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Abstract. Smartphones are increasingly being equipped with
atmospheric measurement sensors providing huge auxiliary
resources for global observations. Although China has the
highest number of cell phone users, there is little research
on whether these measurements provide useful information
for atmospheric research. Here, for the first time, we present
the global spatial and temporal variation in smartphone pres-
sure measurements collected in 2016 from the Moji Weather
app. The data have an irregular spatiotemporal distribution
with a high density in urban areas, a maximum in sum-
mer and two daily peaks corresponding to rush hours. With
the dense dataset, we have developed a new bias-correction
method based on a machine-learning approach without re-
quiring users’ personal information, which is shown to re-
duce the bias of pressure observation substantially. The po-
tential application of the high-density smartphone data in
cities is illustrated by a case study of a hailstorm that oc-
curred in Beijing in which high-resolution gridded pressure
analysis is produced. It is shown that the dense smartphone
pressure analysis during the storm can provide detailed infor-
mation about fine-scale convective structure and decrease er-
rors from an analysis based on surface meteorological-station
measurements. This study demonstrates the potential value
of smartphone data and suggests some future research needs
for their use in atmospheric science.

1 Introduction

A lack of high-resolution observational data is one of the ob-
stacles that limits the advance of numerical weather predic-
tion (Bauer et al., 2015). This limitation can be extended to
all areas in atmospheric research. In recent years, many new
observational technologies have emerged, including built-in
smartphone sensors, such as those for pressure, temperature,
humidity and aerosols (Overeem et al., 2013; Snik et al.,
2014; Muller et al., 2015; Droste et al., 2017; Meier et al.,
2017; Zheng et al., 2018). With over 2.7 billion people in
possession of smartphones (Bankmycell, 2019) and an in-
creasing trend in equipping smartphones with atmospheric
measurement sensors, smartphone data can potentially be an
auxiliary resource for global, high-density observations ca-
pable of resolving convective-scale features with a resolution
lower than 2 km (Mass and Madaus, 2014).

The smartphone sensors monitor atmospheric parameters
and convert them into electrical signals which can then be
collected by different platforms, such as mobile weather
applications. Low-cost smartphone sensor data have been
used in several atmospheric research studies. Overeem et
al. (2013) and Droste et al. (2017) used smartphone battery
data to study air temperature and their application to urban
heat islands. Snik et al. (2014) mapped atmospheric aerosols
using smartphone spectropolarimeters. Surface pressure is
one of the most useful variables because it can reflect infor-
mation about the whole atmospheric column and is less sen-
sitive to the observational background (e.g., indoors/outdoors
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Figure 1. The workflow for smartphone pressure data quality control and preprocessing. See text for details.

Table 1. Parameters used for machine learning.

Data type/source Field Description

Smartphone Gridded pressure at each smartphone site Pressure to be corrected
Longitude Location information
Latitude Location information
Time Time information
Land cover Geographical information
Number of pressure observations aggregated at each smartphone site Data uncertainty
Standard deviation of pressure observations at each smartphone site Data uncertainty
Distance from domain center Additional location information

Automatic weather station Pressure observation interpolated to each smartphone site “True” pressure

or the influence of the underlying surface versus other vari-
ables like temperature and wind; Mass and Madaus, 2014;
Hanson, 2016); therefore, smartphone pressure data have re-
ceived considerable attention from researchers. In addition to
applications in weather forecasting (Mass and Madaus, 2014;
Madaus and Mass, 2017; McNicholas and Mass, 2018b;
Hintz et al., 2019), smartphone pressure data can be used to
monitor atmospheric tides (Price et al., 2018).

While smartphone pressure data may have potential value,
they require validation and quality control before use. Price
et al. (2018) and Hintz et al. (2019) showed that, al-
though the variability between smartphone pressure data
and meteorological-station observations is highly correlated,
there exists noticeable bias. Price et al. (2018) calibrated the
long-term stable bias using a one-point calibration method,
while Hintz et al. (2019) developed screening methods to re-
duce observational noise. Machine learning has also been ap-
plied to correct atmospheric pressure data (Kim et al., 2015,
2016; McNicholas and Mass, 2018a). Most previous publi-
cations on smartphone data calibration adopted a user-based
approach which required the identification of each unique
user and personal information. However, this raises privacy
and ethical issues that pose a concern to the public. As high-
lighted by Muller et al. (2015) and Mooney et al. (2017), col-
lecting as little personal information as possible and keeping
raw data private are guiding principles of privacy preserva-
tion. Moreover, without a stable data collocation platform,
performing user-based calibration can be time and resource

Figure 2. Locations of global pressure observations in 2016 from
the Moji Weather application.

consuming, especially for densely populated regions. It is
therefore imperative to develop a new method that can ef-
ficiently calibrate smartphone pressure bias while protecting
user privacy. It is worth noting that the need for such an effort
has been recognized by other researchers, and similar efforts
are being undertaken (McNicholas, 2020).

China has one of the world’s most densely distributed
smartphone user bases (Bankmycell, 2019) which can po-
tentially produce highly dense observations. In this paper,
we present, for the first time, a year-long dense and exten-
sive smartphone dataset collected by the Moji Weather app,
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Figure 3. Hourly pressure observation counts (log10 transformed)
averaged over the year 2016. Data are binned into a 0.1◦× 0.1◦

grid.

which is developed and operated by the internet environmen-
tal meteorological corporation Moji. The Moji Weather app
is a popular smartphone weather app used in many countries
with a 53.90 % market share and more than 500 million users,
as well as over 100 million weather queries made every day
(Moji, 2019a, b). In the present study, we use the Moji smart-
phone pressure data for all of 2016 to show the spatial and
temporal distribution of the dataset. With this highly dense
network, we demonstrate the feasibility of a new machine-
learning bias-correction method that does not require users’
private information, thereby ameliorating ethical issues. The
dense network also makes it possible to study the detailed
structure of atmospheric convection, which is demonstrated
in this study by applying the bias-corrected data to the fine-
scale analysis of a hailstorm that occurred in Beijing.

This paper is organized as follows. Sect. 2 describes the
data and methods used in our research. The statistical char-
acteristics of this dataset, bias-correction results and its ap-
plication to a hailstorm case are presented in Sects. 3, 4 and
5, respectively. Conclusions and discussion are given in the
final section.

2 Data and methods

2.1 Data description

Three types of datasets were used to perform this research.
(1) Pressure data were collected by a smartphone mobile
weather application every second in 2016. The application
collects longitude, latitude, time and pressure data for each
user without an unencrypted or encrypted ID. (2) Pressure
data were collected every 5 min by CMA (Chinese Mete-
orological Administration) in 2016. There are 68 909 sta-
tions (including automatic weather stations, AWSs, and con-

Figure 4. (a) Hourly pressure observation counts (log10 trans-
formed) averaged over the year 2016. (b) Same as (a) but for the
Chinese Meteorological Administration (CMA) surface stations.
Data are binned into a 0.1◦× 0.1◦ grid in (a) and (b). The location
of the port of Shanghai and the port of Tianjin are labeled as “SH”
and “TJ” in (a). The red circles indicate the urban agglomerations of
(from north to south) Beijing–Tianjin–Hebei region, Shanghai and
nearby cities, and Guangzhou and nearby cities.

ventional stations) collecting meteorological data across the
country, but only 13.32 % of the stations make pressure ob-
servations. These weather station surface data are used as the
authentication for the bias correction of smartphone pressure
data and for the verification of the surface analysis. (3) Land-
use and land-cover data for China in 2015 at a resolution
of 1 km were accessed via the Data Center for Resources
and Environmental Sciences, Chinese Academy of Sciences
(RESDC; Xu et al., 2018). These geographical data provide
additional information necessary for our machine-learning-
based bias-correction method.
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Figure 5. (a) Seasonal variation in global hourly counts of smartphone data for each month. (b) Diurnal variation in global smartphone data
counts. (c) Annual mean hourly data count at different local standard times (LSTs) and months.

2.2 Quality control and preprocessing

The quality-control and preprocessing procedure of the
smartphone pressure data is described as follows. A work-
flow diagram is shown in Fig. 1 summarizing the main pro-
cesses of the procedure. First, a gross check is conducted;
pressure values lower than 890 hPa or higher than 1080 hPa
are considered outliers and discarded (Kim et al., 2015;
Madaus and Mass, 2017). The gross-checked data are re-
ferred to as GC-data hereafter. Next, we perform tempo-
ral and spatial averaging. As described by McNicholas and
Mass (2018a) and Hintz et al. (2019), there is a spin-up time
for each measurement, and location retrieval for smartphones
has an estimation error. To reduce such temporal and spatial
errors, the GC-data are averaged within a specified window
of time and space. The time window size is 5 min to match
the temporal interval of the weather station data or 6 min to
match the radar update interval whenever necessary. The spa-
tial window size is 0.0001◦ latitude and longitude, i.e., the in-

dividual smartphone observation points are binned into spe-
cific sites with fixed locations to eliminate the need for user
IDs. The bias correction is then conducted on the aggregated
data in a 0.0001◦× 0.0001◦ grid box (∼ 10 m× 10 m). In the
rest of this paper, the aggregated data points will be referred
to as “smartphone sites” for convenience. The next step in
the quality-control procedure is a neighborhood check within
each area of 0.01◦× 0.01◦ latitude and longitude. Data with
values greater than 3 times the standard deviation of the mean
pressure in the area are removed. Finally, we perform a sta-
tistical check. The boxplot approach is used to detect and
handle climatological outliers (Iglewicz and Hoaglin, 1993).
For each boxplot, the upper quartile (Q3) is 75 % for the
smartphone air-pressure data, and the lower quartile (Q1) is
25 %. Data that are 1.5 times the interquartile range (Q3–Q1)
aboveQ3 and belowQ1 are removed. The quality-controlled
data after all the above steps are referred to as QC-data here-
after.
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Figure 6. Spatial distribution of the standardized value of the data number at each site for each hour on 20 July 2016. The time is shown in
Beijing standard time (BJT). The standardized number is defined as the difference between the data number in this grid at a specific hour and
daily mean of the number divided by the standard deviation of the number. The dark gray color fill stands for the region in nighttime. Warm
colors indicate a rise in data volume, while cool colors indicate a decrease.

It should be noted that the quality-control procedure above
does not include elevation correction of the pressure data
not only because the Moji smartphone data do not include
the elevation information but also because the elevation-
based pressure correction may contain notable errors due to
the uncertainties in GPS elevation positioning (Kaplan and
Hegarty, 2006; Ye et al., 2018) and in assumed pressure–
height relations. As an alternative, we use a neighborhood-
based bias-correction approach, as described below, to cor-
relate local pressure bias with the land-cover condition using
the machine-learning technique.

2.3 Bias correction

Previous studies have demonstrated the importance of im-
plementing appropriate validation and bias-correction proce-
dures before using smartphone pressure data in meteorologi-
cal analysis (Muller et al., 2015; Hanson, 2016; McNicholas
and Mass, 2018a). In our study, three machine-learning tech-
niques from the Waikato Environment for Knowledge Anal-
ysis (WEKA) suite (Witten et al., 2011) are used to cor-
rect the smartphone pressure data, and their effectiveness are
compared. Unlike previous studies in which an individual
model was trained for each smartphone, in this study, we
developed a method, named the neighborhood-based bias-

correction method, that trains a single model in a specified
area rather than for a single phone. Properly choosing the
area size is crucial for the method to work effectively. It
should be small enough to ensure some degree of homo-
geneity in terms of geographical conditions, and on the other
hand, it cannot be too small because the machine learning
requires a large enough data amount to work properly. Since
both users’ behavior and synoptic weather background dif-
fer among seasons, we conducted the training for each sea-
son. The data were randomly separated into training and test
sets (Overeem et al., 2013). The parameters used as input in
the machine learning are listed in Table 1, including pressure
from QC-data, longitude, latitude, time, land cover, number
and standard deviation of raw data aggregated in a grid box,
and distance of each smartphone site from the domain cen-
ter. The land cover is used to provide geographic information,
which is an important input parameter for the neighborhood-
based bias-correction approach. The number and standard
deviation of raw data aggregated in a grid box are used to
provide data uncertainty. The true pressure value used for the
machine leaning is provided by the 5 min pressure observa-
tions from AWS that are interpolated to each smartphone site.
To ensure some consistency in the two types of pressure data,
training data with a pressure bias (the difference of pressure
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values between smartphone and AWS) greater than 15 hPa
are removed.

In order to evaluate the performance of the neighborhood-
based bias-correction method, three experiments with the
following machine-learning methods, multilayer perceptron
(MP) (Pal and Mitra, 1992), support vector machine (SVM)
(Shevade et al., 2000; Smola and Schölkopf, 2004), and ran-
dom forest (RF) (Breiman, 2001), were conducted, and their
results will be compared later.

2.4 Objective analysis

It is well known that an accurate 2D surface analysis is ex-
tremely useful for nowcasting severe weather and studying
convective processes. Traditionally, this type of analysis is
mainly obtained from surface weather station observations.
However, since most of the weather stations do not have
pressure measurements, the surface pressure analysis from
them can only depict gross features of large-scale flow. The
dense pressure observations from smartphones create an op-
portunity to improve the surface pressure analysis. In this
study, we use an objective analysis method modified from
Barnes (1964) to conduct the analysis. The modified Barnes
analysis method, described below, interpolates randomly dis-
tributed data into a uniformly spaced coordinate system using
a two-pass successive correction method.

If a variable fk is observed at a location (xobs,yobs), then
the first pass analysis at a grid point g0(xg,yg) is obtained by
Eq. (1):

g0
(
xg,yg

)
=

∑
kwkfk (xobs,yobs)∑

k

wk
, (1)

where the weight wk for the observation point is given by
Eq. (2):

wk =

 exp
(
−

r2
k

γL2

)
, r ≤ re

0, r > re

, (2)

where rk is the distance from the grid point (xg,yg) to the kth
observation point; γ is the convergence factor which controls
the refinement between the two passes (Barnes, 1974) and
lies between 0 and 1 (0< γ ≤ 1); L is the length scale that
controls the rate of falloff of the weighting function; and re is
the radius of influence within which the observations have an
impact on the grid point. Different from the standard Barnes
interpolation technique using a uniform length scale over the
analysis domain, an adaptive Barnes scheme is applied in this
paper in which the length scale automatically adapts to data
density, i.e., a spatially variable length scale is computed ac-
cording to the data density.

The analysis in subsequent refinement pass is described by
Eq. (3):

g1
(
xg,yg

)
= g0

(
xg,yg

)
+

∑
kwk(fk (xobs,yobs)− g0(xobs,yobs))∑

kwk
, (3)

where g0(xobs,yobs) is the estimate value of g0 at an obser-
vation point which is given by bilinear interpolation.

The objective analysis method described above was ap-
plied to generate analysis fields with a 1 km grid spacing
for a hailstorm case. In Sect. 5, we will show that the high-
resolution analysis fields can be used to analyze fine-scale
pressure patterns for the hailstorm.

3 Statistical characteristics

3.1 Spatial distribution

We used the GC-data to analyze the spatial and temporal dis-
tribution of the smartphone data counts in 2016. The data
location map in Fig. 2 shows that smartphone data are dis-
tributed over nearly all continents, although most of the data
counts occur in China with much higher data density (Fig. 3).
The global mean density of the data is 40 per bin per hour,
whereas in China, the density is 176 per bin per hour. The
hourly pressure observation counts for the entire year of 2016
for China and its surroundings (black box in Fig. 2) are
binned using a 0.1◦× 0.1◦ grid and shown in Fig. 4a, which
indicates that the data density is higher in megacities, such as
the densely populated urban agglomerations of the Yangtze
River Delta (Shanghai and nearby cities), Pearl River Delta
(Guangzhou and nearby cities), and Beijing–Tianjin–Hebei
region (marked by red circles in Fig. 4a). Because people
carry mobile phones while traveling internationally, ship tra-
jectories can be seen from two ports, the port of Shanghai
(SH) and the port of Tianjin (TJ) (Fig. 4a), but the amount of
data at sea is much lower than on land. However, in compari-
son with the surface observations of the Chinese Meteorolog-
ical Administration (CMA) (Fig. 4b), the amount and spatial
coverage of the smartphone data are remarkable in nearly all
regions.

3.2 Temporal distribution

The seasonal and diurnal distributions of the GC-data are dis-
played in Fig. 5 The data volume peaks during the North-
ern Hemisphere summer and reaches a minimum in winter
(Fig. 5a, c). The annual mean data volume is 279 377 per
hour, which far exceeds the value of 47 000 per day in Ko-
rean shown in Kim et al. (2015), suggesting a large user base
of the Moji Weather app. The data seasonality indicates that
people check the weather more frequently in summer than in
winter, owing to the fact that the app can only get the pres-
sure information when the network is available and when the
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Figure 7. Diurnal variation in the data volume for smartphone data on the day of the hailstorm (red line) and the annual mean value (blue
line) for 39–41◦ N, 115–118◦ E. Panels (a)–(d) show a 3D view of data counts in a 0.05◦× 0.05◦ grid over 6 min (colored columns) before
each radar volume and radar echo (gray columns). The color and height of each column represent the value of the data count. BJ, Beijing;
TJ, Tianjin.

users open the app either on the front end or back end. The
diurnal variation in global data volume (Fig. 5b, c) shows
two peaks at 07:00 and 18:00 local standard time (LST), cor-
responding to the rush hour in the morning and evening, re-
spectively. Additionally, there is a steep decrease in data vol-
ume at night, which is consistent with a previous report that
smartphone data are inhomogeneously distributed through-
out the day (Hintz et al., 2019). The diurnal distribution char-
acteristic indicates that users tend to check the weather be-
fore going to work in the morning and getting off work in the
evening. To demonstrate this more clearly, the spatial distri-
bution of the standardized value of the hourly data number at
each site is computed for 2 d and displayed in Fig. 6. Interest-
ingly, the data volume peak occurs earlier in northeast China,
which corresponds well with an earlier sunrise (Fig. 6b).

Analysis during a hailstorm that occurred in Beijing fur-
ther reveals that people respond promptly to severe weather
events. The hailstorm occurred on 10 June 2016 as a squall
line passed through Beijing city from 14:00 to 17:00 LST.
The hourly data volume on the day of the hailstorm and an-

nual mean hourly data within 39–41◦ N, 115–118◦ E are plot-
ted in Fig. 7. The diurnal cycle on the day of the hailstorm
shows that, in addition to the two peaks in the morning and
evening, another peak appeared at 16:00 LST with a data vol-
ume 3 times that of the annual mean. A 3D view of the data
volume and radar echo accumulated within 6 min (Fig. 7b–d)
clearly shows a rise in data volume (Fig. 7b, d) as the storm
approaches Beijing and Tianjin and a drop after the storm
passes (Fig. 7c), which demonstrates the influence of severe
weather on human behavior.

4 Evaluation of the bias-correction method

Three neighborhood-based bias-correction experiments,
each using one of the aforementioned machine-learning
methods, were conducted on a domain covering Beijing and
its surrounding area from May to August 2016. The machine-
learning bias correction was performed in each of the subdo-
mains in Fig. 8c using surface observations as the truth and
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Figure 8. (a, b) Pressure time series during the training period for the AWS (black line) and smartphones (red dots); smartphone pressure
was interpolated into station location using the inverse distance weighting method. (c) The domains of the machine-learning area. Shaded
areas are regional land use (PF, paddy field; RC, rainfed cropland; CFL, closed forest land; S, shrubbery; SWL, sparse woodland; OWL, open
woodlot; HCG, high-coverage grassland; MCG, moderate coverage grassland; LCG, low-coverage grassland; G, graff; L, lake; R, reservoir
pond; PGS, permanent glacier snow; TF, tidal flat; FL, flood land; UL, urban land; RSA, rural settlement area; OCL, other construction land;
S, sand; Go, Gobi; SAL, saline-alkali land; W, wetland; BE, barren earth; BER, bare exposed rock). Automatic weather stations (AWSs) with
pressure observations are shown by black triangles (HD: Haidian; MTG: Mentougou; SJS: Shijingshan; FT: Fengtai; CY: Chaoyang; SY:
Shunyi; FS: Fangshan; BJ: Beijing; TZ: Tongzhou; DX: Daxing; DC: Dachang; XH: Xianghe; LF: Langfang; GA: Guan; ZZ: Zhuozhou).

the smartphone input parameters listed in Table 1. The region
was affected by the 10 June 2016 hailstorm and had a high
density of smartphone pressure observations (Fig. 7a–d).

Constrained by the requirements of adequate data samples
and reasonable computation cost, we chose 16 subdomains
of 0.25◦ (longitude) × 0.20◦ (latitude) in size. The pres-
sure time series from two representative stations in Fig. 8a
and b show that, although the trend in the weather station
and smartphone is consistent, bias is clearly present, which

is consistent with the results of Price et al. (2018) and Hintz
et al. (2019).

Figure 9 shows the mean absolute error (MAE) and com-
putation time at different training regions for the three meth-
ods; it is evident that the RF method is more accurate and
time saving. The computation times for subdomain 2 and
subdomain 6 using the SMO method are more than 9 h. From
this comparison, we have found that the RF algorithm is more
suitable for the neighborhood-based bias correction of smart-
phone observations without requiring users’ personal infor-
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Figure 9. (a) Mean absolute error (MAE) distribution at different
training subdomains for different machine-learning methods (MP
refers to multilayer perception method; SMO refers to support vec-
tor machine method; RF refers to random forest method). Panel
(b) is the same as (a) but for computation time.

mation. Furthermore, we discovered that the random data
separation into training set and test set can cause random er-
rors in the bias-corrected data; hence, in order to eliminate
these errors, the correction procedure was repeated for 50
times to generate an ensemble result.

Collecting smartphone data through a weather app is con-
venient and common; however, the approach relies on the
loyalty of users. Calibrating smartphone pressure individ-
ually can be only applied to data from long-term users,
but it cannot be used for recently added users. In con-
trast, performing data correction for the aggregated data in
a 0.0001◦× 0.0001◦ grid box in a subdomain makes it possi-
ble to collect data from both user groups. In order to evaluate
the applicability of our method on data from both types of
users, we define the data sites appearing in both the training

set and test set as stable sites and those only appearing in the
test set as additional sites. To quantify the performance of
bias correction, the domain-average MAE and standard devi-
ation of ensemble mean for the 16 subdomains are displayed
in Fig. 10 for the raw and bias-corrected data from both the
stable sites and the additional sites. The MAE was calculated
using data from the smartphone sites for each subdomain.
Comparing the MAEs between the raw (Fig. 10a) and bias-
corrected data (Fig. 10c), it is evident that the neighborhood-
based bias-correction method is capable of substantially re-
ducing the MAE not only for the stable sites but also for
the additional sites with slightly more reduction for the sta-
ble sites (from 5.95 to 0.53 hPa) than for the additional sites
(from 5.90 to 0.99 hPa). It is also shown that the method re-
duces the MAE spread by 78 % for the stable sites and by
16 % for the additional sites (Fig. 10b, d). A lower MAE
and spread reduction for the additional sites is not surpris-
ing because they are newly added data with shorter data
history and hence have fewer data samples (Fig. 11a, b).
Encouragingly, our results suggest that the neighborhood-
based method can partially mitigate the difficulty related to
recently added data with shorter data history. In compari-
son with the bias-correction method based on a single site,
the neighborhood-based method resulted in a substantially
smaller MAE (see Fig. 11c, d).

5 Impact of smartphone data on hailstorm analysis

High-density pressure observations can potentially help iden-
tify small-scale surface pressure patterns beneath a thunder-
storm (Johnson and Hamilton, 1988). Although the quality-
controlled gridded smartphone pressure data reduce the num-
ber of data points, they are still adequate to represent the fine-
scale pressure patterns. In this section, we first show what
small-scale information the quality-controlled high-density
pressure data at the smartphone sites (with a spatial resolu-
tion of 0.0001◦ or approximately 10 m) can provide and then
demonstrate the impact of the smartphone data on the grid-
ded 1 km pressure analysis that is obtained using the objec-
tive analysis method described in Sect. 2.4.

Figure 12 shows a composite plot of radar reflectivity,
pressure changes calculated from surface weather station ob-
servations and from smartphone data, and wind and equiv-
alent potential temperature from the station observations.
To be consistent with the time interval of the radar volume
scan, the smartphone QC-data averaged every 6 min were
used to generate the 6 min pressure tendency. Further, be-
cause the weather station data are at a 5 min interval, the
pressure change and temperature from these data are shown
at times closest to those of the radar volume scan. Since
there are only 15 weather stations providing pressure obser-
vations in this region, they are unable to locate the leading
edge of the cold pool. In contrast, the smartphone pressure
observations are much denser and hence are able to cap-
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Figure 10. Distribution of domain-average mean absolute error (MAE; a, c) of ensemble mean and standard deviation (b, d) for different
subdomains for the original dataset (a, b) and the bias-corrected dataset (c, d). The line marked by dots is the ensemble mean value, and
shading is the double standard deviation ensemble spread. The red line is the result for stable sites, and the blue line is the result for additional
sites. See text for the definitions of stable sites and additional sites.

ture the fine-scale pressure change associated with the cold
pool, as depicted in Fig. 12 by the “×” symbol represent-
ing the 6 min change in perturbation pressure (i.e., domain
mean subtracted) greater than 0.52 mb. Compared with the
cold pool leading edge identified by θe, following Schlem-
mer and Hohenegger (2014), from the analysis of surface
observations, the leading edge of the cold pool based on
the smartphone pressure change is about 10 km ahead at
15:06 LST (Fig. 12b) and quite close at 15:24 LST (Fig. 12c).
At 14:54 LST (Fig. 12a), the pressure change is largely neg-
ative ahead of the cold pool, whereas Fig. 12d mainly shows
negative pressure changes after the leading edge has passed
the area; both are consistent with the surface station observa-
tions but are more detailed.

We conducted three objective analysis experiments using
the method described in Sect. 2.4 to demonstrate the poten-
tial benefit of using smartphone observations along with sur-
face weather station observations to improve surface pressure
analyses, i.e., the station observation experiment (SFC) us-
ing only weather station pressure observations, smartphone
experiment (SP) using only smartphone data, and SFC+SP

using both the station and smartphone data. The analysis grid
spacing is 1 km. Figure 13 shows the domain for surface anal-
ysis and the locations of the Beijing radar and surface sta-
tions.

The analyses of perturbation pressure (i.e., relative to do-
main mean) from the experiments SFC (Fig. 14a, c, e) and
SFC+SP (Fig. 14b, d, f) are compared at 15:00, 15:06 and
15:12 LST in Fig. 14. To illustrate the coupling between
pressure and wind in the storm region, the wind field at
150 m from VDRAS (Variational Doppler Radar Analysis
System) and the composite reflectivity observation are over-
laid. VDRAS is a rapid update analysis system based on
the variational technique that blends radar radial velocity
and surface wind observations to produce 3D wind analy-
ses (Sun and Crook, 1997, 1998). We first note that the per-
turbation pressure analysis from SFC+SP (right column)
displays small-scale features in and around the storm that
are absent in SFC (left column). The high center of pres-
sure perturbation is nearly collocated with the center of the
outflow near the northwest flank of the main body of the
storm system (Fig. 14b, d, f). The vertical cross sections
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Figure 11. (a, b) Scatter plot of mean absolute error (MAE) versus the data number of observation sites for (a) stable sites and (b) additional
sites. (c, d) Scatter plot of station pressure versus bias-corrected pressure for (c) the neighborhood-based method and (b) single-site method
of one ensemble member. Averaged mean absolute errors (MAEs) of the two methods are shown in the plot.

shown in Fig. 15 through the line A–B (see Fig. 14) indicate
that the high-pressure perturbation corresponds to the rear-
flank downdraft aloft behind the intense radar echoes of the
southeastward moving convective system. Although the rela-
tively low-pressure regions are seen in front of the convective
system in both experiments, only the SFC+SP experiment
captures the relatively low-pressure region northwest of the
system. The overall distribution pattern of pressure perturba-
tion in SFC+SP is consistent with the conceptual model of
Markowski and Richardson (2010), but the current analysis
reveals that the surface high-pressure region and low-level di-
vergence center slightly lag behind the center of the intense
reflectivity echoes rather than right beneath it, as in their con-
ceptual model. We believe the difference results from the

higher resolution of the smartphone data applied in this study,
but further studies are needed to draw a definite conclusion.
Furthermore, the pressure analysis from SFC+SP provides
more detailed information about storm evolution than what
is shown in SFC. As the storm moves southeastward, the
cell in the southwest, denoted as cell 2 in Fig. 14, separates
into two (Fig. 14b), and the northern one merges into cell 1
(Fig. 14d, f). During the merging process, the high-pressure
region behind cell 1 becomes stronger and wider, which may
indicate the enhancement of cell 1 in correspondence with
the increased downdraft and updraft, as shown in Fig. 15c.

Analysis accuracy for the two experiments was verified
against the 15 weather station pressure measurements in the
domain. In order to avoid dependence between the analysis
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Figure 12. The 5 min pressure change from surface stations (triangles) and the 6 min pressure change from smartphones (points), temperature
observations from surface station (green contour), wind field (black arrow), and composite radar reflectivity (shaded) during a hailstorm that
occurred on 10 June 2016 in Beijing, China. The station pressure change is shown at the time closest to that of the radar volume. The “×”
symbol marks the locations where the 6 min pressure change perturbation is greater than 0.52 hPa. The dashed blue line is the 1θe =−6 K
isoline from the analysis of surface observations (1θe is defined as the difference between the equivalent potential temperature at a point and
the domain-averaged value).

Figure 13. Objective analysis domain (blue box), terrain height
(shaded), the distribution of surface stations (black and red dots with
the red dots representing the surface stations with pressure measure-
ments) and Beijing radar station (star). The boundary of Beijing is
shown with the blue line.

and verification, both experiments were repeated 15 times;
each alternately excludes the measurement from the specific
station to be verified against. The temporal distributions of
MAE between model analysis and observation at different
surface stations are shown in Fig. 16. The results confirm
that the experiment SFC+SP reduces the analysis error at
most stations, even at those around which there are rela-
tively fewer smartphone observations, such as the stations
Xianghe (XH) and Langfang (LF). Although at the stations
where there are much fewer smartphone observations, such
as Guan (GA) and Zhuozhou (ZZ), the analysis with smart-
phone pressure data alone in the experiment SP results in a
larger error than in the experiment SFC; adding the station
observations in SFC+SP results in reduced analysis error
(Fig. 16n, o). The correlation between the smartphone data
density and the analysis accuracy is more clearly illustrated
by Fig. 17, which shows that the MAE is less than 0.20 hPa
as long as there are more than three smartphone sites around
the verifying weather station measurement.
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Figure 14. Surface pressure perturbation analyses (shaded) from the experiment SFC (a, c, e) and SFC+SP (b, d, f) overlaid by VDRAS
wind field at 150 m (thick black arrows) and column maximum radar reflectivity (contours). The valid time is 15:00 LST for the top row,
15:06 LST for the middle row and 15:12 LST for the bottom row.

In summary, our quantitative verification results demon-
strate that the high-resolution smartphone data generally
improve surface pressure analysis in comparison with the
weather station data; combining these two datasets results in
a further improvement, especially at the locations where the
smartphone data are sparse.

6 Conclusions and discussion

This study focused on smartphone pressure data acquired
from the Moji Weather app in 2016 and showed their char-
acteristics for the first time. A neighborhood-based bias-
correction method applying machine-learning techniques

was developed without any privacy information needed. The
bias-corrected data were employed to explore the poten-
tial value of these data for improving atmospheric analysis
through the case of a hailstorm in Beijing, China.

Since these data are produced by citizens at large, their
spatial and temporal distributions are affected by human be-
havior. It was shown that the data are mostly distributed
around urban areas, and data volume peaks during summer.
There is also a diurnal cycle in which the data volume is
higher during the day than at night, with two peaks appearing
at 07:00 and 18:00 LST. Our case study showed an anoma-
lous increase in data volume when the hailstorm occurred,
suggesting that public concern increases in anticipation of
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Figure 15. Vertical cross section of the radar reflectivity (shaded),
VDRAS wind field (thin black arrows) and vertical velocity field
(brown contours with dash lines for downward motion and solid
lines for upward motion) along the line A–B in Fig. 10. The solid
blue line and dashed red line are the surface pressure perturbation
along the A–B line from SFC and SFC+SP, respectively.

high-impact weather situations, which means the data can be
useful for disaster prevention.

We proposed and demonstrated a neighborhood-based
bias-correction method that can address user privacy issues.
Despite growing concern from the public regarding personal
privacy, few studies have addressed how to circumvent the
problem. Since Moji protects data privacy during the col-
lection and processing stages, no private information was
included in the raw data that we received, and the bias-
correction method proposed in this study does not require
such information. Our results showed that the MAE and
MAE spread can be successfully reduced not only for long-
term stable sites but also for recently added sites that present

a challenge using the traditional user-based bias-correction
method.

With this feasible and effective bias-correction method,
the potential utility of the high-resolution smartphone data
(approximately 10 m horizontal resolution) is shown using
a hailstorm case. We have found that the 6 min pressure
change can provide convective-scale information such as
cold pool leading edge, especially in megacities where the
data are most dense. Using a modified Barnes objective anal-
ysis method on a 1 km grid, we also showed that the data can
be used in conjunction with weather station data to improve
surface pressure analysis. The analysis is capable of depict-
ing the high pressure associated with the rear-flank down-
draft of the hailstorm and temporal variation in pressure per-
turbation related to the splitting and merging process within
the convective system.

Through the current study, we have gained an under-
standing of the smartphone pressure data characteristics, de-
veloped a practical and effective quality-control and bias-
correction method, and demonstrated the value of the data in
surface objective analysis; our next step is to explore whether
the data can be useful in improving convective weather fore-
casting through data assimilation. Previous data assimilation
research with smartphone pressure data mainly focused on
assessing whether the data have a positive impact on regions
where weather stations are not available (McNicholas and
Mass, 2018b; Hintz et al., 2019). However, it may present
a greater challenge to demonstrate that the smartphone data
can yield additional benefits to the existing weather station
network mainly because of the uneven distribution of the
smartphone data across the globe. Efforts are needed to de-
velop data assimilation approaches that can make best use of
the smartphone data in numerical weather prediction models
by taking into account the characteristics of these data. The
current study also points to the need of an improved smart-
phone data collection mechanism. The data volume collected
by a weather app relies heavily on the popularity of the appli-
cation that serves as the data-collection platform (Kim et al.,
2015; Hintz et al., 2019). As such, the data distribution relies
heavily on the severity of local weather. Thus, a more stable
and widely used platform is needed to provide useful high-
resolution global observations without a correlation to local
weather. Additionally, the smartphone information included
in our research is limited; additional auxiliary information,
such as smartphone models, sensor types and the altitude at
which smartphone data were measured, would be conducive
to the bias-correction procedure and subsequent analysis.

Data availability. The land-use and land-cover data are available
on the website https://doi.org/10.12078/2018070201 (Xu et al.,
2018). Smartphone data, surface observation data and radar data
are provided by Moji Corporation and the Chinese Meteorological
Administration and are available on demand.
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Figure 16. (a)–(o) Temporal distribution of mean absolute error (MAE) between model analyses and observations at different surface
stations for the smartphone experiment (SP; red line), the station observation experiment (SFC; blue line) and the station observation plus
smartphone experiment (SFC+SP; black dash line), respectively. The temporally averaged MAE is also shown within each plot, and the
average MAEs over all stations for the three experiments are shown below the plots. The underlined and bold station names indicate that
the MAE difference between SFC and SP at those stations is significant with the confidence level of 90 %. The stations are as follows: HD:
Haidian; MTG: Mentougou; SJS: Shijingshan; FT: Fengtai; CY: Chaoyang; SY: Shunyi; FS: Fangshan; BJ: Beijing; TZ: Tongzhou; DX:
Daxing; DC: Dachang; XH: Xianghe; LF: Langfang; GA: Guan; ZZ: Zhuozhou.

Figure 17. Scatter plot of mean absolute error (MAE) versus ob-
servation number within 10 km and 5 min of the verifying weather
station. The blue dots stand for the station observation experiment
(SFC), red dots represent the smartphone experiment (SP), and
the station observation plus smartphone experiment (SFC+SP) is
shown as black crosses.
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