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Abstract. Optical remote sensing (ORS) combined with the
computerized tomography (CT) technique is a powerful tool
to retrieve a two-dimensional concentration map over an
area under investigation. Whereas medical CT usually uses
a beam number of hundreds of thousands, ORS-CT usually
uses a beam number of dozens, thus severely limiting the
spatial resolution and the quality of the reconstructed map.
The smoothness a priori information is, therefore, crucial for
ORS-CT. Algorithms that produce smooth reconstructions
include smooth basis function minimization, grid translation
and multiple grid (GT-MG), and low third derivative (LTD),
among which the LTD algorithm is promising because of
the fast speed. However, its theoretical basis must be clar-
ified to better understand the characteristics of its smooth-
ness constraints. Moreover, the computational efficiency and
reconstruction quality need to be improved for practical ap-
plications. This paper first treated the LTD algorithm as a
special case of the Tikhonov regularization that uses the ap-
proximation of the third-order derivative as the regularization
term. Then, to seek more flexible smoothness constraints, we
successfully incorporated the smoothness seminorm used in
variational interpolation theory into the reconstruction prob-
lem. Thus, the smoothing effects can be well understood
according to the close relationship between the variational
approach and the spline functions. Furthermore, other algo-
rithms can be formulated by using different seminorms. On
the basis of this idea, we propose a new minimum curvature
(MC) algorithm by using a seminorm approximating the sum
of the squares of the curvature, which reduces the number of
linear equations to half that in the LTD algorithm. The MC
algorithm was compared with the non-negative least square
(NNLS), GT-MG, and LTD algorithms by using multiple test
maps. The MC algorithm, compared with the LTD algorithm,

shows similar performance in terms of reconstruction quality
but requires only approximately 65 % the computation time.
It is also simpler to implement than the GT-MG algorithm
because it directly uses high-resolution grids during the re-
construction process. Compared with the traditional NNLS
algorithm, it shows better performance in the following three
aspects: (1) the nearness of reconstructed maps is improved
by more than 50 %, (2) the peak location accuracy is im-
proved by 1–2 m, and (3) the exposure error is improved by
2 to 5 times. Testing results indicated the effectiveness of the
new algorithm according to the variational approach. More
specific algorithms could be similarly further formulated and
evaluated. This study promotes the practical application of
ORS-CT mapping of atmospheric chemicals.

1 Introduction

Measuring the concentration distribution of atmospheric
chemicals over large areas is required in many environmental
applications, such as locating hotspots or emission sources
of air pollutants (Wu et al., 1999), understanding air pollu-
tant dispersion and airflow patterns, and quantifying emis-
sion rates or ventilation efficiency (Samanta and Todd, 2000;
Belotti et al., 2003; Arghand et al., 2015). The traditional
network method uses multiple point samplers placed at vari-
ous locations in the region under investigation. This method
is intrusive, time-consuming, and limited in its temporal and
spatial resolution (Cehlin, 2019). The advanced method is
based on the combination of optical remote sensing and com-
puterized tomography techniques (ORS-CT). ORS-CT is a
powerful technique for the sensitive mapping of air contami-
nants throughout kilometer-sized areas in real time (Du et al.,
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2011). There are two commonly used ORS techniques that
use an open-path tunable diode laser (TDL) and open-path
Fourier transform infrared spectrometer. The ORS analyzer
emits a light beam, targeted at multiple mirrors, which reflect
the beam back to the analyzer. For each beam path, the path-
integrated concentration (PIC) is obtained. After multiple
PICs are collected, a two-dimensional concentration map can
be generated through tomographic reconstruction algorithms
(Hashmonay et al., 2001). The ORS-CT method provides a
better spatial and temporal resolution than the network ap-
proach, and it is more sensitive than the range-resolved opti-
cal techniques. It is also non-intrusive and suitable for con-
tinuous long-term monitoring.

In ORS-CT mapping of atmospheric chemicals, owing to
factors including system cost, response time, and beam con-
figuration, the number of beams is only tens, whereas the
number of beams in medical CT is hundreds of thousands.
The very small beam number poses several challenges in to-
mographic reconstruction algorithms. In practice, transform
methods based on the theory of Radon transformation, us-
ing a filtered back projection formula, are not feasible be-
cause of noise and artifacts in the reconstructions (Radon,
1986; Herman, 2009). Series expansion methods, which dis-
cretize the reconstruction problem before any mathematical
analysis, are usually used in ORS-CT. The underlying dis-
tribution is represented by a linear combination of a finite
set of basis functions (Censor, 1983). The simplest type is
the pixel-based approach, which divides an area into mul-
tiple grid pixels and assigns a unit value inside each pixel.
The path integral is approximated by the summation of the
product of the pixel value and the length of the path in that
pixel. A system of linear equations can be set up for mul-
tiple beams. The inverse problem involves finding the opti-
mal set of pixel concentrations according to criteria includ-
ing the least square criterion to minimize the summation of
the squared errors between the observed and model-predicted
PICs, the maximum likelihood (ML) criterion to maximize
the probability of the PIC observations, given the distribution
of the random variables of the concentrations and observa-
tion errors, and the maximum entropy criterion to maximize
the entropy of the reconstructed maps, given that the average
concentration of the map is known (Herman, 2009). Com-
monly used pixel-based algorithms are algebraic reconstruc-
tion techniques (ART), non-negative least square (NNLS),
and expectation–maximization (EM; Tsui et al., 1991; Law-
son and Janson, 1995; Todd and Ramachandran, 1994). The
NNLS algorithm has similar performance to the ART al-
gorithm but a shorter computation time (Hashmonay et al.,
1999). It has been used in the U.S. Environmental Protec-
tion Agency Other Test Method (OTM) 10 for the horizon-
tal radial plume mapping of air contaminants (EPA, 2005).
The EM algorithm is mainly used for ML-based minimiza-
tion. These traditional pixel-based algorithms are suitable for
rapid CT, but they produce maps with poor spatial resolution,
owing to the requirement that the pixel number must not ex-

ceed the beam number, or they may have problems of in-
determinacy associated with substantially underdetermined
systems (Hashmonay, 2012).

To mitigate the problem of indeterminacy and improve the
spatial resolution of reconstructions without substantially in-
creasing the system cost, the smooth basis function mini-
mization (SBFM) algorithm has been proposed. This algo-
rithm represents the distribution map by a linear combination
of several bivariate Gaussian functions (Drescher et al., 1996;
Giuli et al., 1999). Each bivariate Gaussian has six unknown
parameters (normalizing coefficient, correlation coefficient,
peak locations, and standard deviations) to be determined.
The problem requires fitting these parameters to the observed
PIC data. This method performs better than the traditional
pixel-based algorithms for ORS-CT applications because the
patterns of air dispersion are physically smooth in shape (Wu
and Chang, 2011). However, the resultant equations defined
by the PICs are nonlinear because of the unknown parame-
ters. The search for the set of parameters with the best fit,
minimizing the mean squared difference between predicted
and measured path integrals, can be performed through an it-
erative minimization procedure, such as the simplex method
or simulated annealing.

The reported methods using simulated annealing to find
a global minimization are highly computationally intensive,
thereby limiting the SBFM algorithm’s practical applica-
tions, such as rapid reconstruction in the industrial monitor-
ing of chemical plants. However, an algorithm converging to-
ward a smooth concentration distribution consistent with the
path-integrated data has been demonstrated to be a rational
choice. To improve the computational speed and append the
smoothness a priori information to the inverse problem, the
pixel-based low third derivative (LTD) algorithm has been
proposed. This algorithm sets the third derivative at each
pixel to zero, thus resulting in a new system of linear equa-
tions that is overdetermined. The LTD algorithm has been re-
ported to work as well as the SBFM algorithm but is approx-
imately 100 times faster (Price et al., 2001). Another method
to produce the smoothness effect is the grid translation (GT)
algorithm, which shifts the basis grid by different distances
(e.g., one-third or two-thirds of the width of the basis grid)
horizontally and vertically while keeping the basis grid fixed
(Verkruysse and Todd, 2004). Smoothness is achieved by av-
eraging the reconstruction results after each shifting. An im-
proved version, called the grid translation and multigrid (GT-
MG), applies the GT algorithm at different basis grid resolu-
tions (Verkruysse and Todd, 2005). This method has been
used with the ML-EM algorithm to improve the reconstruc-
tion accuracy, particularly in determining the peak location
and value (Cehlin, 2019).

The success of these algorithms demonstrates the need to
apply smoothness restriction to the ORS-CT gas mapping.
With the LTD algorithm, a smooth reconstruction is achieved
by simply adding the third-order derivative constraints. The
generated solutions are locally quadratic. To understand the
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characteristics of these constraints and apply the method to
the specific application, the theoretical basis of the algorithm
must be understood. However, this basis is not clearly defined
in the literature. With the purpose of introducing smooth-
ness constraints, the LTD algorithm can be treated as a spe-
cial case of the Tikhonov regularization, a well-known tech-
nique for solving the ill-posed inverse problem (Tikhonov
and Arsenin, 1977; Rudin et al., 1992). The Tikhonov L2
regularization uses a penalty term defined by the squared
norm of the ith-order derivative of the function and pro-
duces a smoothing effect on the resulting solution (Gholami
and Hosseini, 2013). The third-order derivative is used in the
LTD algorithm, although the first-, second-, and higher-order
derivatives can also produce smooth results. A more flexible
method of regularization uses the smoothness seminorm ac-
cording to the variational interpolation theory, given its simi-
lar formula (Mitasova et al., 1995). The variational method is
another way of achieving spline interpolation, given that the
interpolation polynomial splines can be derived as the solu-
tion of certain variational problems of minimizing an integral
whose integrant consists of different order derivatives or their
combinations.

The interpolation techniques are based on the given sam-
ple points, in contrast to tomographic reconstruction, in
which only the line integrals are known. However, we have
found that the interpolation can be adopted in the recon-
struction process to produce a smooth solution by using the
smoothness seminorm for interpolation as a smoothness reg-
ularization factor for the tomographic reconstruction prob-
lem. In view of the variational spline interpolation, the char-
acteristics of algorithms using different seminorms have been
well explored in the literature. The LTD algorithm can be
considered as one case that minimizes the seminorm consist-
ing of the third-order derivatives (Bini and Capovani, 1986).
Other algorithms can also be formulated by using different
seminorms. On the basis of this idea, we propose a new min-
imum curvature (MC) algorithm using a seminorm approxi-
mating the integral of the squares of the curvature. This algo-
rithm generates a smooth reconstruction approximating the
application of cubic spline interpolation. We compared the
algorithm with the NNLS, LTD, and GT-MG algorithms by
using multiple test maps. We demonstrated its effectiveness
and two main aspects of this method. First, a smoothing ef-
fect similar to spline interpolation is achieved during the re-
construction process by using high-resolution grid division,
and second, the computational efficiency is markedly better
than that of the LTD algorithm through halving the number
of linear equations according to the new smoothness semi-
norm. This approach achieves the same performance but is
easier to perform than the GT-MG algorithm, which has com-
plicated operations involving multiple grids and grid trans-
lation. More specific algorithms applied for the ORS-CT
method for mapping atmospheric chemicals could be further
formulated and evaluated similarly.

Figure 1. The beam configuration and grid division. The field was
divided into 6×6 grid pixels. There were four open-path TDL ana-
lyzers located at the four corners. A total of 20 retroreflectors were
distributed on the edges of the field.

2 Materials and methods

2.1 ORS-CT and beam geometry

The area of the test field was 40m× 40m. Open-path TDL
was used as the ORS analyzer, which was installed on a scan-
ner and aimed at multiple retroreflectors by scanning period-
ically and continuously. To compare the results with those of
the GT-MG algorithm, we used an overlapping beam config-
uration similar to that used by Verkruysse and Todd (2005).
As shown in Fig. 1, four TDL analyzers were located at the
four corners of the test field. The retroreflectors were evenly
distributed along the edges of the field. The total number of
retroreflectors was 20. Each retroreflector reflected the laser
beams coming from two different directions. Excluding the
overlapped beams along the diagonals, the total beam num-
ber was 38. For the traditional, pixel-based algorithm, the
pixel number should not exceed the beam number. Therefore,
we divided the test field into 6× 6= 36 pixels. The concen-
tration within each pixel was assumed to be uniform.

The wavelength of the laser beam is tuned to the absorp-
tion line of the target gas and is transparent to other species.
For a general detection of atmospheric pollutants, the laser
absorption is in the linear regime, and the attenuation of the
laser beam is governed by the Beer–Lambert law. The pre-
dicted PIC for one beam is equal to the sum of the multipli-
cation of the pixel concentration and the length of the beam
inside the pixel. In general, let us assume that the site is di-
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vided into Nc =m×n pixels, which are arranged as a vector
according to the left-to-right and top-to-bottom sequence and
indexed by j . The average concentration for the j th pixel is
cj . The total number of laser beams isNb, which are indexed
by i. The length of the ith laser beam passing the j th pixel
is Lij . Then, for the ith beam, the measured PIC bi is con-
tributed by all pixels. We have the following linear equation:

bi =

Nc∑
j=1

Lij cj . (1)

A system of linear equations can be set up for all beams as
follows:

b = Lc, (2)

where L is the kernel matrix that incorporates the specific
beam geometry with the pixel dimensions, c is the unknown
concentration vector of the pixels, and b is a vector of the
measured PIC data. With the least squares approach, the
reconstruction can be solved by minimizing the following
problem:

min
c
||Lc− b||22, subject to c ≥ 0, (3)

where || · ||2 denotes the Euclidean norm. The non-negative
constraints are applied to eliminate unrealistic negative res-
olutions resulting from observation error and ill-posed prob-
lem. This non-negative constrained linear least squares prob-
lem can be solved by the widely used NNLS optimization
algorithm (Lawson and Janson, 1995), which is an active-set
optimization method using an iterative procedure to converge
on the best fit of positive values. The routine of lsqnonneg in
MATLAB was used in this study. The optimal least squares
solution is not smooth because the minimizing process does
not introduce smoothness a priori information. Herein, the
NNLS algorithm in the tomographic reconstruction refers
to solving the original problem by using the NNLS opti-
mization algorithm without adding additional a priori infor-
mation. When the system of linear equations is underdeter-
mined, the solution is not unique. Additional information
must be introduced to choose the appropriate solution.

2.2 LTD algorithm and Tikhonov regularization

The LTD algorithm introduces the smoothness information
through setting the third-order derivative of the concentra-
tion to zero at each pixel in both x and y directions, thus
generating solutions that are locally quadratic (Price et al.,
2001). We define cj as an element of a one-dimensional (1-
D) concentration vector of the pixels, but the pixels also have
a two-dimensional (2-D) structure, according to the grid divi-
sion of the site area, and can be indexed by the row number k
and column number l, where j = (k−1)n+ l. We use Ck,l to
denote the pixel concentration at the pixel located at the kth

row and lth column of the grids. The third-derivative prior
equations at the (k, l) pixel are defined as follows:

d3C

dx3 = (Ck+2,l − 3Ck+1,l + 3Ck,l −Ck−1,l)
1

(1x)3
= 0

d3C

dy3 = (Ck,l+2− 3Ck,l+1+ 3Ck,l −Ck,l−1)
1

(1y)3
= 0, (4)

where 1x =1y =1d is the grid length in the (x, y) di-
rection. Therefore, two additional linear equations are intro-
duced at each pixel defined by Eq. (4). There will be 2Nc
linear equations appended to the original linear equations de-
fined by Eq. (2), thus resulting in a new, overdetermined sys-
tem of linear equations with (2Nc+Nb) equations and Nc
unknowns.

A weight needs to be assigned to each equation, depend-
ing on the uncertainty of the observation. Under the assump-
tion that the analyzers have the same performance, the un-
certainty is mainly associated with the path length. There-
fore, equations are assigned weights inversely proportional
to the path length to ensure that different paths have equal
influences. Herein, the lengths of the laser paths are approxi-
mately equal to each other. Therefore, their weights are set to
the same value and scaled to be 1. The weights for the third-
derivative prior equations are assigned as the same value of
w because they are all based on the same grid length. The de-
termination ofw follows the scheme for determining the reg-
ularization parameter described below. With the least squares
approach, the reconstruction is intended to minimize the fol-
lowing problem:

min
c

∥∥∥∥[ L
wT

]
c−

[
b

0

]∥∥∥∥2

2
, subject to c ≥ 0, (5)

where T is the kernel matrix for the third-derivative prior
equations. Assuming that the new augmented kernel matrix
is A, and the observation vector is p, the new system of linear
equations will be Ac = p. The non-negative least squares so-
lution was also found by the NNLS optimization algorithm.
If the non-negative constraints are ignored, the least squares
solution can be found analytically as (ATWA)−1ATWp,
where W is a diagonal matrix whose diagonal elements are
the weights (Price et al., 2001). However, this analytical solu-
tion may produce unrealistic large negative values and cannot
be used in this study.

The LTD algorithm actually constructs a regularized in-
verse problem. It can be viewed as a special case of the well-
known Tikhonov regularization technique. The Tikhonov L2
regularization can be written as the following minimization
problem (Gholami and Hosseini, 2013):

min
c
‖Lc− b‖22+µ‖Dkc‖

2
2, (6)

where the first term represents the discrepancy between the
measured and predicted values, the second term is the regu-
larization term adding a smoothness penalty to the solution,
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µ is the regularization parameter controlling the conditioning
of the problem, and the matrix Dk is the regularization oper-
ator, which is typically a kth-order difference operator. The
first- and second-order difference operators are commonly
used. We can see that the LTD algorithm uses the third-order
forward difference operator as follows:

D3 =


−1 3 −3 1

−1 3 −3 1
. . .

1 3 −3 1
1 3 −3 1


×

1
1d
∈ R(m−3)×n. (7)

For pixels on the edges, the second-order and first-order dif-
ference operators, [1− 1] and [1−1], can be used. The regu-
larization parameter is analogous to the weight parameter for
the prior equations in the LTD algorithm.

The regularization parameter determines the balance be-
tween data fidelity and regularization terms. Determination
of the optimum regularization parameter is an important step
in the regularization method. However, the regularization pa-
rameter is problem and data dependent. There is no general
purpose parameter choice algorithm that will always produce
a good parameter. For simplicity, we use the method based
on the discrepancy principle (Hamarik et al., 2012). The reg-
ularization parameter µ is chosen from a finite section of a
monotonic sequence. For each value of µ, an optimal solu-
tion is derived by solving the inverse problem. The discrep-
ancy can then be calculated. The regularization parameter is
determined to be the highest value that makes the discrep-
ancy ‖Lc− b‖22 equal to Nbσ

2, where σ is the standard de-
viation of the noise. In this study, the reconstructions varied
only slowly with the regularization parameters. Therefore,
precise selection of the parameter was not necessary. For
computational efficiency, the regularization parameter was
selected from four widely varying values. The one produc-
ing the smallest discrepancy was used.

2.3 Variational interpolation and minimum curvature
algorithm

Splines are special types of piecewise polynomials, which
have been demonstrated to be very useful in numerical anal-
ysis and in many applications in science and engineering
problems. They match given values at some points (called
knots) and have continuous derivatives up to some order at
these points (Champion et al., 2000). Spline interpolation is
preferred over polynomial interpolation by fitting low-degree
polynomials between each of the pairs of the data points in-
stead of fitting a single high-degree polynomial. Normally,
the spline functions can be found by solving a system of lin-
ear equations with unknown coefficients of the low-degree
polynomials defined by the given boundary conditions.

The variational approach provides a new way of finding
the interpolating splines and opens up directions in theoret-
ical developments and new applications (Champion et al.,
2000). Variational interpolation was motivated by the min-
imum curvature property of natural cubic splines, i.e., the
interpolated surface minimizes an energy functional that cor-
responds to the potential energy stored in a bent elastic ob-
ject. This principle provides flexibility in controlling the be-
havior of the generated spline. Given an observation zk (k =
1, . . .,N ) measured at the kth point whose position vector is
rk , a spline function F(r) for interpolating the data points
can be found through the variational approach by minimiz-
ing the sum of the deviation from the measured points and
the smoothness seminorm of the spline function as follows:

min
F

N∑
k=1
|F(rk)− zk|

2
+µI (F ), (8)

where µ is a positive weight, and I (F ) denotes the smooth-
ness seminorm. The seminorm can be defined in various
forms, commonly the first, second, or third derivatives or
their combinations. The solution to the minimizing prob-
lem is spline functions, which can also be found by solving
a Euler–Lagrange differential equation corresponding to the
given seminorm (Briggs, 1974).

We can see that the minimizing problem in Eq. (8) has a
similar form to the Tikhonov regularization but with a more
flexible regularization term. The problem is that the varia-
tional interpolation is based on given data points, whereas
the tomographic reconstruction is based on measured line
integrals. However, we show herein that the variational ap-
proach to interpolation can also be applied to the latter prob-
lem to produce a smoothness solution with an effect similar
to spline interpolation. In addition, on the basis of different
seminorms, we can formulate many different reconstruction
algorithms. In this way, we propose a new minimum curva-
ture (MC) algorithm.

Under the assumption that the unknown concentration dis-
tribution is described by a function f (x, y), where (xk , yl)
are the smallest coordinates of the j th pixel at row k and col-
umn l of the 2-D grids, then the concentration cj equals the
average concentration of the pixel as follows:

cj =
1

(1d)2

xk+1∫
xk

yl+1∫
yl

f (x,y)dxdy. (9)

The minimization problem, according to the variational ap-
proach, is formulated as follows:

min
f

Nb∑
i=1

Nc∑
j=1
‖Lij cj − bi‖

2
2+µI (f ). (10)

For the MC algorithm, we define the seminorm according to
the minimum curvature principle, which is used in the geo-
graphic data interpolation to seek a 2-D surface with contin-
uous second derivatives and minimal total squared curvature
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(Briggs, 1974). The minimum curvature surface is analogous
to the elastic plate flexure, and it approximates the shape
adopted by a thin plate flexed to pass through the observation
data points with a minimum amount of bending. This method
generates the smoothest possible surface while attempting to
follow the observation data as closely as possible. The semi-
norm in the MC algorithm is defined to be equal to the total
squares curvature as follows:

I (f )=

∫∫ (
∂2f

∂x2 +
∂2f

∂y2

)2

dxdy. (11)

This integral must be discretized according to the grid divi-
sion. The discrete total squares curvature is as follows:

S(C)=

n∑
k=1

m∑
l=1
(Ik,l)

2(1d)2, (12)

where Ik,l is the curvature at the (k, l) pixel, which is a func-
tion of Ck,l and its neighboring pixel values. In two dimen-
sions, the approximation to the curvature is as follows:

Ik,l =
(
Ck+1,l +Ck−1,l +Ck,l+1+Ck,l−1− 4Ck,l

)
/

(1d)2. (13)

To minimize the total squared curvature, we need the follow-
ing:

∂S

∂Ck,l
= 0. (14)

Combining Eqs. (11)–(13), we obtain the following differ-
ence equation:[
Ck+2,l +Ck,l+2+Ck−2,l +Ck,l−2

+ 2(Ck+1,l+1+Ck−1,l+1+Ck+1,l−1+Ck−1,l−1)

− 8
(
Ck+1,l +Ck−1,l +Ck,l−1+Ck,l+1

)
+ 20Ck,l

]
/

(1d)2 = 0. (15)

This equation is appended at each pixel as a smoothness reg-
ularization. Therefore, there is only one prior equation at
each grid instead of two equations in the LTD algorithm. For
pixels on the edges, we set the approximation of the first and
second derivatives to zeros by using the difference operators
[1−1] and [1−2 1]. Under the assumption that M is the ker-
nel matrix of the prior equations, the reconstruction aims to
minimize the following problem:

min
c
‖Lc− b‖22+µ‖Mc‖22, subject to c ≥ 0, (16)

where the parameter µ is determined in the same manner
as the regularization parameter in Tikhonov regularization
method. Similar to the LTD approach, the resulting con-
strained system of linear equations is overdetermined and is
solved by the NNLS optimization algorithm.

Figure 2. Beam geometry and a 30× 30 grid division of the site.

For conventional, pixel-based reconstruction algorithms,
the number of pixels (unknowns) should not exceed the num-
ber of beams (equations) to obtain a well-posed problem. Be-
cause only tens of beams are usually used in ORS-CT appli-
cations, the resultant spatial resolution is very coarse. The
GT algorithm is one way to increase the resolution, but it
requires several steps to complete the entire translation be-
cause each translation uses a different grid division, and the
reconstruction process must be conducted for each grid di-
vision. In the MC algorithm, we use only one division of
high-resolution grids directly during the reconstruction. The
resultant system of linear equations remains determined be-
cause of the smoothness restriction at each pixel. As shown in
Fig. 2, 30×30 pixels are used in the MC algorithm instead of
the 6×6 pixels in the NNLS approach. Under this configura-
tion, the number of linear equations for the LTD algorithm is
approximately 38+30×30×2= 1838, whereas the number
for the MC algorithm is approximately 38+ 30× 30= 938.
Thus, the MC approach decreases the number of linear equa-
tions to approximately half that of the LTD algorithm. The
smoothness seminorm of the MC algorithm ensures a smooth
solution. This smoothing effect is similar to the spline in-
terpolation applied after the reconstruction process, except
that it is achieved during the inverse process. This aspect is
important because an interpolation after the reconstruction
cannot correct the error resulting from the reconstruction in
terms of coarse spatial resolution. The MC approach evalu-
ates the discrepancy based on the high-resolution values that
are the same as the reconstruction outcomes. Errors due to
coarse spatial resolution are corrected during the process.
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2.4 Test concentration data

The NNLS, LTD, and MC algorithms were compared by us-
ing multiple test maps. The results were also compared with
those of the GT-MG algorithm. We set up test conditions sim-
ilar to those used in Verkruysse and Todd (2005). The con-
centration distribution from one source is defined by a bivari-
ate Gaussian distribution as follows:

g(x,y)=Qexp

[
−

(
(x− x0)

2

σ 2
x

+
(y− y0)

2

σ 2
y

)]
, (17)

where Q (0 to 40 mgm−3) is the source strength, x0, y0 (0
to 40 m) is the peak location, and σx,σy are the width of the
peaks with possible values of 2.8, 4.2, 5.7, and 7.1 m.

The source number varies from 1 to 5. For multiple
sources, the resultant concentration distribution is the super-
position value due to each source. For each source number,
100 maps were generated by randomly setting the source
strength, location, and peak width from the defined ranges
or set above.

The concentration filed is discretized with a resolution of
0.2m×0.2 m. The concentration of each pixel is the average
value of the concentrations in that pixel. The discretized con-
centration map is used as the true concentration distribution.
PICs are calculated based on the discretized map by using
Eq. (1).

2.5 Evaluation of reconstruction quality

A conventional image quality measure, called nearness, is
used to describe the discrepancy between the original maps
and the reconstructed maps. Nearness evaluates errors over
all grid cells on the map are as follows (Verkruysse and Todd,
2005):

Nearness=

√√√√√√√√
m×n∑
i

(c∗i − ci)
2

m×n∑
i

(c∗i − c
∗
avg)

2
, (18)

where m and n are the grid divisions on the x and y direc-
tions of the map, c∗i is the synthetic value of concentration in
the ith grid generated by the Gaussian distribution model, ci
is the estimated value for the ith grid, and c∗avg is the mean
concentration of all grids. A nearness value of zero implies a
perfect match.

The effectiveness of locating the emission source is evalu-
ated by the peak location error, which calculates the distance
between the true and reconstructed peak locations.

Peak location error=
√
(xr− x0)2+ (yr− y0)2, (19)

where xr, yr are the peak locations on the reconstruction map.
For multiple peaks, only the location of the highest peak is

calculated. The peak is located by searching for the largest
concentration on the map. When multiple locations have the
same values, the centroid of these locations is used.

Exposure error percentage is used to evaluate how well the
average concentrations in the whole field are reconstructed. It
can reflect the accuracy of measuring chemical air emissions
and emission rates from fugitive sources, such as agricul-
tural sources and landfills, as follows (Verkruysse and Todd,
2004):

Exposure error %=

∣∣∣∣∣∣∣∣∣
m×n∑
i

c∗i −
m×n∑
i

ci

m×n∑
i

c∗i

∣∣∣∣∣∣∣∣∣× 100%. (20)

Herein, a measure using the averaging kernel matrix is also
applied to predict the reconstruction error due to differ-
ent regularization approaches. Resolution matrices are com-
monly used to determine whether model parameters can be
independently predicted or resolved and how regularization
limits reconstruction accuracy (Twynstra and Daun, 2012;
von Clarmann et al., 2009). Ignoring the non-negative con-
straints, the generalized inverse matrices for the NNLS, LTD,
and MC algorithms can be found by the following:

GNNLS = (LTL)−1LT

GLTD = (LTL+µ2DT
3 D3)

−1LT

GMC = (LTL+ λ2MTM)−1LT. (21)

The averaging kernel matrix is defined as R=GL. The re-
construction error is given by the following:

δc = cmodel− cexact = (R− I)cexact−Gδb, (22)

where cmodel and cexact are the model-predicted and the exact
concentrations, respectively, δb is the perturbation of the ob-
servation resulting from various noise sources, I is the iden-
tity matrix, (R− I)cexact is the regularization error caused by
the inconsistency between the measurement data equations
and the prior information equations, and Gδb is the perturba-
tion error.

For the LTD and MC approaches using high-resolution
grids, the kernel matrix L is rank deficient, and the regular-
ized solution is robust to perturbation error over a wide range
of regularization parameters. Thus, the perturbation error is
negligible, and the reconstruction error is dominated by the
regularization error (Twynstra and Daun, 2012). Because the
averaging kernel matrix is determined only by the beam con-
figuration and the regularization approach, it is independent
of the actual concentration distribution. Therefore, it is best
used to evaluate different beam configurations that consider-
ably influence the reconstruction accuracy. However, in this
study, the beam configurations are fixed. We can therefore
use the averaging kernel matrix to measure different regular-
ization approaches. In an ideal experiment, R= I, thus im-
plying that each unknown pixel value can be independently
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resolved from the measurement data. The regularization term
forces the off-diagonal terms in R to be nonzero, thereby
making the estimated concentration of each pixel a weighted
average of the concentration of the surrounding pixels. We
can use the Frobenius norm (the square root of the sum of
the absolute squares of the elements of a matrix) between R
and I to define a measure of fitness to predict the reconstruc-
tion error (Twynstra and Daun, 2012).

ε =
1
Nc
‖R− I‖2F . (23)

3 Results and discussions

In these tests, the traditional NNLS algorithm uses 6×
6 grids, whereas the LTD and MC algorithms both use
30× 30 grids. The results of the GT-MG algorithm are from
Verkruysse and Todd (2005), in which a maximum basis grid
resolution of 10×10 with one-quarter grid size as translation
distance was used. Of note, the test conditions were not ex-
actly the same as those used by the GT-MG algorithm, which
did not measure the peak location error and used a different
method to calculate the exposure error by limiting the cal-
culation domain to a small area near the peak instead of the
entire map. Therefore, the results of the GT-MG algorithm
are provided as a reference and only the measure of nearness
was compared. The original resolution of the reconstruction
map by the NNLS algorithm is too coarse (6.7 m). To deter-
mine the peak locations more accurately, all concentration
maps reconstructed by the NNLS algorithm were spline in-
terpolated with a resolution of 0.5 m. Figure 3 depicts some
examples of the test maps and reconstructed maps generated
by different algorithms with different source numbers.

3.1 Nearness

Nearness is the most important measure of accuracy of the
reconstructed map. It represents the reconstruction of peak
heights, shapes, and the production of artifacts. The smaller
the nearness value, the better the reconstruction quality. In
Table 1, the LTD, MC, and GT-MG algorithms generally re-
duce the nearness values by more than 50 % with respect
to the values obtained by the NNLS algorithm. Under the
condition of one source, they reduce the nearness by ap-
proximately 70 % with respect to the NNLS. The LTD, MC,
and GT-MG algorithms show increasing trends as the source
number increases, thus implying that the performance of the
algorithm is affected by the complexity of the underlying dis-
tribution. The nearness results of NNLS for different num-
bers of sources are almost the same because they are the
results after spline interpolation. In fact, the original un-
interpolated results also show increasing trends. The inter-
polation improves the results of the NNLS algorithm more
than those of the LTD and MC algorithms, which already use
high-resolution grids. The overall performance of the LTD,

Table 1. Mean and standard deviation of the nearness.

Source NNLS LTD MC GT-MG∗

no.

1 0.40 (0.21) 0.13 (0.08) 0.11 (0.07) 0.09 (0.05)
2 0.38 (0.16) 0.15 (0.07) 0.13 (0.06) 0.16 (0.07)
3 0.40 (0.14) 0.18 (0.08) 0.17 (0.08) 0.19 (0.06)
4 0.40 (0.12) 0.20 (0.08) 0.19 (0.08) 0.25 (0.08)
5 0.43 (0.13) 0.22 (0.09) 0.21 (0.08) 0.27 (0.09)

∗ The results of the GT-MG algorithm are from Verkruysse and Todd (2005), whose
test conditions are not exactly the same as the conditions used herein.

Table 2. Mean and standard deviation of the peak location error.

Source NNLS (m) LTD (m) MC (m)
no.

1 1.78 (0.93) 0.41 (0.45) 0.40 (0.56)
2 4.88 (8.21) 1.97 (5.98) 1.62 (4.81)
3 5.17 (8.35) 2.58 (6.77) 2.34 (6.17)
4 8.40 (11.53) 5.22 (10.28) 5.58 (10.76)
5 8.95 (11.32) 5.51 (10.15) 5.77 (10.41)

MC, and GT-MG algorithms is very similar, whereas the new
MC algorithm’s performance is slightly better.

3.2 Peak location error

As shown in Table 2, the LTD and MC algorithms show bet-
ter performance in peak location error than the NNLS algo-
rithm. They generally improve the accuracy of peak location
by 1 to 2 m. The errors of all algorithms increase with the
source number.

One reason for this finding is that when two or more peaks
with comparable peak magnitudes are on the map (Fig. 3),
the algorithm may not identify the correct location of the
highest peak. Therefore, a large error may occur when the
highest value on the reconstructed map is located on the
wrong peak.

3.3 Exposure error

The exposure error of NNLS can be severely affected by the
spline interpolation of the reconstruction results. Therefore,
a nearest interpolation was used. As shown in Table 3, MC
and LTD algorithms show approximately 2 to 5 times better
performance than the NNLS algorithm. The exposure error
reflects the accuracy of the overall emissions measurement
other than the concentration distribution. The performance
of the LTD and MC algorithms is very similar, whereas the
MC algorithm illustrates slightly better performance than the
LTD algorithm. Unlike the trends shown by the NNLS in
the nearness and peak location error, its performance in ex-
posure error improves with an increasing source number. A
plausible cause of this phenomenon may be that the distribu-
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Figure 3. Original test maps (first column) and corresponding maps reconstructed with the NNLS (second column), LTD (third column), and
MC (fourth column) algorithms, showing (a) one source, (b) two sources, (c) three sources, (d) four sources, and (e) five sources, respectively.

tion becomes more uniform with larger numbers of sources.
Because the NNLS algorithm uses coarse grid division, it
produces concentrations with very low spatial resolution and
fits the true distribution better when the distribution becomes
more uniform.

3.4 Computation time

The computations were run on a computer with an Intel Core
i7-6600U processor of 2.6 GHz and RAM of 8 GB. In Ta-
ble 4, the computation times for the LTD and MC algo-

Table 3. Mean and standard deviation of the exposure error.

Source NNLS (%) LTD (%) MC (%)
no.

1 5.18 (7.69) 1.30 (1.51) 1.04 (0.85)
2 3.03 (3.68) 1.11 (0.97) 1.07 (0.92)
3 2.74 (2.90) 1.16 (0.84) 1.11 (0.76)
4 2.29 (2.09) 1.21 (1.04) 1.12 (0.98)
5 2.26 (1.72) 1.18 (0.87) 1.16 (0.84)
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Table 4. Mean and standard derivation of the computation time.

Source LTD (s) MC (s) Ratio
no. (MC/LTD)

1 11.08 (14.27) 8.06 (10.03) 0.73
2 21.02 (17.89) 14.17 (11.46) 0.67
3 34.44 (19.93) 22.76 (13.61) 0.66
4 43.58 (20.45) 29.13 (12.92) 0.67
5 59.48 (21.98) 38.74 (15.05) 0.65

rithms are compared. The computation time generally in-
creases with increasing source number. The MC algorithm is
faster than the LTD algorithm because it has approximately
half the number of the linear equations as the LTD algorithm.
The ratio results show that the MC algorithm’s computation
time is approximately 65 % that of the LTD algorithm when
the source number is five. The trend of the ratio implies that
the advantage of the MC algorithm becomes more clearer
with increasing complexity of the underlying distribution.

3.5 Fitness

Contour plots of the resolution matrices for the LTD and MC
algorithms are shown in Fig. 4a and b. Each row represents
the weight strength of all the pixels for the current pixel. The
fitness values for the LTD and MC algorithm are 1.4411 and
1.3878, respectively. The MC algorithm shows slightly better
performance. The off-diagonal elements are not zeros. The
reconstructed concentration at each pixel is a weighted aver-
age of the concentrations of the surrounding pixels according
to the smoothness regularization. Each row of the averaging
kernel matrix can be regarded as smoothing weights. Because
the pixels have a 2-D arrangement, we show the 2-D display
of the row of the 106th pixel (row and column indices are 4
and 16) in the averaging kernel matrix for the LTD and MC
algorithms in Fig. 4c and d, as an example. The dependence
on the beam geometry can be seen in both pictures. Because
the beam configuration is fixed, the difference between the
fitness values is mainly caused by the use of different reg-
ularization approaches. The fitness difference between the
LTD and MC algorithms is very small, which may indicate
that both algorithms have similar smoothness effects. This re-
sult coincides with the results from other measures discussed
above. The 2-D display of the diagonal elements of the aver-
aging kernel matrix are shown in Fig. 4e and f, which are not
of much use in this case.

3.6 Influence of the grid size

The derivatives are approximated by the finite differences
during the discretization process. The finite grid length
causes discretization error and affects the reconstruction re-
sults. We studied the influences of different grid divisions by
investigating the changes in the nearness, peak location er-

ror, exposure error, and computation time with respect to the
pixel number. In total, the following Five different grid divi-
sions were used: 6×6, 12×12, 18×18, 24×24, and 30×30.
The peak number was five. A total of 100 maps were tested
for each grid division. The results of the averaged values are
shown in Fig. 5.

The nearness, peak location error, and exposure error gen-
erally illustrate decreasing trends with increasing pixel num-
ber. The MC algorithm shows a slightly better performance
than the LTD algorithm with increasing pixel number. The
performance improvement becomes slow for both algorithms
when the division is finer than 24×24. The computation time
shows approximately exponential growth trend with increas-
ing pixel number. The LTD algorithm has a faster increasing
rate than the MC algorithm. To conclude, the reconstruction
performance is improved for both LTD and MC algorithms
with increasing pixel numbers but at the cost of fast growth of
the computation time. And the improvement becomes small
when the resolution is higher than certain threshold value
(24× 24 herein). Therefore, there should be a balance be-
tween the performance and the computation time.

4 Conclusions

To understand the characteristics of the smoothness con-
straints and to seek more flexible smooth reconstruction, we
first identified the LTD algorithm as being a special case
of Tikhonov regularization. Then, more flexible smoothness
constraints were found through the smoothness seminorms,
according to variational interpolation theory. The smooth-
ness seminorms were successfully adopted in ORS-CT in-
verse problems. On the basis of the variational approach, we
proposed a new MC algorithm by using a seminorm approx-
imating the sum of the squares of the curvature. The new
algorithm improves computational efficiency through reduc-
ing the number of linear equations to half that of the LTD al-
gorithm. It is simpler to perform than the GT-MG algorithm
by directly using high-resolution grids during the reconstruc-
tion.

The MC, LTD, and NNLS algorithms were compared by
using multiple test maps. The new MC algorithm shows
a similar performance to the LTD algorithm but only re-
quires approximately 65 % of the computation time. The
smoothness-related algorithms of LTD, MC, and GT-MG all
show better performance than the traditional NNLS algo-
rithm; the nearness of reconstructed maps is improved by
more than 50 %, the peak distance accuracy is improved by
1–2 m, and the exposure error is improved by 2 to 5 times.
Because differences in accuracy between the LTD and MC
algorithms are very small, more specific evaluations may be
needed by using more complicated and realistic conditions.

These comparisons demonstrate the feasibility of intro-
ducing the theory of variational interpolation. On the basis
of the seminorms, it is easier to understand the advantages

Atmos. Meas. Tech., 14, 7355–7368, 2021 https://doi.org/10.5194/amt-14-7355-2021



S. Li and K. Du: A minimum curvature algorithm to reconstruct atmospheric chemicals 7365

Figure 4. Contour plot of the averaging kernel matrix for (a) the LTD algorithm (b) the MC algorithm. A 2-D display of the row vector of
the 106th pixel in the averaging kernel matrix for (c) the LTD algorithm and (d) the MC algorithm. A 2-D display of the diagonal elements
of the averaging kernel matrix for (e) the LTD algorithm and (f) the MC algorithm.
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Figure 5. The change in (a) nearness, (b) peak location error, (c) exposure error percentage, and (d) computation time with respect to the
pixel number.

and the drawbacks of different algorithms. Common prob-
lems, such as the over-smoothing issue, may be improved by
formulating more algorithms suitable for ORS-CT applica-
tions. Note that, although the smoothness is very good a pri-
ori information for the reconstruction problem, beam config-
uration and the underlying concentration distribution are also
important factors affecting the reconstruction quality. To fur-
ther improve the reconstruction quality, extra a priori infor-
mation according to specific application may be added to the
inverse problem. For example, statistic information of the un-
derlying distribution or information resulting from the fluid
mechanics.

Code and data availability. Data and code are available on request
by contacting the authors.

Author contributions. KD was responsible for acquiring funding
for this research. SL designed the algorithm and conducted the tests.
SL and KD were both involved in data analysis. Both authors con-
tributed to writing and editing the paper.

Competing interests. The contact author has declared that neither
they nor their co-author has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Financial support. This research has been supported by the Canada
Foundation for Innovation (grant no. 35468) and the Natural
Sciences and Engineering Research Council of Canada (grant
no. RGPIN-2020-05223).

Atmos. Meas. Tech., 14, 7355–7368, 2021 https://doi.org/10.5194/amt-14-7355-2021



S. Li and K. Du: A minimum curvature algorithm to reconstruct atmospheric chemicals 7367

Review statement. This paper was edited by Thomas von Clarmann
and reviewed by Joern Ungermann and three anonymous referees.

References

Arghand, T., Karimipanah, T., Awbi, H. B., Cehlin, M., Larsson, U.,
and Linden, E.: An experimental investigation of the flow and
comfort parameters for under-floor, confluent jets and mixing
ventilation systems in an open-plan office, Build. Environ., 92,
48–60, https://doi.org/10.1016/j.buildenv.2015.04.019, 2015.

Belotti, C., Cuccoli, F., Facheris, L., and Vaselli, O.: An
application of tomographic reconstruction of atmospheric
CO2 over a volcanic site based on open-path IR laser
measurements, IEEE T. Geosci. Remote, 41, 2629–2637,
https://doi.org/10.1109/TGRS.2003.815400, 2003.

Bini, D. and Capovani, M., A Class of cubic splines obtained
through minimum conditions, Math. Comput., 46, 191–202,
https://doi.org/10.2307/2008223, 1986.

Briggs, I. C.: Machine contouring using minimum curvature, Geo-
physics, 39, 39, https://doi.org/10.1190/1.1440410, 1974.

Cehlin, M.: Mapping tracer gas concentrations using a modi?ed
Low Third Derivative method: numerical study, Int. J. Vent.,
18, 136–151, https://doi.org/10.1080/14733315.2018.1462935,
2019.

Censor, Y.: Finite series-expansion reconstruction methods, P.
IEEE, 71, 409–419, https://doi.org/10.1109/PROC.1983.12598,
1983.

Champion, R., Lenard, C. T., and Mills, T. M.: A vari-
ational approach to splines, ANZIAM J., 42, 119–135,
https://doi.org/10.1017/S1446181100011652, 2000.

Drescher, A. C., Gadgil, A. J., Price, P. N., and Nazaroff, W. W.:
Novel approach for tomographic reconstruction of gas con-
centration distributions in air: Use of smooth basis func-
tions and simulated annealing, Atmos. Environ., 30, 929–940,
https://doi.org/10.1016/1352-2310(95)00295-2, 1996.

Du, K., Rood, M. J., Welton, E. J., Varma, R. M., Hashmonay, R. A.,
Kim, B. J., and Kemme, M. R.: Optical Remote Sensing
to Quantify Fugitive Particulate Mass Emissions from Sta-
tionary Short-Term and Mobile Continuous Sources: Part I.
Method and Examples, Environ. Sci. Technol., 45, 658–665,
https://doi.org/10.1021/es101904q, 2011.

EPA: Measurement of Fugitive Emissions at a Landfill Practicing
Leachate Recirculation and Air Injection, EPA-600/R-05/088,
EPA’s Office of Research and Development, Washington, D.C.,
USA, 2005.

Gholami, A. and Hosseini, M.: A balanced combination of
Tikhonov and total variation regularizations for reconstruction
of piecewise-smooth signals, Signal Process., 93, 1945–1960.
https://doi.org/10.1016/j.sigpro.2012.12.008, 2013.

Giuli, D., Facheris, L., and Tanelli, S.: Microwave tomographic
inversion technique based on stochastic approach for rainfall
fields monitoring, IEEE T. Geosci. Remote, 37, 2536–2555,
https://doi.org/10.1109/36.789649, 1999.

Hamarik, U., Palm, R., and Raus, T.: A family of rules for parame-
ter choice in Tikhonov regularization of ill-posed problems with
inexact noise level, J. Comput. Appl. Math., 236, 2146–2157,
https://doi.org/10.1016/j.cam.2011.09.037, 2012.

Hashmonay, R. A.: Theoretical evaluation of a method for locating
gaseous emission hot spots, J. Air Waste Manage., 58, 1100–
1106, https://doi.org/10.3155/1047-3289.58.8.1100, 2012.

Hashmonay, R. A., Yost, M. G., and Wu, C. F.: Computed
tomography of air pollutants using radial scanning path-
integrated optical remote sensing, Atmos. Environ., 33, 267–274,
https://doi.org/10.1016/S1352-2310(98)00158-7, 1999.

Hashmonay, R. A., Natschke, D. F., Wagoner, K., Harris, D. B.,
Thompson, E.L, and Yost, M. G.: Field Evaluation of a Method
for Estimating Gaseous Fluxes from Area Sources Using Open-
Path Fourier Transform Infrared, Environ. Sci. Technol., 35,
2309–2313, https://doi.org/10.1021/es0017108, 2001.

Herman, G. T.: Fundamentals of computerized tomography: Image
reconstruction from projection, 2nd edn., Springer, New York,
USA, 101–124, 2009.

Lawson, C. L. and Janson, R. J.: Solving least squares problems, So-
ciety for Industrial and Applied Mathematics, Philadelphia, 23,
158–165, https://doi.org/10.1137/1.9781611971217, 1995.

Mitasova, H., Mitas, L., Brown, W. M., Gerdes, D. P., Kosi-
novsky, I., and Baker, T.: Modelling spatially and tem-
porally distributed phenomena: new methods and tools
for GRASS GIS, Int. J. Geogr. Inf. Syst., 9, 433–446,
https://doi.org/10.1080/02693799508902048, 1995.

Price, P. N., Fischer, M. L., Gadgil, A. J., and Sextro, R. G.: An
algorithm for real-time tomography of gas concentrations, using
prior information about spatial derivatives, Atmos. Environ., 35,
2827, https://doi.org/10.1016/S1352-2310(01)00082-6, 2001.

Radon, J.: On the determination of functions from their integral val-
ues along certain manifolds, IEEE T. Med. Imaging, 5, 170–176,
1986.

Rudin, L., Osher, S. J., and Fatemi, E.: Non-linear total variation
based noise removal algorithms, Physica D, 60, 259–268, 1992.

Samanta, A. and Todd, L. A.: Mapping chemicals in air using an
environmental CAT scanning system: evaluation of algorithms,
Atmos. Environ., 34, 699–709, https://doi.org/10.1016/S1352-
2310(99)00331-3, 2000.

Tikhonov, A. N. and Arsenin, V. Y.: Solutions of Ill-posed Prob-
lems, Winston and Sons, Washington, 1977.

Todd, L. and Ramachandran, G.: Evaluation of Optical Source-
Detector Configurations for Tomographic Reconstruction of
Chemical Concentrations in Indoor Air, Am. Ind. Hyg. Assoc.
J., 55, 1133–1143, https://doi.org/10.1080/15428119491018204,
1994.

Tsui, B. M. W., Zhao, X., Frey, E. C., and Gullberg, G. T.:
Comparison between ML-EM and WLS-CG algorithms for
SPECT image reconstruction, IEEE T. Nucl. Sci., 38, 1766–
1772, https://doi.org/10.1109/23.124174, 1991.

Twynstra, M. G. and Daun, K. J.: Laser-absorption tomography
beam arrangement optimization using resolution matrices, Appl.
Optics, 51, 7059–7068, https://doi.org/10.1364/AO.51.007059,
2012.

Verkruysse, W. and Todd L. A.: Improved method “grid trans-
lation” for mapping environmental pollutants using a two-
dimensional CAT scanning system, Atmos. Environ., 38, 1801–
1809, https://doi.org/10.1016/j.sigpro.2012.12.008, 2004.

Verkruysse, W. and Todd, L. A.: Novel algorithm for to-
mographic reconstruction of atmospheric chemicals with
sparse sampling, Environ. Sci. Technol., 39, 2247–2254,
https://doi.org/10.1021/es035231v, 2005.

https://doi.org/10.5194/amt-14-7355-2021 Atmos. Meas. Tech., 14, 7355–7368, 2021

https://doi.org/10.1016/j.buildenv.2015.04.019
https://doi.org/10.1109/TGRS.2003.815400
https://doi.org/10.2307/2008223
https://doi.org/10.1190/1.1440410
https://doi.org/10.1080/14733315.2018.1462935
https://doi.org/10.1109/PROC.1983.12598
https://doi.org/10.1017/S1446181100011652
https://doi.org/10.1016/1352-2310(95)00295-2
https://doi.org/10.1021/es101904q
https://doi.org/10.1016/j.sigpro.2012.12.008
https://doi.org/10.1109/36.789649
https://doi.org/10.1016/j.cam.2011.09.037
https://doi.org/10.3155/1047-3289.58.8.1100
https://doi.org/10.1016/S1352-2310(98)00158-7
https://doi.org/10.1021/es0017108
https://doi.org/10.1137/1.9781611971217
https://doi.org/10.1080/02693799508902048
https://doi.org/10.1016/S1352-2310(01)00082-6
https://doi.org/10.1016/S1352-2310(99)00331-3
https://doi.org/10.1016/S1352-2310(99)00331-3
https://doi.org/10.1080/15428119491018204
https://doi.org/10.1109/23.124174
https://doi.org/10.1364/AO.51.007059
https://doi.org/10.1016/j.sigpro.2012.12.008
https://doi.org/10.1021/es035231v


7368 S. Li and K. Du: A minimum curvature algorithm to reconstruct atmospheric chemicals

von Clarmann, T., De Clercq, C., Ridolfi, M., Höpfner, M., and
Lambert, J.-C.: The horizontal resolution of MIPAS, Atmos.
Meas. Tech., 2, 47–54, https://doi.org/10.5194/amt-2-47-2009,
2009.

Wu, C. F. and Chang, S. Y.: Comparisons of ra-
dial plume mapping algorithms for locating gaseous
emission sources, Atmos. Environ., 45, 1476–1482,
https://doi.org/10.1016/j.atmosenv.2010.12.016, 2011.

Wu, C. F., Yost, M. G., Hashmonay, R. A., and Park, D. Y.: Experi-
mental evaluation of a radial beam geometry for mapping air pol-
lutants using optical remote sensing and computed tomography,
Atmos. Environ., 33, 4709–4716, https://doi.org/10.1016/S1352-
2310(99)00218-6, 1999.

Atmos. Meas. Tech., 14, 7355–7368, 2021 https://doi.org/10.5194/amt-14-7355-2021

https://doi.org/10.5194/amt-2-47-2009
https://doi.org/10.1016/j.atmosenv.2010.12.016
https://doi.org/10.1016/S1352-2310(99)00218-6
https://doi.org/10.1016/S1352-2310(99)00218-6

	Abstract
	Introduction
	Materials and methods
	ORS-CT and beam geometry
	LTD algorithm and Tikhonov regularization
	Variational interpolation and minimum curvature algorithm
	Test concentration data
	Evaluation of reconstruction quality

	Results and discussions
	Nearness
	Peak location error
	Exposure error
	Computation time
	Fitness
	Influence of the grid size

	Conclusions
	Code and data availability
	Author contributions
	Competing interests
	Disclaimer
	Financial support
	Review statement
	References

