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Abstract. Understanding and improving the quality of data
generated from low-cost sensors represent a crucial step
in using these sensors to fill gaps in air quality measure-
ment and understanding. This paper shows results from a
10-month-long campaign that included side-by-side mea-
surements and comparison between reference instruments
approved by the United States Environmental Protection
Agency (EPA) and low-cost particulate matter sensors in
Bartlesville, Oklahoma. At this rural site in the Midwestern
United States the instruments typically encountered only low
(under 20 µg m−3) concentrations of particulate matter; how-
ever, higher concentrations (50–400 µg m−3) were observed
on 3 different days during what were likely agricultural burn-
ing events. This study focused on methods for understanding
and improving data quality for low-cost particulate matter
sensors. The data offered insights on how averaging time,
choice of reference instrument, and the observation of higher
pollutant concentrations can all impact performance indica-
tors (R2 and root mean square error) for an evaluation. The
influence of these factors should be considered when com-
paring one sensor to another or when determining whether a
sensor can produce data that fit a specific need. Though R2

and root mean square error remain the dominant metrics in
sensor evaluations, an alternative approach using a prediction
interval may offer more consistency between evaluations and
a more direct interpretation of sensor data following an eval-
uation. Ongoing quality assurance for sensor data is needed
to ensure that data continue to meet expectations. Observa-
tions of trends in linear regression parameters and sensor bias
were used to analyze calibration and other quality assurance
techniques.

1 Introduction

Traditional particulate matter measurements are taken using
stationary instruments that cost tens if not hundreds of thou-
sands of dollars. The high cost limits data collection to cer-
tain entities such as government agencies and research insti-
tutions that take measurements through field campaigns and
through networks of stationary sensors. However, research
has shown that these traditional measurements do not capture
the spatial variations in particulate matter (Apte et al., 2017;
Mazaheri et al., 2018). Low-cost sensors are increasingly
being used in attempts to better map the spatial and tem-
poral variations in particulate matter (Ahangar et al., 2019;
Bi et al., 2020; Gao et al., 2015; Li et al., 2020; Zikova et
al., 2017). Governments, citizen scientists, and device manu-
facturers are connecting these low-cost devices to build large
air quality measurement networks. Understanding and im-
proving the quality of this type of data is crucial in determin-
ing their appropriate applications. Though there has been a
significant amount of research in recent years on the topic
(Feenstra et al., 2019; Holstius et al., 2014; Jiao et al., 2016;
Malings et al., 2020; Papapostolou et al., 2017; Williams et
al., 2019, 2018), there is an ongoing effort to understand
(1) how to concisely describe the performance of a low-cost
sensor and (2) what best practices can maximize data quality
while keeping costs down. Rather than presenting evaluation
results for specific low-cost sensors, this study focuses on
evaluation methods that can improve the use of all low-cost
sensors.

Much of the performance characterization has focused
on correlation (R2) and root mean square error (RMSE)
(Karagulian et al., 2019; Williams et al., 2019, 2018). How-
ever, these performance metrics can be influenced by the
conditions during a sensor evaluation. Higher-concentration
episodes during an evaluation can impact R2 and RMSE
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(Zusman et al., 2020). The choice of instrument for compar-
ison can also be a factor (Giordano et al., 2021; Mukherjee
et al., 2017; Stavroulas et al., 2020; Zusman et al., 2020) as
some reference instruments are more inherently similar to the
low-cost sensors and will likely show better comparisons. Fi-
nally, the averaging time can be a significant factor in perfor-
mance metrics (Giordano et al., 2021). Some of these eval-
uation inconsistencies (instrument comparison choice, aver-
aging time) can be mitigated by implementing standard eval-
uation protocols. Other inconsistencies, such as the influence
of observed concentration range, may be better managed by
shifting away from R2 and RMSE. While these metrics can
be useful in comparing one sensor to another, they are not as
useful in interpreting future sensor measurements. An alter-
native evaluation method using prediction interval is outlined
in Sect. 3.2.

A past evaluation of a sensor is a useful predictor of future
data quality, but quality assurance techniques are needed to
ensure that data quality continues to meet expectations. Cal-
ibrations are an important component of quality assurance.
During a calibration low-cost sensors and reference instru-
ments measure the same mass of air for a period and then
adjustments are made to better align sensor measurements.
Though laboratory comparisons would be more consistent,
only location-specific field comparisons are able to capture
the full variety of particle sizes and compositions that a sen-
sor will encounter once deployed (Datta et al., 2020; Ja-
yaratne et al., 2020). However, there are different calibration
techniques with varying costs (Hasenfratz et al., 2015; Hol-
stius et al., 2014; Malings et al., 2020; Stanton et al., 2018;
Williams et al., 2019), and the needed requirements are not
always clear for a successful field calibration. This techni-
cal gap is explored in this study by evaluating changes in
linear regression parameters over time and their dependence
on the amount of data included. A recent publication from
the United States Environmental Protection Agency (Duvall
et al., 2021) begins to address these issues and standardize
evaluation practices, though they acknowledge that this is an
evolving topic.

This study of low-cost particulate matter sensors was
conducted in a rural area of the Midwestern United States
(Bartlesville, Oklahoma). This area is interesting for evalu-
ation as it typically sees lower concentrations of PM2.5 but
occasionally encounters much higher concentrations, such as
during agricultural burning events. Data were collected for
a total of 10 months in 2018 and 2019. This large, mixed
dataset allowed exploration of both evaluation and quality
assurance techniques. These techniques are crucial in finding
ways to fill existing knowledge gaps in spatial and temporal
air quality variation using data from low-cost sensors.

2 Experimental methods and materials

2.1 Site description

Data were collected at the Phillips 66 Research Center in
Bartlesville, Oklahoma. Bartlesville is approximately 75 km
north of Tulsa and has a population of approximately 36 000.
Measurements were collected over 9 months from May 2018
to January 2019 and for 1 additional month in April 2019.
Particulate matter concentrations were typically low (under
20 µg m−3 for 1 h averaged data), which is characteristic of
many rural areas. The exception is during times when agri-
cultural burning emissions are observed, in which case con-
centrations of PM2.5 observed were as high as 400 µg m−3

for 1 h averaged data.

2.2 Instrumentation

Reference measurements were collected using a Met One
Beta Attenuation Monitor 1020 (BAM) and a Teledyne T640
(T640). Though both instruments are considered Federal
Equivalent Methods (FEM) by the United States Environ-
mental Protection Agency (EPA), the BAM uses beta ray at-
tenuation to measure the mass of PM2.5 collected on filter
tape, while the T640 uses an optical counting method that
is more similar to the method used by the low-cost particu-
late matter sensors. The BAM was used throughout the entire
period of evaluation but often struggled to maintain sample
relative humidity below 35 %, which is an FEM requirement.
Any data from the BAM which did not meet this relative hu-
midity criterion were removed prior to analysis. The T640
was only available for approximately 1 month of comparison
in April 2019 but still provided a useful dataset as it employs
a different sampling technique and samples at a higher fre-
quency (one sample per minute).

Low-cost particulate matter sensors were evaluated by
comparing samples taken within 4 m of the reference instru-
ments. Four brands of low-cost (less than USD 300 per sen-
sor) nephelometric-type particulate matter sensors were ini-
tially evaluated through comparison with reference measure-
ments for 1 month in May 2018. The specific brands of sen-
sors are not identified here, as the primary goal of this work is
exploration of different methods of evaluation. Each sensor
provided measurements in near-real time but was averaged
to 1 h intervals for comparison with the BAM. The correla-
tion (R2) between sensors and the BAM during May 2018
testing was 0.67, 0.53, 0.24, and 0.12 for the four different
sensors. Though this 1-month test may not have definitively
identified the best of the four sensors, it allowed selection
of a useful sensor for additional testing and method explo-
ration, which is the primary purpose of this study. After this
initial testing, long-term testing continued only for the best-
performing sensor (R2

= 0.67), which was evaluated over a
total of 10 months. The remainder of this study focuses on
the 10 months of data from the best-performing sensor.
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3 Results and discussion

3.1 Data quality

Eight replicas of the best-performing brand of low-cost par-
ticulate matter sensor were placed with the BAM from May
2018 to January 2019. The overall correlation (R2) between
these sensors and the BAM during this time was as high as
0.55 for sensors that performed well, but for a few sensors the
correlation was 0.15 or lower. Upon inspection it was found
that poor correlation often resulted from just a small hand-
ful of odd measurements. For example, one sensor logged
10 measurements of 500–2000 µg m−3 during a time when
the BAM reported below 10 µg m−3. A relatively inexpen-
sive way to identify these erroneous data points is by collo-
cating two sensors in any deployment. Figure 1 shows the
impact on data quality when pairing sensors together with
increasingly stringent requirements for data agreement. Each
point in the figure is the correlation between reference data
for the entire time period and the average of any two data
points that meet the allowable different requirement shown
on the x axis. For perspective, 95 % of sensor measurements
were below 30 µg m−3. No data are removed for points on the
left side of the graph, but the average of two sensors is often
much less correlated with reference measurements. An al-
lowed difference between sensor measurements of 50 µg m−3

results in only a small portion of the data being removed (bot-
tom of Fig. 1) but has a significant positive impact on RMSE
and correlation with the reference. As more stringent data
agreement requirements are put in place (moving to the right
in Fig. 1) there are no significant improvements in correla-
tion. Thus, a pair of sensors and a loose requirement for data
agreement may serve as a quality assurance check to greatly
improve data quality and spot erroneous measurements. This
can also help identify defective sensors that need to be re-
placed (Bauerová et al., 2020).

Though only absolute (µg m−3) data agreement is consid-
ered here, a requirement for percentage agreement between
sensors could also be considered (Barkjohn et al., 2021;
Tryner et al., 2020). R2 begins to decrease with stricter data
agreement requirements in Fig. 1 (5, 2, and 1 µg m−3), which
is the result of higher-concentration measurements being un-
necessarily removed. A combination of a percentage and ab-
solute data agreement would prevent these data from being
unnecessarily removed. However, in this case just a generous
absolute data agreement requirement (50 µg m−3) works well
since this method easily catches the most egregious measure-
ments without deleting data unnecessarily. Agreement be-
tween sensor measurements will likely depend on both the
sensor and the type of measurement, but this type of analysis
can be performed inexpensively at any location to determine
what type of data agreement is necessary to filter out any odd
measurements.

Figure 1 shows that good agreement was observed be-
tween measurements from duplicate sensors. Figure 2a sup-

Figure 1. The eight sensor replicas were divided into four pairs
with different measurement agreement requirements for the data
from the sensors in each pair (first averaged to 1 h intervals). The
x axis shows the allowed difference between paired measurements.
Panel (a) shows the percentage of data removed from the sensor pair
for different data agreement requirements. Panel (b) shows how R2

between the sensor pair (average of the pair) and reference mea-
surements changes when these disagreeing data points are removed.
Panel (c) shows how RMSE is impacted as disagreeing data points
are removed.

ports this observation, showing close correlation between
bias, defined as Csensor−Creference, for duplicates of a sen-
sor. Figure 2 (y axes) shows that sensor bias typically ranges
from 10 below to 40 µg m−3 above the reference measure-
ment. It is noteworthy that sensor measurements correlated
so closely from one sensor to another (Fig. 2a) despite such a
large range of variation from reference measurements. Com-
parison between only two sensors is shown in Fig. 2a for
simplicity, but similarly strong correlation was observed for
other pairs of sensors. Others have observed similar correla-
tion between measurements from duplicates of low-cost sen-
sors (Feenstra et al., 2019; Zamora et al., 2020). Because
these measurements came from separate sensors (same brand
and model) in separate housing, the large yet correlated bias
suggests that an external correctable factor influences how
accurately sensor measurements correlate with the reference
measurement. However, Fig. 2b–e show that only slight cor-
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Figure 2. Panel (a) shows the correlation between the bias (Csensor−Creference) of two sensor replicas. Panels (b)–(d) show correlation
between sensor bias and meteorological factors. Panel (e) shows that bias varies over time but not in a consistent pattern. Measurement gaps
in (e) are the result of the BAM not meeting its internal relative humidity specification (35 %).

relation was seen between this bias and easily observable ex-
ternal factors like humidity, temperature, particulate matter
concentration, or time. Solar radiation, wind direction, wind
speed, and rain were also measured, and similarly little cor-
relation was observed between bias and these factors. Other
research has observed improved PM2.5 predictions when pa-
rameters such as temperature and relative humidity are in-
cluded in analysis (Datta et al., 2020; Di Antonio et al., 2018;
Gao et al., 2015; Kumar and Sahu, 2021; Levy Zamora et
al., 2019; Zou et al., 2021b). Though some improvement in
PM2.5 predictions is still possible using the same approach
here, Fig. 2 suggests that these meteorological parameters
are not the primary cause of the similar bias that is observed
from one sensor to another.

The lack of correlation suggests that a different exter-
nal factor, such as particle properties, may influence sensor
measurements. Previous research has observed the impact
of particle composition on the accuracy of low-cost sensors
(Giordano et al., 2021; Kuula et al., 2020; Levy Zamora et
al., 2019). Particle size has also been observed to influence
measurements (Stavroulas et al., 2020; Zou et al., 2021a).
Very small particles go undetected and other particles can
be incorrectly sized by the optical detectors used in low-cost
particulate matter sensors. Regardless of the cause in varying
yet correlated sensor response, data here suggest that low-
cost measurements of meteorology will not be sufficient to
improve low-cost sensor data. It may be possible to improve
sensor data through measurements of particle properties, but
the high cost of these measurements would undo the benefit
of the low sensor price.

3.2 Performance evaluation

The T640 was available for comparisons for approximately
1 month in April 2019. In contrast to the BAM, which re-
ports data only in 1 h intervals, the T640 was programmed to
report a measurement every minute, allowing comparisons
to the high-time-resolution data offered by sensors. In ad-
dition, the month of April provided useful comparisons as
elevated concentrations of particulate matter were observed
on 3 different days, likely due to nearby agricultural burn-
ing. Under different evaluation conditions, the R2 and RMSE
of a linear regression were calculated. Impacts on R2 and
RMSE from different averaging time, reference instrument,
and higher concentrations are shown in Fig. 3.

1 h averaged data comparisons between a sensor and the
T640 are used as a baseline for comparison (Fig. 3b). To
highlight differences, the 3 d that included high particulate
matter concentrations were not included, except when in-
dicated (Fig. 3e). Figure 3a–c shows that less averaging
(higher-time-resolution data) negatively impacted R2 and
RMSE, while more averaging improved both these metrics.
Though higher time resolution is often considered an advan-
tage of low-cost sensors compared to some reference mea-
surements, these data show that time resolution comes at a
cost in the ability of sensors to predict concentration. If a spe-
cific averaging period becomes the standard for evaluations,
such as 1 h averaging (Duvall et al., 2021), then sensor users
will need to carefully assess how the quality of data changes
if it is necessary to average to a different interval, such as 5
or 1 min intervals.
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Figure 3. The changes to R2 and RMSE from a baseline condition depending on evaluation conditions. Panel (b) shows the baseline of 1 h
averaged data with T640 as a reference instrument and without 3 d of high concentrations. Panels (a) and (c) show the impact of less and
more data averaging, respectively. Panel (d) shows the impact of switching to the BAM instead of the T640. Panel (e) shows the effect of
high concentration by including 3 additional days during which higher concentrations were observed.

Figure 3d shows the difference in comparison due to ref-
erence instrument. The EPA considers both the BAM and the
T640 to be FEM instruments, but both the R2 and the RMSE
are negatively impacted when evaluating with the BAM in-
stead of the T640. The T640 is an optical particle counter,
which dries and then counts individual particles. It differs
from the evaluated low-cost sensors, which take a neph-
elometric measurement of un-dried, bulk particle concentra-
tions. However, the T640 is still an optical measurement and
is more similar to the method used by low-cost particulate
matter sensors. This comparison shows that the choice of a
reference instrument in evaluation of sensors can impact re-
sults.

Figure 3e is the only panel in Fig. 3 that includes data
from the 3 d in April 2019 on which higher concentrations
of particulate matter were observed. Most 1 h measurements
were below 50 µg m−3 during this month, but within these
3 d, there were 24 observations of 1 h particulate matter con-
centrations between 50 and 400 µg m−3. During this month,
about 565 1 h data points were captured, but Fig. 3e shows
the influence of just a few measurements at higher concentra-
tions. R2 in the baseline chart is 0.80, but with the addition
of these points it increases all the way to 0.97. In contrast,
RMSE increases from 3.2 to 5.9 µg m−3 with the addition of
these higher-concentration data, suggesting decreased sensor

performance. At high concentrations, small percent differ-
ences between sensor and reference measurements translate
into larger errors when expressed in micrograms per cubic
meter (µg m−3).

Figure 3 shows that the circumstances surrounding an
evaluation such as averaging time, reference instrument, and
the presence of high particulate matter concentrations can be
very influential on the performance results for a sensor, even
with other factors being held equal. The averaging time and
the choice of reference instrument could become smaller is-
sues as standard evaluation procedures are developed, such
as those recently proposed by the United States Environ-
mental Protection Agency (Duvall et al., 2021). However,
the influence of concentration range on R2 and RMSE is a
challenge in evaluating sensors, as it suggests that evaluation
location and random circumstances such as high concentra-
tion events are influential on evaluation results. In addition,
R2 and RMSE are not particularly suited to interpreting a
new measurement from a sensor once an evaluation has been
completed. As an alternative to R2 and RMSE, a prediction
interval can be considered as an evaluation tool for low-cost
sensors.

A prediction interval (PI) between sensor and reference
data offers a robust yet straightforward interpretation of sen-
sor measurements. A 95 % PI suggests that one can be
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95 % confident that any new measurement will be within its
bounds; thus, a new sensor reading can be converted to a
range of estimates with statistical confidence. The width of
this PI is a useful way to show the performance of the sen-
sor. Though a PI is calculated from a linear regression just
like R2 and RMSE, it requires a few extra details. The most
important of these details is that the residuals of the linear fit
need to be even across the range of observed values. In the
data described here, and likely for other low-cost sensor data,
this will require a transformation to the data.

Figure 4 shows the PI for data that were collected at 5 min
intervals in April 2019. After fitting a linear regression to
these data, it was found that residuals generally increased
with increasing concentration, suggesting that bias can be
higher as concentrations increase. This is also seen in the
Fig. 2d comparison between low-cost sensor bias and BAM
measurements. In order to ensure a correct linear fit and PI,
these trends in residuals were eliminated by transforming
both the sensor and reference data prior to the fit. Through
examination it was found that residual trends were best elim-
inated by raising both the sensor and reference data to the
0.4 power. Future applications of this method to various sen-
sors may find that different powers or transformation meth-
ods are needed to eliminate trends that are observed in resid-
uals. Even duplicates of the same sensor may require differ-
ent transformations if taking measurements in different lo-
cations. A detailed analysis of residuals is an important step
in all model development. In addition to the transformation,
measurements less than 70 µg m−3 were randomly sampled
to capture an equal number of data points below and above
70 µg m−3. This sampling did not change the outcome sig-
nificantly, but helped ensure that the linear regression and PI
were equally weighted to the entire range of observed mea-
surements. Before this sampling only 5 % of the data were
above 70 µg m−3. The R software suite was used to calcu-
late the linear regression and PI for the transformed data,
and these curves were then reverse-transformed (raised to the
0.4−1 power) to create the graph shown in Fig. 4.

Once data have been analyzed using the method shown
in Fig. 4, the interpretation of new sensor data becomes
easy. As shown in Fig. 4, a new sensor measurement at
200 µg m−3 suggests the most likely actual concentration is
138 µg m−3. However, more importantly, it can be said with
95 % confidence that the true concentration is between 90
and 199 µg m−3. Replicating this analysis for similar data
from another sensor suggests that for a sensor reading of
200 µg m−3 the most likely concentration is 148 µg m−3, with
a 95 % prediction interval between 97 and 213 µg m−3. These
estimates are close to those from the first sensor, showing
again that precision is good for these sensors. Data from
multiple replicas of a sensor could also be combined to pro-
vide a more general prediction interval that applies broadly
to sensors of that type. If sensors are not very precise then the
combined data will have higher variance, which will lead to
an appropriately broader prediction interval and higher un-

Figure 4. An example of a prediction interval evaluation for 5 min
data from a single sensor in April 2019 that includes periods of high
concentration. The curved lines are the upper and lower limits of
the 95 % prediction interval. A visual interpretation of a new sensor
measurement of 200 µg m−3 is also shown.

certainty in estimates for future sensor measurements. Any
nonlinearity in sensor response (Zheng et al., 2018) will also
result in a broader prediction interval if it has not been ac-
counted for in the calibration model.

A range can be provided for any new sensor measurement
following this method with 95 % confidence. In some cases
that uncertainty range may limit the ability to distinguish one
concentration from another. For example, in Fig. 4 the es-
timated ranges for 5 min averaged sensor measurements of
150 and 200 µg m−3 will overlap significantly, so it would
not be clear whether those measurements capture different
concentrations or multiple measurements at the same con-
centration. However, 5 min averaged sensor measurements of
30 and 200 µg m−3 will clearly show a difference between
measurements, even with the uncertainty in those measure-
ments. It is notable that the relationship between uncertainty
and sensor concentration is nonlinear. This nonlinearity is a
detail that would not be captured using RMSE or normalized
RMSE to describe uncertainty in measurements.

Figure 5 shows the dependence of average uncertainty
on the concentration (sensor estimate) and on the averag-
ing time. For the sake of simplicity Fig. 5 only shows the
average difference between the sensor estimate and both
the upper and lower PI. In the example in Fig. 4 uncer-
tainty would be calculated as (199–138µgm−3)/2+ (138–
90µgm−3)/2. Generally, sensor uncertainty increases with
concentration, though it does so nonlinearly. For 5 min av-
eraged data the uncertainty is ±22 µg m−3 when actual con-
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Figure 5. An alternative view of the prediction interval, which
shows how this interval varies with concentration and with aver-
aging time.

centration is 30 µg m−3, but this rises to±88 µg m−3 for mea-
surements of 300 µg m−3. When averaging times are length-
ened and more data are included in each measurement the
uncertainty ranges can change significantly. For example, a
measurement of 20 µg m−3 has uncertainty of±17,±12, and
±4.4 µg m−3 for averaging times of 5 min, 1 h, and 1 d.

A PI evaluation such as that shown in Figs. 4 and 5 of-
fers more information about what to expect from future sen-
sor measurements versus R2 or RMSE. A future 5 min av-
eraged sensor measurement of 200 µg m−3 is more meaning-
ful if it can be quantified with the statement that there is a
95 % probability that the actual concentration is between 90
and 199 µg m−3. An evaluation with a PI also allows for bet-
ter comparison between sensors, as the evaluation results are
not influenced by the range of concentrations observed dur-
ing evaluation. Uncertainty at a specific concentration can be
compared from one brand of sensor to another and is not im-
pacted by the range of concentrations observed, in contrast
to RMSE or R2. In other words, the uncertainty of a sen-
sor at 35 µg m−3 does not change depending on whether con-
centrations of 100 µg m−3 were also measured during evalu-
ation, though the overall R2 or RMSE of that evaluation can
be influenced by the 100 µg m−3 measurements, as shown in
Fig. 3. An analysis such as that shown in Fig. 5 also allows a
user to see how averaging time and concentration change the
meaning of a sensor measurement.

Picking a single comparison point allows users to quickly
compare measurement uncertainty between different sen-
sor types, as they might currently using R2 or RMSE. The
break points in the United States Air Quality Index (AQI)
could be considered standard comparison points. For exam-
ple, the United States AQI transitions to “unhealthy for sensi-
tive groups” at 35 µg m−3. At this level three sensor replicas
showed uncertainty of 14, 16, and 20 µg m−3.

Figure 6. Linear regression parameters from 1 h measurements over
a 2-month period in 2018. Panel (a) shows the range of measure-
ments observed on each day. Panels (b)–(d) show the R2, slope, and
residual standard error, respectively. In (b)–(d) a rolling collection
of 1, 7, or 14 d of data was used to find linear regression parameters.

3.3 Trends over time

The analysis shown in Figs. 4 and 5 relies on a user collect-
ing enough data to predict the PI bounds that capture 95 % of
future data points. Without sufficient data the PI will be in-
correct or will only cover measurements over a limited range.
This is illustrated in the 1 d averaged uncertainty in Fig. 5,
where uncertainty is only calculated for concentrations rang-
ing from approximately 5 to 25 µg m−3 due to limited data.
The amount of time it will take to collect enough data to build
a PI analysis for sensor data will vary from one location to
another and is explored for this location in Fig. 6. This figure
outlines an approach to determine the amount of time needed
to calibrate a sensor using a PI, as described in Sect. 3.2, or
any other method.

Figure 6 shows variations to linear fit parameters between
1 h averaged sensor and reference measurements collected
during a 2-month period. Figure 6a shows the range of val-
ues observed each day during this period. In Fig. 6b–d a lin-
ear regression is calculated for 1 h measurements in a rolling
timeframe of 1, 7, or 14 d. Figure 6b shows that with just
1 d of 1 h averaged data, R2 is sporadic from one day to the
next. It is much more consistent over time when 7 d of data
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are used, but even then there are periods that are inconsistent
with the rest of the data. For example, the R2 for a 7 d com-
parison between sensor and reference data centered around
24–26 November is lower than at other times. This inconsis-
tency is eliminated when using 14 d of data.

Just as for R2, Fig. 6c shows that a sporadic trend is also
observed for slope when fitting a linear regression on just 1 d
of data at a time. Notably, the confidence interval on the slope
(shown as shaded area) often dips below 0, suggesting a lack
of statistical confidence that a trend has been observed. Slope
is much more consistent using 7 d of data, though as with
R2 there is a 7 d period in November (centered around 24–
25 November) during which slope is different. Using 14 d of
data eliminates the abnormal period in November, but a dif-
ference is still observed between the slope in October and
November. This suggests that 14 d is an improvement com-
pared to 7 d, but even 14 d may not be enough collocation
time for a thorough calibration.

Figure 6d shows residual standard error over time, which
can be used as a surrogate for the width of a PI. Calibrations
using 1 d of data often have low error, as they include only
a narrow range of concentrations. The residual standard er-
ror changes over time, even using 7 and 14 d intervals. All
variations in residual standard error should be captured for
a thorough calibration. It is especially important to capture
the maximum in residual standard error to ensure that the
prediction interval captures the full range of uncertainty in
future measurements.

In short, Fig. 6 shows that even with up to 7 or 14 d of
data, variations in linear regression parameters are still ob-
served. Considine et al. (2021) observed that approximately
3 weeks were needed for a simple linear sensor calibration,
and 7–8 weeks were required if using a more complicated
correction such as machine learning. Duvall et al. (2021) rec-
ommended 30 d to develop a calibration. The goal of any cal-
ibration for low-cost particulate matter sensors should be to
observe all variations in particle size, composition, and con-
centration. Thorough calibrations may require lengthy peri-
ods of collocation to capture all variations in these parame-
ters and in the range of concentrations observed. An analysis
of linear fit parameters over time such as in Fig. 6 can be
helpful in determining if the full range of situations has been
observed and captured by the resulting calibration model.

3.4 Calibration implications

Understanding the behavior of low-cost particulate matter
sensors over time is important in planning for the amount
of data required to calibrate the sensor. The results presented
in this study are useful in analyzing the strengths and weak-
nesses of different calibration methods. Stanton et al. (2018)
outlined four methods that could be used to capture sensor
and reference measurements for calibration.

– Routine collocation. Sensors are placed near the refer-
ence instrument for a period before deployment. They
may be brought back periodically for re-calibration.

– Permanent collocation. One sensor is placed next to a
reference instrument with the assumption that any cor-
rection needed for that sensor applies to the others in the
network.

– Mobile collocation. A reference instrument is placed on
a vehicle, and all sensors receive a single-point calibra-
tion update when the reference comes within proximity.

– “Golden sensor”. One sensor is calibrated via colloca-
tion with a reference instrument and then slowly moved
throughout the network to calibrate the other sensors.

The routine collocation method is a useful starting point
in any sensor network. A period of side-by-side sensor and
reference data captures the slope, intercept, and typical error
that is associated with sensor measurements. Figure 6 sug-
gests that this method will have mixed results if calibrating
over short time periods but can be reliable given enough time
to capture all variations in slope, concentration, and residual
standard error. The method does not capture the location bias
that may be observed if sensors respond differently to the
particles at the sensor location compared to those at the cal-
ibration location. Despite these limitations, Fig. 6 suggests
that this method can likely improve sensor data if utilized
appropriately.

The precision between sensors (see Fig. 2) suggests there
is potential for a routine collocation method to greatly im-
prove data, though there may be difficulties in accounting for
location bias. The question remains of how much distance
can be allowed between the reference sensor and the field-
deployed network sensors before this method fails. This al-
lowable distance will depend on how quickly particle prop-
erties change between the reference instrument and the net-
work of sensors.

A mobile approach to calibration is attractive in that it can
be used to capture variations in sensor responsiveness at dif-
ferent locations with different types of particles compared to
those at a fixed reference location. The challenge with this
approach will be capturing enough data to thoroughly under-
stand the slope and prediction interval of sensor measure-
ments. Figure 6 shows that even using 24 1 h data points
can lead to unusual estimates for the slope between sen-
sor and reference measurements, and a single-measurement
spot check between a mobile reference and a sensor would
likely be even more sporadic. It is possible that these single-
measurement spot checks could slowly improve an existing
calibration over time, but whether that improvement happens
within a reasonable timeframe is something that would re-
quire more exploration.

The “golden sensor” method relies on a calibrated sensor
to calibrate other sensors in the network. The challenge with
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this approach is that the actual concentration is not known
once the sensor has left the reference instrument. At this
point measurements are just an estimate with a 95 % confi-
dence interval. The level of uncertainty in measurements (see
Fig. 4) would make it very challenging to pass a calibration
from one sensor to another without greatly increasing uncer-
tainty.

Regardless of the choice of calibration method, it is impor-
tant to consider variations in sensor data when conducting a
calibration and when interpreting future sensor results. As
Fig. 6 shows, calibrations may take weeks or longer in order
to capture all variations in the external factors that influence
sensor response. If these variations are not captured correctly,
then the resulting calibration may miss important changes to
sensor response that occur due to changing environmental
variables. Reliance on a calibration that does not account for
all variance in measurements may make sensor data less reli-
able. A calibration that also provides a PI ensures that future
results can be interpreted with statistical rigor.

4 Conclusions

Low-cost sensors have potential to provide a better under-
standing of temporal and spatial trends of pollutants like
particulate matter. Evaluations of low-cost particulate matter
sensors alongside reference instruments in Bartlesville, Ok-
lahoma, have been used to identify methods that ensure more
consistent evaluation and interpretation of sensor data.

Bias in sensor measurements varied over time but was very
closely correlated from one sensor to the next (see Fig. 2).
Because bias is so closely correlated, sensors can be de-
ployed in pairs as a simple way to identify erroneous mea-
surements (see Fig. 1). Finding ways to efficiently and ef-
fectively determine sensor performance is critical as sensors
become more widely adopted. Two of the most popular eval-
uation metrics, R2 and RMSE, can be influenced by aver-
aging time, choice of reference instrument, and the range
of concentrations observed (see Fig. 3). This study shows
how a prediction interval can be used as a more statistically
thorough evaluation tool. A PI offers a more robust method
of sensor evaluation and a statistical confidence interval for
interpretation of future sensor measurements (see Fig. 4).
When properly applied, this method can show how uncer-
tainty in sensor measurements varies as a nonlinear function
of observed concentrations and also varies with the averag-
ing time for measurements (see Fig. 5). A standard ambient
PM2.5 concentration could be chosen for simple comparisons
of uncertainty between sensors. For example, uncertainty
measurements from multiple sensors at 35 µg m−3 would al-
low convenient comparisons. Standardization of comparison
concentration, reference instruments, and averaging times
would allow more thorough decisions about which sensor is
best suited to a proposed task. Building an effective predic-
tion interval, linear regression, or any other calibration model

depends on capturing the necessary data (see Fig. 6), and
careful thought is required in planning the method and length
of time for a calibration. The work presented here shows how
adjustments to low-cost particulate matter sensor evaluations
can greatly improve the interpretation of future data.
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