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Abstract. The distribution and frequency of occurrence of
different cloud types affect the energy balance of the Earth.
Automatic cloud type classification of images continuously
observed by the ground-based imagers could help climate re-
searchers find the relationship between cloud type variations
and climate change. However, by far it is still a huge chal-
lenge to design a powerful discriminative classifier for cloud
categorization. To tackle this difficulty, in this paper, we
present an improved method with region covariance descrip-
tors (RCovDs) and the Riemannian bag-of-feature (BoF)
method. RCovDs model the correlations among different di-
mensional features, which allows for a more discriminative
representation. BoF is extended from Euclidean space to Rie-
mannian manifold by k-means clustering, in which Stein di-
vergence is adopted as a similarity metric. The histogram
feature is extracted by encoding RCovDs of the cloud im-
age blocks with a BoF-based codebook. The multiclass sup-
port vector machine (SVM) is utilized for the recognition of
cloud types. The experiments on the ground-based cloud im-
age datasets show that a very high prediction accuracy (more
than 98 % on two datasets) can be obtained with a small num-
ber of training samples, which validate the proposed method
and exhibit the competitive performance against state-of-the-
art methods.

1 Introduction

Clouds affect the Earth’s climate by modulating Earth’s ba-
sic radiation balance (Hartmann et al., 1992; Ramanathan et
al., 1989). Cloud type variations are shown to be as impor-
tant as cloud cover in modifying the radiation field of the
Earth–atmosphere system. For example, stratocumulus, al-
tostratus and cirrostratus clouds produce the largest annual
mean changes of the global top-of-atmosphere and surface
shortwave radiative fluxes (Chen et al., 2000). Cloud type is
also one of the most reliable predictors of weather, e.g., cir-
rocumulus clouds are a sign of good weather. Therefore, ac-
curate cloud type classification is in great need. Currently, the
classification task is mainly undertaken by manual observa-
tion, which is a labor-intensive and time-consuming method.
Benefiting from the development of ground-based cloud im-
age devices, we are able to continuously acquire cloud im-
ages and automatically classify the cloud types.

Clouds are by their very nature highly variable (Joubert,
1978), which makes the automatic classification a tough task.
It is found that structure and texture are suitable to describe
the visual appearance of clouds. The structural features in-
clude intensity gradient (Luo et al., 2018), mean grey value
(Calbó and Sabburg, 2008; Liu et al., 2011), the census trans-
form histogram (Xiao et al., 2016; Zhuo et al., 2014), edge
sharpness (Liu et al., 2011), and features based on Fourier
transform (Calbó and Sabburg, 2008). The textural features
contain the scale invariant feature transform (SIFT) (Xiao
et al., 2016), the grey level co-occurrence matrix (GLCM)
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(Cheng and Yu, 2015; Heinle et al., 2010; Huertas, 2017;
Kazantzidis et al., 2012; Luo et al., 2018), the local binary
patterns (LBPs) (Cheng and Yu, 2015) and its extensions (Liu
et al., 2015; Y. Wang et al., 2018). Commonly, no single fea-
ture is best suited for cloud type recognition; thus, most exist-
ing algorithms tend to integrate multiple features to describe
the cloud characteristics. However, those algorithms rarely
consider the correlations between different dimensional fea-
tures, which could lower the classification accuracy.

Within recent years, convolutional neural networks
(CNNs) have been exploited for multitudes of image recog-
nition models and have achieved remarkable performance
(Krizhevsky et al., 2012). Being different from hand-crafted
features, CNNs extract hierarchical features including the
low-level details and high-level semantic information. Re-
cently, plenty of studies (Shi et al., 2017; Ye et al., 2017) have
obtained encouraging results by extracting the cloud signa-
ture from pre-trained CNNs, such as AlexNet (Krizhevsky et
al., 2012) and VGGNet (Simonyan and Zisserman, 2015). In
addition, attempts have been made to simply exploit end-to-
end CNN models for cloud categorization (Li et al., 2020;
Liu et al., 2019; Liu and Li, 2018; Liu et al., 2018; Zhang
et al., 2018). However, the insufficiency of labeled samples
might make the network hard to converge in the training
stage.

The main challenges of the ground-based cloud image
classification task can be ascribed to the following reasons.
(1) One single feature cannot effectively describe different
types of clouds; we need to extract textural, structural and
statistical features simultaneously. (2) The scale of cloud
varies greatly; therefore, the extracted features should be ro-
bust in the presence of illumination changes and nonrigid
motion. (3) Different cloud types may have similar local
characteristics; thus, the global features need to be consid-
ered. To address those issues, we utilize region covariance
descriptors (RCovDs) to encode the features of the cloud
image blocks, and with the aid of the bag-of-feature (BoF)
method, we aggregate those local descriptors to obtain the
global cloud image feature for cloud type classification.

The performance of RCovDs (Tuzel et al., 2006) is proved
to be superior on object detection (Carreira et al., 2015; Guo
et al., 2010; Li et al., 2013; Pang et al., 2008) and classi-
fication tasks (Fang et al., 2018; Li et al., 2013; Wang et
al., 2012). As the second-order statistics of the image fea-
tures, RCovDs can provide rich and compact context rep-
resentations. The noises are largely filtered out by remov-
ing the mean values of the features. RCovDs are also scale
and rotation invariant, irrespective of the pixel positions and
numbers of sample points. Despite of their attractive proper-
ties, directly adopting RCovDs for cloud type classification is
still of difficulty on account of their non-Euclidean geometry
property. RCovDs are symmetric positive definite (SPD) ma-
trices and naturally reside in a Riemannian manifold, there-
fore, the machine-learning algorithms on Euclidean space
should be adapted for the automatic cloud image recognition.

In Euclidean space, BoF describes an image as a vector
from a set of local descriptors (Jégou et al., 2012), and it
aggregates the local features to obtain a global representa-
tion. Inspired by the work in (Faraki et al., 2015a), we encode
RCovDs of the local image blocks into a histogram by using
Riemannian counterpart of the conventional BoF, taking the
geodesic distance of the underlying manifold as the metric.

In this paper, we extend our previous work (Luo et al.,
2018), and propose an improved cloud type classification
method based on RCovDs. The diagram is shown in Fig. 1.
In the first step, we extract multiple pixel-level features such
as intensity, color and gradients from the cloud image blocks
to form RCovDs. In the second step, RCovDs are encoded
by the Riemannian BoF to output the histogram representa-
tion. In the last step, the histogram is taken as the feed of
the multiclass support vector machine (SVM) for cloud type
prediction.

The main contributions of this paper are the following:

– The RCovD is firstly introduced to characterize the
cloud image local patterns and the Riemannian BoF is
applied to encode RCovDs into image-level histogram.

– The impacts of Riemannian BoF codebook size and the
image block size on cloud type classification accuracy
are investigated.

– For the small training dataset, the proposed algorithm
offers better performance as compared to the state-of-
the-art approaches.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the ground-based cloud image datasets and
details the proposed cloud type classification method. Exper-
imental results and comparisons with other methods are pre-
sented in Sect. 3. Section 4 concludes our contributions and
discusses the future work.

2 Data and methodology

2.1 Dataset

2.1.1 SWIMCAT dataset

The Singapore Whole sky IMaging CATegories Database
(SWIMCAT) was captured by a wide-angle high-resolution
sky imaging system (WAHRISIS) (Dev et al., 2014), a cali-
brated ground-based whole-sky imager. During this observa-
tion, from January 2013 to May 2014, different weather con-
ditions spanning several seasons are covered and far-reaching
cloud categories are collected. The SWIMCAT dataset in-
volves 784 sky and cloud images, including five distinct
classes: clear sky, patterned clouds, thick dark clouds, thick
white clouds and veil clouds. Figure 2 shows sample im-
ages from each category, the images have a dimension of
125× 125 pixels (Dev et al., 2015).
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Figure 1. Pipeline of the proposed cloud classification method. Multiple pixel-level features are firstly extracted from the cloud image blocks
to form RCovDs; then the histogram representation of RCovDs is obtained by Riemannian BoF; finally, the cloud type is predicted by
multiclass SVM.

Figure 2. Sample images from the SWIMCAT dataset. The dataset includes five cloud types, namely, (a) clear sky, (b) patterned clouds, (c)
thick dark clouds, (d) thick white clouds and (e) veil clouds.

2.1.2 zenithal dataset

This dataset was acquired by the whole-sky infrared cloud-
measuring system (WSIRCMS), which is located in Nanjing,
China. The zenithal dataset contains 500 sky and cloud im-
ages, comprising five different categories: cirriform clouds,
clear skies, cumuliform clouds, stratiform clouds and wave-
form clouds (Liu et al., 2011, 2013). Figure 3 illustrates some
sample images of different cloud types, and the image size is
320× 240 pixels.

2.2 Feature extraction

The features for cloud type recognition should be representa-
tive and discriminative. In this paper, for the zenithal dataset,
seven features are extracted, including the image intensity
I (x,y), the norms of first- and second-order derivatives of
I (x,y) in both x and y direction, and the norm of gradient.
The zenithal cloud image is mapped to a seven-dimensional
feature space:

fz =

[
I |Ix |

∣∣Iy∣∣ |Ixx|
∣∣Ixy

∣∣ ∣∣Iyy
∣∣√|Ix |2+ ∣∣Iy∣∣2]T . (1)

As for the SWIMCAT dataset, we empirically choose the
grayscale of the B component, norms of first-order deriva-
tives of each color component and the norm of gradient.

Each pixel of the SWIMCAT image is transformed to a 13-
dimensional feature map.

fs = [B |Rx |
∣∣Ry∣∣ |Rz| |Gx | ∣∣Gy∣∣ |Gz| |Bx | ∣∣By∣∣ |Bz|√

|Rx |
2
+
∣∣Ry∣∣2+ |Rz|2√|Gx |2+ ∣∣Gy∣∣2+ |Gz|2√

|Gx |
2
+
∣∣Gy∣∣2+ |Gz|2]T (2)

We divide the cloud image into image blocks and then com-
pute the SPD matrices with the feature maps defined in
Eqs. (1) and (2). With the Riemannian BoF, those local fea-
ture descriptors in the form of SPD matrices are converted
into a histogram feature vector, which is used for cloud type
classification.

2.3 Region covariance descriptors

Let f be theW×H×d feature map extracted from the cloud
image I . For a given rectangular region R with size w×w, it
contains n= w×w pixels of d-dimensional feature vectors
{fi, i = 1,2. . .n}. The RCovD is defined by a d×d symmet-
ric covariance matrix CR:

CR =
1

n− 1

n∑
i=1
(fi −µ)(fi −µ)

T , (3)

where µ= 1
n

∑n
i=1fi is the mean of the feature vectors.
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Figure 3. Sample images from the zenithal dataset: (a) cirriform clouds, (b) clear sky, (c) cumuliform clouds, (d) stratiform clouds and (e)
waveform clouds.

The RCovD correlates different components of the fea-
ture vectors, the diagonal entry CR(i, i) represents the vari-
ance of ith components of n feature vectors, and the element
CR(i,j) denotes the covariance of the ith and j th compo-
nents. Specifically, RCovD subtracts the mean of the feature
vectors, so it can filter out the noise to a certain extent. Note
that there might be a slight chance that CR is not strictly pos-
itive definite; in this particular case, CR could be converted
into a symmetric positive definite (SPD) matrix by adding a
regularization term λE, where λ is a coefficient with a small
value which is set to 10−4

× trace(CR), and E is the identity
matrix (Huang et al., 2018; Wang et al., 2012; W. Wang et
al., 2018).

RCovDs belong to SPD manifold; when it is endowed with
a Riemannian metric, it forms a Riemannian manifold. Based
on the metric, the geodesic distance can be induced to mea-
sure the similarity of the image features. The geodesic dis-
tance is the length of the shortest curve between two SPD
matrices on SPD Riemannian manifold. The most common
distance is the affine invariant Riemannian metric (AIRM)
(Pennec et al., 2006):

δG(X,Y)=
∥∥∥log(X−1/2YX−1/2)

∥∥∥
F
, (4)

where ‖·‖F is the Frobenius matrix norm and log(·) denotes
the matrix logarithm. The matrix logarithm can be calculated
by singular-value decomposition (SVD); let A= U

∑
UT be

the eigenvalue decomposition of a symmetric matrix, then
the logarithm of A is given by

log(A)= U log
(∑)

UT . (5)

However, AIRM is computationally demanding. Driven by
such computational concerns, in this paper we adopt the
Stein divergence (Sra, 2012) as a Riemannian distance met-
ric, which is defined as

δS(X,Y)= (log
∣∣∣∣X+Y

2

∣∣∣∣− 1
2

log |XY|)
1
2 , (6)

where |·| denotes the determinant (det) operator.

2.4 Riemannian bag-of-feature method

BoF requires a codebook with k codewords, which are
usually obtained by clustering local descriptors. To extend

the conventional BoF from Euclidean space into SPD Rie-
mannian manifold M, two steps should be considered. (1)
Construct a codebook C= {Cj }kj=1 from a set of training
RCovDs X= {Xi}Mi=1. (2) Obtain a k-dimensional histogram
from a set of RCovDs E= {Ei}Ni=1with the codebook C.

An alternative way to learn a codebook is to apply the con-
ventional k-means clustering on vectorized RCovDs in the
tangent space (Faraki et al., 2015b); however, it neglects the
non-Euclidean geometric structure of SPD matrices. Taking
the Riemannian geometry of SPD matrices into considera-
tion, a possible way is to compute the cluster centers with
Karcher mean (Pennec, 2006). The Karcher mean finds a
point that minimizes the following object function:

C∗j = argmin
Cj

∑
i

δS
2 (Xi,Cj ) , (7)

where δS is Stein divergence to measure the geodesic dis-
tance of Xi and the clustering center Cj . Given the training
set X, the codebook C is initialized by randomly selecting
k RCovDs from X and iteratively updating the cluster cen-
ters using Eq. (7) until the average distance between each
point Xi and its nearest cluster is minimized. The procedure
is summarized in Algorithm 1. We choose the number of
codewords empirically by considering the trade-off between
classification accuracy and computation consumption, which
will be detailed in Sect. 3.

After obtaining the codebook C, the image-level feature
can be expressed with the histogram H of RCovDs. In the
most straightforward case, H can be yielded by hard-coding
each RCovD Ei to the closest codeword in C with Stein di-
vergence. The j th (1≤ j ≤ k) dimension of H denotes the
number of RCovDs assigned to the j th codeword. To demon-
strate the significance of the histogram feature generated by
Riemannian BoF, we randomly select half of the images in
the SWIMCAT dataset and partition each 125× 125 image
into 25 nonoverlapping image blocks of size 25× 25 to ex-
tract the second-order tensor features in the form of RCovD.
Then, we learn a codebook of 10 codewords with Algo-
rithm 1. In the same way, we select 20 images of each cloud
type from the remaining images in the SWIMCAT dataset to
construct a set of RCovDs for test and assign each RCovD
to the nearest codeword to obtain the RCovD histogram of
each cloud type. As shown in Fig. 4, RCovDs from differ-
ent cloud types have obviously separable codeword distri-
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butions. RCovD distributions of clear sky, pattern and thick
dark clouds are relatively concentrated, while the distribu-
tions of thick white and veil clouds are slightly scattered.
In particular, the RCovDs of veil clouds and clear sky are
assigned to almost the same codewords, which makes the
categorization of these two types challenging. Overall, our
proposed Riemannian BoF provides vectorized discrimina-
tive representation for the cloud classification task.

2.5 Classification

SVM has significant performance in the classification task,
since it establishes an input–output relationship directly from
the training dataset; it excludes the need for any a priori as-
sumptions or specific preprocessing phases. Another merit is
that, once the training procedure is finished, the classifica-
tion is directly obtained in real time with a strong reduction
in computation (Taravat et al., 2015).

For m-class classification tasks, there are several ways to
build SVM classifiers. In this paper, the “one-against-one”
method is adopted, in which m(m− 1)/2 binary classifiers
are constructed, and each classifier distinguishes one cloud
type from another. We use the voting strategy to designate
the cloud image to the category with the maximum number
of votes (Chang and Lin, 2007; Hsu and Lin, 2002; Knerr et
al., 1990; Kreßel, 1999). The proposed algorithm is summa-
rized in Algorithm 2, in which SVM is implemented by the
LIBSVM toolbox (Chang and Lin, 2007).

Figure 4. Histogram of RCovDs from different cloud types on
SWIMCAT dataset. RCovDs from different cloud types have dis-
tinctive codeword distributions. RCovD distributions of clear sky,
pattern and thick dark clouds are relatively concentrated, while the
distributions of thick white and veil clouds are slightly scattered.
RCovDs of veils clouds and clear sky are assigned to almost the
same codewords, which makes the categorization of these two types
challenging.

3 Experiments and discussion

To demonstrate the performance of our proposed cloud type
classification method, we conduct several experiments on the
SWIMCAT and zenithal datasets. We firstly analyze the ef-
fects of the two parameters (i.e., the codebook size k and the
image block size w×w) involved in the proposed algorithm
on cloud type classification accuracy. Then, we design an
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empirical validation with various training and test partitions.
Finally, we quantitatively evaluate and compare the best re-
sults of different methods, i.e., weighted local binary patterns
(WLBP) (Liu et al., 2015), block-based cloud classification
(BC) (Cheng and Yu, 2015), and Luo’s methods (Luo et al.,
2018).

3.1 Parameter configuration analysis

In order to assess the impacts of the codebook size, i.e., the
centroids number k, and the image block sizew×w on cloud
classification accuracy, we conduct a sensitivity analysis on
the SWIMCAT and zenithal datasets. In our experiments, k
ranges from 5 to 40 with interval 5, and w ranges from 8 to
120 with the step size of 4. For a given w, the W ×H × d
feature map is divided into

⌊
W
w

⌋
×
⌊
H
w

⌋
× d blocks starting

from the upper left corner of the feature map, and the incom-
plete blocks at the edges are dropped. We randomly choose 9
out of every 10 images (9/10) of the dataset for training, and
the rest are for testing. The classification accuracy of each

parameter configuration, as shown in Fig. 5, indicates that,
to a certain extent, the larger the number of codebook size,
the better the performance for both datasets. However, we
observe that the improvement is not statistically significant
after k exceeds 20, while the computing burden increases
obviously. In fact, the complexity of the Riemannian BoF
is mainly determined by the cluster center number. We note
that as the block size w increases, the classification accuracy
increases first and then degrades beyond the highest point,
this trend is especially evident for the zenithal dataset. The
reason is that larger blocks can capture more abundant tex-
ture information, while the local details might be ignored.
Therefore, in the following experiments, considering trade-
offs between classification accuracy and efficiency, we set
k = 30 and w = 24 for the SWIMCAT dataset, and k and w
are set to 35 and 52 for the zenithal dataset, respectively.
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Figure 5. Sensitivity analysis of parameters k and w in the proposed method on the SWIMCAT dataset (a) and the zenithal dataset (b).

Figure 6. Performance analysis of training images with different
proportions on the SWIMCAT dataset and zenithal dataset.

3.2 Evaluation of dataset with small sample size

In machine-learning tasks, suitable annotated data samples
are in short supply and quite costly for classifier training and
testing. Since manual labeling requires much work, it is of
great significance to reduce the dependence of the classifi-
cation model on the labeled dataset. To estimate the perfor-
mance of the proposed method comprehensively, we extract
different proportions of training images randomly from each
dataset and take the rest of the images as the test set. In order
to guarantee the stability of the classification results, each
experiment was repeated five times to take the average as
the final classification result. Figure 6 shows that in the sit-
uation of small sample size, for the SWIMCAT dataset, the
proposed method achieves an accuracy of more than 90 % on
the test set with only 3 % of images (i.e., 24 out of 784) of
the dataset as the training set. The accuracy can be improved
by 5 % at least when the training set accounts for 9 % of the
images (i.e., 72 out of 784). As for the zenithal dataset, our

Figure 7. The confusion matrix of the SWIMCAT dataset classifi-
cation results using our proposed method. Nine-tenths (9/10) of the
dataset is used for training and the rest is used for testing; the overall
classification accuracy is 98.4 %.

method obtains more than 90 % classification accuracy on the
test set when we randomly select 6 % of the images (i.e., 30
out of 500) of the dataset as training set, and achieves more
than 95 % accuracy when the proportion of training images
increases to 10 %. Generally, our proposed method signifi-
cantly fulfills a high classification accuracy in small training
sample situations. This is remarkable, considering that our
proposed method is combining just RCovDs and Riemannian
BoF. In conclusion, the proposed method requires only a few
manually labeled samples to achieve a high cloud type recog-
nition accuracy.

3.3 Comparison with state-of-the-art methods

Iterated cross validation is chosen as an effective scheme to
verify the performance of the classifier. This strategy esti-
mates the performance by randomly choosing a part of the
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Figure 8. Misclassified images of the SWIMCAT dataset. The yellow labels are the ground truth, and red labels are predicted cloud types.
The veil clouds are prone to be misclassified as clear sky, since the veil clouds are thin and have high light transmittance; some veil clouds
are misclassified as thick white cloud, when the camera lens is contaminated and the clouds are too thick. Besides, a small amount of thick
white cloud is misclassified as clear sky, pattern clouds or veil clouds.

samples for independent training and testing the model with-
out these samples and repeating the procedure dozens of
times (Beleites et al., 2013). In each experiment, we ran-
domly select the same proportion (i.e., 1/10, 5/10, 9/10) of
images for each category as the training set, and the remain-
ing images are used as the test set. Each classification exper-
iment is repeated 50 times to obtain the average accuracy as
the final experimental result.

We compare the performance of our method with the best
results published with the SWIMCAT dataset in Table 1. No-
tice that our algorithm utilizing RCovDs has a 2.58 % ac-
curacy rate with the SWIMCAT dataset compared to other
methods when the training sample accounts for 1/10 of the
total data. And when the training sample accounts for 5/10
and 9/10, the proposed method is slightly higher than Luo’s
method and much higher than the other two methods. Fig-
ure 7 shows the confusion matrix of classification results with
our proposed method on the SWIMCAT dataset, with 9/10 of
the dataset as training set. The discrimination rates of clear
sky, pattern clouds and thick dark clouds are perfect at 100 %,
which demonstrates that these three types tend to be easily
distinguished among all cloud types since they have the most
significant features. Figure 8 shows two misclassified exam-
ples of the SWIMCAT dataset, where yellow labels are the
ground truth and the red labels are the cloud types predicted
by our method. Notice that the veil clouds are prone to be
misclassified as clear sky, since the veil clouds are thin and
have high light transmittance. Moreover, some veil clouds
are misclassified as thick white cloud, when the camera lens
is contaminated and the clouds are too thick. Besides, a small
amount of thick white clouds is misclassified as clear sky,
pattern clouds or veil clouds.

As for the zenithal dataset, Table 2 illustrates that the
proposed method gains the highest overall accuracy com-
pared with the other approaches. Figure 9 displays the con-
fusion matrix of classification results with our method on
the zenithal dataset, when 90 % of the dataset is used as the
training set. The discrimination rates of clear sky, cumuli-

Figure 9. The confusion matrix of the zenithal dataset classification
results using the proposed method. Nine-tenths (9/10) of the dataset
is used for training, and the rest are used for testing; the overall
accuracy is 98.6 %.

form clouds and stratiform clouds are up to 100 %. Only a
small part of waveform clouds is misclassified as clear sky
or cirriform clouds. In addition, some of the cirriform clouds
are misclassified as clear sky or waveform clouds. Figure 10
illustrates the misclassified images of the zenithal dataset;
waveform clouds and cirriform clouds are easy to be catego-
rized as clear sky if the size of sky area is much larger than
that of clouds. The reason why the waveform clouds and cir-
riform clouds are confused with each other is that they some-
times have extremely similar textures.

4 Conclusions

To tackle the challenge of automatic cloud type classification
for ground-based cloud images in this paper, we present a
new classification method with RCovDs as the local feature
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Figure 10. Misclassified images of the zenithal dataset. The yellow labels are the ground truth, and red labels are predicted cloud types.
Waveform clouds and cirriform clouds are categorized as clear sky because the size of sky area is much larger than that of clouds, and these
two cloud types are easily confused as they share similar local patterns.

Table 1. Classification accuracy (%) of the SWIMCAT dataset ob-
tained by different methods.

Method 1/10 5/10 9/10

WLBP (Liu et al., 2015) 72.31 84.52 88.86
BC (Cheng and Yu, 2015) 93.86 94.87 95.04
Luo’s methods (Luo et al., 2018) 91.83 97.72 97.86
Our method 96.44 98.40 98.40

Table 2. Classification accuracy (%) of the zenithal dataset obtained
by different methods.

Method 1/10 5/10 9/10

WLBP (Liu et al., 2015) 81.64 92.24 93.48
BC (Cheng and Yu, 2015) 81.30 81.32 81.32
Luo’s methods (Luo et al., 2018) 90.85 95.98 96.36
Our method 95.00 97.40 98.60

representation. RCovDs provide a simple way to fuse mul-
tiple pixel-level features, which improves the discriminative
ability for cloud images. The image-level information is ob-
tained by applying Riemannian BoF to encode RCovDs into
a histogram. Finally, we apply the one-against-one multiclass
SVM as the classifier.

It is noted that even tough we choose relatively simple
image features to calculate RCovDs, the performance of the
proposed method is still impressive. We conducted a param-
eter analysis experiment and figured out how block size w
and codeword number k affect the accuracy of the proposed
method. Classification experiments with different training set
sizes demonstrate that our method is still efficient in the case
of a small training set, which can greatly reduce the labor for
labeling. In the third experiment, we compared our method to

the other three cloud classification algorithms with different
configurations of training and test sets. As the experimental
results validate, the proposed method is competitive to state-
of-the-art methods on both SWIMCAT and zenithal datasets.

In future work, features like LBP or GLCM could be gath-
ered and mapped into Riemannian manifold, and the mul-
tiscale block strategy can be taken into consideration for
a higher cloud type categorization accuracy. Other aspects,
such as the complex sky conditions with various cloud types,
should be deeply investigated to fulfill the application needs.
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