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Abstract. The last 2 decades have seen substantial techno-
logical advances in the development of low-cost air pollu-
tion instruments using small sensors. While their use con-
tinues to spread across the field of atmospheric chemistry,
the air quality monitoring community, and for commercial
and private use, challenges remain in ensuring data qual-
ity and comparability of calibration methods. This study
introduces a seven-step methodology for the field calibra-
tion of low-cost sensor systems using reference instrumen-
tation with user-friendly guidelines, open-access code, and
a discussion of common barriers to such an approach. The
methodology has been developed and is applicable for gas-
phase pollutants, such as for the measurement of nitrogen
dioxide (NO2) or ozone (O3). A full example of the appli-
cation of this methodology to a case study in an urban envi-
ronment using both multiple linear regression (MLR) and the
random forest (RF) machine-learning technique is presented
with relevant R code provided, including error estimation. In
this case, we have applied it to the calibration of metal oxide
gas-phase sensors (MOSs). Results reiterate previous find-
ings that MLR and RF are similarly accurate, though with
differing limitations. The methodology presented here goes
a step further than most studies by including explicit trans-
parent steps for addressing model selection, validation, and
tuning, as well as addressing the common issues of autocor-
relation and multicollinearity. We also highlight the need for
standardized reporting of methods for data cleaning and flag-
ging, model selection and tuning, and model metrics. In the

absence of a standardized methodology for the calibration of
low-cost sensor systems, we suggest a number of best prac-
tices for future studies using low-cost sensor systems to en-
sure greater comparability of research.

1 Introduction

Air pollution remains a leading cause of premature death
globally (Landrigan et al., 2018). The recent trend in air pol-
lution research of using low-cost sensors (LCSs) to measure
common gas-phase and particulate air pollutants (e.g. CO,
NOx , O3, PM) is an attempt to close gaps in our under-
standing of air pollution and make its measurement cheaper,
widespread, and more accessible (Kumar et al., 2015; Lewis
et al., 2016, 2018). The development of these new technolo-
gies represents a paradigm shift that has opened up air pollu-
tion monitoring to a much wider audience (Morawska et al.,
2018; Snyder et al., 2013). In recent years, LCSs have been
used to develop or supplement existing air pollution mon-
itoring networks to provide higher spatial resolution (e.g.
CitiSense, U.S. EPA Village Green), as well as in a citizen
science context to report on and share information about air
quality (e.g. AirVisual, Purple Air) (Morawska et al., 2018;
Muller et al., 2015). Projects like these are a promising step
towards empowering citizens with greater knowledge of their
local air quality.
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However, as there are myriad commercially available
LCSs that use a variety of sensors and have substantial dif-
ferences in quality, standardizing their application remains
challenging and urgent (Karagulian et al., 2019). In measur-
ing gas-phase pollutants, for example, metal oxide sensors
(MOSs) and electrochemical sensors (ECs) are often used,
although they have different limits of detection and cross-
sensitivities that need to be taken into account (Lewis et al.,
2016, 2018; Rai et al., 2017). Under ambient conditions,
the performance of these two sensor types varies substan-
tially, with some studies reporting moderate to good agree-
ment with concentrations measured by reference instrumen-
tation, whereas others find very poor agreement (Lewis et al.,
2018). A further challenge is that many LCSs are in the form
of small sensor systems 1 sold as ready-to-use products to
customers, most often using a “black box” proprietary cali-
bration algorithm for producing concentrations which, along
with raw data, is not publicly available (Karagulian et al.,
2019). Furthermore, a wide range of calibration techniques
have been applied to LCSs in field studies, but lack unifor-
mity in metrics used, experimental setup, reference equip-
ment, and environmental conditions, making it difficult to
draw conclusions about their overall performance (Karagu-
lian et al., 2019; Rai et al., 2017).

In general, pairwise reference calibration has been done
on an individual sensor system basis as well as a sensor sys-
tem cluster basis, also known as “sensor fusion” (Barcelo-
Ordinas et al., 2019). The former tends to be more accurate
but becomes logistically and computationally intensive for
large numbers of LCSs and is more sensitive to sensor de-
cay and medium-scale drift. The latter has been shown to
be effective at calibrating groups of sensors when using the
median sensor signal of a co-located cluster of sensors to
develop a single calibration model applicable to all sensors
(Smith et al., 2017, 2019). Using a cluster-based approach
has been shown to produce calibration factors that may be
more robust over longer time frames but have higher margins
of error for individual sensors. Both methods have their ad-
vantages and disadvantages that must be balanced based on
the desired application for the sensor systems. Further meth-
ods for calibration beyond pairwise reference calibration in-
clude node-to-node calibration (Kizel et al., 2018) or proxy
calibration (Miskell et al., 2018).

Previous research has used linear regression, multiple lin-
ear regression (MLR), and machine-learning techniques such
as random forest (RF), artificial neural networks (ANNs),
and support vector regression (SVR) to calibrate LCSs with
reference instrumentation for gas-phase pollutants. Here too,
there is a lack of standardization, as MLR, RF, ANN, and
SVR have all been found to be the most accurate method

1In this case “sensor” and “LCS” refer to the sensor components
which react chemically with various air pollutants, whereas “sensor
system” refers to the complete device, including sensors, housing
unit, and data storage.

across various studies (Bigi et al., 2018; Cordero et al., 2018;
Hagan et al., 2018; Karagulian et al., 2019; Lewis et al.,
2016; Malings et al., 2019; Smith et al., 2019; Zimmerman et
al., 2018). Only linear regression has been consistently iden-
tified as an unsuitable model, largely because it fails to take
into account cross-sensitivities and environmental influences
on sensor functioning and because sensor responses are of-
ten non-linear. For this same reason, nonparametric meth-
ods such as the aforementioned machine-learning techniques
tend to be more accurate, as they are better at modelling non-
linear sensor responses while being able to better take into
account interferences in sensor functioning (Barcelo-Ordinas
et al., 2019; Karagulian et al., 2019). However, it must be said
that any of these statistical methods can be applied as long as
they properly account for autocorrelation, multicollinearity,
and non-linearity in the data with relevant transformations.

There are several key issues with previous work on cali-
brating LCS that must be acknowledged. First, the metrics
used to report model suitability vary substantially. Karag-
ulian et al. (2019) found in their comprehensive review of
the LCS literature that only the coefficient of determina-
tion (R2) was applicable for cross-comparison of all stud-
ies. While this metric can be useful in measuring the agree-
ment between LCS data and reference measurements, it does
not give a sense of the model error. Future studies should,
at a minimum, report R2, root-mean-square error (RMSE),
and mean average error (MAE) when discussing calibration
performance (Barcelo-Ordinas et al., 2019; Karagulian et al.,
2019). Second, while there are many studies that calibrate
LCSs with MLR or machine-learning techniques, the asso-
ciated model selection, validation, and tuning methods are
rarely reported. The latter of these is especially important
for machine-learning (ML) techniques with many tuning pa-
rameters, where the problem of over-fitting is more common.
Some studies do report steps for model validation (Hagan et
al., 2018; Spinelle et al., 2015; Zimmerman et al., 2018) or
model tuning (Bigi et al., 2018; Spinelle et al., 2015), but
they do not go into depth as to how these were determined
or optimized. Especially with “black box” techniques such
as ANN, SVR, or RF, reporting steps taken to validate the
model and optimize parameters are crucial to ensuring con-
sistency among studies. Last, the issues of multicollinearity
and autocorrelation, which are common among LCS time se-
ries data and of substantial importance when using MLR, are
rarely addressed. If at all mentioned, they are referred to as
being better handled by non-linear ML techniques such as
SVR or RF (Bigi et al., 2018) or as potentially obscuring the
statistical significance of models (Masiol et al., 2018). This
study seeks to take a step forward in ensuring these issues are
addressed in future LCS calibration studies.

In the absence of a standardized calibration methodol-
ogy, the ever-growing body of LCS literature will continue
to be largely incomparable, with research running in paral-
lel using varied methods. Though several comprehensive re-
views of LCSs which establish helpful guidelines for their
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use have been completed (Lewis et al., 2018; Williams et
al., 2014), best practices for calibration with reference in-
struments that should be undertaken in any field deploy-
ment were not specifically reported. More recently, Barcelo-
Ordinas et al. (2019) published an extensive study on the cal-
ibration of LCSs, including some general calibration guide-
lines. While these are a helpful guide for calibration method-
ologies, they lack important details on the post-processing of
data during the model-building process. This study seeks to
expand upon this work and specifically address the standard-
ization of individual pairwise calibration of LCSs housed in
sensor systems with reference instrumentation by present-
ing user-friendly guidelines, open-access code, and a discus-
sion of common barriers to field calibration. With the pub-
lication of this step-by-step methodology for the statistical
calibration of low-cost sensor systems, we hope to establish
a framework from which calibration methods can be better
compared.

2 Methods

The following section outlines a methodology for the deploy-
ment and field calibration of LCSs for the measurement of
gas-phase pollutants. First, some key considerations for the
experimental deployment of small sensor systems will be dis-
cussed. Second, a seven-step statistical calibration methodol-
ogy for the post-processing of data will be described. Last, an
example of the use of this methodology, for both deployment
and calibration, using data collected during a measurement
campaign in 2017 and 2018, is provided (Sect. 3).

For this methodology, it is important to first establish un-
der which circumstances the following steps would apply.
This is a reference-based pairwise method for the individual
calibration of small sensor systems, and therefore the user
will need to have access to reference instrumentation with
which the small sensor systems can be co-located, whether
their own or in collaboration with for example a city mon-
itoring network. This makes the methodology inapplicable
for individual users in a citizen science context who may
not have access to reference instrumentation. These refer-
ence instruments should adhere to standardized guidelines on
accuracy (i.e. EU Air Quality Directive (2008/50/EC), US
National Ambient Air Quality Standards (NAAQS)). A co-
location in this sense refers to the installation of the small
sensor systems in the close vicinity (ca. 1–3 m) of the ref-
erence instruments, so that they receive the same parcels of
air. This paper focuses on the usage of field (i.e. in situ) co-
locations in calibrating small sensor systems. If access to ref-
erence data or the raw small sensor data is not possible, then
this methodology cannot be applied. Furthermore, while it
was applied here to sensor systems containing metal oxide
LCSs, this methodology is also equally as applicable to elec-
trochemical (EC) LCSs or photoionization detectors (PIDs),
as these produce a similar measure of voltage that varies

in response to changing concentrations of gas-phase species
and have similar cross-sensitivities to temperature and rela-
tive humidity. It is not directly applicable for optical parti-
cle counters (OPCs) for the measurement of particulate mat-
ter, as the transformation of the raw data into concentrations
during calibration functions differently, though some of the
principles discussed here are still relevant. For an applica-
tion of this methodology to EC sensors, please see Schmitz
et al. (2021).

2.1 Key considerations for the experimental
deployment of small sensor systems

When calibrating small sensor systems, the experimental de-
ployment and co-location of devices is a key step with several
important considerations that must be accounted for. First,
the co-location with reference instrumentation should ideally
occur at the same test site where the small sensor systems are
to be deployed. If unfeasible for logistical reasons, an ana-
logue site should be selected. Criteria for analogue selection
entail similar characteristics as those for test site selection.
The analogue site should (1) have similar sources and ranges
of concentrations of air pollutants as the test site, (2) experi-
ence comparable meteorological conditions and similar cir-
culation dynamics, and (3) be physically located in the same
region as the test site. While it is unlikely that there will be a
perfect analogue site, any field calibration should take these
criteria into consideration in order to enhance validity of ex-
perimental results.

Second, the frequency and timing of co-locations should
reflect site-specific variations in meteorological conditions.
Generally, these should be done often enough so that co-
location data cover similar ranges of meteorological condi-
tions and concentrations of air pollutants as the experimental
data, but not so often that there is a concomitant loss of ex-
perimental data. A rule of thumb for long-term experiments
(>6 months) in temperate seasonal environments is a 2-week
co-location every 2–3 months. For short- to medium-term
experiments, a 2-week co-location before and after and per-
haps one in-between, depending on changes in meteorologi-
cal conditions, should suffice. Regular co-location allows for
the establishment of datasets that cover not only changes in
meteorology but also sensor functioning and interactions of
potentially cross-sensitive species. If these considerations are
taken into account during the experimental deployment, the
likelihood that these datasets will be of good quality will be
higher. In this study, we focus primarily on stationary field
deployment of low-cost sensor systems. There are, however,
other forms of deployment, including indoor and mobile, for
which these criteria also apply. It is important to mention that
there may be other considerations required in such alterna-
tive forms of deployment, e.g. more scrutinous data cleaning
in mobile deployments due to impacts of rapidly changing
environments on sensor performance.
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Figure 1. Schematic representation of the seven-step calibration
method for processing small sensor system data.

2.2 The seven-step statistical calibration method

Raw data from small sensor systems, if treated and trans-
formed properly, can provide informative air pollutant con-
centrations. This treatment must, however, be rigorous if the
resultant concentrations are to be used in further analysis.
This section provides a general description of a seven-step
methodology for the post-processing and calibration of LCS
data gathered with small sensor systems (see Fig. 1). Mul-
tiple linear regression (MLR) and random forest (RF) were
selected as calibration methods to be used in this methodol-
ogy, although it can be generally applied to other regression
or machine learning methods. Information on the functions
and packages from the open-source R statistical software
program (R Core Team, 2019) used in this methodology is
provided for each step. This information and the code can be
found in the open-source repository Zenodo (see below for
DOI).

2.2.1 Step 1: analyse and understand raw data
distribution

The first step is to gain a general understanding of the data.
Specifically, establishing an overview of data distributions
and potential data quality issues (data gaps, presence of out-
liers, changes in baselines, etc.) is helpful for identifying
problems and solutions during calibration. It should also be
checked that all associated metadata are available for all
datasets.

In this study, all variables that were to be used in model
selection were assessed in this step. For example, the dis-
tributions of the reference concentrations, small sensor sys-
tem raw data, and meteorological variables from the co-
location and experimental datasets were analysed. Meteo-
rological variables including temperature, relative humidity,
and wind speed and direction across the co-location and ex-
perimental datasets were compared. Additional variables that

could be considered but were not analysed here include pre-
cipitation, boundary layer height, and insolation, among oth-
ers. A visual assessment of these data using histograms, vi-
olin plots, and time series plots was conducted. This step
provided information about the structure of each available
co-location dataset and the experimental dataset crucial to
decision-making in later steps.

2.2.2 Step 2: data cleaning

Next, the datasets should be cleaned of erroneous outliers
and unreliable data. This step is crucial, as outliers can have
a particularly strong effect on calibration models and espe-
cially so on linear regression models.

To accomplish this, the time series plots generated in step 1
were first used to visually evaluate the data. Sequence out-
liers resultant from sensor warm-up time or sensor mal-
functioning were identified and removed using an automated
function. Next, an algorithm was tested, trained, and imple-
mented that uses a simple z test with a running mean and
standard deviation to detect point outliers resultant from in-
strument measurement error. Tests of normality with datasets
greater than 50 points are irrelevant in determining whether
parametric tests can be used or not (Ghasemi and Zahediasl,
2012). Analysis of the data in this study revealed the same,
as data segments of fewer than 30 points consistently passed
the Shapiro–Wilk test, but with progressively larger data seg-
ments, more and more of the data failed the test. Therefore,
it was assumed that the data aligned enough with the normal
distribution for this test to apply. The size of the moving time
frame from which the running mean and standard deviation
were calculated and the z-score threshold used to designate
“outlierness” were tested and optimized. Durations of 1, 2,
5, 10, 30, 60, 120, and 300 min were considered for the mov-
ing window and thresholds of 3, 4, 5, and 6 were tested. This
was done for each variable individually. The points flagged
as outliers with this method were then graphically assessed
against neighbouring data points to prevent inadvertent re-
moval of peak emission events. In other cases where assess-
ing all outliers is impractical, it is recommended to do so
with a random subset of outliers. Furthermore, if substantial
short-term events are expected due to the deployment envi-
ronment, such as during mobile measurements, a more thor-
ough check of potential outliers should be done. Other out-
lier detection functions using autoregressive integrated mov-
ing average (ARIMA) and median absolute deviation (MAD)
were tested and were found to be inappropriate for these data.

2.2.3 Step 3: flag data for further scrutiny

Experimental data outside the range of the co-location data
(i.e. beyond the minimum and maximum values) should be
flagged as they may be less reliably predicted than those
which are in range and should be given a higher level of
uncertainty (Smith et al., 2019). Flagging such data points
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strikes a balance between removing them from the analysis
and highlighting their associated uncertainty.

Once flagged, these data points were treated differently in
later analysis (Sect. 3.5). Similarly, co-location data outside
the range of the experimental data received a flag. During the
model selection process, these flags were used to remove data
that may serve to bias the model. While this may seem unnec-
essary, if the experimental range of environmental conditions
is much smaller than those of the co-locations, it could be that
using a smaller, more comparable range of co-location data
is more suitable for model selection. This is data and model
dependent, however, and was therefore tested in Step 6.

2.2.4 Step 4: model selection and tuning

Model selection and tuning is a seldom-reported step that
is vital in ensuring the calibration model is suitable for use.
Rigorously scrutinizing a variety of potential models and op-
timizing their parameters provides reproducible justification
for the final model selected. This is particularly important
for machine-learning techniques which can have a wide ar-
ray of parameters for tuning model performance. Further-
more, appropriate methods used in model selection ensure
that problems of multicollinearity and autocorrelation can be
corrected for, as superfluous predictors suffering from these
issues will be identified and removed. Before building and
selecting potential models, the relationships between predic-
tors and response variable, including potential transforma-
tions, must be determined. This is important for linear regres-
sion models but is not relevant for ML techniques which do
not take these transformations into account. Often the sensor
specifications indicate what type of transformation (exponen-
tial, log-linear, etc.) may be necessary.

The co-location data were used in this step to train var-
ious models and determine the best-fitting MLR and RF
models. In this case, log transformations were recommended
for the MOSs used but were cross-checked with other com-
mon transformations including log-log, square-root, and in-
verse. Model selection proceeded through backwards selec-
tion using the coefficient of determination (R2), root-mean-
squared error (RMSE), and Akaike information criterion
(AIC) (Akaike, 1973) for MLR or variable importance (VI)
(Breiman, 2001) for RF as criteria. To determine the best
models, the training dataset was broken up into smaller sets
by using a moving window of 4 d to train the models and
the fifth day to test. The models with the best average RMSE
over the various fifth day predictions were selected.

For RF the model parameters of mtry (the number of ran-
domly selected variables at each node), min.node.size (the
minimum number of data points in the final node), and
splitrule (the method by which data are split at each node)
were optimized by testing various combinations and select-
ing the most accurate in terms of RMSE, with data split in
the same manner as for MLR. Subsequently, measures of
AIC for the regression model and VI for the random forest

model were assessed to determine which predictors should
remain in the model. For MLR, this involved the repeated
bootstrapping of the training set combined with stepwise se-
lection, using the AIC to robustly determine predictor inclu-
sion. The models were then finally tested on the test subset
and assessed using RMSE and R2. The most accurate MLR
and RF models were then sent to the next step for validation.

2.2.5 Step 5: model validation

Model validation is often overlooked but is necessary to en-
sure that the most accurate model selected is reliable (i.e. has
good predictive power for independent data). While a singu-
lar instance of splitting the dataset during the model selection
process into training and testing subsets is one method of val-
idating the model, an additional step ensures more rigorous
validation.

In this case, to validate the MLR and RF models selected
in Step 4, the co-location data were repeatedly split into train-
ing and testing subsets at a ratio of 75/25. This was done by
splitting the co-location training set into continuous blocks
representing 25 % of the training data (in this case 6 d) as test
subsets and using the rest of the co-location data to train the
model. A robustness cross-check with various splitting ratios
was conducted, and it was found that changing the splitting
ratio did not significantly impact the results. Using contin-
uous blocks instead of random sampling is necessary to ac-
count for the autocorrelation in the data (Carslaw and Taylor,
2009). The accuracy of the final models was then assessed
on the continuous blocks using R2, RMSE, and variable im-
portance. These metrics were then graphed across all contin-
uous blocks to assess model stability. In this case, instability
refers to major differences in R2 and RMSE between folds
likely caused by differing field conditions among the training
and test folds. If this is seen, it indicates that the model may
be too sensitive to changes in field conditions. If the graphs
showed instability across the various folds, Step 4 was re-
peated and a new model was selected for validation.

2.2.6 Step 6: export final predictions

Once the selected model has been validated, the next step
in the process is to export predictions of the experimental
data as concentrations. Only co-location data deemed rele-
vant from Steps 1–3 should be used to train the model, which
is then used to predict experimental concentrations.

In this case, the co-location data were used to train the best
MLR and RF models identified in Steps 4 and 5. These mod-
els were then applied to the raw experimental data in order to
predict final concentrations. The final predictions were then
graphed and compared using time plots and histograms.

2.2.7 Step 7: calculate total predictive error

Last, it is vital that overall error and confidence intervals for
the predictions are reported in this step. Most models have as-
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sociated methods for reporting metrics such as standard error
which can be used to establish confidence intervals around
the predictions. Compounded to this must be the technical
error associated with measurements from the reference in-
struments. Thus, the overall error should combine technical
and statistical error.

In this study, to test the impact of the precision of the ref-
erence measurements on model accuracy, the reference NO2
and O3 data were smeared using a normal distribution with
each point as the mean and each instrument’s measure of im-
precision as the standard deviation. Smearing refers to trans-
forming the data by shifting the actual value within the range
of uncertainty. This test therefore determined whether the im-
precision given by each instrument’s specifications should be
factored into the overall predictive error. This was done over
50 iterations to see how model accuracy responded to shifts
in reference concentrations within the margins of error. Co-
location data were split 75/25 into a training set and test-
ing set, respectively. In each iteration, separate MLR and RF
models for NO2 and O3 were trained; each was trained once
with the reference measurements and once with smeared ref-
erence measurements. All models were then tested for pre-
dictive accuracy on the testing subset, to compare the impact
of smeared versus measured reference data on model perfor-
mance.

Last, the overall uncertainty was calculated. For the refer-
ence instruments, the technical measurement was taken from
their specifications. This was added to the overall statistical
error, for which the median MAE across all blocks from the
model validation step was used. Both the MLR and RF mod-
els calculated a measure of standard error, which was com-
pared with the combined uncertainty measure. The more ap-
propriate of the two was then added to the final predictions
from Step 6.

3 Example application of the methodology

3.1 Small sensor systems used

The small sensor systems used in this example are Earth-
Sense Systems, Ltd. “Zephyr” prototypes2, henceforth re-
ferred to as “Zephyrs”. This term refers to the whole small
sensor system including housing, sensors, and GPS. Installed
within the Zephyr prototypes were a number of metal ox-
ide sensors (MOSs) that measure reducing gases, oxidizing
gases (used here for detection of nitrogen dioxide), ozone,
and ammonia, as well as a meteorological sensor for temper-
ature and relative humidity; see Table 1 for more on these
sensor specifications. These MOSs typically experience sig-
nificant amounts of drift 4 months after initial calibration,
which is why in this study co-locations were conducted at

2The EarthSense Zephyrs have since evolved substantially, and,
as such, this study does not represent current performance or con-
figuration.

high frequency, before and after each experiment. For greater
detail on the development, functioning, and operation of
the sensors housed within these prototypes, see Peterson et
al. (2017).

3.2 Reference instruments

The reference instrumentation included a Teledyne model T-
200 NO–NO2–NOx analyser and a 2B Technologies, Inc.
ozone monitor. These instruments were intercompared with
reference instruments – CAPS (Aerodyne, USA), CLD 770
AL ppt (ECO PHYSICS AG, Switzerland) and O242M (En-
vironnement S.A., France) – from the Forschungszentrum
Jülich as part of the measurement campaign and showed de-
cent agreement (R2

= 0.70) for NO2 and good agreement
(R2
= 0.88) for O3 (see Figs. S1–S3 in the Supplement).

Ambient air temperature and relative humidity (Lambrecht,
PT100) data one block away from the experimental site were
provided by the Free University Berlin for two measurement
campaigns (more information in Sect. 3.3). Wind speed and
direction (Campbell Scientific, IRGASON) were measured
10 m above the roof of the main building of the Technical
University Berlin (TUB) at Campus Charlottenburg, which is
located across the street from the experimental site. This site
is part of the Urban Climate Observatory (UCO) Berlin oper-
ated by the TUB for long-term observations of atmospheric
processes in cities (Scherer et al., 2019a).

3.3 Experimental deployment

Measurements were conducted in a street canyon on the
Charlottenburg Campus of the TUB, on the façade of the
mathematics building (52◦30′49.7′′ N, 13◦19′34.5′′ E) as a
part of several measurement campaigns of the joint project
“Three-dimensional observation of atmospheric processes in
cities” (3DO) (Scherer et al., 2019a), which was part of the
larger research program Urban Climate Under Change [UC]2

(Scherer et al., 2019b). The area directly around the measure-
ment site consists of university buildings with a wide main
thoroughfare (Strasse des 17. Juni) that runs from east to west
through Berlin (see Fig. S6 in the Supplement). These oc-
curred during two measurement campaigns which are hence-
forth referred to as the Summer Campaign (SC), which in-
cludes all 2017 measurements, and the Winter Campaign
(WC), which includes the 2018 measurements, respectively
(Fig. 2).

For the field calibration the Zephyrs were co-located with
the aforementioned reference instruments at the deployment
site. The reference station for co-location was set up in an
office on the sixth floor of the mathematics building on the
south-facing façade that provided constant power for refer-
ence instrumentation and the Zephyrs, as well as space for
air inlet tubing to be passed through the windows to the
reference instrumentation (Fig. 3). The Zephyrs and the air
inlets were attached next to each other on the same railing
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Table 1. Sensors installed within the EarthSense Zephyr prototypes. Table reproduced from Peterson et al. (2017).

Gases measured Sensor model Method of detection Gas detected and detection limits

Reducing gases SGX Sensortech MICS-4514 Redox reaction

CO: 1–1000 ppm
NH3: 1–500 ppm
C2H5OH: 10–500 ppm
H2: 1–1000 ppm
CH4: >1000 ppm

Oxidizing gases SGX Sensortech MICS-4514 Redox reaction
NO2: 0.05–10 ppm
H2: 1–1000 ppm

Ozone SGX Sensortech MICS-2614 Redox reaction 10–1000 ppb

Ammonia SGX Sensortech MICS-5914 Redox reaction

NH3: 1–500 ppm
C2H5OH: 10–500 ppm
H2: 1–1000 ppm
C3H8: >1000 ppm
C2H8(CH4)2: >1000 ppm

Temperature and relative humidity GE measurement and control CC2D25 Polyamide capacitance
Temp.: −40–125 ◦C
RH: 0 %–100 %

Figure 2. Timeline of SC and WC depicting the relationship between co-locations and experiments. Due to technical issues of individual
instruments, data were unavailable for the segments marked in red.

outside the office. This ensured that all instruments were re-
ceiving the same parcels of air throughout the co-location.
One Zephyr was co-located with reference instrumentation
throughout the summer campaign (s71) and one through-
out the winter campaign (s72). The reference station mea-
surements were continuous throughout the co-locations and
the experiments. The experiments took place from 29 July–
28 August and from 20 September–12 October in 2017 and
from 27 January–23 February in 2018. Five co-locations
were conducted in total across the two campaigns. These
took place from 18 July–27 July, 29 August–7 September,
and 14 October–27 October (all in 2017) during the SC and
from 13 January–24 January and 23 February–8 March (both
in 2018) during the WC. All dates refer to time frames of the
data presented, as the first and last days of deployment or
co-location were not used owing to different start and end
times of installation, as well as sensor warm-up times. To
compare sensor performance between s71 and s72, an inter-
comparison of available co-location raw data was conducted
for the oxidizing MOS (Oxa) and ozone MOS (O3a). During
all co-locations, the sensors had a linear relationship and an
R2>0.95 (Figs. S4 and S5). In only one instance was this not
the case (co-location 2, O3a), where the R2 was 0.59 and a

Figure 3. Set-up of the co-location of the prototype Zephyrs with
reference instruments on the sixth floor of the mathematics building.
The grey units are the Zephyrs, and the two inlet tubes connect to
the reference devices located inside the office.

deviation from linearity was detected. This relationship was
linear and normal in all other co-locations.

This example focuses on Zephyr s71 during the SC and
Zephyr s72 during the WC. For the sake of brevity, all graphs
and tables included in this section pertain only to the former.
Those relevant for the latter can be found in the Supplement.
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Due to continuous co-location of these two sensors, the sta-
tistical models established using the seven-step method could
be trained with co-location data and, atypically, assessed for
their accuracy using reference concentrations during the en-
tire experimental window. What follows is a thorough de-
scription of the application of the seven-step method for cal-
ibration.

In order to calibrate the Zephyrs, reference NO2 and O3
data, meteorological data, and raw data from the Zephyr sen-
sors were used. Concentrations of NO2 from the Teledyne
T200 NOx analyser and O3 from the O3-2B Technologies
instruments were used as response variables in the models.
Ambient temperature (Tamb) and relative humidity (RHamb)
data as well as wind speed (ws) and direction (wd) data were
tested as predictors in the statistical models. Four variables
from the Zephyrs themselves were also tested in the statis-
tical models as predictors: (1) Oxa, a measure of resistance
from one MOS used to detect oxidizing substances (in this
case NO2); (2) O3a, another measure of resistance from a
MOS that detects O3; (3) a measure of temperature collected
by the Zephyr (Tint); and (4) a measure of relative humidity
collected by the Zephyr (RHint). Finally, the binary time-of-
day (ToD) variable was created to distinguish between night
and day, as the chemistry of the analysed species changes
significantly. Further reference data on other species would
have been beneficial to this calibration, as the MOSs do ex-
hibit cross-sensitivities to other species, but resources were
insufficient, and these data were not collected.

3.4 Seven-step calibration of the Zephyrs

The temperature and relative humidity from the Zephyrs (Tint
and RHint) reflect the conditions within the sensor system
and typically parallel ambient data, however, with an offset.
These data are henceforth referred to as “internal” temper-
ature and relative humidity. Throughout the example, both
internal and ambient T and RH are used to assess their com-
parative influence on model accuracy. This was tested as
ambient T and RH from reference instruments are not al-
ways available at experimental sites, whereas the internal T

and RH of the Zephyrs are always available. The reference
and meteorological data had an original time resolution of
1 min whereas the Zephyr data were collected at a time res-
olution of 10 s. Analysis during the seven-step process was
conducted using 5 min averages except for outlier detection,
which was done at original time resolution.

3.4.1 Step 1: analyse raw data distribution

The distributions of the reference, meteorological, and
Zephyr data were first compared between each co-location
individually, both co-locations together, and the experimen-
tal deployment data of Experiment 1. The violin plots of am-
bient RH and T , NO2, and O3 for co-location 2 (Fig. 4) show
that the meteorological conditions and pollutant concentra-

Figure 4. Violin plots of (a) reference NO2, (b) reference O3,
(c) Oxa, (d) O3a, (e) Tamb, (f) RHamb, (g) Tint, and (h) RHint for
co-location 2, co-location 3, both co-locations combined, and the
experimental data.

tions experienced were quite similar to those of the experi-
ment. The ranges, median values, and the interquartile ranges
are quite similar. This is further reflected by the similarity in
distributions of both the Zephyr MOS data (Oxa and O3a)
and the reference instrument data between the second co-
location and the experiment.

By contrast, the distributions of the same variables for the
third co-location (Fig. 4) are demonstrably different from
the other co-location and the experimental data. The ambi-
ent temperature and relative humidity conditions were sig-
nificantly cooler and wetter in the third co-location than dur-
ing the experiment, and the NO2 and O3 concentrations were
much higher and lower, respectively. Furthermore, the MOS
data in this co-location have a much different median and
interquartile range (IQR) than the experiment, although the
overall range is similar.

With both locations combined (Fig. 4), the distributions of
all variables are representative of the experimental data, but
with worse agreement than with co-location 2 alone. These
results suggested that the second co-location alone could be
the best training set for the model building process. In order
to further assess this hypothesis, co-location 2, co-location 3,
and a combination of both were used in exporting final model
predictions and evaluated using the atypical co-located ex-
perimental data as a “comparison” dataset.
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Figure 5. Examples of outliers detected on reference data using a
z test with running mean for the SC. A value of “TRUE” means the
point was deemed an outlier by the z test.

3.4.2 Step 2: data cleaning

Point outliers were determined using a self-developed outlier
detection function. The threshold and running window pa-
rameters were optimized individually for each variable. This
was done through visual assessment of points identified as
outliers under various parameters, in order to determine if
the designation was appropriate. For the reference NO2 and
O3 data, using a z-score threshold of 5 and a running mean
calculated with 120 data points (equivalent to 2 h of data) was
optimal for identifying true outliers. Using a lower threshold
often falsely identified the extremes of normal data spikes
as outliers. Figure 5 shows example outliers that were iden-
tified using the function described above for the reference
data. The reference relative humidity and temperature data
provided by the Free University had been pre-processed, and
as such no outliers were identified in those data.

As part of normal operation, the Zephyrs send logged data
via the Global System for Mobile Communications (GSM)
connection every 15 min to a database maintained by Earth-
Sense. When this occurs, all metal oxide sensors in the device
turn off. The MOSs by design, however, run quite hot and re-
quire a constant input of power to maintain their temperature.
As can be seen in Fig. 6, each time the MOSs turn off, they
need to warm up again before stabilizing. The time series
plots developed in Step 1 were key to identifying and ad-
dressing this issue. By developing a function in R that anal-
yses the MOS data patterns following time gaps due to GSM
connection, we developed a rule of thumb for identifying and
removing these data. Analysis of this issue showed that the
sensors required 2.5 min to warm-up and return to normal
functionality.

Once the time-gap anomalies were removed from the
Zephyr data, the outlier detection function was applied to the
four Zephyr variables in original time resolution. As can be
seen in Fig. 7, outliers were detected for the four Zephyr vari-
ables with a z-score threshold of 5 and a running mean of 360
data points (equivalent to 1 h of data). It is likely that these
anomalous data points all result from brief technical failures
within the instrument.

Figure 6. Example of outliers due to MOS warm-up following a
GSM connection of the Zephyrs. A value of “TRUE” indicates the
point was included in the 2.5 min MOS warm-up period.

Figure 7. Examples of outliers detected on Zephyr s71 data using a
z test with running mean for the SC. A value of “TRUE” means the
point was deemed an outlier.

3.4.3 Step 3: flagging the data

Given that the data coverage from the second co-location en-
compassed most of the experimental data, only a few points
during the experiment were flagged for being out of bounds
of the second co-location set. As can be seen in Fig. 8a,
only low NO2 concentrations from the experimental set were
flagged. The third co-location experienced a narrower range
of NO2 concentrations, as can be seen in Fig. 4 from Step 1.
As such, more experimental data points of lower concentra-
tions and some of high concentrations were flagged for this
co-location (Fig. 8b). This shows the utility of comparing the
results of Step 1 with the flags generated in Step 3.

Similarly, the second co-location dataset received few
flags, as most variables had comparable ranges to those
of the experimental dataset. For example, only a few data
points in which the internal Zephyr temperature dipped be-
low∼ 289 K were flagged (Fig. 8c). For the third co-location,
which was conducted in colder conditions in October, far
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Figure 8. (a, b) Example time series plots of the experimental data with points out of bounds of the second and third co-locations flagged,
respectively. (c) Time series plot of the second co-location with points flagged for being out of bounds of the experimental dataset. (d) Time
series plot of the third co-location with points flagged for being out of bounds of the experimental dataset.

more data points were flagged (Fig. 8d). This indicated that
a larger portion of the third co-location could be unsuitable
for use in calibration. It also proved valuable for later anal-
ysis when analysing the final predicted concentrations of the
model in Step 6.

3.4.4 Step 4: model selection

The results of the model selection process can be seen in Ta-
bles 2–5. For readability, these tables reflect a later stage in
the process, after which a wide range of other models had
already been tested and excluded on the basis of AIC and ac-
curacy metrics. A combination of these metrics was used to
designate the “best” models in which RMSE and R2 received
a higher priority than AIC. The most accurate MLR model
for predicting NO2 was determined to be one in which Oxa,
O3a, RH, and T were included as single terms with inter-
actions between all variables. The relationship between NO2
and Oxa was determined to be logarithmic, whereas the re-
lationship to T was determined to be inverse. This is in line
with what would be expected in urban environments, as T

can be seen as a proxy for insolation, which causes the pho-
tolysis of NO2. For O3 the most accurate MLR model had
Oxa, O3a, RH, and T included as single terms with interac-
tions. The relationship between Oxa and O3 was also deter-
mined to be logarithmic. For both NO2 and O3, MLR mod-
els using ambient T and RH were consistently more accurate
than those using internal T and RH.

For random forest, the most accurate NO2 model was de-
termined to be one that included Oxa, O3a, ambient RH, and
ambient T . The optimal mtry parameter was determined to
be 4, with a minimum node size of 5. For predicting O3 the
results were similar to those of NO2, except that ambient T

replaced ambient RH. For both NO2 and O3 the use of am-
bient T and RH produced more accurate models. Overall,

the RF models performed very similarly to the MLR models,
with only slight differences in R2 and RMSE.

3.4.5 Step 5: model validation

For MLR and RF, the R2 and RMSE for each block were
saved and plotted (Fig. 9a–d). As can be seen, the models
using ambient T and RH for both O3 and NO2 remained
relatively stable across all blocks. They consistently have a
higher R2 and a lower RMSE than the models trained with
internal T and RH, for both NO2 and for O3. Conversely,
the models trained with internal T and RH are much more
volatile in terms of R2 and RMSE, for both NO2 and O3.
In addition, blocks 11, 12, and 13 show a marked decrease
in R2 and increase in RMSE across all models with internal
T and RH. This trend was true for several models tested at
this step, indicating that the internal T and RH were less sta-
ble for these blocks. Generally, the differences in RMSE be-
tween ambient and internal T and RH were more pronounced
for NO2 than for O3. This is true across most blocks and in-
dicates that the final concentrations should be predicted us-
ing ambient T and RH data instead of internal data. Tables 6
and 7 show the median R2 and RMSE for all selected mod-
els for NO2 and O3, respectively. They reveal that MLR and
RF models using ambient T and RH are similarly accurate
at predicting NO2 and O3. The differences in accuracy are
more pronounced for the models using internal T and RH.

Of all predictors included in the RF models, the MOS vari-
able O3a had the highest VI for predicting both O3 and NO2
(Fig. 10a–d). The MOS variable Oxa was also of relative im-
portance, usually as the second most important variable, with
the exception of the O3 models for which temperature (inter-
nal or ambient) was sometimes the second most important
variable. Results from these graphs indicate that all variables
should remain in the RF models.
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Table 2. Results of the MLR model selection process for NO2. The most accurate model is in bold. RMSE and MAE are in units of parts per
billion.

Formula R2 RMSE MAE AIC

NO2 ∼ log(Oxa) ·O3a ·RHamb · (1/Tamb) 0.82 3.90 3.02 26527.04
NO2 ∼ log(Oxa) + O3a + RHamb+ (1/Tamb) 0.83 4.11 3.20 27027.58
NO2 ∼ log(Oxa) · O3a · RHamb · Tamb 0.77 4.26 3.57 25896.72
NO2 ∼ log(Oxa) + O3a + RHamb+ Tamb 0.84 4.15 3.33 26602.66
NO2 ∼ log(Oxa) · O3a · RHint · (1/Tint) 0.77 4.61 3.65 27552.32
NO2 ∼ log(Oxa) + O3a + RHint+ (1/Tint) 0.81 4.59 3.89 28174.42
NO2 ∼ log(Oxa) · O3a · RHint · Tint 0.78 5.78 4.49 26621.64
NO2 ∼ log(Oxa) + O3a + RHint+ Tint 0.80 4.62 3.92 27936.49

Table 3. Results of the MLR model selection process for O3. The most accurate model is in bold. RMSE and MAE are in units of parts per
billion.

Formula R2 RMSE MAE AIC

O3 ∼ log(Oxa) · O3a · RHamb · Tamb 0.91 3.38 2.59 23842.89
O3 ∼ log(Oxa) + O3a + RHamb+ Tamb 0.94 3.05 2.46 25023.60
O3 ∼log(Oxa)·O3a· (1/RHamb) · Tamb 0.92 2.91 2.29 24088.18
O3 ∼ log(Oxa) + O3a + (1/RHamb)+ Tamb 0.94 3.20 2.44 25077.30
O3 ∼ log(Oxa) · O3a · RHint · Tint 0.81 4.06 2.80 26173.68
O3 ∼ log(Oxa) + O3a + RHint+ Tint 0.92 3.67 2.69 28054.23
O3 ∼ log(Oxa) · O3a · (1/RHint) · Tint 0.82 4.30 3.03 26374.23
O3 ∼ log(Oxa) + O3a + (1/RHint)+ Tint 0.91 3.67 2.78 28178.23

Figure 9. (a) R2 and (b) RMSE over the 19 test blocks for the MLR
models (1a, 1b, 3a, 3b). (c) R2 and (d) RMSE over the 19 blocks
for the RF models (2a, 2b, 4a, 4b).

3.4.6 Step 6: predicting final concentrations

Final concentrations predicted for NO2 and O3 using the
MLR and RF models with both ambient and internal T and
RH can be seen in Fig. 11. While the results indicated that
ambient T and RH should be used, both are included here
for further analysis beyond the seven-step methodology. For

NO2, the MLR models predict a much narrower range of con-
centrations and occasionally predict negative concentrations
(Fig. 11a). The RF models tend to predict higher concen-
trations than MLR, have a wider range, and do not predict
negative concentrations (Fig. 11b). For O3, the differences
between MLR and RF are less pronounced, with both cap-
turing the diurnal cycle well (Fig. 11c–d). In all figures it can
be seen that models using ambient T and RH consistently
predict higher concentrations than those using internal T and
RH. This indicates that there is a difference between predic-
tions using Zephyr internal versus reference temperature and
relative humidity sensors.

3.4.7 Step 7: calculating predictive error

As can be seen in Fig. 12, smearing the reference data had
minimal impact on the predictive accuracy of all models.
This indicates that the uncertainty of the reference instru-
ments did not impact the predictive accuracy of the models
and can therefore in this case be ignored as a potential inter-
ference. Overall predictive error was then calculated as the
reference error plus median MAE of each model across all
blocks from the model validation step. The T-200 NOx in-
strument has a measurement uncertainty of 0.5 % of the mea-
surement above 50 ppb or an uncertainty of 0.2 ppb below
50 ppb. For the 2B Technologies ozone monitor, the uncer-
tainty was larger, between 2 % of the measurement or 1 ppb.
This can be seen in Fig. 13, which depicts the MLR and
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Table 4. Results of the RF model selection process for NO2. Min.node.size and split rule were optimized in a previous step not shown here
for brevity and are therefore constant. The most accurate model is in bold. RMSE and MAE are in units of parts per billion.

Formula mtry min.node.size Split rule R2 RMSE MAE

NO2 ∼ Oxa + O3a + RHamb+ Tamb+ ToD + wd + ws 7 5 extratrees 0.70 4.49 3.62
NO2 ∼ Oxa + O3a + RHamb+ Tamb+ ToD + wd 6 5 extratrees 0.71 4.58 3.49
NO2 ∼ Oxa + O3a + RHamb+ Tamb+ ToD 5 5 extratrees 0.75 4.43 3.51
NO2 ∼Oxa+O3a+RHamb+ Tamb 4 5 extratrees 0.76 4.01 3.25
NO2 ∼ Oxa + O3a + RHamb 3 5 extratrees 0.74 4.08 3.26
NO2 ∼ Oxa + O3a + Tamb 2 5 extratrees 0.76 4.64 3.92
NO2 ∼ Oxa + O3a 2 5 extratrees 0.70 4.44 3.38
NO2 ∼ Oxa + O3a + RHint+ Tint+ ToD + wd + ws 7 5 extratrees 0.60 5.06 3.97
NO2 ∼ Oxa + O3a + RHint+ Tint+ ToD + wd 6 5 extratrees 0.58 5.20 4.09
NO2 ∼ Oxa + O3a + RHint+ Tint+ ToD 5 5 extratrees 0.58 5.34 4.00
NO2 ∼ Oxa + O3a + RHint+ Tint 3 5 extratrees 0.63 5.12 3.93
NO2 ∼ Oxa + O3a + RHint 2 5 extratrees 0.65 5.59 4.37
NO2 ∼ Oxa + O3a + Tint 2 5 extratrees 0.70 4.86 3.79

Table 5. Results of the RF model selection process for O3. Min.node.size and split rule were optimized in a previous step not shown here for
brevity and are therefore constant. The most accurate model is in bold. RMSE and MAE are in units of parts per billion.

Formula mtry min.node.size Split rule R2 RMSE MAE

O3 ∼ Oxa + O3a + RHamb+ Tamb+ ToD + wd + ws 4 5 extratrees 0.92 3.37 2.42
O3 ∼ Oxa + O3a + RHamb+ Tamb+ ToD + wd 4 5 extratrees 0.90 3.20 2.53
O3 ∼ Oxa + O3a + RHamb+ Tamb + ToD 2 5 extratrees 0.90 3.10 2.45
O3 ∼ Oxa + O3a + RHamb+ Tamb 2 5 extratrees 0.92 3.39 2.52
O3 ∼ Oxa + O3a + RHamb 2 5 extratrees 0.93 3.71 2.62
O3 ∼Oxa+O3a+ Tamb 2 5 extratrees 0.93 2.95 2.36
O3 ∼ Oxa + O3a 2 5 extratrees 0.90 4.09 2.87
O3 ∼ Oxa + O3a + RHint+ Tint+ ToD + wd + ws 4 5 extratrees 0.90 3.44 2.46
O3 ∼ Oxa + O3a + RHint+ Tint+ ToD + wd 4 5 extratrees 0.90 3.60 2.46
O3 ∼ Oxa + O3a + RHint+ Tint+ ToD 2 5 extratrees 0.91 3.64 2.42
O3 ∼ Oxa + O3a + RHint+ Tint 2 5 extratrees 0.87 3.72 2.65
O3 ∼ Oxa + O3a + RHint 2 5 extratrees 0.87 3.92 2.77
O3 ∼ Oxa + O3a + Tint 2 5 extratrees 0.85 3.78 2.66

RF-predicted concentrations for Experiment 1, with shaded
regions representing the uncertainty. The uncertainty of the
RF and MLR models was fairly similar but was higher for
NO2 than for O3. This reflects the findings from Steps 4–6 in
which O3 was predicted more accurately than NO2 by both
models. The standard error for MLR models was found to
not reflect the realistic accuracy of the predicted concentra-
tions in relation to actual concentrations, as it was found to
be very low. The RF models calculated a more appropriate
measure of standard error using the infinitesimal jackknife
method (Wager et al., 2014), but for consistency with the
MLR models, this measure was not used. The accuracy of
the final models in predicting experimental data for which
reference concentrations are not available for comparison is
then best reflected by combining the uncertainty of the ref-
erence instruments with the median MAE of the test blocks
during Step 5 (Tables 6 and 7).

3.5 Extra validation step

To further test the impact of using more representative train-
ing datasets, the final models identified in Steps 4 and 5 were
trained with each co-location individually as well as with
both combined. The predictive accuracy of these separate
models was then compared using the experimental dataset
for which reference NO2 and O3 measurements were avail-
able, as Zephyr s71 was co-located throughout the experi-
ment. Additionally, these datasets were also tested with data
points flagged in Step 3 removed to understand further in-
fluences on model accuracy. This extra validation allowed
for better evaluation of the performance in predicting exper-
imental concentrations of the MLR and RF models selected
with the seven-step method. This is, however, atypical for
field studies, as these sensor systems are intended to be de-
ployed independently of reference instrumentation.
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Table 6. Median R2 and RMSE across all test blocks of the best MLR and RF models using internal and ambient T and RH for NO2. RMSE
and MAE are reported in units of parts per billion.

NO2 Median R2 Median RMSE Median MAE

MLR
NO2 ∼ log(Oxa) · O3a · RHamb · (1/Tamb) 0.82 4.35 3.54 Model 1a
NO2 ∼ log(Oxa) · O3a · RHint · (1/Tint) 0.67 6.12 4.10 Model 1b

RF
NO2 ∼ Oxa + O3a + RHamb+ Tamb 0.75 4.88 3.90 Model 2a
NO2 ∼ Oxa + O3a + Tint 0.72 5.29 3.89 Model 2b

Table 7. Median R2 and RMSE across all test blocks of the best MLR and RF models using internal and ambient T and RH for O3. RMSE
and MAE are reported in units of parts per billion.

O3 Median R2 Median RMSE Median MAE

MLR
O3 ∼ log(Oxa) · O3a · (1/RHamb) · Tamb 0.91 3.83 2.86 Model 3a
O3 ∼ log(Oxa) · O3a · (1/RHint) · Tint 0.82 4.81 3.79 Model 3b

RF
O3 ∼ Oxa + O3a + Tamb 0.90 3.77 3.00 Model 4a
O3 ∼ Oxa + O3a + Tint+ RHint+ ToD 0.86 5.20 4.10 Model 4b

Table 8 shows the results of training these various mod-
els for NO2. The most accurate model at predicting exper-
imental concentrations was the RF model using internal T

and trained with data only from co-location 2. The same
model trained with all available co-location data was slightly
more inaccurate. Co-location 3 was the least accurate of the
training subsets, reiterating findings from Step 1. For the
MLR models, this dip in accuracy when exclusively using
co-location 3 as the training set was most pronounced, as can
be seen in Table 8 and Fig. 14g–h. When filtering out flagged
data points, most NO2 models improved slightly in predic-
tive accuracy. This was most pronounced for those using co-
location 3 as a training set, which improved substantially in
terms of R2. This alludes largely to the impact of seasonal
changes on co-location 3, which experienced different mete-
orological and pollution conditions than were present during
experiment 1. While results show that this co-location was
not useful for accurate prediction, it is likely that it would
have been more relevant for prediction on experiment 2, dur-
ing which the environmental conditions were more compa-
rable. Similarly, co-location 1 would likely have been more
valuable for prediction with experiment 1 than with experi-
ment 2. However, due to the loss of data from s71, this could
not be assessed more closely in this study.

For O3, the most accurate model was the RF model using
internal T and RH and trained exclusively using data from
co-location 2, though the MLR internal model for the same
co-location was of comparable accuracy. The RMSE for this
model was substantially lower than the one trained using am-
bient T and RH. With the MLR models, this difference in
predictive accuracy between models trained with internal and
ambient T and RH was much greater, again favouring the
internal models. Co-location 3 was highly inaccurate at pre-

dicting experimental data, further reiterating findings from
Step 1 that indicated the unsuitability of this co-location for
use in predicting final concentrations. Panels e–f in Fig. 15
clearly depict the boundaries for predictions with RF models
when the training data are unsuitable, as is the case with co-
location 3. This is a fundamental flaw of RF models as they
cannot predict outside the bounds of the data they are trained
with. Filtering out the points flagged in Step 3 did not im-
prove the predictive accuracy of models trained exclusively
with co-location 2, but it substantially improved those trained
with co-location 3, especially those using internal T and RH.

4 Discussion

The results of this study have several implications for the
field of low-cost sensors. In line with other research, this
study found that MLR and RF were similarly accurate in pre-
dicting experimental concentrations of NO2 and O3 (Karagu-
lian et al., 2019), though the differences in accuracy between
MLR and RF were more pronounced for O3 than for NO2.
In fact, it was found that RF was the better predictor of both
O3 and NO2 concentrations when evaluated with the longer
experimental dataset, albeit only slightly. This contrasts with
findings from the model selection and validation process, as
the MLR models were consistently more accurate at predict-
ing subsets of the co-location data. What this indicates is
that models found to be more accurate during “calibration”
may have differing model performance when assessed with
a “comparison” dataset, in this case the experimental dataset
that was co-located throughout for one sensor. This is a re-
sult that has been found previously, where the R2 is lower
for comparison datasets than for calibration (Karagulian et
al., 2019). If RF, MLR, or other ML techniques are selected

https://doi.org/10.5194/amt-14-7221-2021 Atmos. Meas. Tech., 14, 7221–7241, 2021



7234 S. Schmitz et al.: Methodology for the field calibration of small air quality sensors

Figure 10. Variable importance over the 19 test blocks of (a) model 2a, (b) model 4a, (c) model 2b, and (d) model 4b.

Table 8. Results of RF and MLR models for NO2 trained with co-location 2, co-location 3, or a combination of both when tested on
the comparison experimental dataset. In the lower half of the table, the models are trained with the same datasets but are tested on the
experimental dataset with data points outside the ranges of each training dataset filtered out. The most accurate model is in bold.

NO2 Co-location 2 Co-location 3 Both co-locations

R2 RMSE R2 RMSE R2 RMSE

MLR
NO2 ∼ log(Oxa) · O3a · RHamb · (1/Tamb) 0.66 5.49 0.22 12.08 0.61 5.66
NO2 ∼ log(Oxa) · O3a · RHint · (1/Tint) 0.66 6.41 0.57 10.99 0.67 5.55

RF
NO2 ∼ Oxa + O3a + RHamb+ Tamb 0.67 5.23 0.41 6.64 0.66 4.97
NO2 ∼Oxa+O3a+ Tint 0.73 4.44 0.61 5.60 0.68 4.87

NO2–filtered

MLR
NO2 ∼ log(Oxa) · O3a · RHamb · (1/Tamb) 0.63 5.53 0.45 12.88 0.62 5.62
NO2 ∼ log(Oxa) · O3a · RHint · (1/Tint) 0.63 6.49 0.64 11.17 0.69 5.54

RF
NO2 ∼ Oxa + O3a + RHamb+ Tamb 0.65 5.09 0.66 5.64 0.56 4.90
NO2 ∼ Oxa + O3a + Tint 0.71 4.38 0.65 6.01 0.68 4.85

for their accuracy when predicting on calibration data and are
not tested on comparison data, it may well be that the perfor-
mance does not hold for new experimental data. Given the
similarity between RF and MLR in predicting NO2 and O3
found in this study, as well as in the literature, either method
can be used. However, as MLR is simpler to implement than
most ML techniques and has fewer parameters that need to be
optimized, and the model calculations are well understood,
unlike the black-box calculations of RF and most ML tech-
niques, this should be the preferred option to achieve greater
model transparency and control.

Further important to the proper evaluation of model accu-
racy is the reporting of multiple metrics such as RMSE and
MAE, in addition to R2. It is quite clear from Tables 8 and

9 that R2 is not the best metric with which to measure pre-
dictive accuracy of calibration models. Models trained with
co-location 3 exclusively to predict O3, for example, had an
R2 greater than 0.70, which is acceptable agreement. Those
same models, however, had an RMSE of >7 ppb, which is
much more inaccurate than an R2 of 0.70 alone would re-
veal. As another example, the same models trained exclu-
sively with co-location 2 for O3 (Table 9) had an R2 between
0.86 and 0.94 but had a wide range of RMSE between 3.30–
7.00 ppb. It is therefore crucial that multiple performance
metrics are used to evaluate calibration models before final
decisions are made on their suitability. At a minimum, R2

and RMSE should be reported.
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Figure 11. Time series plots and boxplots for Experiment 1 of (a) predicted NO2 concentrations using the MLR model, (b) predicted NO2
concentrations using the RF model, (c) predicted O3 concentrations using the MLR model, and (d) predicted O3 concentrations using the RF
model. “Ambient” and “internal” refer to the use of ambient or internal T and RH data in each model.

Multicollinearity is an issue common not only to MLR,
but also to small sensor systems, which often have multi-
ple LCSs measuring the same or similar species with heavily
auto-correlated data. While uncommonly addressed in the lit-
erature, except for a few studies mentioning its influence on
MLR models (Bigi et al., 2018; Hagan et al., 2018; Masiol

et al., 2018), the solution, as presented in Steps 4 and 5, is
relatively straightforward. To ensure that the predictor vari-
ables included in the final model are, in fact, explanatory,
the model should be repeatedly validated using bootstrapped
samples. To deal with autocorrelation, this validation should
be done using continuous blocks and not with random sam-
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Figure 12. RMSE of models trained using smeared reference measurements versus actual reference measurements for (a) NO2 with MLR,
(b) NO2 with RF, (c) O3 with MLR, and (d) O3 with RF.

Figure 13. Time series plots of both MLR and RF predictions for Experiment 1 including the measurement uncertainty as shaded regions for
(a) NO2 and (b) O3. Data were averaged to 30 min resolution.
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Figure 14. Scatter plots of predicted NO2 versus reference NO2 concentrations for the experimental data using MLR and RF models trained
with co-location 2 (i–l), co-location 3 (e–h), and both combined (a–d). All concentrations are reported in parts per billion.

Table 9. Results of RF and MLR models for O3 trained with co-location 2, co-location 3, or a combination of both when tested on the
comparison experimental dataset. In the lower half of the table, the models are trained with the same datasets but are tested on the experimental
dataset with data points outside the ranges of each training dataset filtered out. The most accurate model is in bold.

O3 Co-location 2 Co-location 3 Both co-locations

R2 RMSE R2 RMSE R2 RMSE

MLR
O3 ∼ log(Oxa) · O3a · (1/RHamb) · Tamb 0.86 7.00 0.86 5.12 0.88 6.06
O3 ∼ log(Oxa) · O3a · (1/RHint) · Tint 0.94 3.37 0.16 17.20 0.91 3.94

RF
O3 ∼ Oxa + O3a + Tamb 0.91 5.14 0.73 7.77 0.91 5.14
O3 ∼Oxa+O3a+ Tint+RHint+ToD 0.94 3.31 0.67 9.95 0.92 3.80

O3 – filtered

MLR
O3 ∼ log(Oxa) · O3a · (1/RHamb) · Tamb 0.85 6.78 0.85 4.13 0.87 5.97
O3 ∼ log(Oxa) · O3a · (1/RHint) · Tint 0.93 3.33 0.52 9.24 0.91 3.90

RF
O3 ∼ Oxa + O3a + Tamb 0.91 5.18 0.77 5.13 0.90 5.15
O3 ∼ Oxa + O3a + Tint+ RHint+ ToD 0.93 3.30 0.65 7.53 0.91 3.82
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Figure 15. Scatter plots of predicted O3 versus reference O3 concentrations for the experimental data using MLR and RF models trained
with co-location 2 (i–l), co-location 3 (e–h), and both combined (a–d). All concentrations are reported in parts per billion.

pling. Including these steps in the model-building process is
simple and should be considered best practice.

Further underlining the importance of repeated validation
is the variation in results when using ambient or internal T

and RH. While the inclusion of ambient meteorological data
led to more accurate models during calibration, this did not
hold for the comparison dataset. Instead, for the prediction of
both NO2 and O3, it was internal T and RH data that led to
more accurate prediction. This indicates that for the predic-
tion of NO2 and O3 concentrations with EarthSense Zephyrs,
not only are the internal T and RH sensors acceptable for
use in predictive models, but they are also likely more rep-
resentative of normal operating conditions. Given that the
MOSs radiate large amounts of heat, the conditions inside the
Zephyrs are significantly different than ambient conditions.
As such, the internal T and RH sensors likely better repre-
sent the exact environmental conditions under which species
are adsorbing to the MOSs. However, given that models us-
ing ambient data were more accurate during the validation
step and significant differences between predictions of mod-
els trained with internal vs. ambient T and RH were identi-

fied, these results require closer inspection, which should be
the subject of future research.

The final results also reveal the value of pre-processing the
data in Steps 1–3. It became clear by looking at the distribu-
tion of the co-location datasets in Step 1 that co-location 3
might be unsuitable for use in predicting the experimen-
tal concentrations. These data were then flagged in Step 3.
While the models trained exclusively with co-location 3 were
substantially less accurate than those using data from co-
location 2, their accuracy increased when flagged experimen-
tal data points outside the range were removed. In essence,
the third co-location was useful for predicting experimental
data within its range of conditions but very inaccurate for
those outside of that range. Co-location 2, on the other hand,
was identified as being well-suited for prediction in Step 1
and received few flagged points in Step 3. Final results in-
dicate that MLR and RF models trained with co-location 2
perform better than those trained with co-location 3, for both
NO2 and O3. Combining the two co-locations did not im-
prove the predictive accuracy for NO2 or O3, when compared
with the more-suitable second co-location (Tables 8 and 9).
As such, training calibration models with co-location 2 ex-
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clusively would have been correctly justified using evidence
from Step 1. What is evident from this analysis is that en-
suring quality of training data used in calibration is crucial
to accurate prediction. Incorporating quality control into the
calibration methodology is therefore an important best prac-
tice.

Finally, LCS data should be reported with associated error
values. While we discussed RMSE in the context of model
fit and validation, as well as a method for evaluating whether
reference instrument accuracy affects the model output, er-
ror values should be reported not just in the assessment of
the LCSs themselves, but also with some form of represen-
tative error associated with the reported concentration data.
Our recommendation is to combine the uncertainty of the ref-
erence instruments with the median MAE across blocks from
the model validation step. As can be seen in Tables 8 and 9,
the RMSE of predictions tested with the comparison experi-
mental dataset are quite similar to the median RMSE values
in Tables 6 and 7. This indicates that using median error from
the model validation step is quite representative of the LCS
uncertainty. However, over longer measurement campaigns,
this should be repeatedly tested and validated with additional
co-location training sets, so as to account for sensor drift,
deteriorating functionality, and varying meteorological con-
ditions.

5 Conclusions

While many details of this methodology are already well-
known, they are often overlooked or go unreported in pub-
lished literature. In most cases not all aspects are included.
As a result, many studies assessing pairwise calibration
methodologies for low-cost sensors cannot be compared. In
the absence of calibration standards for these technologies
in a field that continues to diversify and grow, researchers
must start to consolidate around an agreed-upon set of best
practices. This study has highlighted several of them. First,
details on model selection, validation, and tuning must be re-
ported if researchers are to be able to effectively compare
results across studies. If models are not rigorously tested
for suitability using standardized methods, especially with
“black-box” machine-learning techniques, then their com-
parison will remain challenging at best. Second, models
should be validated not only on the calibration dataset but
also on a separate comparison dataset, if possible. All vali-
dation should be done using R2 and RMSE, at a minimum.
This will provide greater insight into the suitability of se-
lected models for prediction on experimental data as well
as better comparability across studies. Third, pre-processing
the data, including visual inspection, outlier removal, and
data-flagging, is an integral part of an effective calibration
methodology. Understanding the quality and distribution of
available data is important to identifying problems and solu-
tions encountered during calibration.

Last, it is clear that a standardized methodology for the
calibration of low-cost sensors is needed if they are to be in-
corporated into air quality monitoring programmes and con-
tribute new insights to the field of atmospheric chemistry.
This seven-step methodology seeks to fill a gap in the lit-
erature up until now left largely unreported. In addition, this
methodology, complete with relevant R code, is the first to be
completely transparent and open access. This is a valuable
contribution to a young but rapidly growing body of litera-
ture surrounding low-cost sensors. With this work, we hope
to begin unravelling the black box of sensor calibration.
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