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Abstract. Satellite retrievals of XCO; at northern high lati-
tudes currently have sparser coverage and lower data quality
than most other regions of the world. We use a neural net-
work (NN) to filter Orbiting Carbon Observatory 2 (OCO-2)
B10 bias-corrected XCO, retrievals and compare the qual-
ity of the filtered data to the quality of the data filtered with
the standard B10 quality control filter. To assess the perfor-
mance of the NN filter, we use Total Carbon Column Observ-
ing Network (TCCON) data at selected northern high latitude
sites as a truth proxy. We found that the NN filter decreases
the overall bias by 0.25 ppm (~ 50 %), improves the preci-
sion by 0.18 ppm (~ 12 %), and increases the throughput by
16 % at these sites when compared to the standard B10 qual-
ity control filter. Most of the increased throughput was due
to an increase in throughput during the spring, fall, and win-
ter seasons. There was a decrease in throughput during the
summer, but as a result the bias and precision were improved
during the summer months. The main drawback of using the
NN filter is that it lets through fewer retrievals at the highest-
latitude Arctic TCCON sites compared to the B10 quality
control filter, but the lower throughput improves the bias and
precision.

1 Introduction

Northern high-latitude regions are undergoing considerable
changes related to climate change. The Arctic has seen the
annual average temperature increase 3 times more than the
global annual average (Stocker et al., 2013). The boreal for-
est (an important driver of the CO; seasonal cycle) has seen
its growing season lengthen due to climate change (Pulli-
ainen et al., 2017), with an increase in the frequency and
severity of forest fires (Seidl et al., 2017). Permafrost soils
of the northern high latitudes are a large carbon reservoir and
some fraction of this carbon is vulnerable to release as CO»
and CHy4 as the climate warms (Schuur et al., 2015). Changes
in the carbon cycle will impact the climate, which in turn will
impact the carbon cycle. Understanding how the carbon cycle
is changing at boreal and Arctic latitudes, including this feed-
back loop, will be key to predicting future climate change.
In situ atmospheric measurements of CO, can be used
to study how the carbon cycle is changing. However, cost
and logistical challenges present barriers to establishing mea-
surement sites at high northern latitudes, limiting the amount
of information available about the carbon cycle in the Arc-
tic and boreal regions. Remote sensing measurements from
space can be used to complement coverage to the current in
situ networks (Olsen and Randerson, 2004). Current satellite
missions such as the Greenhouse Gases Observing Satellite
(GOSAT) (Yokota et al., 2009) and the Orbiting Carbon Ob-
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servatory 2 (OCO-2) (Crisp et al., 2004) record solar absorp-
tion spectra reflected off the Earth’s surface, which are used
to retrieve column-averaged dry-air mole fractions of CO,
(XCOy), giving regional information on atmospheric COs.
These data can be used to learn about the carbon cycle but
require low bias and high precision to be useful (Rayner and
O’Brien, 2001).

The density of satellite retrievals of XCO; from current
missions is limited by the amount of available sunlight and
the inability to measure through clouds. At high latitudes
there is less sunlight available during the colder seasons, de-
creasing the number of spectra obtained when compared to
the midlatitudes. Furthermore, filtering and bias-correction
schemes are optimized for midlatitudes where more valida-
tion data sets are available. This has led to a filter that re-
moves a larger fraction of the high-latitude data than data at
midlatitudes. Scenes with snow are also filtered out, because
they are thought to be problematic for the retrievals, which
decreases the throughput during the colder seasons. In order
to improve the quality and throughput of retrievals at high
latitudes, in this study we focus on using high-latitude val-
idation XCO, retrievals to improve the filtering of northern
high-latitude OCO-2 bias-corrected XCO; retrievals.

The study by Jacobs et al. (2020) showed that when mak-
ing modifications to the quality control filtering scheme and
bias correction used by OCO-2, one can increase the through-
put of OCO-2 retrievals (data version B9) (Kiel et al., 2019;
O’Dell et al., 2018) in the boreal region. This was done by
changing limits on the features used in the quality control
scheme created in O’Dell et al. (2018). These changes were
validated by comparing OCO-2 XCO; retrievals (Kiel et al.,
2019; O’Dell et al., 2018) coincident to XCO; retrievals from
ground-based solar absorption spectra made by remote sens-
ing instruments used by the Total Carbon Column Observing
Network (TCCON) (Wunch et al., 2011a).

Machine learning algorithms are useful for pattern recog-
nition in complex data sets. Mandrake et al. (2013) was the
first study to demonstrate the use of machine learning (using
a genetic algorithm) to filter ACOS-GOSAT retrievals and
multiple versions of the OCO-2 retrievals using warn levels.
There is potential to apply different machine learning algo-
rithms to the northern high-latitude OCO-2 data set in order
to improve the bias, precision, and throughput.

In this study, we investigate the feasibility of using a sim-
ple neural network to filter the current OCO-2 data version
(B10) (Osterman et al., 2020) XCO; retrievals at northern
high latitudes. Section 2 outlines the coincidence criteria be-
tween OCO-2 and TCCON retrievals and an explanation of
how the retrieved XCO; is adjusted for different averaging
kernels and a priori information when comparing OCO-2
to TCCON. Section 3 describes the architecture of the neu-
ral network and how it is trained to filter the OCO-2 bias-
corrected XCO; retrievals. In Sect. 4, the neural network
(NN)-filtered OCO-2 retrievals are compared to the B10
quality control (qc_flag) retrievals to assess the performance
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Figure 1. Map of the locations of all TCCON sites used in this
study.

of the NN filter. Finally, we discuss results of the study and
future work to improve the NN filtering.

2 Coincidence criteria

The OCO-2 satellite was launched on 2 July 2014 and has
been making measurements since mid-September 2014. The
instrument on board the satellite is a three-channel, imaging,
grating spectrometer that records spectra of reflected sunlight
in three spectral bands centered at 0.765, 1.62, and 2.04 um.
These spectra are processed using a “full-physics” retrieval
algorithm that retrieves a profile of CO;, (which is used to
calculate XCO;) and other geophysical information. In this
study we use OCO-2 data that have been processed using the
B10 version of the full-physics retrieval algorithm, with the
retrieval output and sounding information contained in the
B10 lite files (Osterman et al., 2020). All soundings used in
the study were recorded from September 2014 to July 2020.

TCCON is a global network of ground-based Fourier
transform infrared (FTIR) spectrometers that record direct
solar absorption spectra. The high-resolution spectra are pro-
cessed using the GGG2014 retrieval algorithm which scales
the a priori profile of the gas of interest until the spec-
trum calculated by forward model best matches the spectrum
recorded by the FTIR (Wunch, et al., 2015). GGG2014 re-
trieves XCO,, XCHy4, XCO, XN,O, XHF, and XH,O from
a single spectrum. Selected XCO, TCCON retrievals made
in the boreal and Arctic regions were used as a truth proxy
to compare to OCO-2 retrievals. The TCCON sites used in
this study and the date range of the data are East Trout
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Lake, Canada (et) (Wunch et al., 2018), from October 2016
to June 2020; Eureka, Canada (eu) (Strong et al., 2019),
from September 2014 to July 2020; Park Falls, USA (pa)
(Wennberg et al., 2017), from September 2014 to June 2020;
Bremen, Germany (br) (Notholt et al., 2019a), from Septem-
ber 2014 to August 2018; Biatystok, Poland (bi) (Deutscher
et al., 2019), from September 2014 to August 2018; So-
dankyld, Finland (so) (Kivi et al., 2014, and Kivi and Heikki-
nen, 2016), from September 2014 to November 2019; Ny
Alesund, Spitzbergen, Norway (sp) (Notholt et al., 2019b),
from September 2014 to August 2018; and Rikubestu, Japan
(rj) Morino et al., 2018), from September 2014 to Septem-
ber 2019. Figure 1 shows the locations of all the TCCON
sites used in this study. All TCCON spectra were processed
using the GGG2014 algorithm (Wunch et al., 2015) to re-
trieve XCO; and other gases of interest. Data were filtered
for standard FLAG =0 and additionally XHF < 150 ppt and
XCO < 125 ppb.

Filtering for XHF < 150 ppt was done to avoid the impact
of the polar vortex on the TCCON retrievals. Arctic sites
such as Eureka and Ny Alesund routinely record solar ab-
sorption spectra while under polar vortex conditions during
the spring months. In some years the polar vortex can reach
as far south as 40° N (Whaley et al., 2013). Boreal sites such
as East Trout Lake have recorded solar spectra under polar
vortex conditions but on fewer days than at the Arctic sites.
Since the GGG2014 retrieval algorithm does a profile scal-
ing retrieval (Wunch et al., 2015), it relies on good knowl-
edge of the shape of the profile of the gases of interest. The
GGG2014 profiles are built without knowledge of the impact
of the polar vortex on the shape of the profiles. When XCO,
is retrieved from spectra measured through polar vortex con-
ditions, the shape of the a priori profile generated by the
GGG2014 retrieval algorithm will likely be incorrect. This
is less of an issue for OCO-2 retrievals because OCO-2 per-
forms a profile retrieval (O’Dell et al., 2018).

The TCCON sites used in this study have no direct in-
fluence due to anthropogenic pollution but are still influ-
enced by biomass burning plumes. At sites like East Trout
Lake, major enhancements in XCO over background levels
are measured, typically in late summer when measurements
are made through forest fire plumes. Even a remote Arctic
site like Eureka sees forest fire plumes during the summer
months (Viatte et al., 2013). In an attempt to avoid a situation
where a coincident TCCON measurement is influenced by a
plume and the OCO-2 measurement is not, we filter any TC-
CON measurement where XCO is elevated above the value
of ~ 150 ppb or more.

We use the B10 lite OCO-2 data product (Osterman et al.,
2020), where the XCO, values have been corrected for var-
ious biases, such as footprint-to-footprint biases and biases
that are dependent on features of the atmosphere, surface,
or retrieval algorithm. OCO-2 XCO, data are also scaled by
a global offset term that was derived using the OCO-2 tar-
get mode retrievals coincident with TCCON retrievals (Os-
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terman et al., 2020). In our study, we use all OCO-2 spec-
tra that are coincident with the TCCON spectra acquired in
nadir and glint modes over land. The coincidence criteria are
the distance of an OCO-2 measurement must be < 150 km
of a TCCON station, the temperature difference between the
TCCON and OCO-2 temperature profiles at 700 hPa must
be < absolute value of 2K (Wunch et al., 2011b), and the
time difference between the TCCON and OCO-2 measure-
ments must be <2 h to avoid the impact of the XCO, diurnal
cycle.

To compare TCCON and OCO-2 retrievals, one has to take
into account that GGG2014 and the OCO-2 retrievals obtain
information about atmospheric CO, from different spectral
regions (which have peak sensitivity at different altitudes)
and use different a priori information. To adjust the OCO-
2 bias-corrected XCO; retrievals to take into account the a
priori profile used in the GGG2014 retrieval, the following
formula is used:

XCOZ%?O'Z = XCO,002 4 Zj h?co-z ( 1 — a;_)co»2>
. (xTCCON _xOCO—Z)j’ )

where XCOzgcco'2 is the original bias-corrected XCO; value

found in the lite files, R9C02

ing vector, a(/.)co'2

-0CO-2

is the OCO-2 pressure weight-
is the OCO-2 total column averaging ker-

nel vector, x is the XCO; a priori profile used in the
OCO-2 retrieval, and xTCCON js the XCO, a priori pro-
file used in the GGG2014 retrieval but interpolated onto the
OCO-2 retrieval pressure grid.

OCO-2 retrieves information about CO; from the strong
CO» band (centered at 2.04 um) and the weak CO; band
(centered at 1.62 um) (O’Dell et al., 2018). TCCON retrieves
information from two weak CO; bands, centered at 1.62 and
1.57 um (Wunch et al., 2011b), but not in the strong CO;
band. This results in the OCO-2 retrievals, having different
vertical sensitivities compared to the TCCON retrievals. To
take this into account when comparing OCO-2 and TCCON
retrievals, the following formula is used to adjust the TCCON
retrieved XCO;:

XCOZE(SCON _ XCOZang&N + Zj h?co-z a?co-z

. (yxTCCON _ xTCCON)j, )
where XCOzgngiooriN is the integrated a priori profile used
in the GGG2014 retrieval, hY“%? is the OCO-2 pressure

weighting vector, a;)co»z is the OCO-2 total column averag-

ing kernel vector, x TCCON is the XCO, a priori profile used

in the GGG2014 retrieval, and y is the TCCON XCO; value
divided by XCO,TSSON Ideally y should be the scaling fac-
tor determined by the GGG2014 retrieval, but this value does
not take into account the air mass dependence correction and
aircraft calibration factor applied in post processing to the

retrieved XCO;. The vectors a?COQ and xTCCON have been
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interpolated onto a 20-layer pressure grid using the surface
pressure measured at the TCCON site.

The bias between coincident TCCON and OCO-2 re-
trievals is calculated by taking the difference between
XCOzaOdJC.O‘Z (Eg. 1) and XCOQI(SCON (Eq. 2) and resulting
in:

XCO,PM = XC0, 0502 — XCO,, 5 O, 3)

3 Neural network architecture and training

To filter the OCO-2 data, we use a three-layer neural network
(NN) that consists of an input layer, a hidden layer, and an
output layer. The design of the NN is based on the book by
Nielsen (2015). The input layer is the value of the features of
the OCO-2 retrievals that are given in the B10 lite files. Ta-
ble 1 lists all the features used by the NN. An initial feature
list was built by combing all features in the OCO-2 qc_flag
filter (Osterman et al., 2020), with the features contained in
the retrieval state vector. Features that provide information
about the quality of the spectral fit, the quality of the recorded
spectrum, and air mass were also included in the initial fea-
tures list. To reduce the total number of features used, each
feature that was thought to provide redundant information to
others was removed by testing how the NN performed with
and without the feature. The bias, precision, number of out-
liers (absolute value of XCO,P'!" > 2.5 ppm) getting through,
and throughput of the training data set were used as the met-
rics to judge the NN performance with and without the fea-
ture. The hidden layer contains the “neurons” where the cal-
culations are done. Each input is connected to a neuron by a
weight. The calculation for single neuron (N) in a NN with
k neurons is given by

n
N* = "win + b, 4)
i=1

where I; is the value of feature i, wf‘ is the weight on fea-
ture i for neuron k, and b* is the bias associated with neu-
ron k. There is a total of 37 neurons, which is the total num-
ber of features plus one. An activation function is commonly
applied to the neuron in order to introduce some nonlinear-
ity into the neuron calculation and to make sure that small
changes in the values of wf.‘ and b¥ result in small changes in
the final output values when training the NN (Nielsen, 2015).
The sigmoid function

f(NKy = _ Q)
- 1+e_Nk

is used as the activation function. Each neuron is linked to
the final output value by a weight (wy). The output value is
given by
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k
?:f(Zwkf(Nk)er), (6)

i=1

where b is the offset, and everything else is as described as
before.

Applying the sigmoid activation function in Eq. (6) en-
sures that ¥ will have a value between 0 and 1. This is useful
for binary classification, which in this case we would use the
NN to classify the OCO-2 retrieval as either “good” or “bad”
by equating a calculated value that is close to 0 as good and
a calculated value that is close to 1 as bad.

For the NN to work, the values of wf , bk, wg, and b need
to be determined. This was done by using a subset of the
OCO-2 coincident retrievals to train the NN. The coincident
data set consists of co-located OCO-2 soundings at the fol-
lowing TCCON sites: East Trout Lake (et), Eureka (eu), Bre-
men (br), Biatystok (bi), Sodankyld (so), Ny Alesund (sp),
and Rikubestu (1j). We withhold the Park Falls (pa) data set
so that it can be a completely independent source of vali-
dation. The coincident data were split into three data sets:
training, testing, and validation. For the training and testing
data, 20 % of the data were randomly selected to go into
each data set, with the remaining 60 % used for validating
the results. In order to train the NN, one needs to know the
input values of the training data set (which are the values
of the features in the B10 lite files) and the expected out-
put value (Y). The expected output value was set to ¥ =0
if the difference between a coincident OCO-2 and TCCON
retrieval is <=£2.5ppm and set to Y =1 if the difference
between the retrievals is > 2.5 ppm. Figure 2a shows the his-
togram of the difference between coincident OCO-2 and TC-
CON retrievals as well as the boundaries separating data into
expected values of 0 and 1. All data between the dashed red
lines were set to Y = 0 (or good) and set to Y = 1 (or bad) if
outside of the boundary.

To achieve the best results when training the NN, we stan-
dardize the values of the input features so that each feature
has a similar range of values. This is helpful because the fea-
tures have different units and orders of magnitude, and if left
as is the NN, they will place much more importance on fea-
tures that have large absolute values than other features with
smaller values. To standardize the input features, the follow-
ing formula is used:

5 = I — i ’ (7)

Oj

where I; is as before, u; is the mean of [; values from the
training data set, and o; is the standard deviation of the I;
values from the training data set. This means that z; is used in
Eq. (4) instead of I;. The Excel file in the Supplement (sheet
“Standardize values”) contains the u; and o; for each of the
features to be used to standardize the data before inputted
into the NN.
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Table 1. List of all the features available to the input layer of the neural network and a brief description of the features based on the

descriptions found in Osterman et al. (2020).

Feature name

Description of feature

Retrieval co2_grad_del
Retrieval dpfrac

Retrieval eof3_3_rel
Retrieval deltaT

Retrieval h20_scale
Retrieval aod_oc

Retrieval aod_water
Retrieval aod_dust

Retrieval aod_bc

Retrieval aod_strataer
Retrieval aod_seasalt
Retrieval aod_sulfate
Retrieval aod_ice

Retrieval water_height
Retrieval ice_height
Retrieval dust_height
Retrieval albedo_wco2
Retrieval albedo_slope_wco2
Retrieval albedo_quad_wco2
Retrieval albedo_sco2
Retrieval albedo_slope_sco2
Retrieval albedo_quad_sco2
Retrieval albedo_o2a
Retrieval albedo_slope_o2a
Retrieval albedo_quad_o2a
Retrieval rms_rel_o2a
Retrieval rms_rel_wco2
Retrieval rms_rel_sco2
Sounding altitude_stddev

Measure of how much the retrieved profile shape is different compared to the a priori profile
Correction of XCO; due to satellite pointing error

Scale factor for of the third empirical orthogonal function (eof) in the CO; strong band
Retrieved offset of a priori temperature profile

Scale factor of retrieved HpO column

Retrieved aerosol optical depth of organic carbon

Retrieved aerosol optical depth of water

Retrieved aerosol optical depth of dust

Retrieved aerosol optical depth of black carbon

Retrieved aerosol optical depth of stratospheric aerosol

Retrieved aerosol optical depth of sea salt

Retrieved aerosol optical depth of sulfate

Retrieved aerosol optical depth of ice

Retrieved central pressure of cloud water layer relative to surface pressure
Retrieved central pressure of cloud ice layer relative to surface pressure
Retrieved central pressure of dust aerosol layer relative to surface pressure
Retrieved albedo of weak CO; band

Retrieved albedo slope of weak CO, band

Retrieved albedo quadratic coefficient of weak CO, band

Retrieved albedo of strong CO, band

Retrieved albedo slope of strong CO, band

Retrieved albedo quadratic coefficient of strong CO, band

Retrieved albedo of Oy A-band

Retrieved albedo slope of O, A-band

Retrieved albedo quadratic coefficient of Op A-band

Root mean square residual of Oy A-band relative to continuum signal

Root mean square residual of weak CO, band relative to continuum signal
Root mean square residual of strong CO, band relative to continuum signal
How much the surface elevation changes within the soundings field of view

Preprocessors max_declocking_sco2
Preprocessors max_declocking_o2a

Estimate of the clocking error in the strong CO, band
Estimate of the clocking error in the O A-band

Preprocessors max_declocking_wco2  Estimate of the clocking error in the weak CO, band

Preprocessors co2_ratio
Preprocessors h20_ratio
solar_zenith_angle
sensor_zenith_angle

Ratio of retrieved CO; column from the strong and weak CO, bands
Ratio of retrieved HyO column from the strong and weak CO, bands
Solar zenith angle of sounding

Sensor zenith angle of sounding

To determine the values of wf, bk, wg, and b, they are
initially set randomly to be between a value of + 1. Using
the training data set, Y is calculated for all the data using the
initial values of wf.‘ | b*, wy, and b. The performance of the

NN is then determined by comparing the calculated value )
to the expected output value (Y) using the log loss entropy
cost function:

“1q~yi O i yi

where 7 is the total number of OCO-2 retrievals in the train-
ing data set. If Y =Y, then C will equal zero, meaning the
values of wl].‘, bk, wy, and b are set to the best values that per-
fectly determine whether an OCO-2 retrieval is good or bad.
This is unlikely to happen for the initial values of those vari-

https://doi.org/10.5194/amt-14-7511-2021

ables since they are set randomly, so C will be > 0. To min-

imize the value of C, the values of wl]f, bk, wg, and b are ad-

justed. The adjustments are done by taking the partial deriva-
aC aC  dC

tive with respect to the cost function (i.e., W’ PRI and

%—i). In principle, this should be iterated until C = 0, but in
practice, the classification of the training data setup is not
perfect. The assumption made when setting up the classifi-
cation of the training data is that if —2.5 ppm < XCO,Piff
(Eq. 3) <2.5ppm, then it is a good OCO-2 retrieval, but
this might not be true. It could be the case that the OCO-
2 retrieval has adjusted parameters as much as possible to
achieve the best possible fit to the measured spectra but that
the retrieved parameters deviate from the true values while
still providing an integrated profile that is close to the TC-

Atmos. Meas. Tech., 14, 7511-7524, 2021
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Figure 2. (a) Histogram of the bias between coincident TCCON and OCO-2 retrievals XCOQDiff (Eq. 3) for the three data sets. The dashed
red lines represent the boundary between setting the classification of the data. (b) Same as plot (a) but shows the density of soundings for

each of the sites.

CON XCOa. This retrieval would be misclassified as good,
so the cost function will never reach O.

To stop training the NN, a few cutoffs were placed: the
maximum number of iterations is 5000 or the accuracy be-
tween the training and testing data < 3 %. When training the
NN, the accuracy of the training data and the testing data
is calculated on each iteration and compared. Since the data
were set up in a binary classification (i.e., 0 or 1), on each
iteration the classification was set to 0 if a calculated value
was < 0.1 (unitless) and the classification was set to 1.0 if
a calculated value was > 0.1. This threshold of 0.1 was de-
termined by trying to balance throughput with degradation
of precision as well as limiting the amount of individual re-
trievals with high absolute XCO,Pf > 2.5 ppm passing the
NN filter. These classification values were compared to the
expected classification value on each iteration to get the ac-
curacy of the training and testing data sets. The testing data
set is not used when determining the values of wl].‘ s bk , Wk,
and b, but rather it is used as an independent data source to
make sure that the NN is not overfitting the training data. The
derived values of wf‘, bk, wg, and b can be found in the Excel
file in the Supplement with values of wlk in sheet “w1”, bX in
sheet “b1”, wy in sheet “w2”, and b in sheet “b2”.

Figure 3 shows the XCO,P' as a function of the value
calculated by the NN for all three data sets. Figure 3a shows
that the OCO-2 retrievals with calculated values close to 0
have the smallest spread in XCOzDiff, while calculated values
close to 1 have the largest spread. This pattern is seen in all

Atmos. Meas. Tech., 14, 7511-7524, 2021

three of the data sets. The density plot shown in Fig. 3b con-
firms that for most of the data the calculated values are <0.1.
There is no clear separation of data (i.e., good retrievals < 0.1
and bad retrievals <0.9) as one would expect from a binary
classifier. Clearly there are retrievals with an ambiguous clas-
sification (f’ >0 and < 1.0) even though all retrievals in the
training data set were assigned a value of O or 1. For the NN
to achieve an ambiguous value when training, there would
have to be retrievals with similar feature values, with no clear
majority between good and bad examples in the training data.
This could happen because XCO, T is not a perfect classifi-
cation metric, which could lead to some portion of retrievals
being incorrectly classified. Another possibility is that a lack
of data combined with the real variance in the scene could
result in the no clear majority case leading to an ambiguous
classification. Since the NN is not showing any confidence in
the classification of these retrievals, they are manually clas-
sified as bad to err on the side of caution. There is also the
possibility that actual bad retrievals can get through the NN
filter due to insufficient training examples as well as incorrect
classification of training data.

4 Validation
To validate the NN filtering, the NN filter was applied to the
validation data set and compared to the same validation data

set but with the B10 qc_flag =0 applied to the soundings.
Since the validation data set was not used in the training of
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Figure 3. (a) The difference between the coincident TCCON and OCO-2 retrievals (XCOzDiH) as a function of ¥ calculated by the NN
(after training) for the training, testing, and validation data sets. (b) Same as plot (a) but shows the density of all three data sets combined,
with the color bar given on a log scale. The dashed red lines represent the boundary between setting the binary classification of the data.

Table 2. The XCO; bias and scatter (ppm) and number of OCO-2 retrievals at each TCCON site as well as overall for the OCO-2 bias-
corrected XCO, after applying either the NN or qc_flag filter to the validation data set. The row labeled “All” excludes data from Park

Falls.

Neural network

‘ B10 qc_flag

Site Bias &= precision =~ Number of retrievals ‘ Bias & precision  Number of retrievals
All 0.25+1.27 23429 0.52+1.45 20198
Eureka (eu) —0.53+2.35 59 0.34+2.94 634
Ny Alesund (sp) 0.87 £2.30 91 2.09 £2.65 92
Sodankyli (so) 034+1.23 5118 0.64£1.30 4736
East Trout Lake (et) 0.01+£1.34 5261 0.44+1.48 3186
Biatystok (bi) 0.27+1.16 6237 040+1.18 5609
Bremen (br) 0.42+1.19 4066 0.85+1.28 3672
Rikubetsu (1j) 0.23+£1.39 2597 0.13£1.70 2269
Park Falls (pa) —0.124+1.27 14859 —0.12+1.18 12406

the NN, it is an independent data set kept aside to assess the
performance of the NN filter. Table 2 shows the bias, scat-
ter, and number of retrievals for the entire validation data set
(All) and at each site when applying either the NN or qc_flag
filter. The overall XCO, bias using the NN filter is half of
the qc_flag filter, the scatter has been decreased by 0.18 ppm,
and the throughput has been increased by 16 %. The NN filter
reduces the bias at every site except at Eureka and Rikubetsu.
The precision is better at every site when the NN filter is ap-
plied to the validation data. The throughput has increased at
every site, when the NN filter is used, except for the Arctic
sites (Eureka and Ny ;\lesund). Park Falls data were not used
to train the NN filter as Park Falls is slightly outside of the
boreal domain, but the data set is used as a completely in-

https://doi.org/10.5194/amt-14-7511-2021

dependent data set to validate the NN filter. When the NN
filter is applied to Park Falls data, the bias remains the same,
the precision decreases by 0.09 ppm, and the throughput in-
creases by ~ 20 %.

The reduction in throughput at the Arctic sites is because
the distribution of data at the Arctic sites is different com-
pared to all other sites as shown in Fig. 2b. The peaks of the
histograms for the Arctic sites are closer to the boundaries
used to classify the training data as good or bad, so almost
half of the data are set to bad when training the NN. Fig-
ure 4 shows the pass rate for the NN filter given the value of
the solar zenith angle (Fig. 4a), sensor zenith angle (Fig. 4b),
and altitude standard deviation (Fig. 4c). In all three plots the
data are binned, with the blue dots showing the number of

Atmos. Meas. Tech., 14, 7511-7524, 2021
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Figure 4. The percentage of data that passes the NN filter (blue dots) for a given solar zenith angle (a), sensor zenith angle (b) and altitude
standard deviation (stddev) (c). The bars are the histograms of the OCO-2 soundings coincident with the Eureka TCCON data.

OCO-2 soundings that pass the NN filter divided by the to-
tal amount of data multiplied by 100 in each bin. The pink
bars plot the histogram of OCO-2 soundings coincident with
Eureka TCCON data. Figure 4a shows that the coincident
OCO-2 soundings are made at solar zenith angles between
58 and 85°, with the blue dots showing that 30 % to 0 % of
the soundings that have these values pass the NN filter. Simi-
larly, Fig. 4b shows that the coincident OCO-2 soundings are
made at high sensor zenith angles, which are less likely to
pass the NN filter. Most of the coincident OCO-2 soundings
at Eureka are made over land that contains significant topo-
graphic variability. Figure 4c shows the altitude standard de-
viation, which is the standard deviation of the elevation (in
meters) of the field of view of the sounding. The plot shows
that at an altitude standard deviation of ~ 50 m only 30 %
of the soundings pass the NN filter. The combination of high
air mass and variable topography decreases the throughput at
Eureka.

For further validation, the seasonal bias, scatter, and num-
ber of retrievals that pass the filters at each site are compared.
Figure 5 shows the bias at each site for spring, summer, fall,
and winter when the NN filter is applied to the validation data
(solid bars) and also when the qc_flag filter (dashed bars) is
used on the same validation data set. For most sites and sea-
sons, the magnitude of the biases for the two different filter-
ing schemes are similar, although in most cases the NN filter
has a lower absolute bias compared to the qc_flag filter. The
NN filter significantly improves the bias at Sodankyld and
Rikubetsu during spring, Ny Alesund during summer, and
Rikubetsu and Bremen during winter. Both the NN filter and
the qc_flag show that there is a positive bias between OCO-2
and TCCON in summer. The NN filter is able to reduce this
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Figure 5. The bias at each site for the different seasons when the
NN filter (bars with solid lines) and qc_flag (bars with dashed lines)
are used to filter the OCO-2 retrievals in the validation data set.
(a) Spring (March, April, May); (b) summer (June, July, August);
(c) fall (September, October, November); (d) winter (December,
January, February). Note the different y-axis ranges for each plot.
Note that bars that show a bias of zero are due to no data rather than
a bias of zero.

summer bias, but it still remains. At Park Falls the bias be-
tween the two filters is similar for the different scenes, with
the qc_flag showing a lower bias in summer, and the NN fil-
ter decreasing the bias in winter.

Figure 6 shows the precision at each site for spring, sum-
mer, fall, and winter when the different filters are applied to
the validation data. The precision is very similar (i.e., within
0.2 ppm) for most sites during the different seasons. The NN
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Figure 6. Same as Fig. 5 but shows the precision at each site for
each season. (a) Spring (March, April, May); (b) summer (June,
July, August); (c) fall (September, October, November); (d) winter
(December, January, February). Solid bars indicate the NN filter,

and dashed bars indicate the original B10 qc_filter.
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Figure 7. Same as Fig. 5 but shows the number of soundings that
pass each filter at each site for the different seasons. (a) Spring
(March, April, May); (b) summer (June, July, August); (c) fall
(September, October, and November); (d) winter (December, Jan-
uary, February). Solid bars indicate the NN filter, and dashed bars
indicate the original B10 qc_filter.

filter improves the precision (by more than 0.2 ppm) at Riku-
betsu during spring, Eureka and Ny Alesund during sum-
mer, and Biatystok and Rikubetsu during fall. However, the
qc_flag filter has a much better precision at Sodankyli during
spring when compared to the NN filter.

Figure 7 shows the number of retrievals that pass each fil-
ter for the different sites during spring, summer, fall and win-
ter. At most sites, the NN filter lets through more retrievals
compared to the qc_flag filter during spring, fall, and winter.
In summer the qc_flag filter has a slightly higher through-
put compared to the NN filter at most sites. This decrease in
throughput during summer helps improve the bias and preci-
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sion as seen in Figs. 5b and 6b. There is a significant increase
in throughput at East Trout Lake during spring with the NN
filter, and it even produces some retrievals in winter. At Park
Falls the throughput has increased in spring, fall, and winter
but is significantly decreased during summer. The decrease
in summer is because the NN filter is trained on data that
show a bias during summer, which it decreases by filtering
out more data compared to the qc_flag filter. Even though
Park Falls is not in the boreal domain, its scene type (forest)
is similar to East Trout Lake. The NN has no information on
time of year, but it does have information on the surface type
through the albedo values, which change due to the time of
year. It is most likely that what the NN learned from the East
Trout Lake data is influencing how the NN filters the data at
Park Falls.

Some of the increase in throughput with the NN filter
during spring, fall, and winter can be explained by the fact
that the qc_flag filter tries to filter out spectra that have
been recorded over snow scenes (Osterman et al., 2020). The
snow_flag, found in the B10 lite files, is used to indicate the
presence of snow in the scene. We applied this snow_flag to
the NN-filtered data to see if the NN filter removes all sound-
ings over snow. From the validation data set, 3219 retrievals
have snow_flag =1, with 785 of those retrievals passing the
NN filter. This means that the NN filter passes about 24 % of
the OCO-2 soundings made over snow. This is much lower
compared to the general case (all scenes) where greater than
40 % of the data pass both the NN and qc_flag filters. The
bias over snow scenes compared to TCCON from all the re-
trievals that pass the NN filter in the validation data set is
0.13 £ 1.44. Since the precision is lower over snow, it makes
sense that the throughput over snow is lower compared to the
general case. At Park Falls 1032 soundings that pass the NN
filter, with 727 in winter and 302 in spring, are snow scenes.
So a significant amount of throughput during winter at Park
Falls are made over snow scenes. The bias of snow scenes at
Park Falls was found to be 0.12 £+ 1.41.

The NN filter was applied to all OCO-2 B10 data at lati-
tudes greater than 45° N to determine the throughput in the
boreal and Arctic regions. Figure 8 shows the percent dif-
ference (NN minus qc_flag, divided by qc_flag, and multi-
plied by 100) between the number of soundings that pass
the filters. The maximum value for the percent difference
was capped at 100 %. The throughput with the NN filter is
greater than the qc_flag filter in spring and winter, while the
throughput with the qc_flag filter is greater than the NN filter
in summer and fall. This is consistent with what is seen at the
individual TCCON sites. Over Greenland the throughput has
increased with the NN filter regardless of season, because
the qc_flag filter removes all data over Greenland with the
snow_flag filter. During fall, the throughput has increased at
greater than 70° N, because the NN filter is letting through
soundings that were recorded over snow scenes.

Atmos. Meas. Tech., 14, 7511-7524, 2021
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Figure 8. Polar plots of the percent difference in the number of soundings that pass the NN filter compared to the qc_flag filter for spring (a),
summer (b), fall (¢), and winter (d). The data have been binned by 2° longitude by 2° latitude.

5 Discussion and conclusions

In this study, a neural network was used to filter the OCO-
2 bias-corrected XCO; data collected near northern high-
latitude TCCON stations as described in Sect. 3. The per-
formance of the NN filter was assessed by comparing the
bias, precision, and throughput to the quality control filtered
data. There was an improvement in the bias, precision, and
throughput both overall and at most sites, as well as improve-
ments in the bias in different seasons. However, the NN fil-
ter decreases the throughput at Eureka, because it finds that
0OCO-2 soundings made at high solar zenith angles, high sen-
sor zenith angles, and over variable topography are problem-
atic.

The main downside to using a neural network to filter
OCO-2 retrievals is that it does not readily provide informa-
tion on why a retrieval was classified as good or bad, which
would be useful for improving the retrieval algorithm. Deci-
sion tree algorithms are binary classifiers which do provide
information on the classification of data. However, a draw-
back to decision trees is that they overfit the training data. In
Sect. 3, it was explained why some of the training data might
be incorrectly classified, leading to the NN filter determining
an ambiguous classification for some retrievals. The assump-
tion with decision trees is that all the training data are cor-
rectly classified, which is not entirely true in this case. The
NN calculating values that make the classification of some
retrievals ambiguous can be interpreted as a confidence in the
classification of retrievals. With a decision tree, there is no
metric to measure the confidence in the classification of re-

Atmos. Meas. Tech., 14, 7511-7524, 2021

trievals, so you could get retrievals passing the decision tree
filter that are actually closer to bad retrievals than good.

There are also ways that the implementation of a NN to
filter OCO-2 retrievals can be improved upon. Increasing the
amount of retrievals used in the training data set would im-
prove the performance of the NN filter. This can be done by
incorporating new coincident TCCON measurements from
the sites in this study, retrievals from new TCCON sites
coming into operation, and the potential use of other simi-
lar truth proxies such as the COllaborative Carbon Column
Observing Network (COCCON) (Frey et al., 2019). To im-
prove the training classification, other helpful truth proxies
such as cloud and aerosol information can be combined with
XCO,P" when classifying the retrievals for training. The
current implementation of the NN as a binary classifier was
done to make the problem as simple as possible in order to
filter out retrievals where the forward model of the retrieval
algorithm is suboptimal rather than scenes of high variance.
A possible alteration to the algorithm would be to do the clas-
sification on a continuum where the output of the NN ()A’)
would be related to the expected precision of the data. The
downside to this configuration would be that the NN filter
would be filtering out not only bad retrievals but also scenes
with high variance. For example, if you wanted a precision
of better than 1 ppm, chances are you would not have any re-
trievals over snow getting through the NN, greatly reducing
throughput in the winter and shoulder season at high lati-
tudes.

This study shows the potential of using a neural network
to filter OCO-2 retrievals that could be useful in future filter-
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ing schemes for OCO-2 or other satellite missions. However,
there are potential drawbacks to the methodology presented
in this study. In this study, we focus on data near northern
high-latitude TCCON stations and so do not sample glob-
ally representative ranges of surface properties or air masses.
Figure 1 shows the limited coverage that the TCCON sites
provide, with no coverage over Greenland and most of the
Eurasian boreal region. The effectiveness of the NN filter is
dependent on how well the NN is trained. We train the NN
using OCO-2 data coincident with TCCON data, so the NN
filter is trained only under atmospheric conditions observed
at the northern high-latitude TCCON sites. We have shown
that this way of training the NN is effective when validated
against northern high-latitude TCCON data. When the NN
filter was applied to Park Falls data, which were not used in
the training of the NN, we found that the bias was similar to
the qc_flag filter, with a decrease of 0.09 ppm in precision but
a 20 % increase in throughput. Although the throughput in-
creased in spring, fall, and winter seasons, it decreased a lot
during summer. The decrease in throughput in summer led to
improved bias and precision values at all the TCCON sites
used in the training of the NN but not at Park Falls. This is
because the NN has found a pattern that improves the train-
ing data set which is not as applicable to Park Falls data. The
gc_flag filter lets through almost twice as much data com-
pared to the NN filter during summer with a decrease in pre-
cision of only 0.09 ppm compared to the NN filter. The NN
filter is suboptimal at Park Falls (during summer) and if one
applied the NN filter to data that are not similar to northern
high-latitude data used to train the NN, it will not be as ef-
fective.

The effectiveness of the NN filter is dependent on the data
set used to train the NN. In this study we assume that the
TCCON data represent the truth and that any bias that we see
is in the OCO-2 retrievals. The NN is trying to decrease the
bias it sees as much as possible, and if there is a bias in the
TCCON data, it will attribute this to a bias in the OCO-2 data
and treat that data as bad. One way to be less influenced by
TCCON data is to use a small area approximation, where
XCO; is assumed constant within a small region (O’Dell
et al., 2018). While the absolute value of the retrieval cannot
be evaluated using a small area analysis, variability within
the small area can, and this would vastly increase the data set
size used in the NN and improve the range of surface proper-
ties, atmospheric conditions, and air masses represented by
the training data set. This small area approach will be inves-
tigated in a future study.

The NN filter passes some retrievals of soundings made
over snow albeit at a lower throughput compared to non-
snow scenes. This is expected because retrievals over snow
are difficult due to the low albedo in the spectral regions of
the CO; bands, often providing insufficient signal for a good
retrieval. However, the albedo of snow is dependent on the
age of the snow with fresh snow having higher albedo com-
pared to old snow, so there is a possibility that some of the
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soundings recorded over snow have enough signal to produce
a good retrieval. Nevertheless, these retrievals are further
complicated by the fact that the spectra are usually recorded
through large solar zenith angles (SZAs) due to the sound-
ings being made at either high latitudes or at times of the year
when the SZA is large, which is challenging for the radiative
transfer model of the retrieval algorithm to deal with. The
results of this study show the potential of a machine learn-
ing algorithm to tease apart these factors and recover some
of the retrievals over snow, although in this study there was
not enough coincident data over snow to get meaningful site
statistics (bias and precision). A future study will investigate
the potential of a machine learning algorithm to filter the re-
trievals over snow by folding in more training and validation
data.

The accuracy of XCO, observations over the northern high
latitudes and the loss of data there due to filtering has been
a long-standing issue with OCO-2 and GOSAT data versions
to date, which has limited the scientific community’s abil-
ity to apply their data to investigate important northern high-
latitude carbon cycle science questions. This paper demon-
strates that a neural network approach can be used to in-
crease the number of soundings at northern high latitudes,
while also improving the bias, precision, and throughput de-
pending on the site. One possible future application of the
NN (or other machine learning algorithms) could be to im-
prove the bias correction of OCO-2 retrievals. Le et al. (2020)
used a convolution NN for spatiotemporal bias correction
of satellite precipitation data, and air quality forecasts have
moved towards bias correction using a decision tree algo-
rithm (Ivatt and Evans, 2020). Continual efforts at improving
northern high-latitude retrievals and filtering will be benefi-
cial not only for current missions but also for future XCO,
missions like MicroCarb (Pasternak et al., 2016), GOSAT-
GW (Kasahara et al., 2020), and CO,M (Sierk et al., 2018),
which will make global observations that include northern
high latitudes, and even more so for missions under consid-
eration like AIM-North (Nassar et al., 2019), which is dedi-
cated to observing the Arctic and boreal atmosphere.

Data availability. The OCO-2 B10 lite files were obtained
from the NASA Goddard Earth Science Data and Infor-
mation Services Center (GES DISC; https://oco2.gesdisc.
eosdis.nasa.gov/data/OCO2_DATA/OCO2_L2_Lite_FP.10r/,
NASA, 2020). TCCON data are available from the TCCON
Data Archive, hosted by CaltechDATA (https://tccondata.org/,
last access: 1 August 2020). DOIs: https://doi.org/10.14291/
TCCON.GGG2014.BREMENO1.R1 (Notholt et al.,, 2019a);
https://doi.org/10.14291/TCCON.GGG2014.BIALYSTOKO01.R2
(Deutscher et al., 2019); https://doi.org/10.14291/TCCON.
GGG2014.SODANKYLAO1.R0/1149280 (Kivi et al., 2014);
https://doi.org/10.14291/TCCON.GGG2014.NYALESUNDO1.R1
(Notholt et al., 2019b); https://doi.org/10.14291/TCCON.
GGG2014.EASTTROUTLAKEOL.R1 (Wunch et al., 2018);
https://doi.org/10.14291/TCCON.GGG2014. EUREKAOQ1.R3
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(Strong et al, 2019); https://doi.org/10.14291/TCCON.
GGG2014.PARKFALLSO1.R1  (Wennberg et al., 2017);
https://doi.org/10.14291/TCCON.GGG2014.RIKUBETSUO1.R2
(Morino et al., 2018).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/amt-14-7511-2021-supplement.
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