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Abstract. Missing and low-quality data regions are a fre-
quent problem for weather radars. They stem from a variety
of sources: beam blockage, instrument failure, near-ground
blind zones, and many others. Filling in missing data regions
is often useful for estimating local atmospheric properties
and the application of high-level data processing schemes
without the need for preprocessing and error-handling steps
— feature detection and tracking, for instance. Interpolation
schemes are typically used for this task, though they tend to
produce unrealistically spatially smoothed results that are not
representative of the atmospheric turbulence and variability
that are usually resolved by weather radars. Recently, gen-
erative adversarial networks (GANs) have achieved impres-
sive results in the area of photo inpainting. Here, they are
demonstrated as a tool for infilling radar missing data re-
gions. These neural networks are capable of extending large-
scale cloud and precipitation features that border missing
data regions into the regions while hallucinating plausible
small-scale variability. In other words, they can inpaint miss-
ing data with accurate large-scale features and plausible lo-
cal small-scale features. This method is demonstrated on a
scanning C-band and vertically pointing Ka-band radar that
were deployed as part of the Cloud Aerosol and Complex
Terrain Interactions (CACTI) field campaign. Three missing
data scenarios are explored: infilling low-level blind zones
and short outage periods for the Ka-band radar and infill-
ing beam blockage areas for the C-band radar. Two deep-
learning-based approaches are tested, a convolutional neural
network (CNN) and a GAN that optimize pixel-level error or
combined pixel-level error and adversarial loss respectively.
Both deep-learning approaches significantly outperform tra-
ditional inpainting schemes under several pixel-level and per-
ceptual quality metrics.

1 Introduction

Missing data regions are a common problem for weather
radars and can arise for many reasons. One of the most com-
mon for scanning radars is beam blockage. This occurs when
terrain or nearby objects like buildings and trees obstruct
the radar beam, resulting in a wedge-shaped blind zone be-
hind the object. This is a particularly large problem in re-
gions with substantial terrain like the western potion of the
United States, for instance (Westrick et al., 1999; Young
et al., 1999). Scanning radars can suffer from many other
data quality issues where contiguous regions of missing or
low-quality data may need to be inpainted. Some examples
are interference from solar radiation at dawn and dusk (Liu
et al., 2016), ground clutter (Hubbert et al., 2009a, b) and
super-refraction (Moszkowicz et al., 1994), and echoes off
of wind farms (Isom et al., 2009). Complete beam extinction
due to attenuation by large storms can similarly cause large
missing data regions for high-frequency radars. Several com-
putational approaches exist to infill partial beam blockage
cases (Lang et al., 2009; Zhang et al., 2013). Another option
is to use a radar network where multiple radars are installed
on opposite sides of terrain (Young et al., 1999). More re-
cently, deep-learning-based data fusion techniques (Veillette
et al., 2018) have been developed to enhance the coverage
of radar networks by emulating radar observations based on
data from satellite imagers and other instruments; these tech-
niques have promise for combating beam blockage and large
missing data regions for scanning radars. Finally, in the ab-
sence of additional data (from unblocked sweeps at higher
elevation angles or other instruments), beam blockages can
be filled in through traditional interpolation.

In addition to beam blockage for scanning radars, we
also examine simulated missing data scenarios for vertically
pointing radars. Specifically, we examine two missing data
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scenarios for the Department of Energy Atmospheric Radi-
ation Measurement (DOE-ARM) program’s Ka-band zenith
radar (KaZR). This instrument collects cloud and precipita-
tion information in a vertical profile as weather passes over
the radar and is used to generate time vs. height plots that
are frequently used for atmospheric research. The first sce-
nario is a simulated instrument failure, where data are un-
available for up to several minutes. The second scenario is a
low-level blind zone. The low-level blind zone is of particu-
lar relevance because the KaZR operates with a burst and a
pulse-compressed linear frequency-modulated chirped pulse
mode. When operating in chirped pulse mode, data in the
lower range gates are unavailable due to a receiver protec-
tion blanking region due to the longer pulse length (Widener
et al., 2012). Even the short burst pulse has a blind region
near the surface based on the pulse width of the radar. Low-
level blind zones are also relevant to space-borne precipita-
tion radars like the Tropical Rainfall Meteorology Mission
(TRMM) and the Global Precipitation Measurement mission
(GPM) instruments, which can be blind at lower levels due
to surface echoes and beam attenuation (Manabe and Ihara,
1988; Tagawa and Okamoto, 2003).

Robust methods for inpainting missing radar data have
many possible uses. Accurately inpainting can provide more
useful operational meteorology products for dissemination
to the public (Zhang et al., 2011) or for use in nowcasting
(Prudden et al., 2020; Agrawal et al., 2019) or aviation (Veil-
lette et al., 2018). Furthermore, research applications often
involve sophisticated, high-level processing of radar data —
for feature detection and tracking, for instance (Feng et al.,
2018). Producing radar products for research purposes where
missing and low quality data regions have been repaired
could significantly accelerate research projects by reducing
or eliminating the need for researchers to develop their own
code for error-handling and data quality issues. Ideally, an in-
painting scheme for radar data should produce results that are
accurate at the pixel level but also visually appealing, physi-
cally consistent, and plausible.

Image inpainting has long been an area of research in the
fields of computer vision and image processing. The image
inpainting problem involves restoring a missing or damaged
region in an image by filling it with plausible data. Com-
mon applications include digital photo editing, restoration
of damaged photographs, and restoration of lost information
during image compression and transmission, etc., and many
approaches with a range of application-specific advantages
and varying levels of complexity exist (Jam et al., 2021). Im-
age inpainting schemes can be broken into several categories:
texture-synthesis-based approaches assume self-similarity in
images and copy textures found in the undamaged region
of the image into the missing data region (Efros and Le-
ung, 1999). Structure-based methods seek to extend large-
scale structures into the missing data region from its bound-
aries and often focus on isophotes (lines of constant pixel
intensity) that intersect the boundary (Criminisi et al., 2004).

Atmos. Meas. Tech., 14, 7729-7747, 2021

Diffusion-based methods diffuse boundary or isophote infor-
mation through the missing data region, typically by solving
a partial differential equation within the region: the Laplace
equation (Bertalmio et al., 2000) or the Navier—Stokes equa-
tions (Bertalmio et al., 2001), for instance. There are also
sparse-representation and multi-resolution methods that are
typically geared towards inpainting specific image classes,
pictures of faces, for example (Shih et al., 2003). Finally,
there are many mixed approaches, like that used by Bugeau
et al. (2010), that combine concepts from two or more of
these categories. Image inpainting is a large sub-field of im-
age processing, and for a more detailed overview see Jam
et al. (2021) or Guillemot and Le Meur (2014).

In recent years, deep convolutional neural networks
(CNNs) have revolutionized the area of image inpainting re-
search. The earliest applications of CNNs to the image in-
painting problem involved using autoencoders that optimized
pixel-level loss (Jain and Seung, 2008). Research in this area
began to quickly accelerate after the introduction of genera-
tive adversarial networks (GANS) for image processing and
synthesis by Goodfellow et al. (2014) however. GANs al-
low CNN-based inpainting schemes to hallucinate plausible
small-scale variability, including textures and sharp edges, in
the inpainted regions. GAN-based algorithms can produce
extremely realistic results, to the point that it may not be
obvious that inpainting has been performed. GAN-based in-
painting involves training two CNNs side by side. One is the
generator network, which takes a damaged image as input
and attempts to fill in missing data regions. The second is
a discriminator network that takes either undamaged images
or outputs from the generator and attempts to classify them
as real or fake, typically optimizing a binary cross-entropy
(Goodfellow et al., 2014) or Wasserstein (Arjovsky et al.,
2017) loss function. Pathak et al. (2016) first performed in-
painting with a GAN, using a combination of ¢, loss that
optimizes pixel-level errors and ensures that the inpainting
CNN can reproduce large-scale structures (though they may
be blurry) and an adversarial loss, enforced by a discrimi-
nator network, that ensures the inpainted regions look real-
istic and forces the generator to produce realistic sharp fea-
tures and small-scale variability. Yang et al. (2017) expanded
on this by using a combination of adversarial loss and fea-
ture loss based on the internal activations of image classifi-
cation CNNs (Ledig et al., 2017). There has been a signif-
icant amount of subsequent work focusing on altered loss
functions, incorporating updated CNN architectures like U-
Net (Ronneberger et al., 2015) and other applications of these
CNN training paradigms. An example is the image-to-image
translation introduced by Isola et al. (2017), who used a com-
bined £ and adversarial loss function (also used here). The
research in this area is far too broad to include a comprehen-
sive overview here, so please refer to Elharrouss et al. (2020)
for a more in-depth review of deep-learning-based inpaint-
ing.
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In this study, we experiment with applying state-of-the-art
deep-learning-based image inpainting schemes to fill in sev-
eral types of missing data regions simulated for two of the
ARM program radars. The majority of past image inpaint-
ing research is heavily focused on restoring missing regions
in photographs. As a result, GAN-based methods are heavily
optimized to produce visually appealing and plausible results
and are not necessarily good at reproducing the ground-truth
image in terms of pixel-level accuracy. Therefore two CNN-
based inpainting paradigms are investigated, one that opti-
mizes only the pixel-level mean absolute error (£1 loss) and
one that optimizes combined ¢; and adversarial loss.

2 Data

The data used here are from two US DOE Atmospheric Ra-
diation Measurement (ARM) program radars that were de-
ployed as part of the Cloud, Aerosol, and Complex Terrain
Interactions (CACTTI) field campaign from October 2018 to
April 2019 (Varble et al., 2018). The field campaign de-
ployed a large suite of instruments near the Sierras de Cor-
doba mountain range in Argentina, including multiple radars,
lidars, imagers, rain gauges, and many others, with the pri-
mary goals of investigating the influence of orography, sur-
face fluxes, aerosols, and thermodynamics on boundary layer
clouds and on the initiation and development of convection.
The radars were deployed in a region just east of the moun-
tain range and were able to observe frequent warm bound-
ary layer cloud and a range of convective systems at various
points in their lifetime.

2.1 KaZR

The Ka-band zenith radar (KaZR) is a 35 GHz vertically
pointing cloud radar that has been deployed at many of
the ARM sites around the world (Widener et al., 2012). It
is a Doppler radar that produces time vs. height observa-
tions of cloud and precipitation and operates in both a burst
and a pulse-compressed linear frequency-modulated chirped
pulse mode. Here, we have used the quality-controlled burst
pulse-mode reflectivity, mean Doppler velocity, and spec-
trum width fields from the CACTI field campaign from
15 October 2018 to 30 April 2019 (Hardin et al., 2019a).
A minimum reflectivity of —10dBZ was used as a mask,
and any reflectivity, velocity, or spectrum width observations
in pixels lower than this threshold were ignored. The CNN
takes samples that have 256 time observations and 256 verti-
cal range gates as inputs. The radar has a sampling frequency
of 2s and vertical resolution of 30 m, and this corresponds
to about 8.5 min by 7.5 km. Because there are frequent time
periods when there is no cloud over the radar, and train-
ing/evaluating the CNN on blank samples is not useful, time
periods longer than 256 samples when there was no weather
observed were removed from the dataset. Because there is
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some noise in the data, and samples without weather still
contain some pixels with reflectivity greater than —10 dBZ,
“no weather” periods were defined as periods that do not con-
tain any 10 x 10-pixel (300mx 20 s) block with all reflectiv-
ity values > —10 dBZ. After this filtering, the dataset is split
into a training set containing the first 80 % of the data and a
test set containing the last 20 % (with respect to time). The
KaZR operated continuously throughout the field campaign
(Hardin et al., 2020).

2.2 C-SAPR2

The C-band Scanning ARM Precipitation Radar 2 (C-
SAPR2) is a 5.7 GHz scanning precipitation radar. Here, we
have used reflectivity, radial velocity, and spectrum width
data from plan position indicator (PPI) scans. The data have a
1° azimuth and 100 m range resolution (Hardin et al., 2019b).
The PPI scans used were preprocessed using the “Taranis”
software package (Hardin et al., 2021). Taranis provides
quality control and produces a suite of useful geophysical
parameters using the radar’s dual-polarization observations.
This dataset has not yet been made publicly available but will
be in the near future. The C-SAPR2 suffered a hardware fail-
ure in February 2019 and was no longer able to rotate in
the azimuth, so PPI scans are only available from 15 Oc-
tober 2018 to 2 March 2019 (Hardin et al., 2020). For the
majority of the field campaign, the C-SAPR2 scan strategy
involved performing a series of PPI scans at consecutively
increasing elevation angles, followed by a vertical scan, fol-
lowed by a series of range height indicator scans. The whole
process takes about 15 min. PPI scans at subsequent eleva-
tions are often similar because they are observed in quick
succession, so the training set used here contains only one
sweep from each volume scan. The sweeps used to construct
the inpainting dataset were selected randomly from the five
sweeps in each volume scan that contained the most weather
(most observations with reflectivity > 0 dBZ). Many of these
still did not contain weather, and inpainting empty scans is
not useful, so ultimately 1500 scans that contained weather
were retained. As with the KaZR data, the first 80 % were
used for training, and the last 20 % were used for testing.
Finally, pixels with reflectivity below a threshold of 0 dBZ
were blanked out.

3 Methods

Two deep-learning approaches are demonstrated here to in-
paint missing data regions. The first involves using a sin-
gle CNN. Radar data are intentionally degraded by removing
randomly sized chunks of data. The exact manner in which
the data are handled depends on the case, and more infor-
mation is provided in Sect. 4. The CNN is tasked with tak-
ing the degraded radar data along with a mask indicating the
position of the missing data as an input and minimizing the
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mean absolute pixel-wise error between its output and the
original (non-degraded data). This is referred to as “¢; CNN”
throughout the paper because it optimizes the £1 norm of dif-
ference between its outputs and ground truth. The second ap-
proach involves training two CNNs adversarially: one that
performs inpainting and one that discriminates between in-
filled radar data and ground-truth radar data. The inpainting
network attempts to minimize both the mean absolute pixel
error and the likelihood that the discriminator labels its out-
put as inpainted data. The inpainting network is provided an
additional random noise seed as input and is allowed to hal-
lucinate plausible small-scale variability in its outputs. This
CNN is referred to as a conditional generative adversarial
network (“CGAN?”) later in the paper. The exact neural net-
works and training procedure are described in more detail
below.

3.1 Convolutional neural network

Inpainting is done with a Unet++-style CNN (Zhou et al.,
2018). This is based on a previous neural network architec-
ture called a “Unet” (Ronneberger et al., 2015). These CNNs
map a 2-D gridded input to an output with the same dimen-
sions and were originally developed for image segmentation
tasks. A U-net is composed of a spatial down-sampling and
a corresponding up-sampling branch. The down-sampling
branch is composed of a series of “blocks” consisting of
multiple convolutional layers, and the input data undergo
2 x 2 down-sampling as they pass through each block, while
the number of feature channels is increased. This process
trades spatial information for feature information. The down-
sampling branch is followed by an up-sampling branch that
increases the spatial dimensions and decreases the feature di-
mension. A key aspect of the Unet is that it also includes
skip connections between these two branches, where the out-
put from each down-sampling block is provided as additional
input to the up-sampling block with the corresponding spa-
tial resolution. This makes these networks particularly good
at combining large-scale contextual information with pixel-
level information. The Unet++ extends this idea by con-
structing each skip connection across the U-net from a set
of densely connected (Huang et al., 2017) convolutional lay-
ers and including intermediate up- and down-sampling con-
nections (the inclusion of intermediate down-sampling con-
nections is a slight difference from the original Unet++ as
described by Huang et al., 2017). A diagram of the inpaint-
ing CNN is shown in Fig. 1. The discriminator network con-
sists of seven consecutive densely connected blocks (Huang
etal., 2017) that consist of four convolutional layers with rec-
tified linear unit transfer functions followed by 2 x 2 down-
sampling and 0.1 dropout layers. The final output is a classi-
fication produced by a one-neuron layer with a logistic (sig-
moid) transfer function. A diagram of this CNN is included
in the Supplement.
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3.2 Data processing

Several preprocessing and post-processing operations need
to be applied to the radar data so that they are suitable for use
with the CNNs. Firstly, the data need to be standardized to
a consistent input range of [—1, 1]. The various fields used
have different scales, and this ensures that they have simi-
lar weighting when computing loss. Furthermore, the CNN
uses a tanh transfer function after the last layer which en-
sures that the CNN outputs are limited to the same range
as the inputs. Separate standardization procedures were used
for each of the fields. For reflectivity, data were clipped to a
range of —10 to 40 dBZ for KaZR data and a range of O to
60 dBZ for C-SAPR?2 data. In practice, we found that the ¢4
CNN and many of the inpainting schemes that were used as
benchmarks tended to smooth reflectivity values near cloud
edges. Most cloud edges in the dataset involve a sharper gra-
dient in reflectivity however, and this smoothing is a result of
the inpainting and interpolation schemes struggling to cor-
rectly position the cloud edge. To mitigate this, the reflectiv-
ity data were linearly mapped to a range of [—0.5, 1.0], and
pixels with reflectivity below the minimum threshold were
assigned a value of —1.0, leaving a gap of 0.5 between clear
and cloudy values. This gap helped the CNN and some of
the diffusion- and interpolation-based inpainting schemes to
produce sharp edges at the boundaries of precipitation and
cloud regions. No such gap was used for the other two fields,
but as a post-processing step, after inpainting, the other two
fields were masked so that all locations with reflectivity out-
puts < —0.5 were considered clear pixels. For velocity, a de-
aliasing scheme was first applied (see Sect. 3.3), then veloc-
ity values were linearly scaled by a factor of (8 ms~!)~! for
the KaZR data and (28 ms—1)~! for the C-SAPR2 data. Note
that the instruments have Nyquist velocities of 8 ms~! and
16.5ms~! respectively and that the scanning radar is more
likely to observe large velocities because the vertical com-
ponent of velocity is typically smaller than the horizontal
component for atmospheric motions. Finally, a tanh func-
tion was applied to bound all the velocity inputs in a range
of [—1,1]. Note that the unfolded velocities will often ex-
ceed the Nyquist velocity so the tanh function was used to
bound the transformed velocity data to [—1,1] instead of
clipping. This nonlinearly compresses the high velocity val-
ues near 1 but ensures that different large values remain
unique and distinguishable from each other. The spectrum
width data were clipped to a range of [0,2.5]ms™! for KaZR
and [0,5.5] ms~! for C-SAPR2 and then linearly mapped to a
range of [—1,1]. The inverse of each of these operations was
performed to map the CNN outputs back to the range of the
original dataset.

When degrading data for CNN training and testing, miss-
ing data regions for each field were created by setting all re-
flectivity and spectrum width values in the region to —1 and
all velocity values to 0. Large regions of clear pixels nat-
urally exist in the training data of course, so an additional
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Figure 1. A diagram of the Unet++-style CNN (Zhou et al., 2018) used for inpainting. For the KaZR cases, N x M = 256 x 256. For the
C-SAPR2 cases, N x M = 1024 x 128. £ represents the number of spatial down-sampling operations, Cy is the number of output channels
from the convolutional layers at the highest spatial resolution level, and g determines the rate at which the number of channels increases for

lower resolutions.

mask channel is provided as an input to the CNN to indicate
the regions that need to be inpainted. The mask has values
of 1 in missing data regions and O elsewhere. Because val-
ues outside the missing data region are known, there is no
point in returning CNN outputs for these areas. The final op-
eration performed by the CNN takes the output from the last
convolutional layer (with a tanh transfer function) and uses
the mask to combine the known data from the input with the
CNN outputs in the missing data region. The exact operation
is

G(x)=mG (x)+ (1 —m)x, (1)

where G (x) is the CNN output for input pixel x, G’ is the
output from the last convolution + tanh layer, and m is the
corresponding pixel in the mask. CNN outputs in initial ex-
periments that used a mask with a sharp edge (transition from
1 to 0) around the inpainting region tended to contain no-
ticeable artifacts at the edges. To help ensure that the fea-
tures produced by the CNN at the edges of the inpainting
region matched with the features just outside of the region
in the input data, a n-pixel buffer region was included where
the values in the mask decrease linearly from 1 to 0. During
training, n is randomly selected from a range of 1-17 to im-
prove the robustness of the trained CNN. The result is that
the final CNN outputs in this buffer region are a weighted
average of the CNN output and the known input data. This
significantly reduced artifacts near the edge of the inpainted
region. Finally, in the CGAN case, an additional random seed
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was provided as a CNN input that allows the CNN to hallu-
cinate plausible small-scale variability. Here, this seed was
included as an additional input channel containing random
values sampled from a Gaussian distribution with a standard
deviation of 0.5. We found that after training, the CNNs gen-
erally did not did not rely on this random seed however; this
is discussed in more detail in Sect. 5. In summary, the in-
put channels to the inpainting CNN are [—1,1] standardized
reflectivity, velocity, and spectrum width data, a [0,1] mask
indicating the inpainting region with smoothed edges, and a
channel of random seed data for the generator when training
as a CGAN.

3.3 Doppler velocity folding

The Doppler velocity data from both KaZR and C-SAPR2
contain velocity folding. Doppler radars can only unambigu-
ously resolve radial velocities of plus or minus a maximum
value known as the Nyquist velocity (Vimax). Vmax 1S a func-
tion of the frequency and range resolution of the radar. Ve-
locities that exceed the Nyquist velocity are mapped period-
ically back into this range, so that velocities slightly larger
than Vi, are mapped to values slightly above (smaller mag-
nitude) —Vmax. The velocity data used here have Viax =
8ms—! and Vinax = 16.5 ms~! for KaZR and C-SAPR?2 re-
spectively. Despite the smaller Nyquist velocity, the KaZR
data are generally less susceptible to aliasing because ver-
tical velocities in the atmosphere are typically smaller (in
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magnitude) than horizontal velocities. In practice, instances
of velocity folding manifest as large jumps in velocity near
the scale of 2 Vn,«, and because real-world meteorological
conditions are extremely unlikely to cause jumps in veloc-
ity of this magnitude over such a small spatial scale, velocity
folding is often easily detectable in contiguous cloud and pre-
cipitation regions. Correcting folding is much more difficult
than simply detecting it however. Many automated unfolding
algorithms exist, and this is still an active area of research.
We initially attempted to train the inpainting CNN on the
velocity data without applying any unfolding scheme, but it
struggled to adequately inpaint regions where folding had oc-
curred. As noted above, the large jumps at the boundaries
of aliased regions are extreme and nonphysical, and while
the CNN could reproduce large velocity-folded regions in its
outputs, it tended to smooth the change in velocity at the re-
gion boundaries over several pixels leading to a smoother
transition and thus a result that most velocity unfolding al-
gorithms that rely on detecting these jumps would fail on.
We ultimately chose to implement a 2-D flood-filling-based
de-aliasing algorithm that is usable for both the KaZR and C-
SAPR2 data. The unfolding algorithm takes the velocity data,
the Nyquist velocity, and a mask indicating clear pixels. For
C-SAPR2, one sweep is processed at a time, and for KaZR,
each netCDF file retrieved from ARM is processed individu-
ally (typically about 20 min of data each, though this is vari-
able). The algorithm first breaks the velocity data into a set of
contiguous regions that do not contain aliasing. This is done
by first detecting the edges of regions with non-aliased veloc-
ity data by flagging all pixels that have velocity data where
there is either a jump in velocity between that pixel and a
neighboring pixel that exceeds 1.1Vy,x or there is a neigh-
boring pixel that does not have velocity data. These region
edge pixels are then used as seed points for a flood-fill algo-
rithm which is applied iteratively until no seed points remain
(every time a region is filled, all seed points contained in that
region get removed from the list). The regions are then pro-
cessed from largest to smallest: if a region has no neighbors,
its velocity remains unaltered, and it is removed from the list
of regions; if it does have neighbors, the largest neighboring
region is identified, and the mean change in velocity across
the border between the two is used to correct the smaller re-
gion’s velocity by adding or subtracting the appropriate mul-
tiple of 2Vpax. The smaller of the two regions is then inte-
grated into the larger. This process continues until the list of
contiguous velocity regions is emptied. This approach does
have some failure modes, typically associated with contigu-
ous regions of aliased velocity that do not have any neigh-
boring regions. We note that many other dealiasing schemes
exist (Johnson et al., 2020 provide a KaZR specific scheme,
for instance) and may be worth investigating for future work,
but this approach was sufficient for the CNNs trained here.
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3.4 Training

The neural networks were trained using two different loss
functions. In the first case, they were trained using a pixel-
level mean absolute error (MAE) loss, also known as £ loss.
This can be written as

L=Ecylly -Gl 2

Here, y is the true pixel value, and G(x) is the CNN out-
put pixel value. We chose to limit the pixel-level loss so that
it is only computed on pixels that are part of the infilled re-
gion (and the buffer pixels surrounding it; see Sect. 3.2) be-
cause the CNN is constructed to exactly reproduce the pixel
values in the region with good data and because we used dif-
ferent sized missing data regions during training and wanted
them to have equal weighting when computing gradients and
batch loss. The CNNs trained with MAE loss tend to produce
more conservative results within the inpainted regions than
CGANSs (fewer details and extreme pixel values), but they
are still particularly good at localizing and preserving sharp
edges and larger structures and can outperform conventional
inpainting and interpolation methods. In initial experiments,
the mean squared error or £, loss was used, but this led to ex-
tremely smoothed features in the inpainted region. We also
trained CNN’s as conditional generative adversarial networks
(CGANS), using a combination of £ and adversarial loss:

Lo =AEy y  lly — G(x,2)|] = Ex ;[log(D(x, G(x,2))] (3)
Lp = —Ey y[log(D(x, y))] = Ey ;[log(1 — D(x, G(x,2))], (4)

where Lg and Lp are the generator and discriminator losses
respectively, x is the input radar data and mask, z is the ran-
dom seed input, y is the ground-truth data, G (x, z) is the gen-
erator output, D is the discriminator classification, and A is
a constant used to weight the MAE and adversarial compo-
nents of the generator loss. Refer to Goodfellow et al. (2014)
for a description of the adversarial loss and Isola et al. (2017)
for more discussion of the conditional adversarial loss func-
tion in Eqgs. (3) and (4).

An Adam optimizer was used for training with 81 =0.9,
B> =0.999, and € = 10~7 for the £ case and B = 0.5 for
the CGAN case. Other training details depend on the sce-
nario and are summarized in Table 1. Table 1 shows specific
information about the CNN hyper-parameters, the batch size
and number of batches used during training, and when the
learning rate was decreased during training for each of the
inpainting scenarios. For the £ cases, an initial learning rate
of 5x 10™* was used and was reduced by a factor of 10 twice
during training after a set number of batches. For the CGAN
cases, an initial learning rate of 1 x 10~* was used for the
generator network, and a learning rate of 1.5 x 10™* was used
for the discriminator network. These were both manually re-
duced by a factor of 10 during training based on monitoring
the adversarial loss and sample outputs for several randomly
selected cases from the training set.
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Table 1. Table of neural network hyper-parameters and training parameters. N x M, C, g, and “Depth” are hyper-parameters that define the
size and shape of the CNN and are shown in Fig. 1. (“Depth” refers to the number of down-sampling operations or the maximum value of ¢
from Fig. 1.) “Batch size”, “Training batches”, and “LR reduction at batches” refer to the number of samples per mini-batch, the total number
of mini-batches/weight updates during training, and the batch number after which a learning rate reduction was performed, respectively.

Case Loss NxM Cyp g Depth Batchsize Training batches LR reduction at batches
KaZR outage 2 256 x256 8 2 5 8 5% 10° 4%10%,4.75 x 10°
KaZR outage Eq.3) 256x256 14 1.75 5 16 1.6 x 10° 0.3 x 105, 1.25 x 10°
KaZR blind zone £ 256 x256 8 2 5 8 5% 10° 4x10°,4.75 x 10°
KaZR blind zone ~ Eq.(3) 256x256 14 175 5 16 13x10° 0.7 x 107, 1.1 x 10°
C-SAPR2 blockage  £; 1024 x 128 10 2 6 8 5% 10° 4% 10%,4.75 % 10°
C-SAPR2 blockage Eq.(3) 1024 x128 12 1.75 6 16 6.5 x 104 1.9 x 10%

“Data augmentation” schemes involve applying random
transformations to training samples and are often used to
train deep CNNs. They increase the diversity of the training
samples and can improve skill and reduce overfitting. Many
of the common data augmentations used for images cannot
be applied to radar data without resulting in physically im-
possible samples however. Here, we have carefully selected
several data augmentations that result in physically plausible
samples. For KaZR, training samples were selected from the
training set using random start times (as opposed to chopping
the dataset into discrete 256 x 256 samples prior to training)
and the samples were randomly flipped with respect to time.
For cloud features that are embedded in the large-scale flow,
flipping with respect to time results in a physically plausible
sample and approximates the same cloud feature embedded
in large-scale flow in the opposite direction. For weather fea-
tures whose shape is heavily determined by the large-scale
flow (e.g. fall streaks), this results in an unlikely but still
very realistic-looking sample. For C-CSAPR2, random ro-
tation with respect to azimuth and random flips with respect
to azimuth were used during training. These transforms ap-
proximate different start azimuths or a different coordinate
convention for the sweeps and do not alter the physical struc-
ture of the weather.

4 Results

In this section, the results of the CNN-based inpainting are
compared to several common inpainting techniques. We first
introduce these benchmark schemes and then discuss the er-
ror metrics used. Finally, results for each of the three inpaint-
ing scenarios are discussed separately. For space, only one
sample case is shown for each of the inpainting scenarios,
but many more have been made available online (Geiss and
Hardin, 2021b). The examples shown in the paper were cho-
sen blindly but not randomly, meaning we picked cases to
include based on the ground truth but without consulting the
CNN output. This was to ensure that the examples included a
sufficient amount of cloud and precipitation to be of interest.
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4.1 Benchmark inpainting schemes

CNN output was compared to several more conventional in-
painting schemes of varying complexity. Examples of each
of these schemes applied to the KaZR inpainting scenar-
ios are shown in Fig. 2. The same preprocessing and post-
processing used for the inpainting CNNss is used for the in-
painting schemes, as described in Sect. 3.2. We found that,
in practice, this also helped the inpainting schemes generate
sharper borders near cloud edges. Because the KaZR low-
level blind zone scenario only has a single boundary with
information that can be used for inpainting (the upper bound-
ary), a different set of benchmark schemes were used for this
case that are applicable to this type of scenario. The first three
inpainting schemes below were used for both the KaZR out-
age and C-SAPR2 beam blockage scenarios which have two
to three boundaries with information, while the last three
were used for low-level inpainting.

Linear interpolation. This is simple 1-dimensional lin-
ear interpolation between opposite boundaries of the miss-
ing data region. For the KaZR data, it is done with respect
to time, and for the C-SAPR2 data, it is done with respect
to azimuth angle. Typically this approach performs well in
terms of MAE but produces unrealistic results. It also does
not take into account variability with respect to height (range)
for KaZR (C-SAPR2).

Laplace. This scheme involves numerically solving the 2-
dimensional Laplace equation on the interior of the missing
data region. Firstly, we use linear interpolation to define the
values on any missing boundaries (in the KaZR outage case,
we interpolate the values for the bottom and top range gates
for instance), then

0=aV?’z (5)

is solved numerically on the interior of the inpainting region.
Here, z is the field being inpainted, and V is the Laplacian
with respect to time—height for KaZR or azimuth-range for
C-SAPR2, and o = % and represents the diffusivity. The so-
lution is found to a tolerance of 0.0001 using an explicit for-
ward differencing scheme with a nine-point stencil, which
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Figure 2. Example outputs demonstrating each of the benchmark inpainting schemes applied to KaZR reflectivity data. Panels (b)—(d)
demonstrate the schemes used for both the KaZR outage (shown) and C-SAPR2 beam blockage scenarios red (not shown). Panels (f)—(h)
show the schemes used for the low-level blind zone scenario. Ground truth is shown in panels (a) and (e) (left column).

was sufficient for this application. This method produces par-
ticularly smoothed results in the missing data regions, though
it is better than other methods at accurately producing large
2-D structures (for instance, linear interpolation only consid-
ers 1-D variability).

Telea. The Telea inpainting scheme (Telea, 2004) is a fast
inpainting algorithm that involves marching inward from the
boundary of a missing data region and combines concepts
of isophote-based inpainting and 2-D averaging-based diffu-
sion. We used the implementation in the Python CV2 pack-
age with a radius of 16 pixels. This approach also produces
fairly smoothed results and cannot produce small-scale vari-
ability like turbulence in the missing data regions but does a
better job of extending larger sharp features like cloud edges
than the Laplace method.

Repeat. This is the simplest inpainting scheme used here
and involves simply repeating the data at the upper boundary
of the low-level blind zone down to the lowest range gate.

Marching average. Each horizontal line in the missing data
region is inpainted from the uppermost level downwards. The
assigned values are the average of the above data within 4
pixels. This method is conceptually similar to downwards
repetition of the boundary data but generates a smoothed re-
sult.

Efros and Leung. Efros and Leung (1999) present a texture
synthesis model for image extrapolation that is well suited
for inpainting missing data regions on the edges of images.
Here, the process also involves marching from the highest
missing data level downwards and filling in the missing data
region one level at a time. First, a dictionary of exemplars
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is built by sampling 5 x 5-pixel patches in the area up to 64
pixels (192 m) above the missing data region with a stride
of 2 pixels. Each pixel is filled by computing the pixel-wise
mean squared error between the surrounding 5 x 5 patch (not
considering pixels yet to be inpainted) and the dictionary and
filling the missing pixel with the value of the center pixel
from the closest matching patch. This scheme is designed to
generate realistic textures in the inpainted region.

4.2 Error metrics

Three error metrics are used to evaluate the inpainting results.
They have been selected to provide a comprehensive evalua-
tion of the quality of the outputs that considers the quality of
the spatial variability and distribution of values generated by
the inpainting schemes in addition to pixel-level error.

Mean absolute error. The mean absolute error (MAE) is
the primary error metric used. Panels (a)-(c) in Figs. 4, 6,
and 8 show MAE for the three fields analyzed. MAE was
chosen because it is simple, the values are dimensional and
easy to interpret, and it can be used directly in the loss func-
tion of the CNNs. Past CNN-based image inpainting work
(Isola et al., 2017) has noted that MAE is preferable to other
pixel-level losses because it is better for preserving sharp
edges and small-scale variability. The MAE results for the
test set are dimensionalized, meaning absolute error for ve-
locities is shown in units of meters per second for instance,
but it is important to note that because these errors are com-
puted as an average over the missing data region, they are
dependent on the amount of cloud present in each sample,
and the inpainting scheme’s ability to localize cloud edges
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(including many samples with little to no cloud in the test set
would dramatically reduce MAE because inpainting no-data
regions is trivial for all of the schemes). Because of this, the
reported MAEs are mostly useful as a relative estimate of the
skill of the different inpainting schemes as opposed to an ab-
solute estimate of the difference between output reflectivity
and ground truth for a particular sample for instance. In prac-
tice, MAE is particularly good for estimating the accuracy of
an algorithm’s ability to estimate the large-scale features in
the missing data regions but is not a good estimator of the
plausibility of the output. Indeed, while the £; CNN is op-
timized on MAE and outperforms all other schemes under
this metric, it produces smooth-looking outputs, and so two
other error metrics are used to evaluate the accuracy of the
small-scale variability and the distribution of the inpainted
data.

Earth mover’s distance. The earth mover’s distance
(EMD), also known as the Wasserstein metric, measures the
similarity between probability density functions. Here, it is
used to estimate the similarity of the distribution of val-
ues in the inpainting scheme outputs and the ground truth.
The EMD imagines probability density functions (PDFs) as
piles of “dirt” and computes the “work™ necessary to trans-
form one distribution into another: the product of the amount
moved and the distance. For 1-dimensional distributions, this
is simply the integral of the absolute difference between the
PDFs. There are some important notes about our usage here:
firstly, no-data regions are included in the computation. For
reflectivity and spectrum width, they are assigned the mini-
mum value for the field, and for velocity they are assigned
Oms~'. This was necessary because the inpainting schemes
do not necessarily produce cloud and precipitation features in
the inpainted region of the exact same size (number of pix-
els) as the ground truth, but the area under the two PDFs that
the EMD compares needs to be equal. Secondly, the EMD
values are dimensional but do not convey physical meaning
unless compared to other EMD scores, so here we normalize
the EMD and present it as the percentage of the worst pos-
sible EMD (lower values are better). Formally, the EMD is
computed as

Zmax Z

100
EMD:(H)/ /(ZI(Y)_ZZ()’))dy dz, (6)

Zmin | Zmin

where z and y integrate over the range of reflectivity values,
Zmax and Zmin are the minimum and maximum reflectivity,
and Zs represent PDFs of reflectivity data. EMD for the re-
flectivity field is shown panel (d) of Figs. 4, 6, and 8. Plots of
EMD for the other fields are included in the Supplement.
Power spectral density (PSD). The PSD is used to esti-
mate the ability of the inpainting schemes to produce plausi-
ble small-scale variability. This is an important error met-
ric to consider because many inpainting approaches pro-
duce smooth results in the inpainted region that, while they
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may optimize pixel-level error reasonably well, are not rep-
resentative of most atmospheric phenomena, which often
contain small-scale turbulent features. Because some of the
schemes behave differently along the different dimensions
(time—height or range—azimuth), we separately compute PSD
in each dimension. Here, the PSD is computed as

PSD = 10log, ((Fx{z}),) . (7)

where F is the fast Fourier transform with respect to dimen-
sion x, GV is the mean with respect to dimensions y, and z
is the reflectivity. For horizontal reflectivity PSD computed
on the KaZR blind-zone case, for instance, z is reflectivity,
x is time, and y is height. In the following plots of PSD, the
ground-truth PSD is shown as a black line, and ideally the
inpainting schemes yield PSD curves close to this black line.
When viewing the results for this error metric, it is important
to note that some of the simplest techniques, linear interpo-
lation and repeating boundary conditions, appear to produce
realistic power spectra. They are only able to do so in one di-
mension however because they are simply copying the realis-
tic frequency information from the boundary into the missing
data region. Along the other dimension, they do not produce
any useful small-scale variability. As with the EMD, the PSD
metric cannot handle no-data regions well, so these regions
are filled with the same default values described for EMD
before computing the PSD. In Figs. 4, 6, and 8, mean PSD
for the reflectivity field is shown in panels (e) and (f). Plots
of the PSD for velocity and spectrum width are included in
the Supplement.

4.3 KaZR outage scenario

In this scenario, we simulate bad or missing data for a 16 to
168 s period. While such an outage is less common than the
blind-zone or blockage scenario, it is possible, particularly
when radars multi-task different modes and are not continu-
ously in a zenith mode but revisit it regularly. The outage case
also provides an example of how the CNN-based inpainting
schemes behave when there is information available on two
boundaries. The CNN outputs for a sample case drawn from
the test set are shown in Fig. 3. This sample shows a 1 min
missing data period denoted by the vertical dashed lines, and
a 16 s buffer period is used before and after the missing data
where the CNN outputs are blended with the ground-truth
data to avoid edge artifacts. This scenario (Fig. 3a—c) was
chosen because it contained complex cloud and precipitation
features, including multi-layer cloud, areas of heavy precipi-
tation, and many regions with turbulent motion. The outputs
from the £; CNN are shown in Fig. 3d—f. They are clearly
smoothed, and qualitatively speaking, if the markers to de-
note the outage period were not shown it would be obvi-
ous that inpainting had been done. This is particularly evi-
dent for the cloud near the top of the sample (around 6 km).
In the ground truth (panels a—c), this cloud does not extend
through the missing data region, but this is not made obvious
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by the information on the boundaries. The CNN has clearly
struggled to localize the edges for this cloud. Nonetheless,
the CNN outputs are considerably more appealing than the
outputs from any of the baseline inpainting schemes. The £;
CNN is particularly good at extending diagonal features like
fall streaks across the missing data region and identifying
an appropriate location for the upper boundary of the lower
cloud. While some smoothing of the data has occurred, the
results are much sharper than those achieved with the other
schemes.

The improvement over conventional inpainting schemes
is clear in Fig. 4a—c, where pixel-wise MAE is shown for
each of the fields as a function of the duration of the missing
data period. The ¢;-optimizing CNN is the best-performing
scheme for each field. It also produces the most reasonable
histogram of reflectivity outputs according to the EMD met-
ric shown in Fig. 4d. The margin of improvement for these
two metrics increases with the size of the missing data re-
gion. Interestingly, the linear interpolation approach, which
is one of the least sophisticated inpainting schemes, performs
the second best in most cases. The vertical and horizontal
PSD plots shown in Fig. 4e and f demonstrate the L1-CNN’s
(and other inpainting schemes’) major limitation however:
the tendency to over-smooth outputs. In panels (e)—(f), the
black curves represent the ground truth, and proximity to the
black curve is better. The inpainting schemes typically have
lower PSD than the ground truth, and this is the most evi-
dent at high frequencies, meaning the inpainting methods do
not produce a realistic amount of small-scale variability. The
linear interpolation approach has a reasonable PSD curve in
the vertical, but this is because it simply copies vertical fre-
quency information from the boundaries of the missing data
region. It is the worst performer in the horizontal (time) di-
mension.

The only approach that performs well in both the horizon-
tal and vertical component of PSD is the CGAN. The out-
put from the CGAN (Fig. 3g—i) is significantly more realistic
than the £; CNN, to the degree that it may not be obvious that
inpainting was performed without close examination. This is
because it has generated plausible small-scale variability in
addition to inpainting the large-scale features successfully.
For instance, for the lower cloud and precipitation region
in this sample, it has successfully generated a plausible and
sharp upper boundary for the cloud and has extended large
reflectivity features that span the missing data region across,
much like the output from the £; CNN. In addition, it has
added small-scale features, like jaggedness to the upper edge
of the cloud, or turbulent motion visible in the vertical veloc-
ity field in the upper half of the cloud. The most noticeable
unrealistic feature that is frequently produced by the CGAN
is a tendency to introduce faint linear structures and checker-
board patterns. This is a well-documented problem for gen-
erative adversarial networks in general and is a byproduct of
the convolutions in the CNN (Odena et al., 2016). The re-
sults for the higher cloud are of particular interest. Here, the
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CGAN has opted to connect the cloud features on either side
of the missing data region and includes positive velocities
and high spectrum width, indicating cloud-top turbulence.
These features are not present in the ground-truth data but
are realistic and consistent with cloud features commonly
observed during the field campaign. Because the features are
not an exact match for the ground truth the scheme’s MAE
and EMD scores suffer, but they are still comparable to the
scores of other inpainting schemes.

4.4 KaZR Blind Zone Scenario

In this case, we simulate missing low-level KaZR data.
This type of inpainting has multiple potential applications:
Firstly, the KaZR operates in both a burst and chirped pulse
mode. The chirped mode provides higher sensitivity but does
not retrieve usable near-surface data (Widener et al., 2012).
Secondly, space-borne radars like GPM are unable to re-
trieve near-ground data due to interference from the surface
(Tagawa and Okamoto, 2003) and the size of the blind zone
depends on terrain and surface type. The CNN-based inpaint-
ing techniques presented here could easily be modified to
work with such datasets. Here, KaZR burst pulse-mode data
are artificially degraded, and all values below a randomly se-
lected level from 0.21-2.01 km are removed. In this scenario,
we also use a small buffer region (30-510 m) near the top
of the missing data region, where observations are smoothly
merged with the CNN output.

A sample from the test set is shown in Fig. 5. The ground-
truth data (panels a—c) show a cloud (left side) with a fall
streak extending diagonally downward towards the missing
data region that weakens closer to the ground. Only about
half of the missing data region contains cloud and precipi-
tation, and so inpainting this particular case will involve ac-
curately guessing the location of the cloud edge. The output
from the ¢; CNN is shown in panels (d)—(f). This scheme
does a particularly good job of extending the large-scale fea-
tures downwards diagonally into the missing data region,
which is consistent with the ground truth. Note the left-
most cloud edge in the ground truth intersects the top of the
missing data region at around 1 min but reaches the ground
around 4.5 min. The £; CNN does a particularly good job
of capturing this. It does not, however, introduce sharp fea-
tures or small-scale variability. This is perhaps most notice-
able in the spectrum width field, where values in the blind
zone only range from about 0—0.5ms™!. On the other hand,
the CGAN does a much better job of including sharp and
realistic features in the missing data region. Notably, in this
case it chooses to increase the intensity of the main fall streak
in the example all the way to the surface, with corresponding
high values of reflectivity, negative velocity, and increased
spectrum width. This is not consistent with the ground truth,
but it is a plausible scenario.

The error metrics for the low-level inpainting case are
shown in Fig. 6. As in the simulated KaZR outage case dis-
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Figure 3. An example of inpainting a KaZR outage/missing data period. (a—c) Ground truth, (d—f) conventional CNN inpainting, and (g—i)

CGAN inpainting.
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Figure 4. Error metrics computed on the KaZR outage inpainting scenario. Panels (a)—(c) show mean absolute pixel errors. Panel (d) shows
the earth mover’s distance. Panels (e) and (f) show power spectral density.
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Figure 5. An example of inpainting a KaZR low-level blind zone. (a—c) Ground truth, (d—f) conventional CNN inpainting, and (g-i) CGAN

inpainting.

cussed above, the classical CNN approach outperforms all
of the baseline inpainting schemes in both MAE and EMD
(panels a—d), typically only having about 1/2-1/5 of the
pixel-level error. This alone is a significant improvement and
indicates that in the future, a deep-learning-based approach
may be best for filling in missing low-level radar data. In-
terestingly, in this case the CGAN performs about as well as
the £; CNN in terms of the MAE and EMD. We hypothe-
size that this is due to the fact that there is only one bound-
ary with information that can be used by the inpainting al-
gorithms in this case. Compared to the KaZR outage case
(Fig. 4) the MAE for all of the algorithms has increased sub-
stantially in this case, though the MAE for the CGAN less
so. This may be because the other inpainting algorithms re-
lied heavily on having two boundaries to accurately place the
edges of inpainted clouds, and because the second boundary
is not available in this case, inability to correctly place cloud
edges and large-scale features becomes a large contributor
to MAE. Meanwhile, a large contributor to the MAE of the
CGAN is likely its tendency to generate small-scale pixel-
level variability which would not necessarily be different be-
tween the two KaZR inpainting scenarios. At the same time,
it performs comparably to the classical CNN when placing
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large-scale features. Power spectral density is shown in pan-
els (e)—(f). Unsurprisingly, the CGAN (purple) is the scheme
that consistently performs well for both horizontal and verti-
cal components of PSD. Interestingly, the £; CNN performs
well in the vertical component but worse in the horizontal
component. The “repeat” scheme does well in the horizon-
tal component of PSD because it simply copies frequency
information from the boundary of the missing data region
but cannot produce any variability in the vertical. Finally, the
“Efros” scheme actually produces too much high-frequency
variability in the horizontal component. This results from
the structure of the dataset. The scheme is simply copying
textures from the area above the missing data region, and
the PSD reflects those textures. In conclusion, deep learning
can considerably improve upon existing schemes for infill-
ing missing low-level radar data. Furthermore, for this spe-
cific application, there appears to be little reason not to use
a CGAN-based approach that can generate plausible small-
scale variability because it does not lead to significant in-
creases in pixel-level error compared to the £; CNN.
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Figure 6. Error metrics computed on the KaZR low-level blind zone. Panels (a)—(c) show mean absolute pixel errors. Panel (d) shows the

earth mover’s distance. Panels (e) and (f) show power spectral density.

4.5 Scanning radar beam blockage scenario

In this scenario, beam blockage is simulated using data from
the C-SAPR?2 scanning radar. Beam blockage due to nearby
objects (like trees, buildings, or terrain) is a common prob-
lem for scanning radars, particularly at lower elevation an-
gles. Of the three missing data scenarios used in this paper,
this one is likely the most widely applicable due to the preva-
lence of scanning radars in operational systems. The ability
to accurately fill in missing data due to beam blockage is
useful for operational weather radars, as it can provide more
consistent inputs for weather models that ingest radar data,
like nowcasting systems, and could be used to generate more
appealing radar products for dissemination to the public. For
the C-SAPR?2 radar specifically, inpainting beam blockage
areas would allow for easier application of high-level pro-
cessing that might be used for research, such as feature de-
tection and tracking. In particular, we would want an infilling
system in these cases to accurately represent the distribution
of the weather without straying too far from the ground truth.
Furthermore, C-SAPR?2 is deployed at ARM sites which may
be more likely to suffer from beam blockage due to nearby
objects because there is typically a large suite of other instru-
ments deployed nearby and because clearing potential nearby
blockages (tree removal or re-grading) or building a large
structure to raise the antenna may not be an option. Miss-
ing data of this form can also be caused by attenuation of the
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radar wave due to strong precipitation, which is a common
problem for C-band and higher frequency radars.

Here, we simulate beam blockages of 8—42° starting any-
where from 1.6-25.6km from the radar. Again, a buffer of
variable size from 1-17 pixels during training and 8 pixels
during testing is used around the simulated blockage region
to merge inpainted data and observations via Eq. (1). Unlike
the other two inpainting scenarios, this case has three bound-
aries with observations. The buffer at the corners where these
boundaries meet is defined as the outer product of two vec-
tors that linearly decrease from 1-0. The C-SAPR?2 data used
are defined in polar coordinates with 1° resolution in the az-
imuth and 100 m range resolution. While it may be possible
to inpaint the blockage region by applying a smaller CNN
multiple times, it is preferable to inpaint the entire block-
age region at once to avoid introducing edge artifacts in the
middle of the inpainted area. It is also desirable to perform
inpainting at the native resolution of the radar data to avoid
introducing artifacts or degrading the data quality when con-
verting to a different coordinate system. Because of this, we
chose to use a slightly different configuration of the CNN
for the beam blockage case. The inputs are trimmed to 1024
(range gates) x 128 (°) so that the whole scan is not processed
at once but the entire blockage region is. Trimming to 128°
in the azimuth as opposed to processing the full scan was
largely due to memory limitations during training. This also
means the trained CNN may be more versatile however be-
cause it does not require a scan with an azimuthal resolution
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of exactly 360°. The location and the size of the blockages
were chosen randomly during training, but the samples are
all rotated in the azimuth so that the blockage appears in the
center of the inputs to the CNNs.

This scenario differs from the KaZR inpainting scenar-
ios because the CNN operates directly on the polar data.
We made this choice so that the data did not have to be
re-gridded, which would sacrifice resolution near the radar
and could potentially introduce unwanted artifacts. Conven-
tional CNNs may not be well-suited for operating on polar
data however. This is because the convolutional filters as-
sume that the data are translationally invariant and that the
features they learn are applicable everywhere in the image.
The observed size (number of pixels occupied) of a weather
feature of a fixed physical size can change drastically in polar
coordinates depending on its distance from the antenna due
to spread of the wave as it propagates from the radar however.
This may mean that the CNNs have difficulty learning effi-
cient physical representations of common weather features
because physically similar features can appear quite differ-
ent depending on their location. Put another way, CNNs may
require more filters to learn the same representations in po-
lar coordinates than they would need to represent the same
objects in Cartesian space. Nonetheless, training the CNN to
process C-SAPR2 data went smoothly, and the CNN learned
to outperform conventional inpainting schemes by a compa-
rable margin to the KaZR scenarios. Developing CNN archi-
tectures better suited to working in polar (or spherical) coor-
dinate systems may be an important area of research in the
future.

Example outputs of the beam blockage scenario are shown
in Fig. 7. The ground-truth data are shown in panels (a)—(c),
and the dashed lines represent the region where data were re-
moved to simulate beam blockage. This sample shows some
diverse cloud and precipitation structure, with heavy precip-
itation occurring in the left portion of the missing data re-
gion and weaker precipitation on the right, in addition to a
clear sky area and smaller precipitating feature closer to the
radar. The ¢1-optimizing CNN outputs are shown in panels
(d)—(f), and the CGAN outputs are shown in panels (g)—(i).
Both neural networks do a good job of extending large-scale
features into the missing data region, the area of negative
radial velocities near the left edge of the blockage for in-
stance. Again, the output from the £; CNN is too smooth,
and it is obvious that inpainting has been performed. The
CGAN introduces plausible small-scale variability in each
of the fields however, and, qualitatively speaking, the output
looks realistic, to the point that it may be difficult to notice
that a beam blockage has been filled in if it were not for the
dashed lines in the figure. We have made other samples from
the test set available for download. Compared to the KaZR
scenarios, the CGAN has a much larger tendency to produce
qualitatively low-quality results when inpainting C-SAPR2
data. There are many possible reasons for this, but the most
likely seems to simply be the fact that the C-SAPR2 data
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are significantly different than those collected by KaZR and
contain different types of structures that may be more diffi-
cult for the CNN to represent. Particularly notable are cases
where the observed data are spatially smooth. In these cases,
the CGAN has a tendency to introduce too much variability
and sometimes edge artifacts in the inpainted region, and this
makes it obvious that inpainting was performed. These cases
are not common in the dataset however, and it appears that
the CGAN did not learn to generalize to them. Edge artifacts
at the sides of the blockage region were more common in the
C-SAPR2 case. Similar-looking radial lines are fairly com-
mon in the original C-SAPR2 data, and this may have made
it difficult for the discriminator network to differentiate be-
tween naturally occurring radial features and edge artifacts.

As in the other two scenarios, the £; CNN significantly
outperforms the baseline inpainting schemes in terms of both
pixel-level MAE and EMD (Fig. 8a—d). The CGAN performs
worse than the other schemes in terms of MAE, though this
is expected because it introduces small-scale variability that,
while plausible, is not necessarily in the correct location and
inflates the MAE. On the other hand, the CGAN performs
reasonably well in terms of EMD and dramatically outper-
forms all of the other schemes in reproducing the ground-
truth PSD (panels e—f). Again, note that the linear interpola-
tion scheme only appears to perform well in terms of PSD
when computed along the range dimension because it copies
real variability from the edge of the blockage region. In panel
(e), there appear to be ringing artifacts in the CGAN PSD
curve (purple). They are evenly spaced in frequency, and we
hypothesize that they are related to weak checkerboard-like
artifacts in the CNN output that result from the convolutional
filters. In summary, the CNNs are effective for inpainting
beam blockage regions for C-SAPR2 and likely will be for
other scanning radars. The £1-optimizing CNN performs ex-
tremely well for pixel-level errors, and the CGAN produces
outputs with realistic power spectra, which may be preferable
if a more visually appealing or physically plausible output is
desired.

4.6 Importance of the random seed

After finishing training, we found that the outputs from the
CGANSs were not dependent on the random seed that was
supplied with the inputs. Traditionally, generative adversar-
ial networks are designed to take a random vector as an in-
put that represents a latent space. The GANs use this ran-
dom data to introduce variability in their outputs. All three
of the CGANSs trained here do not appear to use the ran-
dom input however (changing the random data for a given
inpainting case does not alter the output). Nonetheless, they
are still able to produce a diverse set of outputs with plau-
sible small-scale variability, which seems to imply that the
CGANSs leverage the natural variability present in the radar
data in the unmasked part of the scan to generate diverse out-
puts. Furthermore, the small-scale content in the inpainted
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Figure 7. An example of inpainting a C-SAPR2 beam blockage. (a—c) Ground truth, (d—f) conventional CNN inpainting, and (g-i) CGAN

inpainting.

regions changes as the size of the blockage region (and hence
what observations are available to the CNN) is changed and
is not a perfect match to ground truth, so the models have not
over-fit. The authors of Isola et al. (2017) make a similar ob-
servation. Rather than a random input, they use dropout lay-
ers at both training and test time to introduce some variabil-
ity in the generator network. They note that while using the
dropout at test time does produce some additional variability
in the outputs, it is less than expected. Developing inpaint-
ing schemes, and CGANSs that are appropriate for use with
meteorological data that can adequately represent a range of
variance in their outputs may be an important area of future
research. When using CGANS for a task like nowcasting, for
instance, the ability to quantify uncertainty in the CGAN out-
puts by generating multiple realizations would be valuable.

5 Discussion and conclusions
In this work we demonstrated the capabilities of modern

deep-learning-based inpainting schemes for filling in missing
radar data regions. Two approaches were tested: a convolu-
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tional neural network (CNN), that optimizes pixel-level error,
and a conditional generative adversarial network (CGAN),
that is capable of generating realistic outputs. The CNNs
were compared to conventional inpainting and interpolation
schemes, and CNN-based inpainting generally provides su-
perior results in terms of pixel-level error, the distribution of
the output data, and their ability to generate realistic power
spectra.

The inpainting results for the two types of CNN make clear
that a trade-off exists between pixel-level accuracy and phys-
ical realism. The £; CNN was able to outperform all other
schemes in terms of pixel-level errors but ultimately pro-
duced outputs that are smooth and are not representative of
realistic atmospheric variability. On the other hand, realistic
inpainting can be achieved using a CGAN approach, which
can generate plausible cloud and precipitation structures to
the degree that it may be difficult to notice that inpainting
has been performed without a close inspection of the out-
puts. This is exemplified by the PSD curves computed on
the CGAN output, which showed that CGANs can closely
mimic the variability in the training data across spatial scales.
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Figure 8. Error metrics computed on the C-SAPR2 beam blockage. Panels (a)—(c) show mean absolute pixel errors. Panel (d) shows the

earth mover’s distance. Panels (e) and (f) show power spectral density.

Ultimately, this trade-off between pixel-level accuracy and
physical realism is a fundamental limitation of the inpainting
problem: the true small-scale variability in a missing data re-
gion is not recoverable, and the problem of filling it in is ill-
posed because multiple physically plausible solutions exist.
In other words, one must choose whether pixel accuracy or
realistic features are of greater importance given their task.
An MAE of zero represents an exact match to the original
data, and so some might argue that, for scientific datasets,
pixel- or observation-level errors are a priority. An alterna-
tive view, however, is that in practice, the inpainted output
from the £; CNN is always smoothed and unrealistic to the
degree that we can say with near certainty that it is not repre-
sentative of what actually occurred. The CGAN can at least
provide a plausible result that is unlikely to be true but cannot
immediately be dismissed as incorrect.

The choice to use a £1- or CGAN-style CNN for inpaint-
ing will ultimately be task-dependent and should be made
with caution. If used for operational meteorology, and in
particular, in scenarios where extreme weather is present,
the CGAN’s ability to hallucinate plausible weather features
could pose a danger, if it hallucinates extreme weather in a
location without it or vice versa, for example. In this type of
application, a £; CNN is likely a better, more conservative
choice because it is unlikely to hallucinate an important fea-
ture. For generating visually appealing broadcast meteorol-
ogy products that are not used for diagnosing severe weather
or infilling blockages so that high-level processing can be
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applied, a CGAN may be a better choice. The CGAN’s abil-
ity to generate very plausible turbulence and small-scale fea-
tures that seamlessly integrate with their surroundings means
it may be a good choice for a task like repairing a damaged
scientific dataset. In this type of application, interpolation
or an £; CNN might introduce unrealistic features that in-
terfere with analysis of the data. In either case, our results
demonstrate that CNN-based inpainting schemes can signif-
icantly outperform their conventional counterparts for filling
in missing or damaged radar data. Finally, while the capa-
bilities of these schemes were demonstrated here on radar
data, it should be noted that none of the CNN-based meth-
ods themselves utilize anything unique about radar and have
significant potential for application to other instrument data
streams or even model data.

Code and data availability. The code used for this project is avail-
able at https://doi.org/10.5281/zenodo.5643624 (Geiss and Hardin,
2021a). Additional sample outputs for test set cases are avail-
able online at https://doi.org/10.5281/zenodo.5744857 (Geiss and
Hardin, 2021b). The KaZR data are available from the Atmo-
spheric Radiation Measurement program data discovery tool at
https://doi.org/10.5439/1615726 and have filenames “corkazrcfrge-
qcM1.b1” (Hardin et al., 2019a). The CSAPR-2 data used in
this study were processed using the Taranis software package,
which is currently in development and will be made publicly
available in the near future (Hardin et al., 2021); some informa-
tion can be found here: https://asr.science.energy.gov/meetings/stm/
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nis processing) can also be found using the ARM data discovery
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