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Abstract. An improved cloud detection algorithm for the
Aura Microwave Limb Sounder (MLS) is presented. This
new algorithm is based on a feedforward artificial neural
network and uses as input, for each MLS limb scan, a vec-
tor consisting of 1710 brightness temperatures provided by
MLS observations from 15 different tangent altitudes and up
to 13 spectral channels in each of 10 different MLS bands.
The model has been trained on global cloud properties re-
ported by Aqua’s Moderate Resolution Imaging Spectrora-
diometer (MODIS). In total, the colocated MLS–MODIS
data set consists of 162 117 combined scenes sampled on
208 d over 2005–2020. A comparison to the current MLS
cloudiness flag used in “Level 2” processing reveals a huge
improvement in classification performance. For previously
unseen data, the algorithm successfully detects > 93 % of
profiles affected by clouds, up from ∼ 16 % for the Level 2
flagging. At the same time, false positives reported for ac-
tually clear profiles are comparable to the Level 2 results.
The classification performance is not dependent on geoloca-
tion but slightly decreases over low-cloud-cover regions. The
new cloudiness flag is applied to determine average global
cloud cover maps over 2015–2019, successfully reproduc-
ing the spatial patterns of mid-level to high clouds seen in
MODIS data. It is also applied to four example cloud fields
to illustrate its reliable performance for different cloud struc-
tures with varying degrees of complexity. Training a similar
model on MODIS-retrieved cloud top pressure (pCT) yields
reliable predictions with correlation coefficients > 0.82. It is

shown that the model can correctly identify > 85 % of pro-
files with pCT< 400 hPa. Similar to the cloud classification
model, global maps and example cloud fields are provided,
which reveal good agreement with MODIS results. The com-
bination of the cloudiness flag and predicted cloud top pres-
sure provides the means to identify MLS profiles in the pres-
ence of high-reaching convection.

Copyright statement. © 2020 California Institute of Technology.
Government sponsorship acknowledged.

1 Introduction

The impact of clouds on Earth’s hydrological, chemical, and
radiative budget is well established (e.g., Warren et al., 1988;
Ramanathan et al., 1989; Stephens, 2005). With the introduc-
tion of satellite imagery, the first studies of cloud observa-
tions from space concentrated on the determination of cloud
cover (e.g., Arking, 1964; Clapp, 1964). After the advent of
multispectral satellite radiometry, retrievals of increasingly
comprehensive suites of cloud macrophysical, microphysi-
cal, and optical characteristics were developed (e.g., Rossow
et al., 1983; Arking and Childs, 1985; Minnis et al., 1992;
Kaufman and Nakajima, 1993; Han et al., 1994; Platnick and
Twomey, 1994). Such efforts require a reliable cloud detec-
tion prior to the actual retrieval process. Conversely, there are
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remote sensing applications where clouds, rather than being
the subject of interest, are a source of artifacts that negatively
impact the observation of desired geophysical variables. For
land and water classifications, clouds and cloud shadows rep-
resent unusable data points that need to be detected accu-
rately and discarded (e.g., Ratté-Fortin et al., 2018; Wang
et al., 2019). Because of the similar spectral behavior of
aerosols and clouds and their complicated interactions, de-
riving reliable aerosol properties from space requires careful
cloud detection with high spatial resolution (e.g., Varnai and
Marshak, 2018). Instruments operating in the ultraviolet to
infrared spectral wavelength ranges cannot penetrate any but
the optically thinnest clouds. As a result, retrievals of atmo-
spheric composition in the presence of clouds are severely
limited.

Approaches to cloud detection from satellite-based im-
agers are characterized by varying levels of complexity, from
simple thresholding and contrast methods to multilevel de-
cision trees (e.g., Ackerman et al., 1998, 2008; Zhao and
Di Girolamo, 2007; Saponaro et al., 2013; Werner et al.,
2016). In recent years fast machine learning algorithms have
been employed to detect cloudiness based on observed spa-
tial and spectral patterns (e.g., Saponaro et al., 2013; Jeppe-
sen et al., 2019; Sun et al., 2020). Regardless of the tech-
nique, each algorithm must be designed purposefully and
with the respective application in mind, as discussed in Yang
and Di Girolamo (2008).

The Aura Microwave Limb Sounder (MLS), which has
provided global retrievals of atmospheric constituent pro-
files from ∼ 10 to ∼ 90 km since 2004, operates at frequen-
cies from 118 GHz to 2.5 THz. In this spectral range clouds
are much more transparent than at shorter wavelengths, and
the impact on the measured radiances is low. Only clouds
with high liquid and/or ice water content reaching altitudes
of ∼ 9 km and higher can significantly impact the sampled
radiances. The current MLS “Level 2” cloud detection al-
gorithm is based on the computation of cloud-induced ra-
diances (Tcir), which represent the difference between indi-
vidual observations and calculated clear-sky radiances (Wu
et al., 2006). The latter are derived after the retrieval of
the other MLS data products. To first order, scattering from
thick clouds diverts a mix of large upwelling radiances, from
lower in the atmosphere, and smaller downwelling radiances,
from above, into the MLS ray path. Accordingly, for suffi-
ciently thick clouds within the MLS field of view, Tcir will
be positive for limb pointings above an altitude of ∼ 9 km,
where non-scattered limb views are characterized by low
radiances. Conversely, Tcir will be negative below ∼ 9 km,
where non-scattered signals would otherwise be large. In the
MLS Level 2 processing, if the absolute value of Tcir exceeds
predefined detection thresholds, then the respective profile
is flagged as being influenced by high or low clouds. The
thresholds are set for individual retrieval phases and spec-
tral bands; e.g., for MLS bands 7–9, around a center fre-
quency of 240 GHz, radiances are flagged where Tcir> 30 K

or Tcir<−20 K. Subsequently, separate retrieval algorithms
deduce ice water content and path from the Tcir information
(Wu et al., 2008). Note that in earlier phases of the MLS
Level 2 processing, a similar scheme, computing clear-sky
radiances based on preliminary retrievals of temperature and
composition, is used to identify MLS radiances that have
been significantly affected by clouds and discard them in the
final atmospheric composition retrievals.

The focus for the Level 2 flagging is on identifying cases
where clouds impact the MLS signals sufficiently to poten-
tially affect the MLS composition retrievals. However, the
reliance on global, conservatively defined thresholds will in-
herently induce uncertainties in the current cloud detection
scheme. For optically thinner clouds, where Tcir values are
close to but do not exceed the prescribed thresholds, the cur-
rent cloud flag will provide a false clear classification. Im-
provements to the current cloud detection scheme could al-
low for (i) a comprehensive uncertainty analysis of the re-
trieval bias induced by clouds; (ii) more reliable MLS re-
trievals in the presence of clouds, where a potential future
correction of MLS radiances could account for the cloud in-
fluence; (iii) identification of composition profiles that can
be confidently considered to be completely clear sky; and
(iv) the reliable identification of profiles in the presence of
high-reaching convection. Points (iii) and (iv) have the po-
tential to enable new science studies. For example, a reliable
cloud mask for individual MLS profiles would enable more
comprehensive analysis of lower-stratospheric water vapor
enhancements associated with overshooting convection. Cur-
rently, studies of these events rely on the computationally ex-
pensive colocation of water vapor profiles with cloud prop-
erties from different observational sources (e.g., Tinney and
Homeyer, 2020; Werner et al., 2020; Yu et al., 2020).

This study describes the training and validation of an im-
proved MLS cloud detection scheme employing a feedfor-
ward artificial neural network (“ANN” hereinafter). This al-
gorithm is derived from colocated MLS samples and MODIS
cloud products and is designed to classify clear and cloudy
conditions for individual MLS profiles. Two specific goals
are set for the new algorithm: (i) detection of both high
(e.g., cirrus and cumulonimbus) and mid-level (e.g., stra-
tocumulus and altostratus) clouds and (ii) detection of less
opaque clouds containing lower amounts of liquid or ice wa-
ter. Observed cloud variables, used to train the ANN, are
provided by the Moderate Resolution Imaging Spectrora-
diometer (MODIS) aboard NASA’s Aqua platform. Of the
major satellite instruments, Aqua MODIS observations are
most suitable for this study, as they provide operational cloud
products on a global scale that are essentially coincident and
concurrent with the MLS observations.

The paper is structured as follows: Sect. 2 describes both
the MLS and MODIS data used in this study. Then a short
introduction to the general setup of a feedforward ANN
is given in Sect. 3.1, followed by specifics on the output
(Sect. 3.2), input (Sect. 3.3), and the training and valida-
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tion procedure (Sect. 3.4) of the developed models. Results
from applying the cloud detection algorithm to MLS data
are given in Sect. 4, which includes a statistical compari-
son of the prediction performance between the Level 2 and
ANN results (Sect. 4.1), a discussion about ANN perfor-
mance for uncertain cases (Sect. 4.2), a global performance
evaluation and cloud cover analysis (Sect. 4.3), and four ex-
ample scenes contrasting the performance of the Level 2 flag
and the new algorithm for different cloud fields in Sect. 4.4.
The performance of the subsequent cloud top pressure pre-
dictions is presented in Sect. 5, which comprises an evalua-
tion of the prediction performance and an assessment of the
model’s ability to detect high clouds (Sect. 5.1), global maps
(Sect. 5.2), and four example scenes comparing the ANN
predictions to the MODIS results (Sect. 5.3). The main con-
clusions and a brief summary are given in Sect. 6.

2 Data

Aura MLS samples brightness temperatures (TB) in five
spectral frequency ranges around 118, 190, 240, 640, and
2500 GHz (Waters et al., 2006) (the latter, measured with
separate, independent optics, was deactivated in 2010 and
is not considered here). Multiple bands, consisting of 4–
25 spectral channels, cover each of these frequency ranges;
see Table 4 in Waters et al. (2006) and Fig. 2.1.1 in Livesey
et al. (2020). The exact position of the specific bands was
chosen based on the different absorption characteristics of
the various atmospheric constituents that MLS observes.
MLS makes ∼ 3500 daily vertical limb scans (called major
frames, MAFs), each consisting of 125 minor frames (MIFs)
that can be associated with tangent pressures (ptan) at differ-
ent altitudes in the atmosphere. These observations provide
the input for retrievals of profiles of a wide-ranging set of at-
mospheric trace gas concentrations. The respective Level 2
Geophysical Product (L2GP) also files a report status diag-
nostic for every MLS profile, which includes flags indicating
high and low cloud influence. The most recent MLS data set
is version 5; however, at the time the ANN was being de-
veloped, reprocessing of the entire MLS record to date with
the v5 software had not yet been completed. Accordingly,
L2GP cloudiness flags in this study are provided by the ver-
sion 4.2x data products (Livesey et al., 2020), and v4.2x is
also the source for the Level 1 radiance measurements used
herein. Note that the sampled radiances are identical between
the two versions, while revisions to the atmospheric compo-
sition retrieval algorithms yield subtle differences in the de-
rived cloudiness flags. The spatial resolution of MLS Level 2
products varies from species to species, but typical values are
3 km in the vertical and 5 km× 500 km in the cross-track and
along-track dimensions. The distance along the orbit track
between adjacent profiles is ∼ 165 km.

Global cloud variables used in this study are provided by
retrievals from the Aqua MODIS instrument, which precedes

the Aura overpass by about 15 min. However, because of the
differences in their viewing geometries, the true time sepa-
ration between MLS and MODIS measurements is substan-
tially smaller than 15 min (see Sect. 3.2). MODIS collects ra-
diance data from 36 spectral bands in the wavelength range
0.415–14.235 µm. For a majority of the channel observations
and subsequently retrieved cloud properties, the spatial reso-
lution at nadir is 1000 m, although the pixel dimensions in-
crease towards the edges of a MODIS granule. Each gran-
ule has a viewing swath width of 2330 km, enabling MODIS
to provide global coverage every 2 d. More information on
MODIS and its cloud product algorithms (the current version
is Collection 6.1) is given in Ardanuy et al. (1992), Barnes
et al. (1998), and Platnick et al. (2017). Each pixel, j , within
a MODIS granule reports a value for the cloud flag, a cloud
top pressure (pjCT), cloud optical thickness (τ j ), and effec-
tive droplet radius (rjeff). These last two variables are used to
derive the total water path (Qj

T), which contains both the liq-
uid and ice water path and characterizes the amount of water
in a remotely sensed cloud column. It can be calculated fol-
lowing the discussions in Brenguier et al. (2000) and Miller
et al. (2016):

Q
j
T = 0 · ρ

j
· τ j · r

j

eff, (1)

where ρj is the bulk density of water in either the liquid or
ice phase (following the cloud phase retrieval for pixel j )
and the factor 0 accounts for the vertical cloud structure. For
vertically homogeneous clouds it can be shown that 0= 2/3.

Table A1 in Appendix A lists the 208 d that comprise the
global data set used in this study. It consists of 12 random
days annually, one for each month, for the years between
2005 and 2020, as well as 1 additional day each year that
forms a set of consecutive days. This brings the yearly cov-
erage to 13 d.

3 Artificial neural network

This section provides details about the ANN setup and train-
ing. Here, we constructed and trained a multilayer percep-
tron, which is a subcategory of feedforward ANNs that se-
quentially connects neurons between different layers. In a
feedforward ANN information only gets propagated forward
through the different model layers and is not directed back
to affect previous layers. An introduction to multilayer per-
ceptrons is given in Sect. 3.1. The output vector containing
the labels (i.e., the binary cloud classifications) based on a
colocated MLS–MODIS data set and the features (i.e., the
input matrix), which consist of MLS TB observations, are de-
scribed in Sects. 3.2 and 3.3, respectively. The choice of hy-
perparameters, the training setup, and the validation results
from the algorithm are provided in Sect. 3.4.

The weights that connect the input to the output data are
determined by the “Keras” library for Python (version 2.2.4;
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Figure 1. Simplified sketch of the algorithm setup, including three
vectors in the input layer (blue) that contain MLS brightness tem-
peratures (T Bi; i= 1–3), two hidden layers (green) with two neu-
rons (Nh1−k and Nh2−k ; k= 1–2) and one “bias” node each (Bk ;
k= 1–2), and an output layer (orange) with the labels vector (L)
and one bias node (BL). Also shown are the input weights (ωi,k ;
i= 0–3, k= 1–2), connecting weights ($k,l ; k= 0–2, l= 1–2), and
output weights (�l ; l= 0–2) that connect the input variables to the
neurons in the first hidden layer, the neurons from the two hidden
layers, and the neurons from the second hidden layer to the labels
vector, respectively.

Chollet and Keras Team, 2015) with “TensorFlow” (version
1.13.1) as the backend (Abadi et al., 2016).

3.1 Algorithm description

Figure 1 illustrates the general setup of a simplified mul-
tilayer perceptron that contains four layers and is purely
instructional. The complete model setup is more complex
and is discussed in Sect. 3.2–3.4. The input layer (shown in
blue) consists of m= 3 vectors that contain selected MLS
brightness temperatures T B1, T B2, and T B3. The input layer
is succeeded by two hidden layers (shown in green) with
two neurons each (Nh1−1 and Nh1−2, as well as Nh2−1 and
Nh2−2) and the respective bias vectors (B1 and B2). The
following output layer (shown in orange) consists of a sin-
gle vector (L; containing the predicted labels) and a corre-
sponding bias (BL). The brightness temperature vectors (T Bi;
i = 1, 2, and 3) used as input for the ANN are provided
by TB observations in selected channels, bands, and minor
frames. They are of length n, which describes the number
of scalar MLS observations (T jBi). This means that i = 1,
2, and 3 brightness temperatures were sampled by MLS at
j = 1, . . .,n major frames. Similarly, there is a scalar label
Lj for each MAF, so L is also of length n. All bias vectors
are initialized to 1.

At each neuron Nh1−k , with k= 1–2 in the first hidden
layer, a scalar value γ j1−1 and γ j1−2 for each of the j MAFs is

calculated:

γ
j

1−1= B1−1 ·ω0,1+ T
j

B1 ·ω1,1+ T
j

B2 ·ω2,1+ T
j

B3 ·ω3,1, (2)

γ
j

1−2= B1−2 ·ω0,2+ T
j

B1 ·ω1,2+ T
j

B2 ·ω2,2+ T
j

B3 ·ω3,2. (3)

Here, the weights ω connect the observed brightness tem-
peratures (and the bias) to the neurons in the first hidden
layer. γ j1−1 and γ j1−2 are subsequently modified by an activa-
tion function, which introduces nonlinearity into the neuron
output. The hyperbolic tangent activation function is applied,
which is shown to be very efficient during training because
of its steep gradients (e.g., LeCun et al., 1989; LeCun et al.,
2012) and yields new values 0j1−1 and 0j1−2. For the second
hidden layer, the scalar neuron values at Nh2−k , with k= 1–
2, for each MAF j are derived as

γ
j

2−1 = B2−1 ·$0,1+0
j

1−1 ·$1,1+0
j

1−2 ·$2,1, (4)

γ
j

2−2 = B2−2 ·$0,2+0
j

1−1 ·$1,2+0
j

1−2 ·$2,2, (5)

where the weights$ connect the neuron output from the first
hidden layer, as well as the bias, to the neurons in the second
hidden layer. As before, these scalar neuron values are trans-
formed by the hyperbolic tangent activation function, which
yields the transformed neuron values 0j2−1 and 0j2−2.

Finally, the neuron output from Nh2−1 and Nh2−2 is
connected to the single vector L in the output layer via
weights �. For each MAF j the respective scalar value λj

is calculated as

λj = BL ·�0+0
j

2−1 ·�1+0
j

2−2 ·�2. (6)

We aim for a binary, two-class cloud classification setup
(i.e., either cloudy or clear designations) and information
about the probability for each predicted class. As a result,
the softmax function normalizes the λj results at the output
layer. The softmax activation function is identical to the lo-
gistic sigmoid function for a binary, two-class classification
setup. This means that the predicted neuron output in the out-
put layer is calculated as

L̂j =
1

1+ exp(−λj )
. (7)

The model for the cloud top pressure prediction uses a sim-
ple pass-through of the neuron output to the output layer. The
ideal weights in Eqs. (2)–(6) need to be derived iteratively by
evaluating a loss function (χ ), which is the log–loss function
(or cross entropy) in the classification setup. If Lj and L̂j

are the individual elements of the two output vectors L and
L̂ (i.e., the prescribed and currently predicted labels), χ for
two classes is defined as

χ = −

n∑
j=1

Lj · ln(L̂j )+ (1−Lj ) · ln(1− L̂j )+R. (8)

Here, R is an optional regularization term that is used to
control the stability of the respective model. Note that in case
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of Lj = 0 or L̂j = 0 an infinitesimal quantity ε ∼ 0 is added
to the respective label to avoid the undefined ln0. Conversely,
the model for the cloud top pressure prediction minimizes the
mean squared error. The Keras algorithm includes multiple
optimizers to solve Eq. (8) in a numerically efficient way.
The exact setup and choice of hyperparameters need to be
determined carefully via cross validation during the training
process (see Sect. 3.4).

3.2 The labels from colocated MLS–MODIS cloud data

Training data for the output vector L, which contains the pre-
scribed labels for Eq. (8), are provided by the MODIS Col-
lection 6.1 data set described in Sect. 2. The reported MODIS
cloud products are first colocated with individual MLS pro-
files.

An example MLS orbit on 19 May 2019 is shown in
Fig. 2a. Each blue dot represents 1 of the ∼ 3500 daily pro-
files sampled by MLS. Note that there are three latitudinal
ranges (in the tropics and Northern and Southern Hemisphere
mid-latitudes), where the ascending and descending orbits
cross multiple times a day. Since the inclination angle of
Aura is close to 90◦, both polar regions contain more MLS
profiles than other locations.

The illustration in Fig. 2b depicts how colocation is per-
formed. If nper is the number of MODIS pixels (gray-shaded
squares) within a 1◦× 1◦ box (in latitude and longitude; blue
box) around an MLS profile (blue “x”), then each of the nper
pixels reports a cloudiness flag, as well as a total water path
(Qj

T) and a cloud top pressure (pjCT), with j = 1,2, . . .,nper
denoting the individual pixels within the 1◦× 1◦ box. Note
that for legibility the cloud properties of only three MODIS
pixels are shown. For the respective MLS profile, these pa-
rameters are aggregated to more general cloud statistics con-
sisting of the cloud cover (C) within the 1◦× 1◦ box, as well
as the median total water path (QT) and median cloud top
pressure (pCT). Note that no significant decrease in clas-
sification performance is observed for varying aggregation
scales between 0.5◦× 0.5◦ and 2◦× 2◦.

Figure 2c shows the global distribution of sample frequen-
cies for the colocated MLS–MODIS data set within grid
boxes of length 15◦× 15◦ (latitude and longitude). While not
every grid box contains the same number of profiles, each
area contains at least 2100 MLS–MODIS samples. A maxi-
mum in sample frequency is observed over the regions with
denser MLS coverage around the poles.

The aggregated profile-level cloud statistics are used to de-
fine the observed clear-sky and cloudy conditions. All pro-
files that are characterized by C ≥ 2/3, pCT< 700 hPa, and
QT> 506 gm−2 are labeled as cloudy, while profiles with
C < 1/3 and QT< 25 gm−2 are considered to be associ-
ated with clear-sky samples. While the cloud cover thresh-
old is somewhat arbitrary, the pCT limit for cloudy observa-
tions and the QT thresholds are carefully selected. The large
opacity of the atmosphere for longer path lengths means

that MLS shows almost no sensitivity towards clouds with
pCT ≥ 700 hPa (see Sect. 3.3). This upper pressure limit,
which in the 1976 U.S. Standard Atmosphere (COESA,
1976) is located at an altitude of ∼ 3 km, is around the lower
limit of observed cloud tops of mid-level cloud types (e.g.,
altostratus and altocumulus). The 10th and 25th percentiles
of all profiles containing clouds within the 1◦ perimeter, re-
gardless of C, are QT ∼ 25 gm−2 and QT ∼ 50 gm−2, re-
spectively. These definitions have an additional benefit: they
almost evenly split the data set into cloudy and clear-sky pro-
files (52.0 % and 48.0 %, respectively), which improves the
reliability of the trained weights for the cloud classification.

Naturally, these definitions leave some profiles undefined
(e.g., those with C in the range 1/3–2/3). These profiles
(about the number of the combined cloudy and clear classes)
cannot be included in the training of the ANN, as they lack
a prescribed label. The discussion in Sect. 4.1 provides an
analysis of the ANN performance for a redefined classifica-
tion based on a simple threshold of C = 0.5 (in addition to
a positive QT) to distinguish between cloudy and clear-sky
profiles.

Figure 2d shows the global distribution of sample frequen-
cies for the training data set, which comprises the clear-sky
and cloudy labels defined earlier. Here, the observed patterns
depend strongly on the MODIS-observed cloud conditions
(see Sect. 4.3 for more information). Regions with compar-
atively low cloud cover (most of the African continent, as
well as Australia and Antarctica) and those with increased
occurrences of high and mid-level clouds (mostly over land)
show higher sample frequencies compared to areas over the
oceans. Three regions with low sample frequencies, west of
South America, Africa, and Australia, stand out. Those areas
are characterized by increased C of low clouds of up to 80 %
(e.g., Muhlbauer et al., 2014). Similar patterns are observed
over the North Pacific and Atlantic oceans, albeit to a lesser
extent. Those MLS profiles are influenced by clouds that are
either too low or exhibit C < 1/3 and are therefore not in-
cluded in the training data set (i.e., are part of the undefined
class mentioned earlier).

It is important to note that the difference in viewing ge-
ometry between MLS and MODIS (i.e., limb geometry ver-
sus nadir viewing) induces a considerable degree of uncer-
tainty in the colocation. While it is reasonable to assume that
the majority of a potential cloud signal (or lack thereof) will
come from the 1◦× 1◦ box around the respective MLS pro-
file, there are certain scenarios that will lead to a false classi-
fication. The most likely such scenario consists of an MLS
line of sight that passes through a high-altitude cloud be-
fore a clear-sky 1◦× 1◦ box. Here, MLS will detect a strong
cloud signal, even though the nadir-viewing MODIS instru-
ment does not record any cloudiness at the location of the
respective MLS profile. Less likely is the scenario of a very
low-altitude cloud located right after (in terms of an MLS
line of sight) a clear-sky 1◦× 1◦ box. This would also result
in a false cloud classification (if the MODIS observations are
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Figure 2. (a) Example MLS orbit on 19 May 2019. (b) Illustration of the colocation of MLS and MODIS data. (c) Global map of sample
frequencies for the colocated MLS–MODIS data set used in this study. (d) Same as (c) but showing the sample frequencies of observed clear
and cloudy profiles, following the definitions in Sect. 3.2.

taken as reference). However, because of the increase in at-
mospheric opacity, the sensitivity of the MLS instrument to-
wards signals further along the line of sight decreases, and
it is less likely that MLS would detect these cloud signals in
any case. One contributor to the overall uncertainty that is
of less concern is the time difference between the Aqua and
Aura orbits (∼ 15 min). Because MLS looks forward in the
limb, the temporal discrepancy between the sampling of in-
dividual MLS profiles and the colocated MODIS pixels is in
the range of 0.6–1.4 min. The results presented in Sect. 3.4 il-
lustrate that by training the ANN with a large data set, as well
as cross-validating the training results against a large number
of random validation data, the contributions of uncertainties
associated with colocation (both in space and time) can be
considered small and do not overly impact the reliability of
the cloud detection algorithm.

The reader is also reminded of the fact that the proposed
ANN schemes will try to reproduce, as best as they can, the
MODIS-retrieved cloud variables. Those parameters, how-
ever, have their own uncertainties and biases, and the ANN
will inherently learn those MODIS-specific characteristics.
As a result, the ANN predictions should not be considered
the true atmospheric state. Instead, they represent a close ap-
proximation of the observed values in the colocated MLS–
MODIS data set.

3.3 The input matrix from MLS brightness
temperature observations

Figure 3a–c show the spectral behavior of TB sampled in
MLS bands 2, 33, and 14 at MIF= 15, which on average
corresponds to ptan ∼ 576 hPa (at an altitude of ∼ 4.5 km
in the 1976 U.S. Standard Atmosphere). In this section
we mostly omit the superscript j to indicate the statisti-
cal analysis of all T jB values in the respective band (j =
1,2, . . .,n). The median TB for profiles associated with clear-
sky (orange) and cloudy conditions (blue), based on the clas-
sifications from the colocated MLS–MODIS data set de-
scribed in Sect. 3.2, are shown by the solid lines and circles.
The orange- and blue-shaded areas indicate the interquartile
range (IQR; 75th–25th percentile of data points) of clear and
cloudy profiles. Data are from profiles sampled in the latitu-
dinal range of −30 to +30◦.

Median clear-sky profiles exhibit consistently larger TB
than cloudy observations, with differences of up to 10 K. This
behavior confirms the findings in Wu et al. (2006), where
ice clouds at an altitude of 4.7 km reduce band 33 TB at the
lower minor frames (i.e., larger ptan). The IQR ranges of the
two different data sets are very close for band 2 observations
(i.e., within 1–2 K), while there is overlap for the TB sampled
in bands 33 and 14.
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Figure 3. (a) Statistic of the brightness temperature (TB) from MLS observations sampled in band 2 of receiver 2 at minor frame (MIF) 15
(at an altitude of ∼ 4.5 km) in the latitudinal range of −30 to +30◦ as a function of frequency. The orange, blue, and green curves show
the median TB associated with clear-sky conditions, clouds with a cloud top pressure pCT < 700 hPa, and clouds with pCT ≥ 700 hPa,
respectively. The orange- and blue-shaded areas indicate the interquartile range of the respective TB (omitted for low clouds to enhance
legibility). Samples are provided by the colocated MLS–MODIS data set. (b) Same as (a) but for band 33 of radiometer 3. (c) Same as (a)
but for band 14 of radiometer 4. (d–f) Same as (a–c) but at MIF= 33 (at an altitude of ∼ 12 km).

To illustrate the reduced sensitivity of MLS to signals
from very low clouds, the median TB from profiles with
pCT ≥ 700 hPa is shown in green (for clarity the correspond-
ing IQR is omitted). These profiles behave similarly to clear-
sky observations, and the difference in median TB is less than
1 K.

Figure 3d–f illustrate the spectral behavior of TB sam-
pled at MIF= 33, which corresponds to an average ptan
of ∼ 200 hPa (at an altitude of ∼ 12 km in the 1976 U.S.
Standard Atmosphere). Similar to the results for the lower
MIF, a clear separation between median TB from clear-
sky and cloudy (100 hPa≤pCT< 700 hPa) profiles is ob-
served, while those profiles associated with low clouds
(pCT≥ 700 hPa) again behave similarly to clear samples. For
observations from bands 2 and 33, the cloudy profiles show
significantly higher TB. Again, this confirms the reported be-
havior in Wu et al. (2006), who found an increase in band 33
TB for cloudy conditions compared to the clear background.
Conversely, band 14 observations behave similarly to those
sampled at MIF= 15, and the cloudy profiles exhibit lower
TB.

The significant contrast in median TB between clear-sky
and cloudy profiles, especially for band 2 and partly for
band 33, might suggest the possibility of a simple cloud de-
tection approach via thresholds. However, the respective IQR
ranges often overlap, which indicates that a simple TB thresh-
old would miss about 25 % of both the clear and the cloudy

data. Moreover, the behavior illustrated in Fig. 3 is specific
to the latitudinal range of −30 to +30◦. For higher latitudes,
changes in atmospheric temperature and composition yield
a noticeable decrease in the observed contrast, while close
to the poles the clear-sky profiles almost always have lower
TB than the cloudy observations (even at the lower MIFs). A
more sophisticated classification approach, with TB samples
from additional MLS bands and minor frames, is necessary
to derive a more reliable global cloud detection.

Table 1 details the MLS bands, as well as their associ-
ated channels and MIFs, that comprise the m× n input ma-
trix for the ANN. The input matrix consists of m different
T
j

B , sampled in individual channels (within the respective
MLS bands) and MIFs, at n different times. To reduce the
computational costs during the training of the model, not
all MLS observations are considered. Instead, 10 different
bands are chosen in total. Those are bands 2, 3, and 6; 7,
8, and 33; and 10, 14, and 28 for the 190, 240, and 640 GHz
spectral regions, respectively. These bands were carefully se-
lected after a statistical analysis of the altitude-dependent
contrast in observed TB between clear and cloudy profiles.
This contrast is generally low (in the range of 1 K) for the
observations from the 118 GHz region, so only band 1 from
this receiver is included in the model input. For most of the
10 bands, every second channel is included in the input (ex-
cept for band 33, which only has four channels in total),
while considering every third MIF in the range 7–49 yields
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Table 1. Details of the input variables for the ANN algorithm, which consist of MLS brightness temperature observations in 10 different
bands from 4 radiometers. Besides the official radiometer and band designations, the local oscillator (LO) and primary species of interest in
the respective band are given, as well as the ranges of minor frames (MIFs) and channels used as input for the ANN.

Spectrometer Band LO (GHz) Species MIF Channel

R1A B1F 118 ptan [7, 10, 13, . . ., 49] [1, 3, 5, . . ., 25]
R2 B2F 190 H2O [7, 10, 13, . . ., 49] [1, 3, 5, . . ., 25]
R2 B3F 190 N2O [7, 10, 13, . . ., 49] [1, 3, 5, . . ., 25]
R2 B6F 190 O3 [7, 10, 13, . . ., 49] [1, 3, 5, . . ., 25]
R3 B7F 240 O3 [7, 10, 13, . . ., 49] [1, 3, 5, . . ., 25]
R3 B8F 240 ptan [7, 10, 13, . . ., 49] [1, 3, 5, . . ., 25]
R3 B33W 240 O3 [7, 10, 13, . . ., 49] [1, 2, 3, 4]
R4 B10F 640 ClO [7, 10, 13, . . ., 49] [1, 3, 5, . . ., 25]
R4 B14F 640 O3 [7, 10, 13, . . ., 49] [1, 3, 5, . . ., 25]
R4 B28M 640 HO2 [7, 10, 13, . . ., 49] [1, 3, 5, . . ., 11]

decent vertical resolution between 15 hPa (for the highest al-
titudes) and 150 hPa (at the lowest altitudes). Overall, the in-
put matrix for the training and validation of the ANN is of
the shape 1710× 162 117; i.e., it consists ofm= 1710 differ-
ent features (T jB at different frequencies and altitudes) from
n= 162 117 MAFs (either classified as clear sky or cloudy).

3.4 Training and validation

The Keras Python library provides convenient ways to man-
age the setup, training, and validation of ANN models. The
optimal weights for Eqs. (2)–(6) are derived in four steps:
(i) defining an independent test data set which comprises
10 % of the clear and cloudy cases and will be used to evalu-
ate the final model; (ii) determining the most appropriate hy-
perparameters via k-fold cross validation; (iii) training and
validating a number of different models with the best set of
hyperparameters on multiple, random splits between training
and validation data sets; and (iv) comparing the performance
scores for the different model runs to evaluate the stability of
the approach and pick the best set of weights.

The hyperparameters to be determined are (i) the num-
ber of hidden layers, (ii) the number of neurons per hidden
layer, (iii) the optimizer for the cloud classification, (iv) the
mini-batch size, (v) the learning rate, and (vi) the value for
the weight decay (i.e., the L2 regularization parameter). The
number of hidden layers and neurons impact the complex-
ity of the model. The choice of optimizer controls how fast
and accurately the minimum of the loss function in Eq. (8) is
determined, based on different feature sets and minimization
techniques. During each iteration the model computes an er-
ror gradient and updates the model weights accordingly. In-
stead of determining the error gradient from the full training
data set, our models only use a random subset of the training
data (called a mini-batch) during each iteration. This not only
speeds up the training process but also introduces noise in the
estimates of the error gradient, which improves generaliza-
tion of the models. The learning rate controls how quickly the

weights are updated along the error gradient. Thus, the size of
the learning rate affects the speed of convergence (higher is
better) and ability to detect local minima in the loss function
(lower is better). Meanwhile, L2 regularization is one method
to specify the regularization termR in Eq. (8), where the sum
of the squared weights is multiplied with the L2 parameter:

R = L2 ·
∑

ω2
+$ 2

+�2. (9)

Note that for clarity we omitted the indices for the weights
in Eq (9). The amount of regularization is directly propor-
tional to the value of the L2 weight decay parameter. Reg-
ularization usually improves generalization of the models.
More information about ANN hyperparameters and their im-
pact on the reliability of model predictions can be found in,
e.g., Reed and Marks (1999) and Goodfellow et al. (2016).

The optimal number of hidden layers and neurons was
determined to be in the range 1–2 and 100–1200 (in incre-
ments of 100), respectively. The mini-batch size alternated
between 25 and 213. The learning rate was varied between
10−6 and 10−2 in increments of two levels per decade; the
L2 parameter covered a range between 10−7 and 10−1 (as
well as L2= 0).

The number of epochs (i.e., the number of iterations dur-
ing the training process) is not considered an important hy-
perparameter for this study. Instead, the models are run with
a large number of epochs, and the lowest validation loss is
recorded, so an increase in validation loss during the training
(i.e., cases where the model is overfitting the training data at
some point) has no impact on the overall performance eval-
uation. Note that the lowest validation loss usually occurred
after ∼ 2000–3000 epochs for both the cloud classification
and pCT prediction. No obvious increase in validation loss
was observed, even for a large number of epochs.

3.4.1 Determining the hyperparameters

At first, the remaining 90 % of data points (after removing
the random test data set) are randomly shuffled and split into
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k = 4 parts. Subsequently, one of the four parts is used as
the validation data set, and the other three are used to train
the ANN with a certain set of hyperparameters. Here, each of
the 1710 features is individually standardized, i.e., each input
variable is transformed to have a mean value of 0 and unit
variance. This step is essential for a successful ANN train-
ing, as the individual features are characterized by different
dynamic ranges. Meanwhile, the labels for clear and cloudy
profiles are simply set to 0 and 1, respectively. For the pCT
models the labels are simply set to the respective pCT values.
After model convergence and determination of a set of per-
formance scores, the model is discarded and a different set of
three parts is used for training (the remaining fourth part is
again used for validation). After cycling through each of the
four parts (and recording four sets of performance scores),
the set of hyperparameters is changed, and the process be-
gins anew. An evaluation of each set of performance scores,
for each set of hyperparameters, reveals the appropriate setup
for the ANN.

The performance scores employed for the cloud classifica-
tion training are three commonly used binary classification
metrics, based on the calculation of a confusion matrix M
for the two classes (i.e, clear-sky and cloudy profiles). If tp
and tn are the number of true positives and negatives, respec-
tively, and fp and fn are the number of false positives and
negatives, respectively, then the confusion matrix is defined
as

M=
(

tp fp
fn tn

)
. (10)

From M the accuracy (Ac), F1 score (F1), and Matthews
correlation coefficient (Mcc) can be derived as

Ac=
tp+ tn

tp+ tn+ fp+ fn
, (11)

F1=
2 · tp

2 · tp+ fp+ fn
, (12)

Mcc=
tp · tn− fp · fn√

(tp+ fp) · (tp+ fn) · (tn+ fp) · (tn+ fn)
. (13)

While Ac quantifies the proportion of correctly classified
samples, F1 describes the harmonic mean value between pre-
cision (proportion of true positives in the positively predicted
ensemble, i.e., the ratio of tp to tp+ fp) and recall (propor-
tion of correctly predicted true positives, i.e., the ratio of tp
to tp+ fn). Generally, F1 assigns more relevance to false pre-
dictions and is more suitable for imbalanced classes, where
the respective data sizes vary significantly. All elements of
the confusion matrix are important in determining the Mcc,
which yields values between −1 and 1 and thus is analogous
to a correlation coefficient.

The performance evaluation for the pCT prediction appli-
cation, on the other hand, is based on the Pearson product-
moment correlation coefficient (r) and root mean square de-
viation (RMSD).

For the cloud classification application, this analysis re-
vealed that models using one hidden layer slightly outper-
formed those with two hidden layers. The number of neurons
per hidden layer had a negligible impact, as long as the num-
ber was larger than 200. However, the models with 800 and
900 neurons exhibited average Ac values that were 0.0002
higher than those of other setups. We ultimately set it to
856, which corresponds to the average between the number
of nodes in the input and output layers (i.e., 1710 and 1, re-
spectively). The Adam optimizer with a learning rate of 10−5

yielded the overall best validation scores for the cloud clas-
sification. Note that we applied the Adam optimizer with the
standard settings described in the Keras documentation. The
best L2 parameter and mini-batch size values were found to
be 50−4 and 1024 (i.e., 0.8 % of the training data), respec-
tively. Note that while the choice of L2 had the largest in-
fluence on model performance, the impact of the mini-batch
size was comparable to the number of neurons (as long as it
was > 26).

For the pCT prediction, two-layer models noticeably out-
performed single-layer ones, as the drop in average r

was > 0.01. Again, the number of neurons had only a min-
imal impact on model performance, with variations in r

of ∼ 0.02. However, models with 800–1000 neurons per-
formed best, so we again set this number to 856. The best
optimizer, learning rate, L2 parameter, and mini-batch size
were found to be Adam, 10−4, 50−4, and 1024, respectively.

3.4.2 Validation statistics

Due to randomness during the assignment of individual ob-
servations to either the training or validation data set, devel-
oping a single model might result in evaluation scores that are
overly optimistic or pessimistic. By chance, the most obvi-
ous cloud cases (e.g., C = 1 and very largeQT values) might
have ended up in the validation data set or vice versa, and
the trained weights might be inappropriate. Moreover, a large
disparity in validation scores for multiple models might be
indicative of an ill-posed problem, where the MLS observa-
tions do not provide a reasonable answer to the cloud classifi-
cation problem. Therefore, developing multiple models with
a reasonable split of training and validation data, as well as
careful monitoring of the spread in validation scores, is im-
perative. In this study, 100 different models are developed.
Before each model run, the data set (minus the test data set) is
randomly shuffled and split into training and validation data.
The splits between training, validation, and test data are set
to 70 %, 20 %, and 10 %. The hyperparameters are identical
for each model. As mentioned earlier, each model is run with
a large number of epochs, and the weights associated with
the lowest validation loss are recorded. Training of these 100
models took ∼ 1 d.

The output of each cloud classification model is a cloudi-
ness probability (P ) between 0 (clear) and 1 (cloudy). Note
that throughout this study we simply group each prediction
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Figure 4. (a) Histograms of cloud classifications from the ANN algorithm for 100 random combinations of training and validation data sets.
Orange and blue shading depicts the percent of correctly predicted clear (i.e., true negatives, tn) and cloudy (i.e., true positives, tp) labels
for actually observed clear and cloudy profiles, respectively. Orange and blue lines depict the percent of falsely predicted cloudy (i.e., false
positives, fp) and clear (i.e., false negatives, fn) labels for actually observed clear and cloudy profiles, respectively. The vertical extent of
the gray horizontal bars on top of each histogram indicates the standard deviation derived from all 100 predictions (the horizontal extent is
arbitrary). (b) Scatter plot of Matthews correlation coefficient (Mcc) and F1 score for the same 100 random combinations of training and
validation data sets shown in (a). (c) Similar to (a) but showing histograms of derived Pearson product-moment correlation coefficient (r) and
root mean square deviation (RMSD) from the ANN cloud top pressure algorithm. (d) Similar to (b) but showing the relationship between r
and RMSD.

in either the clear or cloudy class; i.e., MAFs with predicted
probabilities 0≤ P < 0.5 are considered to be sampled un-
der clear-sky conditions, while MAFs with 0.5≤ P ≤ 1 are
considered to be cloudy. The one exception is the discussion
in Sect. 4.2, where the actually predicted P values are em-
ployed to study the ANN performance for undefined cloud
conditions (with respect to the clear-sky and cloudy defini-
tions presented in Sect. 3.2).

A summary of the derived prediction statistics is shown
in Fig. 4a. Each histogram shows the average percentage of
correctly predicted clear-sky (i.e., tn, orange shading) and
cloudy (i.e., tp, blue shading) labels for all 100 validation
data sets. Also shown are the percentages of false classifica-
tions (the blue and orange lines for fn and fp, respectively).
The gray-shaded horizontal areas at the top of each histogram
illustrate the standard deviation for each class, calculated
from the 100 validation data sets. The average percentage
of correct clear-sky and cloudy predictions is 93.7 % and
93.2 %, respectively, while a false cloudy or clear-sky predic-
tion occurs for 6.3 % and 6.8 % of profiles in the validation
data. The standard deviation for all four groups is 0.2 %.

Figure 4b shows a scatter plot of all Mcc values as a func-
tion of F1. Even though the Mcc penalizes false classifica-
tions more severely than F1, a high r of 0.97 is observed.

Moreover, there is little variability in the 100 derived binary
statistical metrics, with average Ac, F1, and Mcc values of
0.934± 0.001, 0.937± 0.001, and 0.868± 0.003. These re-
sults illustrate that the derived models are well suited to pre-
dict cloudiness for new MLS data (i.e., measurements not
involved in the training of the models) and that the trained
weights are very stable (i.e., all models exhibit very similar
binary statistics, regardless of the respective training or vali-
dation data set).

Similarly, histograms of r and RMSD (referring to the re-
lationship between the predicted and MODIS results for the
validation data), as well as the regression between the two
variables, are shown in Fig. 4c and d, respectively. Average
values of 0.819± 0.001 (r) and 80.268± 0.160 hPa (RMSD)
are observed. The correlation between the two parameters is
r =−0.77.

Given the statistical robustness of the results, the model
with the highest Mcc and lowest RMSD provides the ANN
weights for cloud classification and pCT prediction in this
study, respectively.
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Figure 5. (a) Histograms of cloud classifications from the new ANN-based cloud flag for actually observed cloudy profiles as a function of
total water path (QT). Only profiles from the validation data set are considered. Orange and blue colors depict the distributions of predicted
clear and cloudy labels, respectively. The number of clear and cloudy predictions is also given. (b) Same as (a) but for classifications from
the current v4.2x cloud flag. (c, d) Similar to (a, b) but for actually observed clear profiles as a function of cloud cover (C). (e–h) Same
as (a–d) but for profiles from the test data set.

4 Cloud detection: results and examples

This section includes a detailed comparison between the pre-
dicted cloud classifications from the current MLS v4.2x and
the new ANN-based algorithms in Sect. 4.1, followed in
Sect. 4.2 by a discussion of predicted cloudiness probabili-
ties that illustrates the performance of the new ANN cloud
flag for less confident cases (i.e., those outside of the train-
ing, validation, and test data sets). This section also presents

an analysis of the latitudinal dependence of the ANN perfor-
mance and derived global cloud cover statistics in Sect. 4.3,
as well as a close-up look at cloudiness predictions for some
example scenes over both the North American and Asian
monsoon regions (Sect. 4.4).

Note that a comparison between v4.2x and ANN results
will naturally favor the ANN predictions, particularly any
comparison made with reference to MODIS observations.
Evaluating the performance of each cloud flag is based on the
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Table 2. Binary classification statistics for the new ANN algorithm, as well as the classification provided by the current MLS v4.2x status
flag. Prescribed labels (i.e., clear sky or cloudy) are provided by the standard definitions presented in Sect. 3.2; statistics are given for both
the validation and test data sets. Results for two modified definitions based on looser thresholds are also given; here statistics are based on
all profiles in the MLS–MODIS data set (minus the training data). The fraction of true positives and negatives (tp and tn), as well as false
positives and negatives (fp and fn), is given. Finally, three measures for the evaluation of binary statistics are listed: the accuracy (Ac), the
F1 score (F1), and the Matthews correlation coefficient (Mcc).

tp tn fp fn Ac F1 Mcc

ANN (validation) 0.93 0.94 0.06 0.07 0.94 0.94 0.87
v4.2x (validation) 0.16 0.94 0.06 0.84 0.53 0.26 0.15

ANN (test) 0.95 0.96 0.04 0.05 0.96 0.96 0.91
v4.2x (test) 0.15 0.94 0.06 0.85 0.55 0.25 0.15

ANN (modified, all pCT) 0.58 0.91 0.09 0.42 0.65 0.73 0.41
v4.2x (modified, all pCT) 0.05 0.95 0.05 0.95 0.24 0.09 0.00

ANN (modified, pCT < 700 hPa) 0.89 0.91 0.09 0.11 0.90 0.90 0.81
v4.2x (modified, pCT < 700 hPa) 0.13 0.95 0.05 0.87 0.54 0.22 0.13

respective agreement to the MODIS-observed cloud condi-
tions. However, the ANN is designed to replicate the MODIS
results, while the v4.2x algorithm is not aware of the MODIS
data set (including its uncertainties and biases).

4.1 Prediction performance of current L2GP and the
new ANN cloud flag

The analysis in Sect. 3.4 indicates that the ANN setup can
reliably reproduce the cloudiness conditions identified by
the colocated MLS–MODIS data set. Figure 5 provides a
closer look at the performance of the new ANN-based and
v4.2x cloud flags for all n= 32 425 (16 211) profiles associ-
ated with either the clear-sky or cloudy class in the validation
(test) data set.

Figure 5a and b present the percentage of correctly clas-
sified (blue) and falsely classified (orange) cloudy validation
profiles, as determined by the cloudiness definition for the
colocated MLS–MODIS data set described in Sect. 3.2. The
frequency of predicted labels from the (a) new ANN-based
algorithm and (b) v4.2x cloud flag are shown as a function of
QT. Note that because of the general cloudiness definition,
only those profiles with QT> 50 gm−2 are considered (see
Sect. 3.2). The flags predicted by the ANN correctly clas-
sify 93.3 % of the cloudy profiles. In particular, the thickest
clouds, those with QT ≥ 1000 gm−2, are detected in 78.0 %
of cases. Conversely, the current v4.2x status flag only de-
tects 15.6 % of the cloudy profiles. A peak of 15.4 % of
clouds is missed for low QT, where the ANN performs sig-
nificantly better. This is understandable, as the current v4.2x
status flags for high and low cloud influences should only be
set for profiles where the extinction along the line of sight
is large enough to be attributed to a fairly thick cloud. How-
ever, even for very large QT ≥ 1000 gm−2, only 25.8 % of
the cloudy profiles are detected.

Histograms for clear-sky observations in the validation
data set as a function of C are presented in Fig. 5c and d.
Only 5.7 % of clear profiles are falsely classified as cloudy by
the new ANN algorithm, while the current v4.2x status flag
mislabels 6.2 % of these profiles. Most of the clear observa-
tions occur for very low values of C of < 0.05, of which the
ANN and v4.2x flags detect 50.4 % and 48.5 %, respectively.
Note that the slightly larger fraction of false positives from
the v4.2x flag is not necessarily incorrect; i.e., there might ac-
tually be clouds in the line of sight of one or more MLS scans
associated with the respective profiles. They might, however,
be well before (very high clouds) or past (very low clouds)
the tangent point and outside of the 1◦× 1◦ box defined in
Sect. 3.2.

Similar histograms for the test data set are shown in
Fig. 5e–h. The ANN correctly identifies 95.0 % and 96.2 %
of the cloudy and clear cases, respectively, as well as 76.6 %
of theQT ≥ 1000 gm−2 and 51.0 % of the C < 0.05 profiles.
The respective fractions detected by the current v4.2x status
flag are 15.4 %, 93.8 %, 26.6 %, and 48.2 %.

Table 2 gives an overview of the confusion matrix ele-
ments for each cloud flagging scheme, as well as metrics
to evaluate binary statistics. For the validation data the new
ANN algorithm yields values of Ac= 0.94, F1= 0.94, and
Mcc= 0.87 (Ac= 0.96, F1= 0.96, and Mcc= 0.91 for the
test data), confirming the reliable classification performance
shown in Fig. 5. The v4.2x flag yields low binary perfor-
mance scores of Ac= 0.53, F1= 0.26, and Mcc= 0.15 for
the validation data (Ac= 0.55, F1= 0.25, and Mcc= 0.15
for the test data), mainly due to the low fraction of true posi-
tives.

4.2 Probabilities for different cloud conditions

The clear-sky and cloudy classes defined in Sect. 3.2 leave a
number of profiles unaccounted for (i.e., neither clear sky nor
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Figure 6. (a) Average probability of cloudiness (P ) predicted by the ANN as a function of C and QT. No restrictions on cloud top pressure
(pCT) are imposed. (b) Same as (a), but P is grouped into four classes: confidently clear (“Conf. Clr.”; P < 0.25), probably clear (“Prob.
Clr.”; 0.25≤ P < 0.5), probably cloudy (“Prob. Cld.”; 0.5≤ P < 0.75), and confidently cloudy (“Conf. Cld.”; P ≥ 0.75).

cloudy), such as those with 1/3≤ C < 2/3 or pCT ≥ 700 hPa.
While it is reasonable to only train the model on the confi-
dently clear and cloudy conditions, it is essential to under-
stand the ANN performance for the undefined, in-between
cases.

Figure 6a shows average ANN-predicted cloudiness prob-
abilities as a function of C and QT with no restrictions
on pCT. Data that the ANN were trained on are excluded
from this analysis. Figure 6b illustrates the distribution when
P values are distributed into four groups: confidently clear
(Conf. Clr.; P < 0.25), probably clear (Prob. Clr.; 0.25≤
P < 0.5), probably cloudy (Prob. Cld.; 0.5≤ P < 0.75), and
confidently cloudy (Conf. Cld.; P ≥ 0.75). The previously
defined clear-sky and cloudy regions are indicated by the
white and black dashed lines, respectively. Profiles with low
values ofC < 1/3 andQT< 25 gm−2, regardless of pCT, are
characterized by the lowest P values, reliably reproducing
the clear-sky class defined in Sect. 3.2. Meanwhile, almost all
profiles with C > 0.7 are flagged to be probably cloudy (P >
0.5). However, only profiles that also have QT> 100 gm−2

are reliably predicted to have P > 0.75. The less-confident
identification of the QT> 100 gm−2 cases reflects the fact
that many of them have low cloud tops, pCT ≥ 700 hPa, and
are thus not readily observed by MLS. As noted in Sect. 3.3,
these profiles exhibit similar spectral behavior to clear ones,
and the ANN is expected to miss most of these clouds. With
increasing QT, even profiles with smaller cloud fractions (as
little as C = 0.25) are flagged as cloudy. Note that the P re-
sults become noisy for very large QT values of > 500 gm−2,
conditions that are only observed for less than 4 % of the total
samples (< 1 % for QT> 1000 gm−2).

In order to evaluate the ANN performance when more of
these uncertain cases are encompassed, we included in Ta-
ble 2 a comparison of the binary performance scores for a
redefined set of the cases classified as clear and cloudy ac-
cording to less conservative thresholds for the cloud cover
and the total water path (C < 0.5 and QT< 25 gm−2 for
clear-sky profiles and C ≥ 0.5 andQT ≥ 25 gm−2 for cloudy

profiles). No limitations on pCT are imposed. These changes
increase the number of profiles from n= 48 636 (validation
and test data) to n= 214 805 profiles. Again, samples from
the training data set are excluded. Due to the looser defini-
tions, there is a significant drop in performance scores, which
can mostly be attributed to a lower true positive rate (i.e.,
cloud detection) of 0.58 and 0.05 for the ANN classification
and v4.2x, respectively. The fraction of false positives (i.e.,
false prediction of cloudiness for actually clear profiles) re-
mains basically unchanged (changes of ∼+0.04 and −0.01
for the ANN and v4.2x flags, respectively). This means that
even with a looser cloudiness definition, the ANN does not
yield a multitude of false cloud classifications; rather, the al-
gorithm fails to detect a larger fraction of cloudy profiles.
As a consequence of the reduced true positive rates for the
modified class definitions, the derived F1 for the ANN score
is reduced to 0.58 (from ∼ 0.94), while F1 for the current
v4.2x flag drops from ∼ 0.26 to 0.09. This is almost exclu-
sively due to an inability to detect lower clouds. As demon-
strated in Sect. 3.3, MLS cannot distinguish between clear-
sky and cloud signals if pCT ≥ 700 hPa. Adding a thresh-
old of pCT < 700 hPa to the loosened definitions, the per-
formance for the now n= 89 697 profiles is much closer to
the one from the validation and test data set. Here, the ANN
and v4.2x classifications exhibit Ac= 0.90, F1= 0.90, and
Mcc= 0.81 and Ac= 0.54, F1= 0.22, and Mcc= 0.13, re-
spectively.

4.3 Geolocation-dependent performance and global
cloud cover distribution

The spectral behavior for clear-sky and cloudy profiles
shown in Fig. 3 only applies for observations made in the
latitudinal range of −30 to +30◦. As mentioned in Sect. 3.3,
the contrast between the two classes of data decreases for in-
creasing latitude. While the analysis in Sect. 4.1 illustrates
that the new ANN-based cloud classification can reliably
identify cloudy profiles (based on the definitions in Sect. 3.2),
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Figure 7. (a) Latitudinal and longitudinal dependence of the performance of the ANN algorithm, determined by the F1 score for binary clas-
sifications. Observations and actual cloudiness flags are provided by the colocated MLS–MODIS data set; only profiles from the validation
and training data set are considered. (b) Same as (a) but for the current v4.2x cloud flag. (c) Average global cloud cover derived from MLS
brightness temperature observations and the weights determined from the trained ANN. All MLS observations sampled between 2015 and
2019 are represented. (d) Same as (c) but for the current v4.2x cloud flag. (e) Same as (c) but from Aqua MODIS observations sampled in
2019. (f) Same as (e) but with retrieved cloud top pressure < 700 hPa.

it is important to make sure that there is no latitudinal bias in
the predictions, i.e., assuring that the algorithm performance
is good for MLS observations at all latitude bands.

Calculated F1 determined from the ANN model setup is
shown in Fig. 7a for different regions of the globe. Statistics
are calculated in grid boxes that cover an area of 15◦× 15◦

(latitude and longitude) and include on average 168 profiles.
High values of F1> 0.85 are observed for most regions;
however, areas with generally low cloud cover (over Africa
and Antarctica, as well as west of South America and Aus-
tralia; see Fig. 7e) exhibit slightly lower classification per-
formance, indicated by the light-blue and green colors. Here,
reduced sample statistics yield a less reliable F1 metric, as
the number of profiles per grid box is as low as 18. Further
analysis shows that the reduced F1 scores within these grid
boxes are exclusively due to an increase in false negatives;

i.e., the model misses some cloudy profiles. Overall, the av-
erage observed F1 is 0.91± 0.11.

In contrast to the results for the ANN algorithm, there is a
more noticeable latitudinal dependence for the performance
of the current v4.2x algorithm illustrated in Fig. 7b. F1 val-
ues can be as high as 0.67 in the tropics and < 0.25 every-
where else. Occasional gaps, especially over the polar re-
gions, are due to a failed F1 calculation. Here, the denom-
inator in Eq. (12) becomes 0; i.e., the v4.2x flag only re-
ports clear-sky classifications. The average observed F1 is
0.23± 0.16.

As the prediction performance is high for a majority of
geographical regions, the ANN algorithm is applied to de-
rive global cloud cover maps, based solely on the MLS
observed TB and the calculated model weights. A map of
cloudiness from all MLS profiles sampled over 2015–2019,
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averaged within 3◦× 5◦ (latitude and longitude) grid boxes,
is shown in Fig. 7c. Note that this data set includes more
than 6 million MLS profiles, while only 65 d in the 5-year
span were part of the training data. Profiles are considered
to be cloudy when predicted P ≥ 0.5. Three large-scale re-
gions close to the Equator show the largest average cloud
covers with C > 80 % (dark-orange colors): (i) an area over
the northern part of South America, (ii) central Africa, and
(iii) a large band encompassing the Maritime Continent.
Large zonal bands of C ∼ 60 % are observed in the mid-
latitudes of both hemispheres. Conversely, large areas of low
C of<20 % are observed west of the North American, South
American, and African continents, as well as over Australia,
northern Africa, and Antarctica. The derived cloud covers, as
well as the observed spatial patterns of mid to high clouds,
agree well with those reported in King et al. (2013) and
Lacagnina and Selten (2014).

As before, we are interested in comparing the results of the
new ANN classification to the ones from the current v4.2x
cloud flag. Therefore, a similar map of derived global cloud
cover from the current v4.2x cloud flag is shown in Fig. 7d.
In contrast to the ANN results, v4.2x suggests C < 32 % al-
most everywhere. This behavior is consistent with the focus
of the v4.2x classification, where only very opaque clouds
around ∼ 300 hPa are flagged. The global patterns identified
by the new ANN flag are reproduced, albeit with much lower
results for C. However, the v4.2x flag yields a global maxi-
mum of C > 72% over Antarctica. Here, the new ANN flag
reports C as low as 3 %. This behavior in the v4.2x cloud
flag is a well-understood feature caused by misinterpretation
of radiances that are reflected by the surface (William Read,
personal communications, 2021). Here, the unique combina-
tion of high topography and low optical depth makes Antarc-
tica one of the few places where MLS can observe the Earth’s
surface.

Figure 7e and f show similar cloud cover maps generated
from Aqua MODIS observations. Due to the size of that data
set and the high computational costs, only samples from 2019
are included here. The cloud cover maps were generated con-
sidering cloud mask flag values of 0 and 1 (confident cloudy
and probably cloudy) as defined in Menzel et al. (2008). All
available 1 km resolution MODIS cloud mask data were con-
sidered. The aggregation used the high-resolution cloud top
pressure product, not generally available as a global aggrega-
tion. This cloud top pressure product, however, is the one uti-
lized by retrievals of MODIS cloud optical properties. Such
custom aggregation thus ensures the maximum data set con-
sistency across variables. While all clouds are considered in
the map in panel e, only clouds with pCT < 700 hPa are in-
cluded to derive C in panel f. It is obvious that including
clouds with pCT ≥ 700 hPa dramatically increases the de-
rived cloud covers. Due to the reduced sensitivity towards
such clouds (see the discussion in Sect. 3.3), the cloud cov-
ers predicted by the ANN are much closer to the MODIS re-
sults that do not include low clouds. Nonetheless, the ANN-

derived C values are, on average, ∼ 9 % higher than the
MODIS results, suggesting that MLS is able to detect some
of the lower clouds with pCT ≥ 700 hPa. This behavior is also
illustrated in the example scenes in Figs. 8 and 9 in Sect. 4.4.
In comparison, there is much poorer agreement between the
MODIS and v4.2x results, with v4.2x on average ∼ 26 %
lower than MODIS.

This analysis indicates that the new ANN algorithm can
produce considerably more reliable cloud classifications than
the v4.2x MLS cloud flag, on a global scale.

4.4 Example scenes

The analysis in the previous sections centered on statistical
metrics and the reproduction of large-scale, global cloud pat-
terns. There, the cloud flag based on the new ANN algo-
rithm yields reliable results, both in comparison to the cur-
rent v4.2x status flag and as a standalone product. However,
a more qualitative assessment of the model performance for
individual cloud scenes provides additional confidence in the
technique, as well as insights into the classification perfor-
mance for different cloud types. Again, profiles are flagged
as cloudy when P ≥ 0.5.

Figure 8 shows two example cloud fields over the North
American monsoon region. During the summer months of
July and August, this area is characterized by the regular
occurrence of mesoscale convective systems that can occa-
sionally overshoot into the lowermost stratosphere, where the
sublimation of ice particles can lead to local humidity en-
hancements (Anderson et al., 2012; Schwartz et al., 2013;
Werner et al., 2020). Observed pCT and QT derived from
Aqua MODIS observations over the first example scene,
sampled on 31 August 2017, are shown in Fig. 8a and b, re-
spectively. The MLS overpass is illustrated in gray transpar-
ent circles. A cloud system with pCT < 500 hPa exists in the
northern part of the scene, with the lowest pCT at ∼ 200 hPa.
The MLS track passes some smaller cloud clusters character-
ized by largeQT, which are indicated in yellow. In the south,
low clouds with QT= 50–450 gm−2 are observed. The new
ANN and current v4.2x cloud flags are shown in Fig. 8c
and d. The ANN algorithm flags every profile in the north-
ern part of the scene as cloudy, while also detecting the very
low clouds in the south. Conversely, the classifications from
the current v4.2x flag identify a cloud influence for a single
MLS profile in the north, which happens to actually be over
an area with lowQT. A second example cloud field is shown
in Fig. 8e–h. This scene consists of clouds all along the MLS
track and large areas with elevated QT up to 1000 gm−2.
Note that there is a gap in the MLS track, where the Level 2
products are screened out, according to the rules in the MLS
quality document (Livesey et al., 2020). The ANN algorithm
correctly determines that every profile along the path was
sampled under cloudy conditions. However, even for the very
high clouds that contain large water abundances, the v4.2x
algorithm only occasionally flags the respective profiles as
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Figure 8. (a) Map of cloud top pressure (pCT) retrieved from MODIS observations on 31 August 2017 over North America. Transparent
circles indicate the MLS orbit. (b) Similar to (a) but for the total water path (Qt). (c) Clear (orange) and cloudy (blue) profiles as determined
from the new ANN algorithm. (d) Same as (c) but determined from the current v4.2x status flags. (e–h) Same as (a–d) but for MLS and
MODIS observations on 5 July 2015.

cloudy. In the northern part of the track, the flag actually al-
ternates between clear-sky and cloudy classifications.

Similarly, Fig. 9 shows two example cloud fields over the
Asian summer monsoon region, which also regularly con-
tains overshooting convection from mesoscale cloud sys-
tems. The first scene, shown in Fig. 9a–d, displays a mix
of different cloud conditions. There are high clouds with
pCT < 350 hPa and QT= 50–450 gm−2 in the northern part,
a large clear-sky area in the middle, and then a mix of very
high and low clouds in the south that exhibits low QT and
likely represents a multilayer cloud structure with thin cir-

rus above boundary layer clouds. The new ANN-based flag
successfully detects both the northern and southern cloud
fields, while the current v4.2x flag only detects a single pro-
file with cloud influence. The last example scene, illustrated
in Fig. 9e–h, similarly displays a mix of low, mid-level, and
high clouds. As expected, the current v4.2x algorithm only
flags a single profile as influenced by high clouds (in the
south of the scene). However, the ANN algorithm detects the
mid-level clouds in the north, as well as the mix of cloud
types in the south of the scene. In those places where MODIS
mostly captured either low boundary layer clouds (yellow
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Figure 9. Similar to Fig. 8 but for MLS and MODIS observations on (a–d) 28 June 2019 and (e–h) 5 July 2018, respectively, over South
Asia. These scenes were captured over the Asian summer monsoon region.

colors) or the cloud property retrieval failed (very low QT),
the ANN associates the respective profiles with the clear-sky
class.

Note that the two example scenes in Fig. 9 represent pre-
viously unseen data for the ANN; i.e., the models were not
trained on these MLS–MODIS observations.

5 Predicting cloud top pressure: results and examples

The results in Sect. 4 illustrate that the proposed ANN al-
gorithm can successfully detect the subtle cloud signatures
in the spectral TB profiles shown in Fig. 3. For many MLS
bands, the differences between cloudy and clear-sky TB are
usually in the range of just a few Kelvin, and the spectral be-
havior heavily depends on the respective MIF (i.e., pressure
level at the tangent point of each scan). This section demon-
strates how this behavior can be used in a similar ANN setup
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Figure 10. (a) Normalized joint histograms of true and predicted cloud top pressure (pCT). Data are from the validation data set. (b) Same
as (a) but for the training data set. (c) Histograms of the difference between predicted and observed pCT, for profiles in the validation (blue)
and test (orange) data set. (d) Percent of observed pCT< 400, 350, and 300 hPa that was successfully detected by the ANN (color-filled bars)
and flagged by the v4.2x algorithm (transparent bars). Data are from both the validation and test data sets.

to infer the MODIS-retrieved pCT. Here, our goal is to reli-
ably differentiate between mid-level to low clouds and high-
reaching convection with pCT / 350 hPa. As mentioned in
the Introduction, not only can these high clouds impact the
MLS retrieval of atmospheric constituents, but they can also
breach the tropopause and inject ice particles into the lower-
most stratosphere.

This section presents a statistical performance evaluation
of the pCT prediction in Sect. 5.1, a global analysis of pCT
distributions in Sect. 5.2, and a close-up look at pCT pre-
dictions for the same example scenes over the North Amer-
ican and Asian monsoon regions that were shown earlier
(Sect. 5.3).

Similar to the cloud classification analysis, a comparison
between v4.2x and ANN prediction performance will favor
the ANN results, since the ANN is designed to replicate the
MODIS observations.

5.1 Performance evaluation

Joint histograms of observed and predicted pCT for all cloudy
profiles in the validation and test data set are presented in
Fig. 10a and b, respectively. While there is a fair amount

of scatter, the majority of data points are close to the 1 : 1
line. This is illustrated by the envelope indicated by the white
dashed line, which is defined by the 5th and 95th percentiles
of predicted pCT for each observed pCT bin (i.e., the en-
velope indicates where 90 % of predicted pCT values are).
High values of r = 0.825 and r = 0.839, with RMSD val-
ues of 79.2 and 76.9 hPa, are observed for the two data sets.
However, a decline in ANN performance is noticeable for ob-
served pCT > 400 hPa, where predictions for pCT > 600 hPa
exhibit an average underestimation of 126 hPa (19.2 %).
This is consistent with the findings presented in Sect. 3.3,
which showed a reduced sensitivity of MLS observations to
low clouds. Conversely, the average difference between pre-
dictions and observations is +25 hPa (9.5 %) for MODIS-
retrieved pCT < 400 hPa.

Histograms of the difference between predicted and ob-
served pCT for profiles in the validation and test data sets are
shown in Fig. 10c. The two distributions look almost identi-
cal and are centered around a difference of −8 and −10 hPa,
respectively. For the validation data set, 65.6 % (88.0 %) of
predictions are within 50 hPa (100 hPa) of the MODIS obser-
vations, while 66.9 % and 88.0 % of profiles in the test data
set are within these ranges.
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As mentioned in the Introduction, we are mostly inter-
ested in the ability to detect high clouds with pCT < 400 hPa.
Not only can these clouds affect the MLS radiances and
retrievals, they can also impact water vapor (e.g., Werner
et al., 2020; Tinney and Homeyer, 2020) and HNO3 (e.g.,
Wurzler et al., 1995; Krämer et al., 2006) concentrations in
the upper troposphere and lower stratosphere. Figure 10d
shows the percent of profiles in the combined validation
and test data set, where the ANN correctly reproduces
the MODIS-observed cloud top pressure for thresholds of
pCT < 400, 350, and 300 hPa. To provide a comparison to
the current v4.2x algorithm performance, we simply calcu-
lated the percent of successful cloud detection for each of
these pCT thresholds. The ANN correctly identifies 85.4 %,
80.0 %, and 78.5 % of the profiles with pCT < 400, 350, and
300 hPa, respectively. In contrast, the v4.2x flag only detects
8.5 %, 8.6 %, and 8.7 % of these profiles.

The analysis in this section reveals that the ANN setup can
predict the MODIS-retrieved pCT with reasonable accuracy,
which provides the ability to reliably identify high clouds
with pCT < 400 hPa.

5.2 Geolocation-dependent performance

Similar to the cloud classification analysis presented earlier,
it is important to understand the geolocation-dependent pre-
diction performance of the pCT model. Figure 11a shows the
global distribution of derived r between the observed and
predicted pCT. Profiles from both the validation and test data
sets are considered. Statistics are calculated within 15◦× 15◦

grid boxes (latitude and longitude) that contain an average of
116 cloudy profiles (following the definition in Sect. 3.2).
The average correlation coefficient in each grid box is r =
0.75, and strong correlations, r > 0.80, are recorded within
all latitude ranges. However, areas with weaker correlation,
r ∼ 0.4–0.7 (light-blue and green colors), appear to coincide
with regions of low cloud cover (see Fig. 7). Further anal-
ysis shows that the decreased model performance in these
areas can almost exclusively be attributed to uncertainties in
the prediction for clouds with pCT > 400 hPa (not shown).
This relationship between model performance and C is con-
firmed in Fig. 11b, which illustrates the global distribution
of the RMSD. Increased values are primarily observed over
regions with low C; e.g., the highest RMSD of 181.6 hPa
(bright-yellow color) is observed west of the South Ameri-
can continent, which exhibits some of the lowest C globally
(see Fig. 7). Similarly, RMSD values of > 100 hPa are ob-
served over Antarctica, Australia, off the coast of Africa and
South America, and over northeastern Greenland.

Global distributions of the average MODIS-retrieved pCT
and the predicted ANN results are shown in Fig. 11c and d,
respectively. The ANN can reliably recreate the patterns ob-
served by MODIS, with high pCT in the high latitudes, mid-
level clouds over the Southern Ocean and northern mid-
latitudes, and low pCT over the tropics and subtropics. Espe-

cially the region with low pCT of < 250 hPa over Southeast
Asia is well reproduced by the ANN.

Again, there is particular interest in the ability of the ANN
to identify high clouds with pCT < 400 hPa. Figure 10d indi-
cated that, overall, the pCT model can reliably identify pro-
files associated with high clouds. Figure 11e provides in-
formation about the global distribution of successful high-
cloud detections. The ANN correctly predicts pCT < 400 hPa
for > 80 % of profiles within grid boxes in the latitude range
−60 to +60◦. Here, the average fraction of correct predic-
tions is 85.6 %. However, outside of that range (i.e., in the
high latitudes) the average of correct classifications per grid
box is only 47.7 %. It is likely that the model simply did not
learn the respective patterns associated with high clouds in
these regions, where only 5.6 % of the global pCT < 400 hPa
observations occur (at least according to the combined vali-
dation and test data set).

Figure 11f presents a similar map of the fraction of suc-
cessful pCT < 400 hPa detections based on the current v4.2x
algorithm. Overall, the ANN dramatically outperforms the
v4.2x flag, which on average only identifies 20.8 % of the
respective profiles within each grid box. A few areas over
Antarctica are the exception, where the current algorithm
manages to recognize 100 % of the respective profiles with
pCT < 400 hPa. This success, however, is likely a coinci-
dence and can be attributed to the misinterpretation of ra-
diances that are reflected by the surface. This behavior also
caused the high C values in the region, as shown in Fig. 7d.
As mentioned earlier, these samples only represent a small
fraction of the total occurrence of pCT < 400 hPa; excluding
these areas from the statistics causes the average v4.2x per-
formance to drop by only 0.8 %.

5.3 Example scenes

Similar to the analysis in Sect. 4.4, comparisons between
maps of MODIS-retrieved and predicted pCT for individual
cloud fields provide a qualitative assessment of the model
performance. MODIS results from the same four example
scenes that were previously shown in Figs. 8 and 9 are pre-
sented in Fig. 12a, c, e, and f. The respective ANN predic-
tions are shown in Fig. 12b, d, f, and h. The first two scenes
are sampled over the North American monsoon region; the
second two are over the Asian summer monsoon anticyclone.

The first example (panels a and b) consists of high clouds
in the northern part of the scene, with the lowest pCT of
∼ 200 hPa around 40◦ latitude. The ANN reliably reproduces
the MODIS results and predicts the highest clouds at the
right position. Mixed results are achieved for the very low
clouds in the south, which are outside of the MLS-detectable
pressure range. For these two profiles, the ANN predicts
pCT= 585 and 434 hPa. While clearly too low, the model
successfully associates these samples with low clouds. The
second scene (panels c and d) is characterized by high C val-
ues throughout, with low to mid-level clouds in the very north
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Figure 11. (a) Map of derived Pearson product-moment correlation coefficient (r) between MODIS-retrieved and ANN-predicted cloud top
pressure (pCT). Observations are provided by the colocated MLS–MODIS data set; only profiles from the validation and training data set
are considered. (b) Similar to (a) but showing the root mean square deviation (RMSD). (c) Similar to (a) but showing the average MODIS-
retrieved pCT. (d) Same as (c) but showing the ANN predictions. (e) Similar to (a) but showing the percent of observed pCT < 400 hPa that
are successfully detected by the ANN. (f) Same as (e) but showing the percent where the v4.2x algorithm detected a cloud.

and a complicated mix of different cloud types throughout
the rest of the scene. Not surprisingly, the ANN identifies
all but three profiles to be associated with medium to high
clouds. Here, even small occurrences of high clouds in the
perimeter of an MLS profile yield a low pCT prediction.

Three samples in the vicinity of mid-level clouds are visi-
ble in the northern part of the third scene (panels e and f),
as well as two profiles above very low and two profiles
above high clouds in the south. While the ANN is not able
to detect the pCT > 700 hPa region, it successfully predicts
clouds with pCT= 343–511 hPa northward of 35◦ latitude
and pCT < 206 hPa in the south. Finally, another compli-
cated scene is depicted in panels g and h. The two southern-
most profiles have a MODIS-observed pCT of 390 hPa and
285 hPa, which is accurately reproduced by the ANN. Pre-
dicted pCT for the three northernmost profiles agree similarly
well with the observations. However, the ANN predictions

are too low for profiles between 25 and 30◦ latitude and too
high for the lone cloudy profile around 33◦ latitude.

As noted in Sect. 5.1–5.2, the performance for pCT predic-
tions seems to decline with an increase in cloud top pressure,
consistent with the reduced contrast between clear-sky and
cloudy TB around pCT ∼ 700 hPa, as shown in Fig. 3.

6 Summary and conclusions

The current MLS cloud flags, reported in the Level 2 Geo-
physical Product files of version 4.2x, are designed to iden-
tify profiles that are influenced by significantly opaque
clouds, with the main goal being to identify cases where
retrieved composition profiles may have been adversely af-
fected either by the clouds or by the steps taken in the re-
trieval to exclude cloud-affected radiances. In this study, we
present an improved cloud detection scheme based on a stan-

Atmos. Meas. Tech., 14, 7749–7773, 2021 https://doi.org/10.5194/amt-14-7749-2021



F. Werner et al.: MLS cloud detection via an artificial neural network 7769

Figure 12. (a) Map of cloud top pressure (pCT) retrieved from MODIS observations on 31 August 2017 over North America. Transparent
circles indicate the MLS orbit. (b) Same as (a) but for the predicted pCT based on the ANN algorithm. (c, d) Same as (a, b) but for MLS and
MODIS observations on 5 July 2015. (e, f) Similar to (a, b) but for MLS and MODIS observations on 28 June 2019. (g, h) Same as (a, b)
but for MLS and MODIS observations on 5 July 2018.

dard multilayer perceptron, a subcategory of feedforward ar-
tificial neural networks (ANNs). It applies a softmax acti-
vation function in the output layer for binary classifications
(i.e., clear sky or cloudy), while a log–loss function is min-
imized to determine the model weights. A second setup,
which applies a linear output in the output layer and deter-
mines the model weights by minimizing the mean squared
error, is used to produce a cloud top pressure (pCT) esti-
mate from MLS radiances that approximates the MODIS re-
trievals. This new algorithm is shown not only to reliably

detect high and mid-level convection containing even small
amounts of cloud water but also to distinguish between high-
reaching and mid-level to low convection.

To train the ANN models we colocated global MLS bright-
ness temperatures (TB), sampled on 208 d between 2005 and
2020, with nadir-viewing MODIS-retrieved cloud proper-
ties aggregated within a 1◦× 1◦ box (in latitude and lon-
gitude) around each MLS profile. This yielded a median
cloud cover (C), pCT, and cloud water path (QT) asso-
ciated with each of the 162 117 MLS scans in the colo-

https://doi.org/10.5194/amt-14-7749-2021 Atmos. Meas. Tech., 14, 7749–7773, 2021



7770 F. Werner et al.: MLS cloud detection via an artificial neural network

cated data set. These variables are used to discriminate
clear-sky (C < 1/3 and QT < 25 gm−2) from cloudy (C ≥
2/3, 100 hPa≤pCT < 700 hPa, andQT > 50 gm−2) profiles.
Overall, the input variables for the ANN consist of 1710
MLS-observed TB values from different spectral bands,
channels, and minor frames (i.e., views at different altitudes
in the atmosphere). After setting aside 10 % of the data to
serve as an independent test data set, comprehensive testing
and cross-validation procedures are conducted to identify the
right set of hyperparameters (i.e., model settings). The ideal
model parameters are used to train 100 different ANN mod-
els, where the colocated data are randomly shuffled and split
into 70 % training and 20 % validation data (referenced to
the size of the original data set). Three binary classification
metrics are calculated for every model run to evaluate the
cloud classification performance for unseen data: the accu-
racy (Ac), F1 score (F1), and Matthew’s correlation coeffi-
cient (Mcc). Similarly, the Pearson product-moment correla-
tion coefficient (r) and root mean square deviation (RMSD)
provide the means to evaluate the performance of the pCT
models. Average values and standard deviations from each
set of 100 different model runs are Ac= 0.934±0.001, F1=
0.937±0.001, Mcc= 0.868±0.003, r = 0.819±0.001, and
RMSD= 80.268±0.160 hPa. The high statistical scores and
low variability in the results illustrate that the two ANN algo-
rithms yield reliable cloud classifications and pCT estimates
for previously unseen observations.

It is important to note that the predicted cloud parameters
do not represent the true atmospheric state. Since each ANN
was trained on the colocated MODIS targets, it follows that
they, at best, will replicate the respective MODIS results. The
MODIS retrievals, however, are characterized by their own
uncertainties and biases, which are subsequently learned and
reproduced by the derived models. This means that analyses
of ANN performance in this study only provide an evaluation
of how well each model can replicate the colocated MODIS
retrievals.

A comparison with the current v4.2x status flags reveals
that, for both the validation and test data sets, the new ANN
results provide a significant improvement in cloud classifi-
cation. The ANN algorithm correctly identifies > 93 % of
cloudy profiles, while less than 6 % of the clear profiles are
falsely flagged. In contrast, the current v4.2x flag detects only
∼ 16% of cloudy profiles, and even though it is designed to
identify sufficiently opaque clouds, it only correctly classi-
fies < 27 % of cloudy profiles with QT > 1000 gm−2. The
fraction of falsely flagged clear profiles is comparable to the
ANN results. Apart from a reduced ability to detect clouds
over regions with generally low cloud cover, no significant
dependence on geolocation is observed, indicating that the
ANN flag yields reliable classification results on a global
scale. A global cloud cover map for data collected between
2005 and 2019 is presented, generated solely from MLS-
sampled TB and the determined ANN weights. Typically ob-
served cloud patterns and derived C agree reasonably well

with MODIS results. Moreover, detailed examination of four
example scenes from the North American and Asian sum-
mer monsoon regions reveals that the ANN can reliably iden-
tify diverse cloud fields, including those characterized by low
clouds and low QT. Together with the consistently large sta-
tistical agreement, these global and regional examples of suc-
cessful cloud detection illustrate that the predefined cloudi-
ness conditions (following thresholds for C, pCT, and QT)
are reasonable. Moreover, the uncertainties arising from as-
sociating MLS observations in the limb with nadir MODIS
images do not seem to substantially impact the reliability of
the ANN algorithm.

Similarly, the second ANN setup is able to reliably esti-
mate the MODIS-retrieved pCT for profiles in the validation
and test data set, with r > 0.82 and RMSD < 80 hPa. It is
shown that more than 66 % of pCT predictions are within
50 hPa of the MODIS results. Derived global maps of aver-
age ANN-predicted pCT can reproduce observed patterns in
the MODIS retrievals. In particular, this model is able to cor-
rectly identify > 85 % of profiles with pCT < 400 hPa in the
−60 to+60◦ latitude range. Conversely, the current v4.2x al-
gorithm correctly flags only∼ 9 % of such profiles as cloudy.

This new cloud classification scheme, which will be in-
cluded in future versions of the MLS dataset, provides the
means to reliably identify profiles with potential mid-level
to high cloud influence. Note that MLS radiances are not
affected by the change from v4.2x to v5.0x. As mentioned
in the Introduction, this new algorithm will facilitate future
research on reducing uncertainties in the retrieval of atmo-
spheric constituents in the presence of clouds. Moreover,
studies on convective moistening of the lowermost strato-
sphere, as well as cloud scavenging of atmospheric pollu-
tants, will benefit from these new capabilities.

Appendix A: Days in the MLS–MODIS data set

The following table lists the days included in the colocated
MLS–MODIS data set. Days were semi-randomly chosen to
ensure that each month is represented equally, and only com-
plete measurement days (i.e., due to technical issues with the
instruments) are included.
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Data availability. MLS brightness temperatures
(https://doi.org/10.5067/Aura/MLS/DATA2009, Jarnot and
Perun, 2020) and L2GP data, including status flags (e.g.,
https://doi.org/10.5067/Aura/MLS/DATA2009, Lambert et al.,
2015 for the water vapor product), are publicly available at
https://disc.gsfc.nasa.gov/ (last access: 24 November 2021).

Aqua MODIS cloud properties (https://doi.org/10.5067/MODIS/
MYD06_L2.061, Platnick et al., 2015) are publicly available from
NASA and the Atmosphere Archive and Distribution System
(LAADS) (https://ladsweb.modaps.eosdis.nasa.gov/search/, last ac-
cess: 24 November 2021).
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