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Abstract. Due to the discretized nature of rain, the mea-
surement of a continuous precipitation rate by disdrome-
ters is subject to statistical sampling errors. Here, Monte
Carlo simulations are employed to obtain the precision
of rain detection and rate as a function of disdrome-
ter collection area and compared with World Meteorolog-
ical Organization guidelines for a 1 min sample interval
and 95 % probability. To meet these requirements, simu-
lations suggest that measurements of light rain with rain
rates R≤ 0.50 mm h−1 require a collection area of at least
6 cm× 6 cm, and for R= 1 mm h−1, the minimum collec-
tion area is 13 cm× 13 cm. For R= 0.01 mm h−1, a collec-
tion area of 2 cm× 2 cm is sufficient to detect a single drop.
Simulations are compared with field measurements using
a new hotplate device, the Differential Emissivity Imaging
Disdrometer. The field results suggest an even larger plate
may be required to meet the stated accuracy, likely in part
due to non-Poissonian hydrometeor clustering.

1 Introduction

Ground-based precipitation sensors are commonly used to
validate remotely sensed precipitation measurement systems,
including satellite (TRMM), WSR-88D radar measurements
(Kummerow et al., 2000; Fulton et al., 1998), and numeri-
cal weather prediction models (Colle et al., 2005) aimed at
hydrology, agriculture, transportation, and recreation appli-
cations (WMO, 2018; Estévez et al., 2011; Campbell and
Langevin, 1995; Brun et al., 1992). The ability of an auto-
mated weather station to detect the presence of light pre-

cipitation can be crucial for weather forecasting in remote
locations where a human observer is not available to verify
the presence of rainfall (Horel et al., 2002; Miller and Barth,
2003). Light rain or drizzle can severely impede road safety
(Andrey and Yagar, 1993; Andrey and Mills, 2003; Bergel-
Hayat et al., 2013; Theofilatos and Yannis, 2014).

Disdrometers measure particle drop size distributions and
provide calculated precipitation rate from the integrated mass
flux. Among available disdrometers are the mechanical Joss–
Waldvogel (JW) disdrometer (Joss and Waldvogel, 1967),
laser or optical sensors such as the OTT Parsivel2 (Tokay
et al., 2013; Bartholomew, 2014), and video disdrometers
such as the 2DVD (Kruger and Krajewski, 2002; Thurai
et al., 2011; Brandes et al., 2007). In instrument develop-
ment, striking a balance between sampling area and accurate
fine-scale precipitation detection is a well-known problem.
Among other instrument-specific considerations, disdrome-
ter accuracy depends on the sampling area and time interval.
Gultepe (2008) highlights a universal difficulty in accurately
measuring very light precipitation. In their study, they com-
pared different co-located precipitation sensors and found
large absolute and relative errors (32 %–44 %) for all instru-
ments when precipitation rate R< 0.3 mm h−1, but the rela-
tive errors were approximately 10 % when R> 1.5 mm h−1.
Despite these observations, they found that optical and hot-
plate disdrometers can more accurately detect light precip-
itation compared to weighing gauges, despite having com-
paratively small sampling areas, typically 50 cm2, where the
VRG101 weighing gauge sampling area is 400 cm2. Here, we
focus solely on the effect of disdrometer sampling area and
time interval on the precision of precipitation rate measure-
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ment distinct from any other uncertainties associated with the
instruments themselves.

The World Meteorological Organization (WMO) recom-
mends that a disdrometer measure precipitation with an out-
put averaging time of 1 min (WMO, 2018). Measurement un-
certainty is defined as “the uncertainty of the reported value
with respect to the true value and indicates the interval in
which the true value lies within a stated probability” specified
to be 95 %. For liquid precipitation intensity, the uncertainty
requirements for rates of 0.2 to 2 mm h−1 are ±0.1 mm h−1,
and for precipitation rates > 2 mm h−1 they are 5 % (see Ta-
ble 1). For < 0.2 mm h−1, the requirement is only detection.

Most commercial instruments do not reach such strict stan-
dards. Table 1 provides the reported uncertainties for sev-
eral precipitation instruments. The instrumentation used by
Automated Surface Observing Systems (ASOS) weather sta-
tions located at major airports utilizes a heated tipping bucket
(HTB) for precipitation accumulation and a light-emitting
diode weather identifier (LEDWI) for precipitation type and
intensity. The LEDWI uses signal power return to determine
the drop size distribution of rain or snow and then classi-
fies the precipitation intensity based on the size distribution
(Nadolski, 1998). A significant limitation of the ASOS sys-
tem is that it cannot discriminate drizzle from light rain, and
it qualitatively expresses small amounts as a trace (Wade,
2003; Nadolski, 1998).

Vaisala manufactures a range of optical precipitation sen-
sors that detect and categorize precipitation from the forward
scattering of a light beam, including the PWD12, PWD22,
PWD52, and FD71P. The PWD12 detects rain, snow, un-
known precipitation, drizzle, fog, and haze. The PWD22
has the same resolution and accuracy as the PWD12, but
it also detects freezing drizzle, freezing rain, and ice pellets
(Vaisala, 2019b). The PWD52 has an increased observation
range of 50 km compared to 20 km for the PWD22 (Vaisala,
2018a). All three PWD instruments have a precipitation in-
tensity resolution of 0.05 mm h−1 for a 10 min sampling in-
terval at 10 % uncertainty (Vaisala, 2019b). The PWD22 is
included with tactical weather instrumentation intended for
US military and aviation operations (TACMET) and reports
precipitation type in WMO METAR code format (Vaisala,
2018b). The FD71P has a higher stated sampling frequency
and resolution than the PWD instruments of 0.01 mm h−1

with 2.2 % uncertainty in a 5 s measurement cycle (Vaisala,
2019a), although there has yet to be independent scientific
evaluation of the device.

Hotplate disdrometers offer an alternative with the advan-
tage of requiring fewer assumptions as mass is inferred from
the energy required for evaporation. The Yankee Environ-
mental Systems TPS-3100 determines the liquid water pre-
cipitation rate of rain or snow by taking the power difference
between upward- and downward-facing hotplates as a mea-
sure of the latent heat energy required to evaporate precipita-
tion (Rasmussen et al., 2010). The technology is currently
marketed as the Pond Engineering Laboratories K63 Hot-

plate Total Precipitation Gauge (Pond Engineering, 2020).
The hotplate is 5 in. in diameter, or 126.7 cm2, which is
equivalent to a square with a width of 11.26 cm. It measures
precipitation rate with a resolution of 0.10± 0.5 mm h−1 and
can detect the onset of light snow within 1 min (Yankee En-
vironmental Systems, 2011; Pond Engineering, 2020).

A newer hotplate disdrometer, yet to be commercialized,
is the Differential Emissivity Imaging Disdrometer (DEID)
developed at the University of Utah. The DEID measures
the mass of individual hydrometeors using a hotplate and
a thermal camera, which provide accurate, fine-scale mea-
surements. A larger hotplate sampling area increases the op-
erating cost through higher power consumption. The work
here was originally motivated by a desire to minimize DEID
power and maximize measurement precision, although the
calculations are applicable more generally to other disdrom-
eters such as those described. We employ a Monte Carlo
approach (Liu et al., 2012, 2018; Jameson and Kostin-
ski, 1999, 2001a, 2002) to stochastically generate raindrops
based on canonical size distributions aimed at determining
the minimum required disdrometer collection area and sam-
pling frequency for precise measurement of precipitation
rates between 0.01 and 10 mm h−1. We consider the precip-
itation rate uncertainty relative to WMO standards. Inherent
precipitation measurement uncertainties associated with the
instrument mechanism are not addressed here. Where Joss
and Waldvogel (1969) approached the problem analytically
by assuming the interarrival times of droplets up to 6 mm in
diameter are distributed according to a Poisson distribution,
here we approach the problem numerically by employing a
Monte Carlo approach. In principle, the results should con-
verge, although the Monte Carlo approach also facilitates the
calculation here of the time required to measure the “first
drop” in a precipitation event. Joss and Waldvogel (1969)
defined a sample size as the product of an area and a sam-
ple time. Under the assumption that raindrop size follows
an exponential distribution, to measure a precipitation rate
of R= 1 mm h−1 to a precision of 10 % within 95 % con-
fidence bounds, the required sample size is 1.5 m2 s, corre-
sponding to a cross-sectional sampling area of A= 250 cm2

with a square sampling area width W = 15.8 cm for a nom-
inal 60 s collection interval. The required square width W
found in this work for the same parameters is 13 cm.

2 Differential Emissivity Imaging Disdrometer
principle

The DEID obtains the mass of individual precipitation par-
ticles by assuming conservation of energy during heat trans-
fer from a square plate to a melting hydrometeor. To deter-
mine particle size during evaporation, a thermal camera is
directed at a heated aluminum sheet. Since aluminum is a
thermal reflector (thermal emissivity ε ≈ 0.03), whereas wa-
ter is not (ε ≈ 0.96), particles have high brightness tempera-
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Table 1. Precipitation measurement instrument specifications.

Model Type Resolution Uncertainty Time Meets WMO
(mm h−1) (s) requirement

Vaisala PWD12/22/52 Optical 0.05 10 % 600 N
Vaisala FD71P Optical 0.01 2.2 % 5 Y
ASOS HTB Tipping bucket 0.25 0.5 mm or 4 %∗ 60 N
ASOS LEDWI Optical 0.25 > 4 mm h−1 60 N
YES TPS-3100/Pond K63 Hotplate 0.10 0.5 mm h−1 60 N

WMO 0.10 0.1 mm h−1 or 5 %* 60

∗ Whichever is greater.

ture and appear as white regions on a low brightness temper-
ature, black background. From the measured cross-sectional
surface area, temperature, and evaporation time of each hy-
drometeor, the effective diameter and volume and the mass
of each particle can be calculated with high precision (Singh
et al., 2021). A piece of polyimide tape with ε ≈ 0.95 is
placed on the side of the sampling area as a reference for the
differential emissivity calculation and determination of the
camera’s pixel resolution. For the study described here, the
DEID’s aluminum plate had an area of 15.24 cm× 15.24 cm,
and the camera pixel resolution was 0.2 mm. Polyimide tape
applied to the surface restricted the collection area to A ≈
7 cm× 5 cm, equivalent to a square width of W = 5.8 cm.
Thermal camera imagery with a sampling frequency between
2 and 60 Hz was used to determine the cross-sectional surface
area, temperature, and evaporation time of each hydrometeor
(Singh et al., 2021). From these parameters, individual hy-
drometeor mass is calculated from conservation of energy,
whereby the heat gained by the hydrometeor is equal to the
heat lost by the hotplate when evaporating water through

cp1T

∫
dm+Leqv

∫
dm=

t∫
0

K

H
A(t)(Tp− Tw(t))dt, (1)

where cp is the specific heat capacity of water at constant
pressure, 1T is the difference in temperature between 0 and
time t , m is the mass of the hydrometeor, and Leqv is the
equivalent latent heat required for the conversion of the hy-
drometeor to gas. For liquid precipitation Leqv = Lv, where
Lv is the latent heat of vaporization of water. K is the ther-
mal conductivity of the plate,H is hotplate thickness,A(t) is
the area of the water droplet at time t , Tp is the temperature
of the hotplate, and Tw(t) is the temperature of the water at
time t .

When combining the constants into a single value Kd ,
Eq. (1) simplifies to

∫
dm=Kd

t∫
0

A(t)(Tp− Tw(t))dt, (2)

Figure 1. Photograph of the DEID during the Red Butte field ex-
periment in Salt Lake City, Utah, with the thermal camera pointed
at the hotplate surface.

where Kd is determined experimentally.
The precipitation rate RDEID is calculated from the total

mass of hydrometeors evaporated on the hotplate during a
given sample time interval. For each frame of the hotplate
captured by the thermal camera,

RDEID =
βfsKdAevapImean

ρwAhot
, (3)

where β = 3.6×106 mm s m−1 h−1, fs is the camera resolu-
tion (frame s−1), Aevap is the total area of water on the sam-
pling area (m2), Imean is the pixel intensity related to the
temperature difference between the plate and water through
Tp−Tw(t)≈ (255−Imean)/256×Tp, ρw is the density of wa-
ter (1000 kg m−3), and Ahot is the hotplate area (m2).
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Table 2. Minimum collection area required to meet WMO precision criteria for various precipitation rates and time intervals evaluated within
1 cm intervals.

1t = 10 s 1t = 60 s 1t = 300 s 1t = 600 s

Rate (mm h−1) WMO precision Width (cm)

0.01 First drop (µ= 2) 5 2 < 1 < 1
0.10 First drop (µ= 2) < 1 1 < 1 < 1
0.20 ±0.1 mm h−1 6 1 1 < 1
0.50 ±0.1 mm h−1 14 6 3 3
1.00 ±0.1 mm h−1 25 13 5 4
2.00 ±0.1 mm h−1 & ±5 % 40 20 8 5
10.00 ±5 % 30 15 6 4

Figure 2. Precipitation rate Rcalc calculated 1000 times for each W with a uniformly distributed random selection of particle sizes from
the Marshall–Palmer distribution with diameters up to 6 mm for 1t = 60 s. Vertical curves represent a probability density function (PDF) of
calculated Rcalc with the widths scaled according to the widest curve; 95th and 5th percentile bounds are smoothed and shown in red, dotted
lines. WMO standards (±5 %, dashed, and ±0.1 mm h−1, dot-dashed) are shown as horizontal lines. The intersection of these lines indicates
the required square disdrometer sampling area width to determine R according to WMO standards.

Hydrometeor catch inefficiency is a large contributor to
precipitation rate measurement error, especially in bucket-
type precipitation gauges (Pollock et al., 2018). Rasmussen
et al. (2010) found that the Yankee hotplate had a catch effi-
ciency of only 50 % with a wind speed of 5 m s−1 and 35 %
with a wind speed of 8 m s−1. The DEID underwent a se-
ries of calibration wind tunnel tests to determine the effect
of wind on mass measurements. During these experiments,
mass measurements remained approximately constant, re-
vealing that catch inefficiency is not a contributor to the pre-
cipitation rate measurement (Singh et al., 2021). The high
catch efficiency from the DEID was demonstrated during a
storm that took place at Alta, UT, on 16 April 2020 between
00:00 and 16:00 UTC (Fig. 10 of Singh et al., 2021). The co-
located weighing gauge was located inside of a wind fence,
while the DEID was not. Despite wind speeds during the
storm ranging from 4 to 13 m s−1 sustained with 8–19 m s−1

gusts, DEID precipitation measurements were within 6 % of
the co-located weighing gauge. For this reason, precipitation
rate as a function of catch efficiency is not explored in this
work.

3 Monte Carlo simulations

3.1 Size distribution generation

For a range of collection areas A and time intervals 1t , a
raindrop distribution is generated stochastically and com-
pared with the assumed rate R. Initially, we adopt the
Marshall–Palmer (Marshall and Palmer, 1948) drop size dis-
tribution

n(D)= n0e
−3D, (4)

where n0= 8000 m−3 mm−1 and 3= 4.1R−0.21 mm−1. D
ranges between 0 and Dmax in linear bins evenly spaced by
1D. We establish Dmax= 6 mm to account for the expected
breakup of large raindrops (Villermaux and Bossa, 2009) and
1D= 0.25 mm for 50 bins. The value of 1D is arbitrary
but was chosen to approximate the spatial measurement res-
olution of the prototype DEID. For an assumed value of R,
the array of drops is stochastically generated according to
Eq. (4), where NMP =

∑
n(D)1D is the total number of

drops generated from each bin. Each drop in the bin is as-
signed a diameter of Dmean =D+1D/2. For each value of
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Figure 3. Comparison of R= 0.10, 1.00, and 10.00 mm h−1 for 1t = 10 s, 5 min, and 10 min. The applicable WMO standards for each rate
(±5 %, dashed, and ±0.1 mm h−1, dot-dashed) are shown as horizontal lines.

Dmean, the fall speed is

v = aDbmean, (5)

where the coefficient a and the exponent b are determined
for the Stokes regime for Dmean≤ 0.08 mm, the intermedi-
ate regime for 0.08 mm≤Dmean < 1.2 mm, and the turbulent
regime for Dmean≥ 1.2 mm following Lamb and Verlinde
(2011). The maximum value of v is used to determine the
sample volume of the generated Marshall–Palmer distribu-
tion of drops vmaxA1t m3.

The calculated size distribution of drops incident on the
collection area during sampling time 1t is then

N(D)coll = n(D)Av1t, (6)

with units of mm−1. The total calculated number of drops
Ncoll incident on the collection area is a summation of Eq. (6)
over the range 0 to Dmax.

3.2 Calculated precipitation rate

Ncoll drops are randomly sampled assuming the Marshall–
Palmer distribution. From the drops that impact the collection
area, the calculated precipitation rate Rcalc is (cf. Lane et al.,
2009)

Rcalc = α
π

6

50∑
i=1
NiD

3
i

A1t
, (7)

where α= 3.6 ×10−3 m2 s mm−2 h−1 and Ni is the number
of drops with diameter Di , with i corresponding to bin num-
ber; 100 simulations of Rcalc are performed for each value
of equivalent sampling area width W =

√
A, each evenly

spaced by 1 cm. The 95th and 5th percentile bounds of Rcalc
are specified as the upper and lower bounds of sampling un-
certainty (Rcalc/R− 1).
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Figure 4. Generated size distributions (a, d, g), first drop simulation (b, e, h), and 100th drop simulation (c, f, i) for µ= 0, 1, and 2 (top,
middle, and bottom).

3.3 First and hundredth drops

To determine the sampling time required to detect the on-
set of precipitation, 100 simulations were performed for
R= 0.01, 0.1, and 1 mm h−1 and for 100 evenly spaced width
binsW between 1 and 20 cm. For each width bin, the number
size distribution was calculated from n(D) for a 1 m3 volume
directly above the collection area with height h= 1/A. A
sample of drops is generated from Eq. (6). To ensure that the
drop with the smallest sizeDmean could feasibly fall from the
top to the bottom of the sample volume, 1t = h/v is maxi-
mized using the fall speed of the minimum value of Dmean.
In general, small drops contribute negligibly to calculations
of precipitation rate (Smith et al., 2003), but due to their
higher concentrations they may nonetheless be the first de-
tected. Accordingly, the functional form of n(D) is adjusted
from the simpler exponential form described by Eq. (4) to a
gamma distribution

n(D)= n0D
µe−3D. (8)

So that small particles with D < 1 mm are not over-
represented (Ulbrich and Atlas, 1984), the drop size distri-
bution is modified by the shape parameter µ and generated
according to Eq. (6). Each drop is assigned a random height
1z above the collection area within a distance h above the
plate, and the time elapsed for the plate to detect a drop is

tp =1z/v. The shortest of these times is the first drop detec-
tion time t1.

Following the collection approach taken by Marshall et al.
(1947), reproduction of the Marshall–Palmer size distribu-
tion is assumed to require collection of 100 drops. The time
elapsed for the calculated incidence of 100 drops is t100. If
fewer than 100 drops were obtained in Ncoll, a new sample
of drops is obtained from Eq. (6) with an increased value of
1t .

4 Results

4.1 Monte Carlo simulations

The sampling uncertainty in the precipitation rate is il-
lustrated in Fig. 2. Precipitation rates of R= 0.02, 0.20,
and 2.00 mm h−1 were analyzed for a standard sampling
time of 60 s. Collection areas smaller than approximately
6 cm× 6 cm meet WMO standards for R≤ 0.50 mm h−1,
but a collection area of over 10 cm× 10 cm is required for
R > 1 mm h−1.

To illustrate the relationship between accuracy and
sampling time, Fig. 3 compares R= 0.10, 1.00, and
10.00 mm h−1 with sampling times of 10 s, 5 min, and
10 min. For heavy rain rates of 10 mm h−1, for a time in-
terval of 5 min, a disdrometer sampling area width of 4 cm
yields measured rain rates with a precision of ±5 % error
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Figure 5. Recalculation of Rcalc (Eq. 7) from 1000 uniformly distributed, randomly sampled iterations of a 1 min DEID dataset from
8 March 2020 at 14:43 MST with rain rate RDEID= 4.2 mm h−1 (a). Rcalc was recalculated using uniformly distributed random segments of
time (c) and hotplate sampling area width (d). As t→ 60 and W →WDEID, Rcalc approaches RDEID.

for 95 % of the measurements. The intersection between 95th
and 5th percentile bounds and WMO accuracy criteria occurs
in larger collection areas as R increases.

First drop simulation results are shown in Fig. 4. Three
simulations were performed using three values of µ, where
µ= 0 represents the Marshall–Palmer exponential distribu-
tion and closely represents the distributions generated by the
uncertainty simulations. Following Ulbrich and Atlas (1984),
DEID measurements show values of µ between 1 and 2 best
represent the distribution of drops that arrive on the hotplate
(Figs. 5b and 6b). Monte Carlo calculations of the size dis-
tribution Ncoll are shown in Fig. 4. Note that the size distri-
bution for N(D)coll does not converge to N(D)MP for long
sampling times because smaller drops fall slowly. Rather,
the distribution more closely resembles a gamma distribu-
tion (Ulbrich and Atlas, 1984). Nevertheless, the contribu-
tion of small drops to ground-based measurements of pre-
cipitation tends to be small as they are comparatively less
massive. Also, precipitation particles form primarily from
droplet collisions in the updrafts within clouds and so must
attain the size that they fall sufficiently quickly to leave cloud
base and fall to the ground where they can be sampled by

ground-based instruments (Garrett, 2019). For µ= 2, few
of the smallest drops with D < 1 mm are incident on the
collection area. A square collection sampling area width of
2 cm× 2 cm is sufficient to detect the onset of light precipi-
tation with a rate of R = 0.01 mm h−1 within 1 min.

4.2 Application to DEID measurements

During a field campaign that took place at the University
of Utah between April 2019 and March 2020, the DEID
recorded the mass and density of individual hydromete-
ors, along with the 1 min-averaged precipitation rate RDEID
for six rain events and five snow events with data span-
ning 1185 total minutes. DEID particle mass distributions
for two contrasting 1 min samples of convective moderate
(RDEID= 4.2 mm h−1) and light (RDEID= 0.1 mm h−1) rain
are shown in Figs. 5 and 6. These samples were selected from
rain-only events with measured RDEID values closest to the
values of R that were analyzed in Sect. 4.1. These disdrom-
eter data are used here in place of an assumed size distribu-
tion to calculate Rcalc (Eq. 7) in 100 iterations, each taken
from data randomly sampled over time interval segments of
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Figure 6. Recalculation of Rcalc from 1000 iterations of a 1 min DEID dataset from 8 March 2020 at 15:14 MST with rain rate
RDEID= 0.1 mm h−1 (a).Rcalc was calculated using uniformly distributed random segments of time (c) and hotplate sampling area width (d).
As t→ 60 and W →WDEID, Rcalc approaches RDEID.

1t = 10, 20, 30, 40, and 50 s (Figs. 5c and 6c) and plate area
segments of W = 1, 2, 3, 4, and 5 cm (Figs. 5d and 6d). Seg-
ments of 1t include all particles within the DEID collection
area, and segments in W encompass the entire 60 s time in-
terval. In a three-dimensional space of plate cross-sectional
area and sampling time, the associated number concentration
of drops for each case is shown in Figs. 5a–b and 6a–b.

The version of the DEID used in this study had a maxi-
mum collection area width ofW = 5.8 cm. For moderate rain
where R= 1 mm h−1, the derived minimum required sam-
pling area width to meet WMO requirements is 13 cm. That
is, the size of plate used was insufficient for the measurement
of rain this intense. For light rain, the statistical uncertainty
bounds at 95 % confidence converge to within ±0.1 mm h−1

of the DEID 1 min measured rate for a plate collection area
width of W ∼ 3 cm. This value is larger than the 2 cm sug-
gested by the Monte Carlo calculation shown in Table 2. One
possibility is that the raindrop interarrival time and spacing
were not in fact Poissonian (Jameson and Kostinski, 2001b).
In the event of clustering, a larger plate would be required to
provide an accurate assessment of the average rain rate dur-
ing a given time interval.

To assess whether the presence of non-Poissonian cluster-
ing is the case, two-point correlation functions η were calcu-
lated following Shaw et al. (2002). A value of unity indicates
interarrival times that are Poissonian and values greater than
unity the presence of non-random clustering. Based on the
location of hydrometeor centroids as they arrive on the DEID
plate, storm-averaged values of η were found to be equal to
1.01 for rain falling under light winds on 8 March 2020, be-
tween 13:38 and 15:49 MST, and equal to 1.10 for the pe-
riod between 05:00 and 07:34 MST earlier that day when
high winds were present. For contrast, the value of η was
1.55 for a snow event with large aggregate snowflakes that
took place on 14 January 2020 at 12:43–14:06 MST. While
more extensive analysis is required, the implication is that
non-Poissonian clustering can occur.

5 Conclusions

A Monte Carlo approach was used to determine the mini-
mum required cross-sectional collection area for a disdrom-
eter to measure a given precipitation rate with a WMO target
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precision at 95 % probability for a 1 min collection period.
Intrinsic instrument uncertainties were not considered, only
those associated with statistical sampling errors associated
with the raindrop size distribution. Following these criteria,
a square collection area of 6 cm× 6 cm is sufficient to detect
the onset of light rain with R≤ 0.50 mm h−1.

For R > 1 mm h−1, a sample area of over 10 cm× 10 cm
is required, although a smaller collection area may achieve
the required accuracy by increasing the sampling time. For
example, in 10 min, a 4 cm× 4 cm collection area can mea-
sure 10 mm h−1 precipitation rates to within the WMO re-
quired precision 95 % of the time. A collection area as
small as 2 cm× 2 cm may detect the onset of light drizzle
with R= 0.01 mm h−1 within 1 min, even in instances where
small particles in the drop size distribution fall too slowly to
intercept the collection area.

Theoretical results obtained from Monte Carlo simulations
were compared with observed field measurements from a
new precipitation sensor, the Differential Emissivity Imag-
ing Disdrometer, for both light and moderate rain. Randomly
selected segments of decreasing sampling time and area from
the DEID were used to recalculate the precipitation rate. The
results suggest a larger plate may be required to meet a spec-
ified precision than those indicated by the Monte Carlo sim-
ulations that were performed. A possible explanation is the
presence of non-Poissonian clustering that was revealed by
two-point correlation function calculations, particularly dur-
ing high wind and snow events. The results presented here
have general implications for the sampling limitations of
other widely used particle-by-particle disdrometers such as
the PARSIVEL with a sample area of 48.6 cm2 or effective
W of 7 cm (Battaglia et al., 2010) and the 2DVD (Kruger
and Krajewski, 2002) with a W of 10 cm. Despite their siz-
able collection areas, like the Differential Emissivity Imag-
ing Disdrometer, they may nonetheless fail to meet WMO
standards if operated at a nominal 1 min sampling interval.

Appendix A: Nomenclature

Variables
A Sampling area (m2)
Aw Cross-sectional area of a hydrometeor as it ap-

pears on the hotplate (m2)
Aevap Total cross-sectional area of evaporated water

on the hotplate (m2)
D Spherical diameter of a raindrop (mm)
h Height above hotplate with sampling area A

required to create a 1 m3 sample volume (m)
Imean Mean pixel intensity of each hydrometeor
m Mass (kg)
Ncoll Number of drops simulated to fall on the hot-

plate during a given time interval (mm−1)

NMP Number of drops associated with the
Marshall–Palmer distribution (mm−1)

R True precipitation rate (mm h−1)
Rcalc Calculated precipitation rate (mm h−1)
RDEID Precipitation rate measured by the DEID

(mm h−1)
Tw Water temperature (◦C or K)
Tp Hotplate temperature (◦C or K)
t1 Time to detect the first drop (s)
t100 Time to detect the 100th drop (s)
v Hydrometeor fall speed (m s−1)
vmax Maximum fall speed associated with the

smallest hydrometeor in the sample drop size
distribution (m s−1)

W Square sampling area width =
√
A (cm)

z Randomly assigned raindrop height above hot-
plate (m)

η Two-point correlation function (Shaw et al.,
2002)

µ Shape parameter: controls number of small
particles in size distribution

Parameters
Ahot Hotplate surface area (m2)
cp Specific heat capacity of water at constant

pressure = 4.28× 103 J K−1 kg−1

Dmax Maximum generated drop diameter = 6 mm
Dmean Mean diameter value in each bin (mm)
fs Camera resolution (frame s−1)
H Hotplate thickness = 0.0508 m
K Thermal conductivity of Al = 205 W m−1 K−1

Kd Experimentally derived constant
= 1.54×10−3 kg s−1 K−1 m−2

Leqv Equivalent latent heat required for the conver-
sion of the hydrometeor to gas

Lv Latent heat of vaporization of water =
2.26×106 J kg−1

WDEID Square sampling area width of the DEID (cm)
α Conversion factor = 3.6×

10−3 m2 s mm−2 h−1

β Conversion factor from m s−1 to
mm h−1

= 3.6× 106 mm s m−1 h−1

ε Thermal emissivity
3 Slope parameter = 4.1R−0.21 for the

Marshall–Palmer distribution
ρw Density of liquid water = 1000 kg m−3
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