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Abstract. Wind retrieval parameters, i.e. quality indica-
tors and the two-dimensional variational ambiguity removal
(2DVAR) analysis speeds, are explored with the aim to im-
prove wind speed retrieval during rain for tropical regions.
We apply the well-researched support vector machine (SVM)
method in machine learning (ML) to solve this complex
problem in a data-oriented regression. To guarantee the ef-
fectiveness of SVM, the inputs are extensively analysed to
evaluate their appropriateness for this problem, before the re-
sults are produced. The comparisons between distributions
and differences between data of rain-contaminated winds,
corrected winds and good quality C-band winds illustrate
that the rain-distorted wind distributions become more nomi-
nal with SVM, hence much reducing the rain-induced biases
and error variance. Further confirmation is obtained from a
case with synchronous Himawari-8 observation indicating
rain (clouds) in the scene. Furthermore, the estimation of si-
multaneous rain rate is attempted with some success to re-
trieve both wind and rain. Although additional observations
or higher resolution may be required to better assess the ac-
curacy of the wind and rain retrievals, the ML results demon-
strate benefits of such methodology in geophysical retrieval
and nowcasting applications.

1 Introduction

It is well known that the structure of the atmosphere and
ocean depends on the motions driven by radiation affecting
the redistribution of heat. The circulations imply wind con-
vergence to elevate water vapour from the ocean surface that

then forms clouds and rain, while rain, in turn, causes down-
drafts. These interactions of the air and the ocean underneath
connected by the basic mass, momentum and energy equa-
tions involving winds, heat and moisture are vital for under-
standing the Earth system (Gill, 1982). In the tropics, the res-
olution of moist convection is key for improving earth system
simulations (Bony et al., 2015).

Observed ocean surface wind fields (OSWs) are essential
to investigate such processes and related applications. An ef-
ficient method of acquiring large coverage and good quality
OSW is by using the retrievals from scatterometers with an
application history of up to 40 years (Linwood Jones et al.,
1979; Stoffelen et al., 2019). Scatterometers are real aper-
ture radars providing stable and accurate normalized radar
cross sections (NRCSs) of the wind-roughened ocean surface
in different azimuthal directions from oblique incidence an-
gles. The winds are then obtained in a maximum likelihood
estimation method (MLE) from the measured NRCSs within
a wind vector cell (WVC) with reference to a geophysical
model function (GMF). Generally, a WVC is a square of the
size 25 km× 25 km, and GMFs are empirical models map-
ping NRCSs from scatterometers in different frequencies,
polarizations and observing geometries to winds.

Rain products provide another important information for
air–sea interaction. In the Global Precipitation Mission
(GPM), one of the core instruments is the dual-frequency
precipitation radar (DPR) working at Ku and Ka bands in
nadir-looking mode. Rain is then obtained by relating the
radar cross sections to a chosen distribution of precipitation
particles. Meanwhile, rain products from infrared observa-
tions are also widely used, for example, rain rates from the
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Spinning Enhanced Visible and Infrared Imager (SEVIRI)
aboard the Meteosat Second Generation (MSG) satellite,
which is derived by considering retrieved cloud-condensed
water path (CWP), particle distribution and cloud thermody-
namic phase (Wolters et al., 2011). Both rain products are
good references for rain in Ku-band wind scatterometry (Xu
et al., 2020a), though the high spatial and temporal variability
of rain generally challenges small collocation errors and high
correlation between instantaneous rain data sets (e.g. Liu et
al., 2020).

Combined retrievals of wind and rain are generally ap-
plying synchronous passive measurements from radiometers
for rain in the scatterometer case (Stiles and Dunbar, 2010),
while in addition to rain, winds are retrieved in GPM re-
searches (Li et al., 2004). Radiometer winds are of coarser
spatial resolution and are not adept for wind direction re-
trieval, which would require the third and fourth Stokes pa-
rameters that are now generally obtained in a low signal-
to-noise ratio (SNR). Scatterometers are not specifically de-
signed for acquiring precipitation profiles. When rain clouds
affect the observations, the winds obtained from a wind GMF
will deviate from the truth, resulting in biases in the re-
trieved wind and an increased retrieval residual, called MLE.
Since rain is spatially more heterogeneous than winds are,
rain can be captured and estimated in the NRCS set within
a WVC. Considering the distances of NRCS observations
to the wind GMF, the retrieved wind and with the refer-
ence to rain observations from the Tropical Rainfall Mea-
suring Mission (TRMM) Precipitation Radar (PR), wind and
rain may be segregated (Owen and Long, 2011; Draper and
Long, 2004). Furthermore, the heterogeneous rain within a
WVC can be depicted from indicators applied in scatterome-
ter quality control (QC) (Portabella and Stoffelen, 2002; Lin
and Portabella, 2017). Joss is a recent indicator developed
for tropical regions for rain screening, which has been ver-
ified to correlate well with rain for Ku-band scatterometers
(Xu and Stoffelen, 2020; Xu et al., 2020a). From a concep-
tual point of view, the MLE identifies the WVC NRCS sets
that do not follow the wind GMF. Two main reasons have
been identified for such discrepancy, which are (1) enhanced
wind variability and (2) rain. Fortunately, collocated opera-
tional C- and Ku-band observations are available when, due
to the longer wavelength at the C band (about 5 cm) than
Ku band (about 3 cm), standard QC, based on MLE, rejects
10 times more Ku-band than C-band winds, i.e. about 5 %
of its observations. Hence, specifically in tropical regions,
the accepted C-band winds can be used to verify their Ku-
band collocations, which helped to develop the Joss indica-
tor and verify the performance of the other Ku-band QC in-
dicators. In addition, extreme convergence and divergence in
C-band winds have been related to tropical moist convection
and rain, where convergence proceeds rain by about 30 min,
while extreme divergence occurs simultaneously with rain in
convective downdrafts for C-band winds, hence illustrating
the physical integrity of C-band winds in the presence of rain.

C-band rejections correspond to the most extreme variability
in WVCs, including wind gradients induced by heavy precip-
itation downdrafts (King et al., 2017). The different rain sig-
natures in C- and Ku-band scatterometers can cast a light on
developing methods for correction of the rain-affected winds
in Ku-band scatterometer retrievals by referring to their C-
band collocations. Particularly, the combination of MLE and
Joss appears promising to segregate wind variability and rain
effects in Ku-band retrievals.

To derive the complexly associated wind and rain infor-
mation referred to above, machine learning (ML) may prove
to be a powerful tool, which can be applied with knowledge
of the validity of the underlying principles (Reichstein et al.,
2019). In fact, ML methods have long been well researched
in wind scatterometry (Thiria et al., 1993; Stiles and Dunbar,
2010). For common roughness conditions, it cannot exceed
the performance of GMF-based methods (Cornford et al.,
1999), but ML may be effective in rainy conditions. Among
the ML methods, support vector machine (SVM) is one based
on the Mercer theorem, complements the empirical risk mini-
mization with Vapnik–Chervonenkis (VC) confidence, infers
statistical relations without a priori distributions and gives no
regional minimum (Vapnik, 1998). It can establish an infor-
mation space based on the training set and if the data applied
in training are well representative of the problem; it also re-
quires fewer samples than other ML methods. Aside from
that, SVM already provides good results in rain rate estimates
(Kumar et al., 2021).

In this research, SVM is applied for wind correction of
rain-affected winds of Ku-band scatterometers, considering
quantified rain and rain effect information captured in the
QC indicators of Ku-band observations. The GPM rain prod-
ucts and collocated accepted winds from C-band products are
used as references. When this SVM model has been estab-
lished, without C-band collocations, the rain-contaminated
winds can be corrected with Ku-band winds and their QC in-
dicators alone. First, in the Method section, the underlying
principles of the problem of rain signatures in scatterome-
try are addressed in detail with a brief on error requirement
for assimilation application before data description. Then, in
the experimental part, results for the testing set, not applied
in the training procedure, demonstrate a minimum mean dif-
ference of −0.12 m/s at about 8 m/s and a largest difference
of −3.25 m/s at about 14 m/s Advanced Scatterometer (AS-
CAT) speed. The distribution of the corrected winds and
the scatter plots against C-band winds are inspected, with
a check on wind differences in each wind speed bin of the
original and corrected winds against ASCAT winds, proving
the more unbiased and symmetric error of the corrected set,
illustrating the advantage of applying SVM. The similarity of
the corrected distribution with the references provided from
collocated ASCAT winds and the reduced mutual differences
indicates that to a certain extent the local (WVC) wind scales
are recovered by the SVM corrections. Results suggest that
the method resolves the heterogeneity induced by rain clouds
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in MLE and Joss with the settings of the proposed SVM.
Furthermore, a case without rain collocations, and thus not
involved in deriving the corrections, is provided as a case
study for verification, where simultaneous images from the
Himawari-8 provide a concrete view of the rain clouds in the
scene.

In the discussion part, rain labelling and regression SVMs
are established with the same inputs, attempting rain estima-
tion from scatterometer winds by employing SVM. The rain
identification accuracy is 72 % for the independent test set
not applied in the training procedures. While for rain rate es-
timation, the correlation coefficient of SVM rain with GPM
products achieves 0.47 for the independent testing set. An
analysis of the uncertainties in the SVM model and possible
improvements in the rain estimation procedure are also dis-
cussed. The corrected winds increase the global wind cover-
age and, in synergy with the rain information provided, ben-
efit nowcasting applications (Majumdar et al., 2021). This
research illustrates an example of complex data-driven ML
methods, complementary to traditional methods in complex
problems, which motivates and demonstrates the adhibition
of the ML method in meteorological applications.

2 Method

Research on observation errors, i.e. the deviations from the
truth, together with the monitoring information obtained
from differences between scatterometer winds and models,
support numerical weather prediction (NWP). Among the er-
rors, undetermined geophysical dependencies including rain
effects are to be corrected to better understand model bi-
ases (Stoffelen et al., 2021), while it cannot be achieved
by a first-order correction. Apart from this, the control vari-
ables, defining multivariate background errors and correlated
errors between variables are modelled by linear regression
(Descombes et al., 2015). Also, the 3D-Var and Kalman
filter assumes linear or quasi-linear and Gaussian features
in observation operator and error distributions, respectively,
when 4D-Var considers additional dynamical constraints in
the time dimension (Parrish and Derber, 1992; Courtier et
al., 1994). Hence, linearized Gaussian or quasi-Gaussian er-
rors are vital for the assimilation of observations. We seek
to address and correct biases in Ku-band scatterometer wind
retrievals due to rain. In the following part, first, the complex
rain signatures in wind scatterometer observations are anal-
ysed, demonstrating non-Gaussian error features before the
principles of SVM are introduced.

2.1 Rain characteristics in MLE, Joss and the fractal
parameter α

When compared to the C-band winds that are of good quality
(accepted), collocated Ku-band QC-rejected WVCs in tropi-
cal regions are affected by rain due to the shorter observing

wavelength (Xu and Stoffelen, 2020). The wind QC is de-
termined by QC indicators, and the indicator widely applied
in operational wind products is the MLE residual obtained
through wind inversion. Using allN (number of) NRCS mea-
surements obtained within a WVC, the maximum livelihood
estimation procedures are applied for wind retrieval. The
MLE residual is a normalized Euclidian distance to the cone
determined by GMFs (Stoffelen and Anderson, 1997):

MLE=
1
N

N∑
i

(
σ oi − σsimi

)2(
Kpi · σ

)2 , (1)

where σ oi is the ith NRCS of the N NRCSs within a WVC,
Kpi is a dimensionless constant determined by instrument
noise, and σsimi

is from a wind GMF indexed by observing
geometry and the local wind vector. Before wind inversion,
NRCS are well calibrated for instrumental as well as GMF
uncertainties that are generally small (∼ 2 %) and are repro-
ducible or systematic. NRCS calibration and GMF bias term
uncertainties lead to wind speed probability density func-
tion variations. Errors in the harmonic terms of the GMF
may lead to wind direction errors, and in systematic wind
speed errors that have associated wind direction errors, and
vice versa (Portabella and Stoffelen, 2002). During the two-
dimensional variational ambiguity removal (2DVAR) proce-
dure that optimizes wind vector selection (Vogelzang and
Stoffelen, 2011), essentially the WVC MLE associated with
the selected direction is determined. At the same time, the
2DVAR low-pass-filtered analysis winds, which are here re-
ferred to as 2DVAR winds, are calculated. When rain affects
the NRCS, the GMF does not represent the NRCS measure-
ments well, as rain effects are not considered in the wind
GMFs (Stoffelen, 1998). Therefore, this part of the GMF er-
ror due to missed or incompletely modelled rain processes
generates errors of a class that cannot be eliminated by cal-
ibration and induces deviation of error distributions from
the well-calibrated random Gaussian shape. Note that the
Royal Netherlands Meteorological Institute (KNMI) QC flag
is based on MLE values, and in the Ku-band rejections and
C-band acceptances in tropical regions, the rejections are
mainly caused by rain. Hence, MLE values of the 2DVAR
selected Ku-band wind can be related to rain effects that al-
ter the amplitudes of NRCSs.

However, at the same time, the 2DVAR winds do not use
QC-flagged WVCs and are hence not affected by local distur-
bances introduced by rain. The wind speed correction proce-
dure employed here hence does not change the 2DVAR anal-
ysis field, nor the selected wind direction at the rain-affected
WVCs obtained during the elaborate 2DVAR multiple so-
lution scheme (MSS) (Vogelzang and Stoffelen, 2018). The
rain effect is estimated by the wind speed difference of the
2DVAR analysis wind speed f and the selected observational
wind speed fs, corresponding to the wind direction obtained
by 2DVAR (Xu and Stoffelen, 2020):

Joss= f − fs. (2)
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Note that the 2DVAR winds are low-pass filtered and of
relatively coarse resolution, ignoring rain-affected WVCs
through MLE-based QC (Vogelzang, 2007). Since the spa-
tially heterogeneous tropical rain clouds are generally of
smaller spatial scale than a WVC, rain effects in the 2DVAR
analysis winds can be ignored and taken as the true winds
(Stoffelen and Vogelzang, 2018). Hence, Joss values can
screen and eliminate false alarm rate (FAR) for MLE-based
QC results for Ku-band wind products after 2DVAR process-
ing, indicating rain information (Xu et al., 2020b).

Usually rain clouds will cause negative Joss for wind
speeds below 15 m/s. A WVC is usually partially heavy rain,
and since Ku-band rain saturates around 18 m/s, hereafter the
parameter for area fraction α for Ku-band winds can be ex-
pressed as

α =
Joss
f − 18

. (3)

As 18 m/s winds cannot be distinguished from rain and to
allow rain sensitivity, the rain effect correction set is limited
to

Joss<0.33f − 5 (4)

for retrieved 2DVAR speed smaller than or equal to 11 m/s.
For 2DVAR wind speed larger than 11 m/s, the set is limited
to Joss<− 1.33 (Xu and Stoffelen, 2021). Then the negative
values of α corresponding to positive Joss when wind speeds
are smaller than 18 m/s can be due to effects of local variance
of the ocean surface. Larger wind speed than 18 m/s and pos-
itive Joss may happen when both rain and winds are large
in the scene. For tropical rain, this practically only occurs in
hurricanes but has not yet been investigated with respect to
Joss in the criterion above. Thus, this parameter can provide
relative information of rain within the WVC from 2DVAR
residuals.

Enhanced wind variability enhances MLE due to beam
collocation errors. In particular, extreme wind convergence
and divergence are associated with heavy rain (King et al.,
2017). The wind variability associated with heavy precip-
itation may enhance the wind speed, just like rain does at
the Ku band, but which has been investigated by comparing
the 2DVAR winds with ASCAT winds. ASCAT winds are
equally sensitive to wind speed variations at the surface but
much less sensitive to rain cloud scattering effects. Hence,
the effect due to amplitude alternations for a single NRCS in
a tropical scene with rain clouds can be obtained by the rain
screening ability of Joss.

From the above contents and equations, rain effects can
be represented by MLE, Joss, and the observational wind in
the Ku-band retrieval, while the 2DVAR analysis wind pro-
vides information on rain sensitivity. In this research, for the
C-band QC-accepted and Ku-band-rejected WVCs, after the
FAR set is eliminated, the Ku-band WVCs are collocated
with rain rates from GPM products. Then MLE, Joss values

and the 2DVAR winds and observational winds are applied as
inputs to the SVM model, with the training destination set as
the collocated C-band winds. In the established model, cor-
rected winds closer to the observed C-band winds may be ob-
tained for rain-affected Ku-band WVCs, by eliminating non-
Gaussian errors within a WVC caused by rain. Moreover, the
SVM model, when established, could be applied for Ku-band
rejections.

2.2 The principle of SVM regression

The SVM regression procedures map input vectors to a space
of higher dimension before the regression is conducted.
When the mapping is obtained and thus described by ker-
nel functions determined from the training sets, non-linear
features are linearized. This provides a possibility for solv-
ing problems that are non-convex and difficult to solve in
the original input space, as well as linearizing intricate re-
lations. Specifically, during the training procedure, weights
for the input vectors in the training set in the mapped space
is determined, and the corresponding support vectors (SVs)
can be identified by the values of corresponding weights,
while the weights are applied to scale similarities with other
vectors in the training set. On the other hand, they are ob-
tained by minimizing distances with the targets of the train-
ing vectors. Moreover, the similarity is measured between
the kernel function mapped inputs. In this way, it allows the
data involved in training to embody the underlying model in
a space that facilitates information extraction. Furthermore,
L2-normalized distance minimization is achieved by an ob-
jective function expressed as the distances between the vec-
tors in the training sets to the plane fixed by the weighted
support vectors in the mapped space (Vapnik, 1998).

The employed kernel functions are linear, generally poly-
nomial or Gaussian radial basis functions (RBFs). Among
them, the RBF, or the Gaussian kernel, is superior in un-
limited dimension mapping and easier in hidden parameter
setting. For RBF, the similarity between a vector x and the
selected support vector l(1) is expressed as (Vapnik, 1998;
Smola and Schölkopf, 2004)

f1 = exp(−
|

∣∣∣x− l(1)∣∣∣ |2
2σ 2 ), (5)

where σ is the scale parameter weighting the similarity of x
and l(1). And the larger the value of σ is, the more x and
l(1) can be taken as similar. If the L2 distance (Euclidean
distance) is applied,

f 1
= exp(−

∑n
j=1(xj − l

(1)
j )2

2σ 2 ). (6)
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When θ i are weights, y(i) is the target value corresponding
to xi , the objective function can be expressed as

minθ

(
C

m∑
i=1

y(i)cost1
(
θT f (i)

)
+

(
1− y(i)

)
×cost0

(
θT f (i)

)
+

1
2

m∑
j=1

θ2
j

)
, (7)

where C is the relaxation coefficient and the L2 distance (Eu-
clidean distance) is applied as the cost functions cost1 and
cost0 (Smola and Schölkopf, 2004; Chang and Lin, 2011).

3 Data and experiments

3.1 The expression of rain in wind retrieval parameters

The representativeness of the data sets from which the fea-
tured SVs are obtained is vital in the SVM procedure. In this
research, the C- and Ku-band collocations of scatterometer
winds are from the Advanced Scatterometer-A (ASCAT-A)
and ASCAT-B aboard the Meteorological Operational Satel-
lite Program of Europe (MetOp) series and the scatterom-
eter aboard the Scatsat-1 satellite (OSCAT-2) respectively.
Then the ASCAT-A, ASCAT-B and OSCAT-2 L2 wind prod-
ucts are from the Ocean and Sea Ice Satellite Application
Facility (OSI SAF) of the European Organization for the
Exploitation of Metrological Satellites (EUMETSAT), over
a period from October 2016 to January 2019. The WVC
sizes are 25 km× 25 km on the Earth’s surface. Where the
OSCAT-2 Ku-band winds are sea surface temperature (SST)-
corrected sweet swath WVCs with better NRCS azimuth di-
versity than the nadir and edge swath (Portabella, 2002).
The collocation time lag is within 30 min (min) with the
spatial distances between ASCAT and OSCAT-2 WVC cen-
tres less than 12.5 km. While the background winds are
from the European Center for Medium-range Weather Fore-
casts (ECMWF), the 10 m 3-hourly forecast 0.125◦ winds
are used. GPM rain products used here are the version 5
0.1◦-gridded Integrated Multi-satellitE Retrievals for GPM-F
(IMERG-F) (Huffman et al., 2018) within a time difference
to OSCAT-2 WVCs of 4.8 min. Furthermore, rain products
are area weighted over the OSCAT-2 WVCs to obtain WVC-
representative rain rates (Xu et al., 2020a). Finally, for val-
idation, the images of the 11th band (medium infrared, MI,
8.6 µm) with 2 km resolution in the tropics are also used for
reference (Japan Meteorological Agency, 2015).

Figure 1 plots the 732 614 collocated wind speeds in the
ASCAT-A-accepted and OSCAT-2-accepted set (QC-I set) in
(a), corresponding MLE values of OSCAT-2 in (b), Joss in (c)
and collocated rain rates in (d) and (e). Figure 2 shows the
same plots for the ASCSAT-A accepted winds but now for
rejected OSCAT-2 collocations (QC-II), after that the false
alarms in the KNMI OSCAT flags were eliminated by Joss
(FAE), with 9339 WVCs (Xu et al., 2020b).

In Fig. 1a, we note that observed wind distributions from
ASCAT and OSCAT-2 are similar, while in Fig. 2a, the Ku-
band winds are much elevated with respect to ASCAT and
clearly suspect, as the ASCAT wind distribution appears
nominal and similar to that in Fig. 1a. The MLE values are
mostly nominal and distributed over the bins under 10 in
Fig. 1b, while typical values are very large and around 50
in Fig. 2b. For comparison, in panel (c) of Fig. 1, Joss values
are small with values close to 0, wherein Fig. 2 values are
typically 4 m/s. Comparing panels (d) and (e) in both figures,
there is little rain in QC-I, while rain is dominant in Fig. 2,
consistent with both the elevated MLE and Joss values. Also,
in Fig. 2e, the criterion of Joss in the FAE set can be observed
from its upper limit.

We note from Figs. 1 and 2 that rain casts effects on
OSCAT-2 data, while collocated ASCAT winds remain of
acceptable quality. The winds distorted by rain (clouds) are
clearly segregated by the FAE, resulting in a deformed speed
distribution, as well as much elevated MLE and Joss, that all
can be potentially related to WVC rain rate.

3.2 SVM for Ku-band wind correction in rain

For the correction of rain effects a SVM model is established,
where the inputs are determined by the wind–rain-related pa-
rameters, as described in the previous sections. Specifically,
the inputs and outputs are in Table 1.

The SVM tool from sklearn is applied, which is based on
the libsvm to realize the procedure described in Sect. 2 for
SVM (Chang and Lin, 2011). In total, there are 18 528 WVCs
obtained from FAE in OSCAT-2 collocations for ASCAT-A
and ASCAT-B together. Among them, 70 % (12 969 WVCs)
are used in training and 30 % (5559 WVCs) for testing or val-
idation. Note that the testing set is not applied in the training
procedure.

4 Results and validation

4.1 Results

Starting from the large input biases illustrated in Fig. 3a, typ-
ically 5 m/s, Fig. 3 shows the corrected winds against the ac-
cepted winds from ASCAT-A and ASCAT-B for the training
set in (a) and the validation set in (b), while in (c) and (d),
the observational winds and 2DVAR winds of OSCAT-2 are
also plotted against ASCAT winds. Some of the correspond-
ing statistics are listed from (a) to (d) in Table 2.

As can be seen from Fig. 3a and b, and from the corre-
sponding values in Table 2a and b, the testing set exhibits
similar statistics to the training set for wind speed correc-
tion established by SVM. Note that most of the QC-II FAE
wind speeds are distributed from about 4 to 14 m/s, which is
typical for rain clouds in moist convection (Xu and Stoffe-
len, 2020). For speeds in this range, the largest differences
of mean values with the bin centre values are −3.69 and
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Figure 1. Collocated wind speed distributions in the QC-I set (a), corresponding MLE distribution of OSCAT-2 (b), Joss (c), collocated rain
rates with reference to MLE (d) and Joss (e).

Figure 2. Collocated wind speed distributions in the QC-II FAE set (a), corresponding MLE distribution of OSCAT-2 (b), Joss (c), collocated
rain rates with reference to MLE (d) and Joss (e).
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Table 1. Inputs and outputs for the SVM of wind speed correction.

Inputs Output Values of output for training

OSCAT-2 MLE in dB

Corrected OSCAT-2 wind speed [m/s] ASCAT wind speed [m/s]
α from OSCAT-2 WVC
OSCAT-2 2DVAR speed
OSCAT-2 observational speed

Figure 3. The corrected winds against accepted winds from ASCAT-A and ASCAT-B for the training set (a) and validation set (b–d), where
(b) the corrected, (c) the 2DVAR and (d) observational OSCAT-2 wind speed against ASCAT wind speed are depicted.

−3.25 m/s at about 14 m/s ASCAT speed for the training
and testing set, respectively. Then the bias value decreases
as wind speed decreases and, for both sets, reaches a mini-
mum at about 8 m/s of −0.15 and −0.12 m/s. Then the bias
increases with decreasing wind speeds to 1.72 and 1.79 m/s
at about 4 m/s. This trend is consistent with the SDD, with
the smallest SDD of 0.87 m/s for both sets at about 7 m/s.
The consistency of the training set and testing set indicates
the stability of the SVM model established. Besides, it is
noteworthy that there is a sign change for these speed dif-
ferences, suggesting an excessive speed range suppression
for wind speeds both lower and higher than around 8 m/s,
respectively. This trend also exists in Fig. 3c and d of the ob-

servational and 2DVAR wind against ASCAT winds, as seen
from the curvature of the red lines representing mean bin val-
ues, though they are generally smaller and larger than the
ASCAT wind speed for the 2DVAR and observational speed,
respectively, while the distances are larger in absolute values
for the observational winds. This is consistent with the fact
that the OSCAT 2DVAR wind filters the details of the local
wind changes, ignoring wind variability due to rain that is
captured by the C-band observations of good quality at finer
resolutions. We further note that Fig. 3 and Table 2 are based
on a conditional binning of ASCAT winds, while ASCAT
winds are not perfect and OSCAT is not perfectly collocated
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Table 2. Corresponding mean and standard deviation of difference (SDD) statistics to Fig. 3a–d.

(a) Corrected winds in the training set

ASCAT-A and ASCAT-B Mean values of the corrected SDD between the corrected and ASCAT
wind speeds [m/s] winds [m/s] winds [m/s]

4.14 5.86 1.11
6.21 6.95 0.91
8.28 8.13 0.93

10.34 9.54 1.21
12.41 10.66 1.50
14.48 10.79 1.59

(b) Corrected winds in the validation set

ASCAT-A and ASCAT-B Mean values of the corrected SDD between the corrected and ASCAT
wind speeds [m/s] winds [m/s] winds [m/s]

4.14 5.93 1.14
6.21 6.97 0.92
8.28 8.16 0.96

10.34 9.39 1.26
12.41 10.70 1.49
14.48 11.23 1.30

(c) OSCAT-2 2DVAR winds (testing set)

ASCAT-A and ASCAT-B Mean values of the 2DVAR SDD between the 2DVAR and ASCAT
wind speeds [m/s] winds [m/s] winds [m/s]

4.14 3.06 1.86
6.21 5.22 1.95
8.28 7.43 1.84

10.34 9.01 2.19
12.41 10.46 2.37
14.48 11.04 2.04

(d) OSCAT-2 observational winds (testing set)

ASCAT-A and ASCAT-B Mean values of the observational SDD between observational and ASCAT
wind speeds [m/s] winds [m/s] winds [m/s]

4.14 8.22 2.17
6.21 10.02 2.21
8.28 11.96 2.15

10.34 13.32 1.99
12.41 14.82 1.70
14.48 15.50 1.67

with ASCAT. Such uncertainty in ASCAT also has the ten-
dency to flatten the red curves in Fig. 3.

In Fig. 4, the distributions of wind speed of the OSCAT-
2 observational wind speed, OSCAT-2 2DVAR speed, collo-
cated ASCAT speed and that of the SVM-corrected speed are
displayed for the testing set.

From Fig. 4a, the blue curve indicates rain-affected
OSCAT-2 winds are elevated and skewed to higher speeds,
peaking at around 12 m/s. They also deviate from the cor-
responding 2DVAR speeds (purple) as well as the collo-
cated ASCAT winds (green). Similar to the latter two, the
SVM-corrected winds (lighter blue) peak at a similar speed

around 8 m/s. This is also consistent with Fig. 1a. Moreover,
note that the 2DVAR wind distribution extends to the low-
est speeds and deviates more than the corrected winds from
ASCAT observations. Anyway, the corrected winds show a
very similar shape to the ASCAT distribution, proving the
effectiveness of the SVM. Figure 4b demonstrates the speed
errors defined as the differences with respect to the ASCAT
observations. Consistent with (a), the errors distribute more
symmetrically and over the smallest range for the corrected
winds. The more Gaussian-like features of this speed error
as compared to the other groups can be more easily observed
from (c) where the cumulative distribution function (CDF) is
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Figure 4. Distribution of the different wind speeds (a), speed errors with the reference from ASCAT (b) and the cumulative distribution
function (CDF) of speed errors (c) corresponding to the testing set.

obtained. In the figure, the blue, red and yellow lines are the
CDFs of observational, 2DVAR and regressed speed error,
respectively. Except for the most symmetric feature of the
yellow curve in bias, about 90 % of the values lay between
−2.0 and 2.0, which indicates again that the corrected winds
are close to the ASCAT observations. In addition to Fig. 4,
Fig. 5 demonstrates in detail and directly from the data that
the statistics have been improved after SVM corrections.

Figure 5 is plotted from the testing set, where the hori-
zontal and vertical axes are wind speed of ASCAT and that
of observational and corrected OSCAT-2 speed in m/s for
(a), (b) and (c), (d) respectively. Moreover, in (a) and (c),
depicted in the colour bar, as functions of the horizontal
and vertical speeds, are the average values of differences of
speed from the vertical minus horizontal axis in correspond-
ing bins. In (b) and (d), the colour represents WVC density
in a bin. In (a), it can be observed that deviations from the
C-band-accepted collocations due to rain vary with the ref-
erence wind speeds in a similar linear way, while for each
wind speed there are multiple differences induced by rain.
This is consistent with the quasi-linear relationship between
Joss and rain rates in Fig. 2, and explains that such second-
order (speed difference vs. speed) relations involving multi-

ple parameters (rain, wind and wind–rain correlations) can-
not be corrected by simple linear methods. Meanwhile, in (b),
the corresponding density of samples indicates non-uniform
characteristics of the distribution of the differences for each
reference speed (horizontal axis), implying skewed error dis-
tributions. At the same time, in (c) and (d), it can be seen that
by SVM corrections, most of the differences are corrected,
while (d) shows more evenly distributed difference patterns
for the moderate wind speeds, where rain contamination ef-
fects appear better resolved, implying more uniform and nor-
mal difference values. This goes along with the distribution
of corrected OSCAT winds slightly skewed away from the
diagonal; this may be due to the lack of samples in higher
wind speeds.

4.2 Spatial consistency of corrected winds

In this section, to obtain a spatial view of the results, fig-
ures of the collocated data on a randomly selected date
(22 May 2017) are provided in Fig. 6, where (a) shows the
wind speed of OSCAT-2 in both QC-I and QC-II colloca-
tions, and that of the rest of the FAE set. The same set is
displayed in (b) but where the FAE OSCAT-2 wind speeds
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Figure 5. Mean values in 1 m/s bin of winds against mean difference values in the same bin of vertical minus horizontal values (colour) (a)
and (c), and sample WVC density (b) and (d).

are from the SVM corrections. In (c), the regressed wind is
replaced by the ASCAT-accepted winds. Furthermore, data
in Fig. 4 are without GPM collocations, and the SVM winds
are retrieved directly from the model established in Sect. 3.2.

In Fig. 6, the abscissas are longitudes, while the ordinate
represents latitudes, and both are in degrees. Then the colour
bars indicate wind speeds in m/s, where the ascending and
descending tracks are displayed together, with latter observa-
tions obtained replacing the former ones. It can be observed
that the colour red in (a) is suppressed in (b), while (b) is
also more consistent with (c) than (a) is. This can be directly
observed from (d), with the corrected wind locations from
(e). Panel (f) shows a generally accepted correction in this
region with speed higher than 12 m/s overestimated. Similar
trends can also be noted in regions becoming much bluer,
especially in cases that can be found near the red regions.
Nota bene: the higher wind regions with speed larger than
15 m/s have fewer samples and are also limited by the FA
rule limiting Joss to −1.33 m/s, above which, the wind–rain
tangling at higher speed cannot be well resolved. Moreover,
a region with no GPM collocation, and thus not involved in
training procedures, is selected from the data set generat-
ing Fig. 7 and is shown in Fig. 8 as a case to validate the

SVM regression method proposed. Wind speeds from the
collocation set in QC-I, QC-II FA and QC-II FAE OSCAT-2
speeds are shown (a), along with that of QC-II FAE substi-
tuted by the SVM regressed speed for rain (cloud) correc-
tion (b) and that from the ASCAT collocations in the C band
(c). There are 674 WVCs in Fig. 7, with 13 FAE values, and
the observation time ranges from 09:19 to 09:24 UTC. Fur-
thermore, the simultaneous image obtained around 09:20 is
applied as reference from band 11 of Himawari-8 satellite
at a medium infrared (MIR) wavelength of 8.6 µm) from the
Japan Aerospace Exploration Agency (JAXA).

In Fig. 7, the FAE set is distributed in the lower half in (a),
where the colour is darker in red and lighter in white, im-
plying the existence of a wind front. After the correction, a
more consistent set of wind speeds north of the front is ob-
tained. In addition, rain clouds can be seen from (d) between
7–9◦ N, with blue regions representing lower brightness tem-
peratures (BTs) and high probability of rain, where rain cor-
rection effects can be observed as well considering (a)–(c).
This further confirms the necessity of inclusion of 2DVAR
Joss for wind correction in case of rain. Although slightly
overcorrected wind speeds occur in (b) around about 8◦ N,
it can be observed that (b) and (c) are more similar than (a)
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Figure 6. OSCAT-2 speed (m/s, in colour bars) for QC-I collocation set FA and FAE in the QC-II set (a), and that of the QC-I, QC-II FA set
when the FAE values in QC-II are replaced SVM regressed speeds (b); then the FAE wind speeds are substituted by collocated ASCAT-A
and ASCAT-B speeds (c). Panel (d) shows the differences of speeds in (c) with their corresponding ASCAT speed, and (e) indicates the FAE
location, while (f) shows the statistics of the corrected wind with ASCAT wind.

and (c), demonstrating the consistency between the SVM-
regressed OSCAT and accepted ASCAT wind speeds. This
can be further observed from WVCs between 9–10◦ N, 175–
176◦ E, where (d) shows somewhat elevated BT of clouds,
illustrating the effectiveness of the method proposed for such
regions. More detailed statistics are shown in Fig. 8.

It can be seen from Fig. 8 that higher wind due to rain
is suppressed by the method proposed, while for higher
wind speed around 12 m/s, the SVM-regressed winds be-

come somewhat less consistent with ASCAT truth, as dis-
cussed in the previous section. The effectiveness of the SVM-
regressed winds is further confirmed by the data in Fig. 8, as
they have not been applied in the derivation of the SVM.

5 Discussion

Air–sea interaction in the vicinity of rain is complex and dif-
ficult to observe. In this research, the effect of rain in Ku-
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Figure 7. Wind speed of the QC-I, QC-II FA and QC-II FAE (a), with the FAE set replaced by the SVM regressed speed (b) and by speeds
from their ASCAT collocations (c), with the synchronous MIR (e) images from Himawari-8, where the green rectangle indicates the region
in panels (a), (b) and (c).

Table 3. Inputs and outputs for the SVM of rain classification and regression.

Inputs Output Values of output for training

Rain classification
SVM

Rain regression
SVM

Rain classification
SVM

Rain regression
SVM

OSCAT-2 MLE in dB space
Rain or no-rain
class

Rain rates [mm/h]
GPM rain rate,
0 mm/h in no-rain
WVC

GPM rain rates
[mm/h]

α from OSCAT-2 WVC
OSCAT-2 2DVAR speed
OSCAT-2 observational speed
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Figure 8. The FAE wind speed (a) and the corrected ones (b) against ASCAT wind speed in the data set of Fig. 6.

band wind scatterometry is explored for correction of re-
trieved wind under rainy conditions. The method employed
is as follows: on the basis of the analysis of signatures in-
duced by rain from parameters obtained during wind retrieval
from scatterometers, rain effects are corrected as a function
of these signatures. Specifically, for quantifying the hetero-
geneity induced by rain and its effect on the wind speed, the
quality indicators MLE and Joss are analysed, with reference
to the low-pass-filtered 2DVAR winds and collocated AS-
CAT winds (Xu and Stoffelen, 2020). Accepted C-band AS-
CAT winds (Vogelzang et al., 2011) are used as reference to
identify the rain effects and form the basis of a correction af-
ter establishing a SVM. Results show that the correction is
adequate, especially at speeds with abundant information in
the Ku band to segregate wind and rain (under 12 m/s). The
spatial consistency of the corrected winds with the ASCAT
observational winds is identified as more similar compared to
that with the 2DVAR winds. Subsequently, a case is provided
with comparison to MIR images to check for rain occurrence.
This confirms that the SVM method proposed is effective.
Hereafter, rain information extraction from scatterometers is
established. Following this, further analysis and discussion
on the remaining uncertainties are given, with a view to im-
prove in our future work.

5.1 SVM for rain identification and regression

For a view of uncertainties unresolved with wind–rain tan-
gling in Ku-band wind scatterometry, SVMs in the same in-
put for rain identification and regression are shown in Ta-
ble 3.

The data set is the same as that for the wind correction,
while the training target changed to GPM rain. The classi-
fication accuracies for both the training and testing sets of
rain identification SVM are the same at 72 %. The results for
rain regression are shown in the following figure, where the
correlation coefficient of the SVM-regressed and GPM rain
rates for the training set and the testing set are both 0.47. Lit-

tle skill for rain rate appears below 5 mm/h, while GPM pro-
duces more extreme rain rates>10 mm/h. The corresponding
scatter plots of the regressed rain rates in the training set and
testing set are depicted in Fig. 9.

From visualization of the classification results (details not
shown), non-rainy WVCs are less often incorrectly classified
than rainy WVCs. Higher 2DVAR speeds are well crowded
and can be better discriminated in MLE, Joss and α to the
correct class, while this is more difficult for lower 2DVAR
speed WVCs. Light rain clouds have small effects on the
wind observations. Correspondingly, Fig. 10a shows the dis-
tribution of rain rates from GPM (blue), SVM regression
(purple) and that of the error defined as the GPM rain rate
minus the regressed values (green). The corresponding CDF
of error is shown in (b). In addition to Fig. 9, Fig. 10a
shows in detail that SVM-regressed rain fails in capturing
the non-convex feature in lower rain rate, and in prediction
of higher rains. This may due to the L2 distance norm ap-
plied and lack of information as well as samples. For GPM
rain above 10 mm/h, OSCAT-2 rain rates are rather randomly
distributed and presumably lack skill. However, from (b) in
Fig. 10, it can be observed that the error displays a feature
of symmetry and steady increasing feature. And those within
the range of [−2, 2] mm/h take 34 %, within [−5, 5] mm/h
take about 80 %, consistent with the correlation coefficient
value of 0.47. L1 distance (Manhattan distance), at the same
time, including other sources of observation, with increas-
ing number of samples may help improve the results. Xu et
al. (2020a) find similar spread in rain products at the scat-
terometer spatial resolution, hence illustrating the applicabil-
ity of the SVM rain product derived here.

5.2 Conclusions and further research

Rain features in wind scatterometry in the Ku band can
trigger QC rejections. These effects also provide opportu-
nities to identify rain and perform wind corrections. The
SVM method proposed performs well for medium and lower
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Figure 9. SVM regressed rains for training set (a) and validation set not involved in training (b).

Figure 10. Distribution of GPM- and SVM-regressed rains with that of the error (a) and the corresponding CDF of the error (b).

wind speeds, while the wind–rain tangling remains severe for
higher wind speed. This can also be noted from the rain iden-
tification and regression SVMs in Sect. 5.1. For lower speeds,
the change of values of parameters considered may be caused
by different wind–rain interaction with the ocean surface that
alters the sea state rather than only elevating the speed of
wind due to rain cloud scattering that may be similar for C
and Ku bands and hence missed here.

On the other hand, from the rain features in MLE and Joss,
as well as the uncorrected speed, it can be seen that uncer-
tainties can be introduced from the training parameters; the
normalized MLE is designed to characterize errors that result
in large deviations from the GMF for QC, but its accuracy de-
pends on relative wind vector and azimuthal diversity of the
NRCS views. The 2DVAR speed is derived by balancing er-
rors in the observation space of a grid of WVCs and the NWP
background, representing larger spatial scales; thus, they can
be considered as lower-bound estimates of the true values,
and uncertainties in the wind speeds can be different due to
spatial heterogeneity. This may hamper the effectiveness of

the rain screening ability of Joss. In order to bind those un-
certainties for better results in SVM, extra observations for
rain (clouds) can help, while higher spatial resolution is ob-
tained in the next generation of scatterometers for simultane-
ous ocean surface wind and current measurements, for exam-
ple, Chelton et al. (2019) and Du et al. (2021). OSCAT-2 and
ASCAT collocations provided a unique opportunity to study
rain effects in Ku-band scatterometers. Rain effects are rather
transient in nature, where the moist convection timescale is
about 30 min. This implies that updrafts, downdrafts and rain
patterns in a WVC change very fast, and rather strict collo-
cation criteria would be needed to resolve rain effects well.
With WindRad on FY3E a combined C- and Ku-band scat-
terometer has been launched on 5 July 2021, which will pro-
vide parts of the swath with excellent azimuth diversity and
both C- and Ku-band retrieval capability. Hence, this mission
will be useful to further elaborate on this research.

Above all, the SVM can effectively represent the increas-
ing effect of rain in elevating wind speeds as the true wind
speed decreases showing the advantage of the ML method
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for such complex problems involving multiple interrelated
variables. The method provides correction of deviations that
are non-uniform and skew- to Gaussian-like features. This
demonstrates the effectiveness of a ML method when used
with representative parameters for addressing more complex
problems. The corrected winds provide information previ-
ously lacking that is vital for nowcasting winds in the pres-
ence of moist convection and improving initialization of
NWP models in dynamic conditions. The rain regression in
SVM indicates the potential of additional rain information
observations for further exploration, as well as the promise
of improved hybrid wind and rain estimation methods based
on ML using physically meaningful parameters for the prob-
lem at hand.

Appendix A: The mean values and standard deviations
of differences

We discuss the comparison of two collocated groups of data,
one of which is set as reference group. Then figures and val-
ues are obtained by grouping the reference data (depicted as
the horizontal axis) and the other data set to be compared
(vertical axis) into i bins of the same sample number j . For
the mean values of the reference data, Refi (in tables, they
are put in the first column), there is corresponding Avei (in
tables, as the second column) and standard deviation values
(third column) calculated for the data to compare (in figures,
as the vertical axis). Specifically, the following equations de-
scribe the calculation of the mean value Avei and standard
deviation of difference (SDD) Stdi :

Avei =

∑Ni
j=1Obv_Valuej

Ni
(A1)

Stdi =
1
Ni

√∑Ni

j=1

(
Obv_Valuej −Refi

)2
, (A2)

where the value of the group to compare is Obv_Value.

Code availability. There is no code available, but for the experi-
ments, it can be reproduced upon request.

Data availability. The ASCAT-A, ASCAT-B and OSCAT-2 wind
products applied are available from the Royal Netherlands Meteo-
rology Institute (KNMI) data distribution site: https://scatterometer.
knmi.nl/archived_prod/ (KNMI, 2021) and the EUMETSAT data
website: https://osi-saf.eumetsat.int/products/wind-products (EU-
METSAT, 2021). The GPM rain products are from the Precipita-
tion Process Center, the National Aeronautics and Space Admin-
istration (NASA), available at https://gpm.nasa.gov/data/directory
(NASA, 2021). The Himawari image data are available from the
Japan Aerospace Exploration Agency (JAXA) at https://www.eorc.
jaxa.jp/ptree/index.html (JAXA, 2021).

Author contributions. XX contributed to methodology, experiment,
analysis and original draft writing of this research. AS contributed
to the conceptualization, methodology, analysis, reviewing and im-
plementation of this research.

Competing interests. Some authors are members of the editorial
board of Atmospheric Measurement Techniques. The peer-review
process was guided by an independent editor, and the authors have
also no other competing interests to declare.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. The authors would like to thank the Royal
Netherlands Meteorology Institute (KNMI), the European Organi-
zation for the Exploitation of Meteorological Satellites (EUMET-
SAT), the European Centre for Medium-Range Weather Forecasts
(ECMWF), the National Aeronautics and Space Administration
(NASA) and the Japan Aerospace Exploration Agency (JAXA) for
the provision of the data products applied.

Review statement. This paper was edited by Marcos Portabella and
reviewed by two anonymous referees.

References

Bony, S., Stevens, B., Frierson, D., Jakob, C., Kageyama, M., Pin-
cus, R., Shepherd, T. G., Sherwood, S. C., Siebesma, A. P., and
Sobel, A. H.: Clouds, circulation and climate sensitivity, Nat.
Geosci., 8, 261–268, https://doi.org/10.1038/ngeo2398, 2015.

Chang, C.-C. and Lin, C.-J.: LIBSVM: A library for support
vector machines, ACM Trans. Intell. Syst. Technol., 2, 27,
https://doi.org/10.1145/1961189.1961199, 2011.

Chelton, D. B., Schlax, M. G., Samelson, R. M., Farrar, J. T.,
Molemaker, M. J., McWilliams, J. C., and Gula, J.: Prospects
for future satellite estimation of small-scale variability of ocean
surface velocity and vorticity, Prog. Oceanogr., 173, 256–350,
https://doi.org/10.1016/j.pocean.2018.10.012, 2019.

Cornford, D., Nabney, I. T., and Bishop, C. M.: Neu-
ral network-based wind vector retrieval from satellite
scatterometer data, Neural Comput. Appl., 8, 206–217,
https://doi.org/10.1007/s005210050023, 1999.

Courtier, P., Thépaut, J. N., and Hollingsworth, A.: A strat-
egy for operational implementation of 4D-Var, using an incre-
mental approach, Q. J. Roy. Meteor. Soc., 120, 1367–1387,
https://doi.org/10.1002/qj.49712051912, 1994.

Descombes, G., Auligné, T., Vandenberghe, F., Barker, D. M.,
and Barré, J.: Generalized background error covariance ma-
trix model (GEN_BE v2.0), Geosci. Model Dev., 8, 669–696,
https://doi.org/10.5194/gmd-8-669-2015, 2015.

https://doi.org/10.5194/amt-14-7435-2021 Atmos. Meas. Tech., 14, 7435–7451, 2021

https://scatterometer.knmi.nl/archived_prod/
https://scatterometer.knmi.nl/archived_prod/
https://osi-saf.eumetsat.int/products/wind-products
https://gpm.nasa.gov/data/directory
https://www.eorc.jaxa.jp/ptree/index.html
https://www.eorc.jaxa.jp/ptree/index.html
https://doi.org/10.1038/ngeo2398
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1016/j.pocean.2018.10.012
https://doi.org/10.1007/s005210050023
https://doi.org/10.1002/qj.49712051912
https://doi.org/10.5194/gmd-8-669-2015


7450 X. Xu and A. Stoffelen: Support vector machine tropical wind speed retrieval

Draper, D. W. and Long, D. G.: Simultaneous wind and rain re-
trieval using SeaWinds data, IEEE T. Geosci. Remote, 42, 1411–
1423, https://doi.org/10.1109/tgrs.2004.830169, 2004.

Du, Y., Dong, X., Jiang, X., Zhang, Y., Zhu, D., Sun, Q.,
Wang, Z., Niu, X., Chen, W., and Zhu, C.: Ocean Sur-
face Current multiscale Observation Mission (OSCOM): Si-
multaneous measurement of ocean surface current, vec-
tor wind, and temperature, Prog. Oceanogr., 193, 102531,
https://doi.org/10.1016/j.pocean.2021.102531, 2021.

EUMETSAT: Wind products, EUMETSAT [data set], available at:
https://osi-saf.eumetsat.int/products/wind-products, last access:
19 November 2021.

Gill, A. E.: Atmosphere-Ocean Dynamic, in: International Geo-
physics Series, volume 30, Academic Press, San Diego, Califor-
nia, USA, 1982.

Huffman, G., Bolvin, D., Braithwaite, D., Hsu, K., Joyce,
R., Kidd, C., Nelkin, E., Sorooshian, S., Tan, J., and Xie,
P.: NASA global precipitation measurement (GPM) inte-
grated multi-satellitE retrievals for GPM (IMERG) version
5.2, NASA’s Precipitation Process. Center [data set], avail-
able at: https://docserver.gesdisc.eosdis.nasa.gov/public/project/
GPM/IMERG_ATBD_V5.pdf (last access: 17 November 2021),
2018.

Japan Aerospace Exploration Agency (JAXA): JAXA Himawari
Monitor, JAXA [data set], available at: https://www.eorc.jaxa.jp/
ptree/index.html, last access: 19 November 2021.

Japan Meteorological Agency: Himawari-8/9 Himawari
Standard Data User’s Guide, JMA Tech, available at:
http://www.data.jma.go.jp/mscweb/en/himawari89/space_
segment/hsd_sample/HS_D_users_guide_en_v12.pdf (last
access: 17 November 2021), 2015.

King, G. P., Portabella, M., Lin, W., and Stoffelen, A.: Correlating
extremes in wind and stress divergence with extremes in rain over
the Tropical Atlantic, KNMI Sci. Rep., OSI_AVS_15_02, avail-
able at: http://digital.csic.es/bitstream/10261/158566/1/King_et_
al_2017.pdf (last access: 10 November 2021), 2017.

KNMI: Wind products, KNMI [data set], available at: https://
scatterometer.knmi.nl/archived_prod/, last access: 19 Novem-
ber 2021.

Kumar, A., Ramsankaran, R., Brocca, L., and Muñoz-Arriola,
F.: A simple machine learning approach to model real-
time streamflow using satellite inputs: Demonstration
in a data scarce catchment, J. Hydrol., 595, 126046,
https://doi.org/10.1016/j.jhydrol.2021.126046, 2021.

Li, L., Im, E., Connor, L. N., and Chang, P. S.: Retriev-
ing ocean surface wind speed from the TRMM precipitation
radar measurements, IEEE T. Geosci. Remote, 42, 1271–1282,
https://doi.org/10.1109/TGRS.2004.828924, 2004.

Lin, W. and Portabella, M.: Toward an improved wind quality con-
trol for RapidScat, IEEE T. Geosci. Remote, 55, 3922–3930,
https://doi.org/10.1109/TGRS.2017.2683720, 2017.

Linwood Jones, W., Black, P., Boggs, D., Bracalente, E., Brown, R.,
Dome, G., Ernst, J., Halberstam, I., Overland, J., Peteherych, S.,
Pierson, W., Wentz, F., Woiceshyn, P., and Wurtele, M.: Seasat
Scatterometer: Results of the Gulf of Alaska Workshop, Science,
204, 1413–1415, https://doi.org/10.1126/science.204.4400.1413,
1979.

Liu, C.-Y., Aryastana, P., Liu, G.-R., and Huang, W.-
R.: Assessment of satellite precipitation product es-

timates over Bali Island, Atmos. Res., 244, 105032,
https://doi.org/10.1016/j.atmosres.2020.105032, 2020.

Majumdar, S. J., Sun, J., Golding, B., Joe, P., Dudhia, J., Caumont,
O., Chandra Gouda, K., Steinle, P., Vincendon, B., and Wang, J.:
Multiscale Forecasting of High-Impact Weather: Current Status
and Future Challenges, B. Am. Meteorol. Soc., 102, E635–E659,
https://doi.org/10.1175/BAMS-D-20-0111.1, 2021.

NASA: Precipitation Data Directory, NASA [data set], available
at: https://gpm.nasa.gov/data/directory, last access: 19 Novem-
ber 2021.

Owen, M. P. and Long, D. G.: M-ary Bayes estima-
tor selection for QuikSCAT simultaneous wind and
rain retrieval, IEEE T. Geosci. Remote, 49, 4431–4444,
https://doi.org/10.1109/TGRS.2011.2143721, 2011.

Parrish, D. F. and Derber, J. C.: The National Meteorological
Center’s spectral statistical-interpolation analysis system, Mon.
Weather Rev., 120, 1747–1763, https://doi.org/10.1175/1520-
0493(1992)120<1747:TNMCSS>2.0.CO;2, 1992.

Portabella, M.: Wind field retrieval from satellite radar sys-
tems, PhD, Astron. Meteorol. Dept., Universitat de Barcelona
Barcelona, Spain, available at: https://cdn.knmi.nl/system/data_
center_publications/files/000/067/780/original/phd_thesis.pdf?
1495620892 (last access: 19 November 2021), 2002.

Portabella, M. and Stoffelen, A.: Characterization of residual infor-
mation for SeaWinds quality control, IEEE T. Geosci. Remote,
40, 2747–2759, https://doi.org/10.1109/TGRS.2002.807750,
2002.

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler,
J., and Carvalhais, N.: Deep learning and process understand-
ing for data-driven Earth system science, Nature, 566, 195–204,
https://doi.org/10.1038/s41586-019-0912-1, 2019.

Smola, A. J. and Schölkopf, B.: A tutorial on sup-
port vector regression, Stat. Comput., 14, 199–222,
https://doi.org/10.1023/b:stco.0000035301.49549.88, 2004.

Stiles, B. W. and Dunbar, R. S.: A neural network tech-
nique for improving the accuracy of scatterometer winds in
rainy conditions, IEEE T. Geosci. Remote, 48, 3114–3122,
https://doi.org/10.1109/TGRS.2010.2049362, 2010.

Stoffelen, A. and Anderson, D.: Scatterometer data inter-
pretation: Measurement space and inversion, J. Atmos.
Ocean. Tech., 14, 1298–1313, https://doi.org/10.1175/1520-
0426(1997)014<1298:SDIMSA>2.0.CO;2, 1997.

Stoffelen, A. and Vogelzang, J.: Wind bias correction guide, EU-
METSAT, Darmstadt, Germany, 2018.

Stoffelen, A., Kumar, R., Zou, J., Karaev, V., Chang, P. S., and
Rodriguez, E.: Ocean Surface Vector Wind Observations, in:
Remote Sensing of the Asian Seas, edited by: Barale, V. and
Gade, M., Springer International Publishing, Cham, 429–447,
https://doi.org/10.1007/978-3-319-94067-0_24, 2019.

Stoffelen, A., Rivas, M. B., and Verspeek, J.: Cone Met-
rics for C and Ku-Band Scatterometers, in: IEEE In-
ternational Geoscience and Remote Sensing Symposium
IGARSS, Brussels, Belgium, 11–16 July 2021, 1627–1629,
https://doi.org/10.1109/igarss47720.2021.9554778, 2021.

Stoffelen, A. C. M.: Scatterometry, PhD, Utrecht University,
Utrecht, the Netherlands, available at: https://dspace.library.uu.
nl/bitstream/handle/1874/636/full.pdf (last access: 19 Novem-
ber 2021), 1998.

Atmos. Meas. Tech., 14, 7435–7451, 2021 https://doi.org/10.5194/amt-14-7435-2021

https://doi.org/10.1109/tgrs.2004.830169
https://doi.org/10.1016/j.pocean.2021.102531
https://osi-saf.eumetsat.int/products/wind-products
https://docserver.gesdisc.eosdis.nasa.gov/public/project/GPM/IMERG_ATBD_V5.pdf
https://docserver.gesdisc.eosdis.nasa.gov/public/project/GPM/IMERG_ATBD_V5.pdf
https://www.eorc.jaxa.jp/ptree/index.html
https://www.eorc.jaxa.jp/ptree/index.html
http://www.data.jma.go.jp/mscweb/en/himawari89/space_segment/hsd_sample/HS_D_users_guide_en_v12.pdf
http://www.data.jma.go.jp/mscweb/en/himawari89/space_segment/hsd_sample/HS_D_users_guide_en_v12.pdf
http://digital.csic.es/bitstream/10261/158566/1/King_et_al_2017.pdf
http://digital.csic.es/bitstream/10261/158566/1/King_et_al_2017.pdf
https://scatterometer.knmi.nl/archived_prod/
https://scatterometer.knmi.nl/archived_prod/
https://doi.org/10.1016/j.jhydrol.2021.126046
https://doi.org/10.1109/TGRS.2004.828924
https://doi.org/10.1109/TGRS.2017.2683720
https://doi.org/10.1126/science.204.4400.1413
https://doi.org/10.1016/j.atmosres.2020.105032
https://doi.org/10.1175/BAMS-D-20-0111.1
https://gpm.nasa.gov/data/directory
https://doi.org/10.1109/TGRS.2011.2143721
https://doi.org/10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2
https://doi.org/10.1175/1520-0493(1992)120<1747:TNMCSS>2.0.CO;2
https://cdn.knmi.nl/system/data_center_publications/files/000/067/780/original/phd_thesis.pdf?1495620892
https://cdn.knmi.nl/system/data_center_publications/files/000/067/780/original/phd_thesis.pdf?1495620892
https://cdn.knmi.nl/system/data_center_publications/files/000/067/780/original/phd_thesis.pdf?1495620892
https://doi.org/10.1109/TGRS.2002.807750
https://doi.org/10.1038/s41586-019-0912-1
https://doi.org/10.1023/b:stco.0000035301.49549.88
https://doi.org/10.1109/TGRS.2010.2049362
https://doi.org/10.1175/1520-0426(1997)014<1298:SDIMSA>2.0.CO;2
https://doi.org/10.1175/1520-0426(1997)014<1298:SDIMSA>2.0.CO;2
https://doi.org/10.1007/978-3-319-94067-0_24
https://doi.org/10.1109/igarss47720.2021.9554778
https://dspace.library.uu.nl/bitstream/handle/1874/636/full.pdf
https://dspace.library.uu.nl/bitstream/handle/1874/636/full.pdf


X. Xu and A. Stoffelen: Support vector machine tropical wind speed retrieval 7451

Thiria, S., Mejia, C., Badran, F., and Crepon, M.: A neu-
ral network approach for modeling nonlinear transfer func-
tions: Application for wind retrieval from spaceborne scat-
terometer data, J. Geophys. Res.-Oceans, 98, 22827–22841,
https://doi.org/10.1029/93JC01815, 1993.

Vapnik, V.: Statistical learning theory 624, Wiley, New York, 2 pp.,
1998.

Vogelzang, J.: Two dimensional variational ambiguity removal
(2DVAR), KNMI Tech. Note NWP SAF NWPSAF-KN-TR-
004, available at: https://cdn.knmi.nl/system/data_center_
publications/files/000/067/778/original/two_dimensional_
variational_ambiguity_removal_v1.2.pdf?1495620892 (last
access: 15 November 2021), 2007.

Vogelzang, J. and Stoffelen, A.: NWP model er-
ror structure functions obtained from scatterome-
ter winds, IEEE T. Geosci. Remote, 50, 2525–2533,
https://doi.org/10.1109/TGRS.2011.2168407, 2011.

Vogelzang, J. and Stoffelen, A.: Improvements in Ku-band scat-
terometer wind ambiguity removal using ASCAT-based empir-
ical background error correlations, Q. J. Roy. Meteor. Soc., 144,
2245–2259, https://doi.org/10.1002/qj.3349, 2018.

Vogelzang, J., Stoffelen, A., Verhoef, A., and Figa-
Saldaña, J.: On the quality of high-resolution scatterom-
eter winds, J. Geophys. Res.-Oceans, 116, C10033,
https://doi.org/10.1029/2010JC006640, 2011.

Wolters, E. L. A., van den Hurk, B. J. J. M., and Roebeling, R.
A.: Evaluation of rainfall retrievals from SEVIRI reflectances
over West Africa using TRMM-PR and CMORPH, Hydrol.
Earth Syst. Sci., 15, 437–451, https://doi.org/10.5194/hess-15-
437-2011, 2011.

Xu, X. and Stoffelen, A.: Improved rain screening for ku-band
wind scatterometry, IEEE T. Geosci. Remote, 58, 2494–2503,
https://doi.org/10.1109/TGRS.2019.2951726, 2020.

Xu, X. and Stoffelen, A.: A Further Evaluation of the Quality Indi-
cator Joss for Ku-Band Wind Scatterometry in Tropical Regions,
in: IEEE International Geoscience and Remote Sensing Sympo-
sium IGARSS, Brussels, Belgium, 11–16 July 2021, 7299–7302,
https://doi.org/10.1109/igarss47720.2021.9553442, 2021.

Xu, X., Stoffelen, A., and Meirink, J. F.: Comparison of ocean
surface rain rates from the global precipitation mission and
the Meteosat second-generation satellite for wind scatterome-
ter quality control, IEEE J. Sel. Top. Appl., 13, 2173–2182,
https://doi.org/10.1109/JSTARS.2020.2995178, 2020a.

Xu, X., Stoffelen, A., Lin, W., and Dong, X.: Rain False-Alarm-
Rate Reduction for CSCAT, IEEE Geosci. Remote S., 1–5,
https://doi.org/10.1109/LGRS.2020.3039622, 2020b.

https://doi.org/10.5194/amt-14-7435-2021 Atmos. Meas. Tech., 14, 7435–7451, 2021

https://doi.org/10.1029/93JC01815
https://cdn.knmi.nl/system/data_center_publications/files/000/067/778/original/two_dimensional_variational_ambiguity_removal_v1.2.pdf?1495620892
https://cdn.knmi.nl/system/data_center_publications/files/000/067/778/original/two_dimensional_variational_ambiguity_removal_v1.2.pdf?1495620892
https://cdn.knmi.nl/system/data_center_publications/files/000/067/778/original/two_dimensional_variational_ambiguity_removal_v1.2.pdf?1495620892
https://doi.org/10.1109/TGRS.2011.2168407
https://doi.org/10.1002/qj.3349
https://doi.org/10.1029/2010JC006640
https://doi.org/10.5194/hess-15-437-2011
https://doi.org/10.5194/hess-15-437-2011
https://doi.org/10.1109/TGRS.2019.2951726
https://doi.org/10.1109/igarss47720.2021.9553442
https://doi.org/10.1109/JSTARS.2020.2995178
https://doi.org/10.1109/LGRS.2020.3039622

	Abstract
	Introduction
	Method
	Rain characteristics in MLE, Joss and the fractal parameter 
	The principle of SVM regression

	Data and experiments
	The expression of rain in wind retrieval parameters
	SVM for Ku-band wind correction in rain

	Results and validation
	Results
	Spatial consistency of corrected winds

	Discussion
	SVM for rain identification and regression
	Conclusions and further research

	Appendix A: The mean values and standard deviations of differences
	Code availability
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Review statement
	References

