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Abstract. Atmospheric carbon dioxide (CO2) is the most
significant greenhouse gas, and its concentration is continu-
ously increasing, mainly as a consequence of anthropogenic
activities. Accurate quantification of CO2 is critical for ad-
dressing the global challenge of climate change and for de-
signing mitigation strategies aimed at stabilizing CO2 emis-
sions. Satellites provide the most effective way to monitor
the concentration of CO2 in the atmosphere. In this study,
we utilized the concentration of the column-averaged dry-air
mole fraction of CO2, i.e., XCO2 retrieved from a CO2 mon-
itoring satellite, the Orbiting Carbon Observatory-2 (OCO-
2), and the net primary productivity (NPP) provided by the
Moderate Resolution Imaging Spectroradiometer (MODIS)
to estimate the anthropogenic CO2 emissions using the Gen-
eralized Regression Neural Network (GRNN) over East and
West Asia. OCO-2 XCO2, MODIS NPP, and the Open-Data
Inventory for Anthropogenic Carbon dioxide (ODIAC) CO2
emission datasets for a period of 5 years (2015–2019) were
used in this study. The annual XCO2 anomalies were calcu-
lated from the OCO-2 retrievals for each year to remove the
larger background CO2 concentrations and seasonal variabil-

ity. The XCO2 anomaly, NPP, and ODIAC emission datasets
from 2015 to 2018 were then used to train the GRNN model,
and, finally, the anthropogenic CO2 emissions were esti-
mated for 2019 based on the NPP and XCO2 anomalies
derived for the same year. The estimated and the ODIAC
CO2 emissions were compared, and the results showed good
agreement in terms of spatial distribution. The CO2 emis-
sions were estimated separately over East and West Asia.
In addition, correlations between the ODIAC emissions and
XCO2 anomalies were also determined separately for East
and West Asia, and East Asia exhibited relatively better re-
sults. The results showed that satellite-based XCO2 retrievals
can be used to estimate the regional-scale anthropogenic CO2
emissions, and the accuracy of the results can be enhanced by
further improvement of the GRNN model with the addition
of more CO2 emission and concentration datasets.
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1 Introduction

Climate change is one of the greatest challenges to the future
of Earth, and it stems from global warming, which is acceler-
ated by anthropogenic emissions of greenhouse gases (Lam-
minpää et al., 2019). The major warming effects are caused
by atmospheric CO2 emissions, and significant amounts of
these emissions are contributed by fossil fuel combustion
and some industrial activities, such as the calcination of
limestone during cement production (Hutchins et al., 2017).
The levels of atmospheric CO2 are continuously increasing
(Mustafa et al., 2020), and if these levels continue to increase
at the same rate, 1.5 ◦C of global warming will be reached
between 2030 and 2052, which will cause more climate ex-
tremes (Hoegh-Guldberg et al., 2021).

Estimates of CO2 emissions at national, regional, and
global levels are now widely reported and have become an
important element of public policy and mitigation strategies.
Many countries are making efforts to reduce CO2 emissions.
Over the past few decades, significant work has been car-
ried out to compile the regional and the global inventories of
CO2 emissions from anthropogenic activities (Olivier et al.,
2005; Janssens-Maenhout et al., 2015; Gurney et al., 2009;
Oda and Maksyutov, 2015). Most of the emission inventories
employ bottom-up methods using available human activity
data, emission factors, and corresponding technologies. The
bottom-up methods incorporate energy consumption datasets
along with other information, such as fuel purity and effi-
ciency. However, it is known that such information can be
subject to errors and biases, leading to considerable discrep-
ancies and uncertainties in emission estimates, especially in
the case of rapidly growing developing economies such as
China and India (Guan et al., 2012; Korsbakken et al., 2016).
These discrepancies can result in ∼40 % to ∼100 % uncer-
tainty in emission estimations at the country and the local
scales, respectively (Peylin et al., 2013; Wang et al., 2013).
Moreover, defining the uncertainty in the inventory datasets
is also a challenging task, and the intercomparisons of vari-
ous inventories do not necessarily reveal all of the uncertain-
ties, as different inventories sometimes use common sources
of information (Konovalov et al., 2016). It is becoming in-
creasingly important to find efficient and reliable ways of
monitoring CO2 reduction progress and to evaluate how well
specific CO2 reduction policies are working.

Satellites provide the most effective way of monitoring
atmospheric CO2 with great spatiotemporal resolution. Sev-
eral satellites such as the Greenhouse Gases Observing Satel-
lite (GOSAT), GOSAT-2, the Orbiting Carbon Observatory-2
(OCO-2), OCO-3, and TanSAT are orbiting the Earth and are
dedicated to monitoring atmospheric CO2 (Crisp, 2015; Liu
et al., 2018; Matsunaga et al., 2019; Taylor et al., 2020; Bao
et al., 2020; Hong et al., 2021; Yang et al., 2018). These satel-
lites calculate the average atmospheric CO2 concentration
in the path of sunlight reflected by the surface using spec-
trometers carried onboard. OCO-2 measures the CO2 optical

depth with bands centered around 1.6 and 2.0 µm and deter-
mines the O2 optical depth using the A-band, which is cen-
tered around 0.76 µm (Crisp et al., 2017; O’Dell et al., 2012).
The information from these bands is combined to calculate
the column-averaged dry-air mole fraction of CO2 (XCO2)
(Crisp et al., 2012). Several studies suggest that XCO2 can
be used to detect the CO2 concentration induced by anthro-
pogenic activities by removing the background concentration
from the satellite XCO2 retrievals (Bovensmann et al., 2010;
Hakkarainen et al., 2019; Keppel-Aleks et al., 2013). The
results from these studies have reported an enhancement of
nearly 2 ppm over megacities and high-density urban regions
in the US and China. The XCO2 retrievals derived from the
satellite measurements show a positive correlation with the
CO2 emission inventories (Hakkarainen et al., 2016; Yang
et al., 2019) which implies that these space-based observa-
tions can be used to assess the anthropogenic CO2 emissions
by enhancing the anthropogenic XCO2 concentration.

Asia is home to the world’s most populous nations with the
highest CO2 emissions. East Asia, in particular China, sig-
nificantly contributes to the global carbon budget and has ac-
counted for∼ 30 % of the overall growth in global CO2 emis-
sions over the past 15 years (EDGAR, 2017). This increment
in the CO2 levels is mainly due to the rapid economic growth
and anthropogenic activities (Shan et al., 2018). China has
pledged to make aggressive efforts to reduce the CO2 emis-
sions per unit gross domestic product (GDP) by 60 %–65 %
relative to 2005 levels, and peak carbon emissions overall,
by 2030 (Horowitz, 2016). West Asia is also a region with
higher rates of anthropogenic CO2 emissions (Mustafa et al.,
2020), and some of its countries, such as Iran, Saudi Arabia,
and Turkey, are listed among the 10 largest CO2 emitting
nations in the world. Several studies have been carried out
to estimate the CO2 emissions using various machine learn-
ing techniques, but most of them do not deal with the spa-
tial distribution. Rao (2021) estimated the CO2 emissions us-
ing Support Vector Machine (SVM). Zhonghan et al. (2018)
predicted the CO2 flux emissions based on published data
including latitude, age, potential net primary productivity
(NPP), and mean depth using the Back Propagation Neural
Network (BPNN) and Generalized Regression Neural Net-
work (GRNN) models. Yang et al. (2019) estimated the an-
thropogenic CO2 emissions using GOSAT XCO2 retrievals
over China, and the results showed good agreement between
the estimated values and the ODIAC CO2 emission dataset.
In this study, we have improved the model initially devel-
oped by Yang et al. (2019) to estimate the regional-scale an-
thropogenic CO2 emissions using OCO-2 XCO2 retrievals
over East and West Asia. MODIS NPP, OCO-2, and ODIAC
CO2 datasets were obtained for a period of 5 years from Jan-
uary 2015 to December 2019. XCO2 anomalies were calcu-
lated from the OCO-2 retrievals for each year; the GRNN
model was trained using XCO2 anomalies, MODIS NPP,
and ODIAC CO2 emissions with 4 years of data from 2015
to 2018; and then anthropogenic CO2 emissions were es-
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timated for the year 2019 based on 2019 NPP and XCO2
anomalies. Atmospheric CO2 monitoring satellites can de-
tect and analyze the anthropogenic CO2 signatures, and the
satellite-based estimation of anthropogenic CO2 emissions
can be helpful in investigating the carbon emissions as a
data-driven method, which is different from the conventional
method of calculating an emission inventory. Although the
estimation of anthropogenic CO2 emissions using satellite
datasets is a challenging task, as some other factors such as
the atmospheric transport and the terrestrial ecosystem play
notable roles in controlling the spatial distribution of atmo-
spheric CO2 (Cao et al., 2017), this data-driven method can
still provide meaningful help with respect to quantifying an-
thropogenic CO2 emissions that will be important for evalu-
ating the effects of anthropogenic CO2 emission reduction at
regional as well as global scales.

The remainder of this paper is structured as follows: the
details of the datasets and methods are provided in Sect. 2,
and the results, including the estimated CO2 emissions, an
evaluation of these emissions, and the correlation between
ODIAC CO2 emissions and XCO2 anomalies are discussed
in Sect. 3.

2 Materials and methods

2.1 Datasets

2.1.1 OCO-2 dataset

The Orbiting Carbon Observatory-2 (OCO-2) was launched
by the National Aeronautics and Space Administration
(NASA) on 2 July 2014 to monitor the concentration of at-
mospheric CO2 at regional and global levels (Crisp, 2015).
It carries a three-channel imaging grating spectrometer that
collects high-resolution, bore-sighted spectra of reflected
sunlight. Spectra are collected in the molecular oxygen A-
band at 0.765 µm and the CO2 bands at 1.61 and 2.06 µm
(Hakkarainen et al., 2019). Information from all of these
bands is combined to calculate the XCO2. The spatial res-
olution of OCO-2 is 2.25 km× 1.29 km. More details about
the instrument design, calibration approach, in-orbit perfor-
mance, and measurement principles are provided in a previ-
ous study (Crisp, 2015). In this study, we used the OCO-2 At-
mospheric Carbon Observations from Space (ACOS)/XCO2
version 10r product that was generated using the ACOS
Level 2 Full Physics (L2FP) retrieval algorithm, which used
a Bayesian optimal estimation framework to derive estimates
of XCO2 from spectral measurements of reflected solar ra-
diation (O’Dell et al., 2012; Crisp et al., 2012). A compre-
hensive study on the validation of OCO-2 XCO2 retrievals
against the Total Carbon Column Observing Network (TC-
CON) CO2 dataset reported an absolute median difference
of less than 0.4 ppm and a root-mean-square (RMS) differ-
ence of less than 1.5 ppm between the two datasets (Wunch

et al., 2017). Similar experiments have been carried out for
the validation of different versions of OCO-2 XCO2 prod-
ucts, and the results have shown that the OCO-2 dataset was
consistent and reliable for atmospheric CO2 monitoring (Kiel
et al., 2019; O’Dell et al., 2018). The quality and the quantity
of the XCO2 product have been improved with the develop-
ments in the ACOS FP retrieval algorithm. The latest OCO-2
XCO2 product has single sounding precision of ∼ 0.8 ppm
over land and ∼ 0.5 ppm over water, and RMS biases of 0.5–
0.7 ppm over both land and water (ODell et al., 2021). The
evolution of the ACOS L2FP retrieval algorithm from v7 to
v10 is summarized in Table 1.

No major changes were made in the ACOS v9 L2FP re-
trieval algorithm relative to v8 except for the sampling of the
meteorological prior. The trace gas absorption coefficient ta-
bles (ABSCO) were updated in various versions of the ACOS
L2FP retrieval algorithms. The source of the prior meteorol-
ogy was changed from the European Center for Medium-
Range Weather Forecasts (ECMWF) in ACOS v7 to the
NASA Goddard Modeling and Assimilation Office (GMAO)
Goddard Earth Observing System (GEOS) Forward Process-
ing – Instrument Team (FP-IT) products for v8 and v9. The
aerosol prior source was changed from the GMAO Modern-
Era Retrospective analysis for Research and Applications
(MERRA) product in v7–9 to Goddard Earth Observing Sys-
tem 5 (GEOS5) FP-IT in v10. Moreover, an additional strato-
spheric aerosol layer was introduced in ACOS v8–10. The
prior value of aerosol optical depth (AOD) for each retrieved
aerosol type was lowered from 0.0375 in v7 to 0.0125 in v8–
10. The CO2 prior developed by the Total Carbon Column
Observing Network (TCCON) team using the ggg2014 al-
gorithm remained same in v7, v8, and v9 of the algorithm.
Another major change was switching the land surface model
from a purely Lambertian land surface model to a bidirec-
tional reflectance distribution function (BRDF) model (Tay-
lor et al., 2021).

2.1.2 ODIAC dataset

ODIAC is a global emission data product of CO2 emissions
from fossil fuel combustion provided with 1 km× 1 km and
1◦× 1◦ spatial resolutions (Oda, Tomohiro, 2015). It shares
country-scale estimates with the Carbon Dioxide Informa-
tion Analysis Center (CDIAC) but distributes the emissions
differently within the countries and includes gridded interna-
tional bunker emissions (Oda and Maksyutov, 2015). CDIAC
distributes the CO2 emissions based on the population den-
sity, whereas ODIAC incorporates power plant profiles and
nighttime light observations for emission distribution (Wang
et al., 2020). ODIAC shows better agreement with the US
bottom-up inventory (Gurney et al., 2009) than CDIAC, and
it is commonly used in flux inversions (Crowell et al., 2019;
Lauvaux et al., 2016; Maksyutov et al., 2013; Takagi et al.,
2011). In this study, we used the 2020 version of ODIAC
emission dataset that is freely available and can be down-

https://doi.org/10.5194/amt-14-7277-2021 Atmos. Meas. Tech., 14, 7277–7290, 2021



7280 F. Mustafa et al.: Neural-network-based estimation of anthropogenic CO2 emissions over Asian regions

Table 1. Evolution of the Atmospheric Carbon Observations from Space (ACOS) Level 2 Full Physics (L2FP) retrieval algorithm (Taylor
et al., 2021).

ACOS v7 ACOS v8/9 ACOS v10

1 Spectroscopy ABSCO v4.2 ABSCO v5.0 ABSCO v5.1
2 Meteorology prior source ECMWF GEOS5 FP-IT No changes
3 Aerosol prior source MERRA monthly climatology No changes GEOS5 FP-IT with tightened prior uncertainty
4 Retrieved aerosol types Water, ice, and two MERRA types With stratospheric aerosol No changes
5 AOD prior value (per type) 0.0375 0.0125 No changes
6 CO2 prior source TCCON ggg2014 No changes TCCON ggg2020
7 Land surface model Lambertian BRDF No changes

loaded from http://db.cger.nies.go.jp/dataset/ODIAC/ (last
access: 3 June 2021).

2.2 Methods

The estimation of anthropogenic CO2 emissions includes
three major steps, as shown in Fig. 1: the first step includes
enhancing the XCO2 concentration influenced by anthro-
pogenic activities; the second step involves setting up the
GRNN model using the XCO2, NPP, and ODIAC datasets;
and the final step is the validation of estimated CO2 emis-
sions against the actual ODIAC emission dataset.

The OCO-2 XCO2 dataset was downloaded from the
EARTHDATA platform (https://earthdata.nasa.gov/, last ac-
cess: 28 May 2021); to ensure the reliability of the data,
screening and filtering of the dataset was carried out follow-
ing the instructions given in the OCO-2 Data User Guide
(DUG). Each sounding that is processed using the ACOS
L2FP retrieval algorithm is assigned either a “good” (0) or
“bad” (1) quality flag based on screening criteria derived
from comparisons with TCCON and modeled CO2 fields. It
is generally advised that users should use the good-quality
soundings for regional- and local-scale studies because the
soundings flagged as bad-quality might include biases that
compromise their utility for the application. In this study,
the OCO-2 XCO2 retrievals were included if (i) they were
flagged good (flag of 0) and (ii) the standard deviation of the
good soundings for the day was less than 2 ppm. CO2 has a
larger background concentration and a longer atmospheric
lifetime than other greenhouse gases (Hakkarainen et al.,
2019). Hence, XCO2 varies by nearly 2 % over the seasonal
cycle and from pole to pole. In addition, XCO2 variations in-
fluenced by anthropogenic activities are also smaller on the
scale of satellite soundings (2–4 km2). Therefore, high preci-
sion is critical for the accurate quantification of the XCO2
anomalies related to anthropogenic activities. To highlight
the emission areas, CO2 seasonal variability and the large
background concentrations must be removed.

To highlight the areas associated with the anthropogenic
CO2 emission, XCO2 anomalies were calculated by subtract-
ing the daily XCO2 median (daily background) from the indi-
vidual XCO2 observation – a method suggested by previous

studies (Hakkarainen et al., 2019, 2016):

XCO2 (anomaly)= XCO2 (individual)

−XCO2 (daily background). (1)

This equation calculated the XCO2 anomalies for each ob-
servation. Subtraction of the daily background concentration
removes the seasonal variability. The space-based sound-
ings are irregularly distributed and have spatiotemporal gaps
because a large amount of the satellite observations is re-
moved after screening for clouds and other artifacts. To deal
with the spatiotemporal gaps, kriging interpolation was used,
and a mapping dataset was generated with a spatial reso-
lution of 0.5◦× 0.5◦ (latitude× longitude) and a temporal
resolution of 16 d. Finally, the mean of each grid cell was
calculated for each year from 2015 to 2019. The annual
mean of XCO2 (anomaly) can detrend the seasonal varia-
tion (Hakkarainen et al., 2016). The annually averaged XCO2
anomalies were resampled at a grid with a spatial resolution
of 1◦× 1◦ (latitude× longitude) and used along with 1◦× 1◦

(latitude× longitude) ODIAC emission dataset to set up the
GRNN model.

During the process of photosynthesis, living plants con-
vert CO2 into sugar molecules that they use for food. In
the process of making food, they also release the oxygen
we breathe. Plant productivity plays a crucial role in the
global carbon cycle by absorbing the CO2 released by an-
thropogenic activities. The net primary productivity (NPP)
shows how much CO2 is absorbed by plants during pho-
tosynthesis minus how much CO2 is released during respi-
ration. A negative NPP value means that CO2 is released
into the atmosphere, and a positive value represents the ab-
sorption of atmospheric CO2. To improve the model re-
sults, an NPP dataset (MOD17A3HGF) provided by MODIS
has also been used in this study. It provides information
about annual NPP and is distributed by NASA’s Land Pro-
cesses Distributed Active Archive Center (LP DAAC). The
NPP dataset with a spatial resolution of 500 m was down-
loaded from the LP DAAC website (https://lpdaac.usgs.gov/
products/mod17a3hgfv006/, last access: 2 September 2021).
The annual NPP is derived from the sum of all 8 d Net Pho-
tosynthesis (PSN) products (MOD17A2H) from the given
year. The MODIS NPP dataset was reprojected and resam-
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Figure 1. Flowchart explaining the steps involved in estimating the anthropogenic CO2 emissions using MODIS NPP and OCO-2 XCO2
retrievals.

Figure 2. Flowchart explaining the steps involved in estimating the anthropogenic CO2 emissions using OCO-2 XCO2 retrievals (Yang et al.,
2019).

pled to the spatial resolution of 1◦× 1◦ (latitude× longitude)
for each year and used along with the ODIAC and OCO-2
datasets to train the GRNN model and as well predict the
CO2 emissions.

XCO2 variations are primarily influenced by anthro-
pogenic activities and terrestrial ecosystems, and there is
both linear and nonlinear mapping between the XCO2 and
the emissions. We adopted the GRNN algorithm to represent
the nonlinear mapping between the independent variables
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(XCO2 anomaly and NPP) and the dependent variable (CO2
emissions). The GRNN is a memory-based network that pro-
vides estimates of continuous variables and converges to an
underlying regression. The regression of a dependent vari-
able on an independent variable is the computation of the
most probable value of the dependent variable for each value
of the independent variable based on a finite number of possi-
bly noisy measurements of the independent variable and the
associated values of the dependent variable. The dependent
and the independent variables are usually vectors (Rooki,
2016). The architecture of GRNN is shown in Fig. 2. It con-
sists of four layers including an input layer, a hidden layer,
a summation layer, and a decision layer. In the input layer,
each neuron corresponds to the independent variable that is
expressed as a mathematical function, and the independent
variable values are standardized. The standardized values of
the independent variable are then transferred to the neurons
in the hidden layer. In this layer, each neuron stores the val-
ues of the dependent and independent variables and calcu-
lates a scalar function. The third layer, known as the summa-
tion layer, contains two neurons: the denominator summation
unit, which sums the weight values being received from the
hidden layer, and the numerator summation unit, which sums
the weight values multiplied by the actual target-dependent
variable value for each hidden neuron. Finally, the target-
dependent value is obtained in the decision layer by dividing
the value accumulated in the numerator summation unit by
the value in the denominator summation unit. To develop a
neural network, the dependent and the independent training
variables must be standardized so that all training data will
have the same order of magnitude in the input layer (Yang
et al., 2019).

d(x0− xi)=

p∑
j=1

[
x0j − xij

σ

]2

, (2)

where p is the dimension of the variable vector xi , σ is the
spread parameter, and an optimal spread parameter value is
obtained after several runs following the mean squared er-
ror of the estimated values, which must be kept at a mini-
mum (Rooki, 2016). In this study, values of spread parame-
ters were optimized using the “Holdout Method”. More de-
tails about the Holdout Method are provided in a previous
study (Specht, 1991). The weight of the denominator neuron
was set to 1.0. The predicted target dependent variable was
defined by the following equation:

ŷ(x0)=

∑n
i=1yie

−d(x0,xi )∑n
i=1e

−d(x0,xi )
, (3)

where the values calculated with the scalar function in a hid-
den neuron i are weighted with the corresponding values of
the training samples yi . n denotes the number of training
samples.

3 Results and discussion

3.1 Spatial distribution of XCO2 observations and
anomalies

The satellite-based observations are sensitive to clouds and
aerosols; therefore, many of the data are discarded during
preprocessing due to the presence of clouds and aerosols
(Mustafa et al., 2021b). Figure 3a and b show the quantity
of XCO2 retrievals from 2015 to 2019 on a spatial grid of
0.5◦× 0.5◦ (latitude× longitude) over West and East Asia,
respectively. OCO-2 shows good spatial coverage over East
Asia; however, the southern parts of the region, in particu-
lar the Tibetan Plateau, have a relatively lower number of
XCO2 retrievals. The Tibetan Plateau is the most extensively
elevated surface on Earth, and satellite measurements show
larger uncertainties over this region (Yang et al., 2019). In
the case of West Asia, the southern parts of the region have
a lower number of XCO2 retrievals. A very large desert, the
Rub’ al Kahli, is located in this area; it stretches across Saudi
Arabia, Yemen, Oman, and the United Arab Emirates (UAE)
and often observes dust storms. The lower number of XCO2
retrievals in these parts of the region might be due to the
ACOS XCO2 retrieval algorithm that excludes satellite mea-
surements with a high aerosol optical depth and cloud optical
thickness (Crisp et al., 2012; O’Dell et al., 2012).

Figure 3c shows the spatial distribution of the 5-year aver-
aged XCO2 anomalies calculated using the method described
in Sect. 2.2 over West Asia. The higher concentrations of
XCO2 anomalies were observed over the central parts of the
region that included Iran, Kuwait, Saudi Arabia, and Iraq.
Iran and Saudi Arabia are listed among the top 10 CO2 emit-
ting nations and produce over 6 % of the global CO2 emis-
sions (Jalil, 2014). In addition, Iran, Saudi Arabia, and Iraq
are the major fuel consumers of the region and contribute
more than 60 % of the region’s total fossil fuel CO2 emis-
sions (Boden et al., 2017). Figure 4d shows the multiyear av-
eraged XCO2 anomalies over East Asia. The eastern parts of
the region including eastern China, Japan, and South Korea
show the highest concentrations of XCO2 anomalies. China’s
Beijing–Tianjin–Hebei area, Korea, and Japan are the most
populated urban regions with high amounts of anthropogenic
emissions in the world (Mustafa et al., 2020).

Figure 3e shows the monthly averaged XCO2 over East
and West Asia. The monthly averaged XCO2 concentrations
show seasonal fluctuations. Moreover, the XCO2 concentra-
tions during each month are higher than those in the same
month of the previous year, which reflects that the XCO2
concentration in the atmosphere is continuously increasing
in both regions. The XCO2 concentration starts increasing
from September and reaches its maximum value in April; it
then starts decreasing and reaches its minimum value in Au-
gust. The decrement in its concentration from May to Au-
gust is due to several reasons; however, it is primarily ow-
ing to the strong photosynthesis and weak respiration rate
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Figure 3. Number of observations in each cell of a 0.5× 0.5◦ grid for a period of 5 years from 2015 to 2019 over (a) West Asia and (b) East
Asia; the 5-year mean of XCO2 anomalies calculated using OCO-2 retrievals over (c) West Asia and (d) East Asia; and (e) the monthly
averaged XCO2 concentration from 2015 to 2019 over East and West Asia. (The base map was sourced from OpenStreetMap.)

of plants, which is enhanced during the monsoon or rainy
season (Mustafa et al., 2020). The increment in the XCO2
concentration from September to April is likely to be caused
by weak photosynthesis and strong respiration, the use of
heating systems in winter, and strong microbial activity (Cao
et al., 2017; Mustafa et al., 2021a).

3.2 Estimated CO2 emissions

The annually averaged XCO2 anomalies, MODIS NPP, and
ODIAC CO2 emission datasets for a period of 4 years from
2015 to 2018 were used as a training dataset for the GRNN
model built to estimate the CO2 emissions using the method
described in Sect. 2.2. The GRNN model was then applied to
2019 annually averaged XCO2 anomalies and NPP datasets
to predict the CO2 emissions with the same unit as the
ODIAC CO2 emissions. The analyses were carried out sep-
arately over East and West Asia. Figure 4a and b show the
estimated values and the ODIAC CO2 emissions over East

Asia, respectively. The results show that the estimated val-
ues and the inventory CO2 emissions exhibit nearly the same
spatial distribution pattern. The eastern part of the region
shows higher CO2 emissions, and the western and northern
parts, in particular the Tibetan Plateau and Mongolia, show
the minimum CO2 emissions. The pattern is also similar to
the XCO2 anomalies distribution over East Asia (Fig. 3d).
The estimated CO2 emissions have a relatively smoother
distribution pattern compared with the ODIAC CO2 emis-
sions, which might be due to the interpolation of the OCO-
2 dataset. Figure 4c shows the difference between the esti-
mated and the inventory CO2 emissions over East Asia. The
estimated CO2 emissions are generally overestimated rela-
tive to the ODIAC CO2 emissions; however, the emissions
are underestimated over some parts of the region as well.
Figure 4d shows the land cover distribution of East Asia
provided by the Copernicus Global Land Service (Buchhorn
et al., 2020). The predicted CO2 emissions are overestimated
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Figure 4. Spatial distribution of (a) OCO-2 XCO2-based anthropogenic CO2 emission estimates for 2019, (b) actual ODIAC emissions for
2019, (c) their difference (estimated emission minus actual emission), (d) 100 m resolution land cover distribution provided by the Copernicus
Global Land Service over East Asia, and (e) the spatial distribution of NPP. (The base map was sourced from OpenStreetMap.)

over most of the regional parts; however, this overestimation
is more significant over agricultural areas that are located
near high-density regions, e.g., eastern China. Eastern China,
Japan, and Korea are known to be among the regions with
the highest CO2 emissions, and this underestimation over the
agricultural areas might be caused by the nearby CO2 emis-
sion sources which raise the CO2 concentration of the nearby
areas through atmospheric transport. Previous studies have
demonstrated that the concentration of atmospheric CO2 is
influenced by atmospheric transport (Cao et al., 2017; Kumar
et al., 2014). The areas where the predicted CO2 emissions
are underestimated are covered by agriculture, forest, and
vegetation. This underestimation of the predicted CO2 emis-
sions over these areas indicates the presence of uncertainties
in the XCO2 anomalies that are likely to be produced by the
CO2 uptake of the biosphere which still remains in the XCO2
anomalies. In addition, the areas where the estimated CO2
emissions are overestimated have higher elevations. OCO-
2 observations show larger uncertainties over elevated and
mountainous areas, especially the Tibetan Plateau where the
OCO-2 retrievals are significantly overestimated (Kong et al.,
2019; Mustafa et al., 2020), and this might also have a con-
tribution to the overestimation of estimated CO2 emissions.

The difference between the estimated and the ODIAC CO2
emissions ranged from −0.06× 109 to 3.2× 109 kg, and the
magnitude of difference between −1× 109 and 1× 109 kg
accounted for 84 % of the total number of grid cells. Yang
et al. (2019) estimated the CO2 emissions using a similar
machine learning approach with GOSAT XCO2 retrievals
over China, and the differences between the estimated values
and the ODIAC CO2 emissions were between −5× 109 and
5× 109 kg. Moreover, the predicted results from the above-
mentioned study exhibited less CO2 emissions overall rela-
tive to the ODIAC emissions, contradicting our results. Our
study showed better results, which may be due to the fact that
(i) we improved the predictive model with the addition of an
NPP dataset (Fig. 4e), (ii) we utilized the higher-resolution
XCO2 retrievals provided by OCO-2, and (iii) we incorpo-
rated the OCO-2 XCO2 retrievals processed using the lat-
est version of the retrieval algorithm. The newer version of
the ACOS L2FP retrieval algorithm has improved the quan-
tity and the quality of the satellite-based observations (Taylor
et al., 2021).

Figure 5a and b show the spatial distribution of satellite-
based estimated CO2 emissions and the actual ODIAC CO2
emissions over West Asia, respectively. The spatial distribu-
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Figure 5. Spatial distribution of (a) OCO-2 XCO2-based anthropogenic CO2 emission estimates for 2019, (b) actual ODIAC emissions for
2019, (c) their difference (estimated emission minus actual emission), (d) 100 m resolution land cover distribution provided by the Copernicus
Global Land Service over West Asia, and (e) the spatial distribution of NPP. (The base map was sourced from OpenStreetMap.)

tion pattern of both the estimated and the original CO2 emis-
sions is similar with some differences in their magnitudes.
CO2 emissions in the eastern parts are relatively larger com-
pared with other parts of the region. Figure 5c shows the dif-
ference between the estimated values and the ODIAC CO2
emissions. The satellite-based estimated CO2 emissions are
generally overestimated compared with the actual ODIAC
CO2 emissions. The estimated CO2 emissions are notably
larger over Iran and Saudi Arabia. Figure 5d shows the land
cover distribution of West Asia. It can be seen that the pre-
dicted CO2 emissions are overestimated over the areas that
are covered by either urban settlements or bare land. The
overestimation of estimated CO2 over these areas is likely to
be caused by atmospheric transportation that influences the
spatial distribution of atmospheric CO2 (Cao et al., 2017).
Moreover, a large part of West Asia is covered by deserts,
and these deserts observe a notably lower number of OCO-
2 retrievals (Fig. 3a). The overestimation of the predicted
CO2 emissions over the largest desert of the region, the Rub’
al Kahli, located in southern parts is likely to be caused
by the uncertainties in the satellite-based XCO2 anomalies,

and these uncertainties are likely to be produced due to a
lower number of OCO-2 retrievals. In addition, a previous
study also indicated that the ACOS XCO2 retrieval algorithm
showed uncertainties over deserts (Bie et al., 2018). Similar
to East Asia, the predicted CO2 emissions over West Asia
are also underestimated over areas that are covered by agri-
culture or vegetation, and this underestimation might be due
to the presence of CO2 uptake by the biosphere in the XCO2
anomalies calculated using the satellite-based retrievals. The
difference between the estimated values and the ODIAC
CO2 emissions ranged from −0.16× 109 to 2.8× 109 kg,
and the magnitude of the difference between −1× 109 and
1× 109 kg accounted for 88 % of the total number of grid
cell.

3.3 Correlation analysis between OCO-2 XCO2
anomalies and ODIAC emissions

Figure 6 shows the correlation analysis between the ODIAC
CO2 emissions and the XCO2 anomalies calculated using
the OCO-2 retrievals over East and West Asia. Yang et al.
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Figure 6. The spatial distribution of segmented ODIAC emissions, where the data are binned in 0.3 tyr−1 of lgE (logarithm of base 10)
bins using the mean emission calculated from the annual emissions from 2015 to 2019 over (a) East Asia and (c) West Asia. The correlation
between mean ODIAC CO2 emissions and mean XCO2 anomalies calculated from annual XCO2 from 2015 to 2018 for (b) East Asia and
(d) West Asia. (The base map was sourced from OpenStreetMap.)

(2019) found that the cluster of XCO2 changes derived from
satellite-based observations showed a better and more sig-
nificant correlation with the CO2 emissions relative to a sin-
gle sounding of XCO2, which might have been due to the
fact that the atmospheric CO2 measurement is an instanta-
neous snapshot of the realistic atmosphere (Liu et al., 2015).
For the correlation analysis, we segmented the ODIAC emis-
sions, which were binned every 0.3 tyr−1 of lgE (logarithm
of base 10) using mean emissions calculated from annual
emissions during 2015–2019, and then carried out an anal-
ysis between the mean of the emissions and the mean of
the XCO2 anomalies within the binned regions. The results
showed a positive and significant correlation between the two
datasets. Figure 6a and b show the spatial distribution of seg-
mented ODIAC emissions over East Asia and the scatter-
plot between the mean of the emissions and the mean of the
XCO2 anomalies, respectively. The two datasets show a pos-
itive and significant correlation with a determined coefficient
(R2) of 0.81. The spatial distribution of segmented ODIAC
emissions over West Asia and the scatterplot between the
mean of the emissions and the mean of the XCO2 anoma-
lies for this region are shown in Fig. 6c and d, respectively.
The two datasets showed a good correlation with a deter-

mined coefficient (R2) of 0.60. Several studies have corre-
lated satellite-based XCO2 anomalies with CO2 emissions
(Fu et al., 2019; Shekhar et al., 2020). Yang et al. (2019)
performed a correlation analysis between the GOSAT-based
XCO2 anomalies and the ODIAC CO2 emissions over China
and found a significant correlation with a determined coef-
ficient (R2) of 0.82 which increased up to 0.95 if the analy-
sis was carried out with higher CO2 emission values. In our
study, the correlation between the CO2 emissions and XCO2
anomalies is relatively low for West Asia, which might be
due to the uncertainties in the OCO-2 retrievals. A large part
of West Asia is covered by deserts, and, as previously stated,
Bie et al. (2018) reported that the ACOS XCO2 retrieval al-
gorithm showed uncertainties over deserts.

4 Summary and conclusions

In this study, anthropogenic CO2 emissions were estimated
using satellite datasets and employing a neural-network-
based method. The study was carried out using ODIAC CO2
emissions, OCO-2 XCO2, and MODIS NPP datasets from
2015 to 2019. To remove the CO2 seasonal variability and
the large background concentration from the OCO-2 XCO2
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retrievals, XCO2 anomalies were calculated for each year.
A GRNN model was then built; XCO2 anomalies, NPP, and
CO2 emissions from 2015 to 2018 were used as a training
dataset; and, finally, CO2 emissions were predicted for 2019
based on the NPP and XCO2 anomalies calculated for the
same year. The analyses were carried out separately over
East and West Asia. The satellite-based estimated values and
the ODIAC CO2 emission datasets were compared, and both
of the datasets showed good agreement in terms of spatial
distribution. The estimated CO2 emissions showed better re-
sults over East Asia compared with West Asia, which might
be due to the uncertainties in the XCO2 retrievals: previ-
ous studies have reported that the ACOS XCO2 retrieval al-
gorithm produced uncertainties over deserts. The predicted
CO2 emissions were generally overestimated, and this over-
estimation was larger over the areas that were closer to the
high-density urban regions. The overestimations might be
due to the nearby high-emission CO2 sources that raised the
XCO2 concentration due to the effects of atmospheric trans-
port. The satellite-based estimated CO2 emissions were un-
derestimated over some parts of the regions, mostly areas
covered by agricultural land and vegetation; this was likely
caused by the uncertainties in the calculated XCO2 anoma-
lies, and these uncertainties were produced due to the pres-
ence of the CO2 uptake of the biosphere. We compared our
results with a previous study carried out using a similar pre-
dictive model incorporating GOSAT XCO2 retrievals (Yang
et al., 2019). The referenced study generally underestimated
the predicted CO2 emissions, with larger differences rela-
tive to ODIAC CO2 emissions, contradicting our results. Our
study showed relatively better results, which might be due to
several reasons: (i) we improved the predictive model with
the addition of an NPP dataset, (ii) we incorporated OCO-2
XCO2 retrievals that have a higher spatial resolution com-
pared with the GOSAT XCO2 retrievals, and (iii) we used
a XCO2 product processed using the latest version of the
ACOS L2FP retrieval algorithm. The newer version of the
algorithm has improved the quantity and the quality of the
XCO2 retrievals. Moreover, correlation analysis was also car-
ried out between the ODIAC CO2 emissions and the OCO-
2 XCO2 anomalies, and the results were significant with R2

values of 0.81 and 0.60 over East and West Asia, respectively.
These results were in agreement with the previous studies.

The results from our study suggest that CO2 emissions can
be estimated using observations obtained from CO2 moni-
toring satellites. Currently, several satellites are orbiting the
Earth and are dedicated to monitoring atmospheric CO2.
Joint utilization of the observations from the old and the lat-
est satellites, such as OCO-3, GOSAT-2, and TanSAT, might
reduce the spatiotemporal gaps and uncertainties. In future
studies, we intend to improve the GRNN model via the addi-
tion of CO2 uptake datasets and the joint utilization of multi-
sensor data.
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