed time, gathering data from
the 90 min window around that time (more than enough given
the time length scale of 15 min), and computing the posterior
predictive values at chosen spatial points.

To get a sense of the scales resolved with the GPR method,
Fig. 7 shows latitude–longitude slices of wind fields at three
different altitudes (84, 90, and 96 km) and three different
times (05:00, 08:00, and 11:00 UT).

The presentation format is similar to Fig. 2; i.e., horizon-
tal wind speeds are color-coded, and streamlines show the
direction of flow. Areas of large velocity variance are shaded
with 50 % transparency to white. The wind fields show sig-
nificant complexity, much more than can be well represented
by the single mean vector per plot that would be reported by
a monostatic meteor radar. On simple inspection, horizon-
tal wind structures of ∼ 20–50 km are successfully resolved,
which is commensurate with the horizontal length scale hy-
perparameter of 26 km.

In Figure 8, altitude–time slices at selected latitude–
longitude points are shown for both zonal (left) and merid-
ional (right) wind components.

The large-scale tidal features are in good agreement with
those obtained with the homogeneous method applied to the
same data (see Vierinen et al., 2019, Fig. 6). The winds
show significant variation between horizontal locations as
expected.

Although we do not have a ground truth in this analysis to
validate the horizontal scales we are resolving, we conduct an
additional comparison to complement earlier identification
of the large-scale features (i.e., tides). In Fig. 9, we compare
GPR wind fields with those obtained with the homogeneous
method (i.e., independent of latitude and longitude) and those
obtained with a gradient method. Specifically, the homoge-
neous method uses a zero-order Taylor expansion, while the
gradient method uses a first-order Taylor expansion. Both es-
timates have been obtained with altitude and temporal bins

of 4 km and 4 h, respectively, in order to produce a good rep-
resentation of large-scale features. The specifics of the two
methods can be found in Chau et al. (2017) and Chau et al.
(2021), respectively.

The gradient wind fields are shown in the first row of Fig. 9
for three selected altitudes (84, 89 and 94 km).

The arrows are color-coded with the horizontal wind speed
(green tones), while the mean vertical wind from the gra-
dient method is color-coded with red–yellow–blue tones. In
the second row the GPR 3D wind fields are displayed in a
manner similar to the gradient estimates in the first row. The
third row shows the difference between the GPR wind fields
and those from the gradient method. Note that the arrow col-
ors and color bar in the third row are different from the first
two rows and show the difference of the horizontal winds.
In all three rows the horizontal wind from the homogeneous
method is shown with a thick black arrow in the center.

The salient features of Fig. 9 are the following.

– In general, there is good agreement in the horizontal
wind components between the gradient and GPR meth-
ods. Note that the gradient estimates have been obtained
with relatively large temporal and vertical averaging in
order to produce a good representation of large-scale
features.

– By subtracting the mean wind obtained with the gradi-
ent method (i.e., large-scale features) from the GPR es-
timates, in the third row, mesoscale structures are identi-
fied. Horizontal structures of the order of 20–50 km are
clearly identified in all three altitude cuts.

Similar wind field comparisons for different times of the
day can be found in Supplement Movie S1.

7 Discussion

We have introduced a robust method based on Gaussian pro-
cess regression analysis to estimate MLT wind fields in four
dimensions. The method has been evaluated using Monte
Carlo simulations and implemented successfully on real data.
The fast implementation using specified covariance hyper-
parameters (per-component amplitudes and per-dimension
length scales) provides unbiased estimates with estimated
uncertainties proportional to the prior velocity variances. In
other words, if the prior variances are underestimated, the
posterior variances are also underestimated. Using a more
resource-intensive training and fitting approach, covariance
amplitudes can be estimated, resulting in posterior variances
that are in good agreement with expectations from Monte
Carlo simulations. The training approach requires more com-
putation time than using fixed prior variances, and we have
not routinely applied it in analysis to date. However, for
method testing purposes, we have implemented it on the real
data shown in this work.
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Figure 8. Altitude–time slices of the winds estimated from SIMONe campaign data. Zonal and meridional winds are shown at a selection
of four latitude–longitude points. The wind speed is shown with gray shading in areas where the estimate uncertainty is large (< 1 dB
improvement relative to prior uncertainty, i.e., where there are few meteor detections).

As expected, we have shown that mean values of GPR
wind fields are in good agreement with the mean winds ob-
tained with the homogeneous method. Similarly, to a first-
order approximation, GPR wind fields are also in good agree-
ment with the wind fields obtained with the gradient method.
Based on the simulation results, we expect the differences
(i.e., the 20–50 km scales within their posterior variances) to
be of a geophysical nature.

Although the GPR method is robust, its region of valid-
ity and resolution depends highly on the geometrical con-
figuration used, which influences the location and density
of meteor observations and the observable projected wind
component. For example, we found that the region of low-
variance vertical winds is smaller than the region of low-
variance horizontal winds. This result occurs even though
the SIMONe2018 configuration has far superior properties
in terms of links and diversity of Bragg angles compared to

any other multistatic configuration used to date to study MLT
winds (e.g., Chau et al., 2017; Stober et al., 2018; Spargo
et al., 2019; Chau et al., 2021; Conte et al., 2021). For-
tunately, the posterior predictive variances provided by the
GPR method can be used in the future to optimize the meteor
radar network geometry to achieve a given prediction goal,
e.g., covering a specified region so that the estimate uncer-
tainty for the winds reaches a particular value given typical
meteor statistics.

Estimating the vertical wind component is still challenging
due to two factors: the horizontal wind variability is larger
than the vertical wind variability (leading to large contami-
nation of the vertical wind when there are errors in the esti-
mated Bragg vector or meteor location), and the majority of
Bragg vectors have angles that are not close to zenith. The
absence of zenith-oriented Bragg vectors is intrinsic to all
specular meteor radars, since any Bragg vectors with angles
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Figure 9. Comparison of GPR to gradient and homogeneous methods. Panels (a)–(c) show the horizontal wind field obtained with the
gradient method using 4 h and 4 km bins. Panels (d)–(f) show the horizontal wind field obtained with the GPR method using fitted covariance
hyperparameters. Panels (g)–(i) show the wind field difference between the values in the second row and the mean horizontal wind indicated
in all panels with a black arrow. In all cases, normalized statistical variance is indicated as gray contour lines, while the color contour
represents the vertical component from the gradient method (a–c), GPR method (d–f), and GPR minus the mean from the gradient method
(g–i). The row 2 color bar corresponds to the background vertical wind coloring, while the other two color bars correspond to their respective
arrow colors.

close to zenith would require meteor trajectories parallel to
the Earth’s surface and are therefore very unlikely to be ob-
served. In the particular case of the gradient method, Chau
et al. (2017) have previously shown that the mean vertical ve-
locity obtained with the homogeneous method, i.e., an area
of ∼ 200 km radius, was contaminated by the mean horizon-
tal divergence. Similar effects would be expected at smaller
scales. Our experimental results do produce a vertical wind
prior variance of about 90 m2 s−2, and some of the vertical
wind estimates do show nonzero vertical velocities congru-
ent with that variance. However, the posterior error bars are
still large enough that a zero or nearly zero vertical wind is
a plausible explanation, especially considering the possible
role of horizontal contamination. The important points rel-
evant to the technique are that GPR is agnostic to the prior

assumptions one wants to employ for the vertical winds, and
it also provides the necessary uncertainty information to al-
low for assessing the quality of the vertical wind estimates.

These results represent just the first step toward apply-
ing GPR analysis to estimate wind fields from meteor ob-
servations. We envision multiple directions of future work to
expand and improve on the technique. There are many de-
grees of freedom in specifying mean and covariance func-
tions to represent the wind components that can be explored.
Known physical processes imply more structure in the joint
wind component covariance than expressed in Eq. (21),
so it would make sense to experiment with adding cross-
covariance terms and allowing independent length scales
for each component. The spatiotemporally varying sampling
density imposed by the meteors argues for using covariance
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functions or hyperparameters that also vary in time and/or
space. This can already be achieved in a crude form by per-
forming fitting and estimation on overlapping subsets of the
data, and we would like to explore that more as well as to
develop a more elegant approach. We have used the mean
functions to essentially remove large-scale tidal effects, but
it remains to be seen how to strike the optimal balance be-
tween complexity in the mean versus covariance functions
or even the model complexity overall. At some point, adding
complexity transforms the GPR method from data-based es-
timation into assimilative modeling, and we see value in pri-
oritizing simplicity and clarity.

Incorporating the uncertainty in the meteor locations and
Bragg vector components into the GPR analysis is another
important avenue for improving the technique. We have so
far removed any low-quality meteor detections from the anal-
ysis to limit the effect of this additional error, and the qual-
ity of the wind estimates would be improved by being able
to incorporate these discarded data and make even better
use of the high-quality detections. We anticipate that such a
task would be challenging; it would likely entail leaving the
closed-form solutions behind and numerically sampling from
the distributions (e.g., Markov chain Monte Carlo methods).

Future work will also concentrate on further validation (in-
cluding cross-validation within a single dataset), although
the fact remains that no alternative MLT wind instrument
is currently available for comparison with GPR estimates.
Therefore, independent of the good comparisons with Monte
Carlo simulations, we are planning to conduct special fu-
ture observing campaigns under different atmospheric condi-
tions and geometric configurations to intercompare our GPR
method with other wind field methods such as those employ-
ing Tikhonov regularization (e.g., Stober et al., 2018; Chau
et al., 2021). Similarly, we plan to compare these techniques
using synthetic data from regional weather models with high
resolution covering the MLT altitudes, such as the ICON-
UA model (e.g., Borchert et al., 2019). This analysis concept
would be similar to the one implemented in this work, but
with more realistic atmospheric dynamics for the simulated
winds.

Finally, we plan to apply the GPR method to selected ad-
ditional datasets that use a multistatic configuration in or-
der to further investigate the properties of the resolved 20–
50 km horizontal wind structures. These investigations will
cover both individual case studies and statistical studies: for
the former, we expect to analyze special geophysical condi-
tions and/or measurements that are complemented by other
ground- or satellite-based instruments (e.g., Davis et al.,
2018; Vargas et al., 2021); for the latter, we expect to com-
pare the Reynolds stress tensor statistics of GPR-estimated
wind fields to those obtained from second-order statistics of
projected wind velocities (Vierinen et al., 2019).

8 Conclusions

We have introduced an alternative observation method based
on Gaussian process regression analysis to resolve MLT wind
fields in 4D from multistatic radar observations. Based on
Monte Carlo simulations of known wind field distributions,
our proposed method provides unbiased mean velocity esti-
mates and posterior velocity variances that are proportional
to prior velocity variances. By using an adaptive fitting pro-
cedure based on input data, unbiased posterior variances can
be achieved. This adaptive approach is currently not practical
for real-time applications but is ideal for case studies.

The horizontal regions of good GPR method performance
in MLT wind determination are dependent on the meteor
scatter geometric configuration. On one hand, optimal con-
figurations should ultimately increase the number of detec-
tions. However, on the other hand, these same configurations
need to provide sufficient Bragg vector diversity. For the par-
ticular SIMONe2018 experiment scattering geometry, these
factors meant that vertical velocity estimates with relatively
small variances were obtained over a much smaller horizon-
tal area than horizontal wind estimates.

Overall, the GPR method has attractive benefits for MLT
regional and weather studies: (1) it enables flexible analysis
by allowing grid-free wind estimates; (2) it provides statis-
tical uncertainties for the estimated winds that reflect mea-
surement uncertainty and meteor observation geometry; and
(3) it adapts to the horizontal, vertical, and temporal scales
of the data, accounting for measurement density, and is thus
able to resolve winds at relatively small scales.

Data availability. Meteor observations from the SIMONe 2018
campaign on 5 November 2018 and wind estimates produced by
the GPR method can be found at https://zenodo.org/record/5550854
(Volz et al., 2021). Additional information and hyperparameters
used for the GPR wind estimates can also be found there.
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