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Abstract. Tikhonov regularization is a tool for reducing
noise amplification during data inversion. This work in-
troduces RegularizationTools.jl, a general-purpose software
package for applying Tikhonov regularization to data. The
package implements well-established numerical algorithms
and is suitable for systems of up to ~ 1000 equations. In-
cluded is an abstraction to systematically categorize specific
inversion configurations and their associated hyperparame-
ters. A generic interface translates arbitrary linear forward
models defined by a computer function into the correspond-
ing design matrix. This obviates the need to explicitly write
out and discretize the Fredholm integral equation, thus facil-
itating fast prototyping of new regularization schemes asso-
ciated with measurement techniques. Example applications
include the inversion involving data from scanning mobility
particle sizers (SMPSs) and humidified tandem differential
mobility analyzers (HTDMASs). Inversion of SMPS size dis-
tributions reported in this work builds upon the freely avail-
able software DifferentialMobility Analyzers.jl. The speed of
inversion is improved by a factor of ~ 200, now requiring be-
tween 2 and 5 ms per SMPS scan when using 120 size bins.
Previously reported occasional failure to converge to a valid
solution is reduced by switching from the L-curve method
to generalized cross-validation as the metric to search for the
optimal regularization parameter. Higher-order inversions re-
sulting in smooth, denoised reconstructions of size distribu-
tions are now included in DifferentialMobility Analyzers.jl.
This work also demonstrates that an SMPS-style matrix-
based inversion can be applied to find the growth factor fre-
quency distribution from raw HTDMA data while also ac-
counting for multiply charged particles. The outcome of the
aerosol-related inversion methods is showcased by inverting

multi-week SMPS and HTDMA datasets from ground-based
observations, including SMPS data obtained at Bodega Ma-
rine Laboratory during the CalWater 2/ACAPEX campaign
and co-located SMPS and HTDMA data collected at the
US Department of Energy observatory located at the South-
ern Great Plains site in Oklahoma, USA. Results show that
the proposed approaches are suitable for unsupervised, non-
parametric inversion of large-scale datasets as well as inver-
sion in real time during data acquisition on low-cost reduced-
instruction-set architectures used in single-board computers.
The included software implementation of Tikhonov regular-
ization is freely available, general, and domain-independent
and thus can be applied to many other inverse problems aris-
ing in atmospheric measurement techniques and beyond.

1 Introduction

Atmospheric aerosol plays an important role in shaping the
microphysics of clouds and the Earth’s climate (Farmer et al.,
2015; Kreidenweis et al., 2019). To predict the impact of
aerosol on the Earth system, the distributions of particle
size, chemical composition, hygroscopicity, and morphology
must be known. The distribution of these properties across
a population of particles formally defines the mixing state
of the aerosol (Riemer et al., 2019). Accurate measurements
of these distributions are critical for formulating models that
link aerosol, cloud, and climate properties.

Differential mobility analyzers (DMAs) select particles
as a function of their size, charge, and an applied voltage.
DMAs and tandem DMAs are widely used to measure the
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distributions of size and distributions of aerosol physico-
chemical properties (Park et al., 2008). For examples, a sin-
gle DMA can be used to measure the aerosol size distribu-
tion by scanning voltage (Wang and Flagan, 1990). Humid-
ified tandem DMAs (HTDMAs) can be used to measure the
growth factor or hygroscopicity frequency distribution (Gy-
sel et al., 2009). DM A—particle mass analyzer measurements
can be used to resolve particle density distributions (Rawat
et al., 2016; Sipkens et al., 2020). Tandem DMAs are im-
portant because they are one of only a handful of techniques
that can specifically characterize aspects of the aerosol mix-
ing state (Riemer et al., 2019). Unfortunately, particles car-
rying multiple charges and different sizes transmit through
the DMA at a single voltage, which creates artifacts in the
raw instrument response that must be removed during post-
processing of the data.

Humidified tandem DMAs select a mobility diameter, pass
this quasi-monodisperse aerosol through a humidification
system, and then measure the humidified mobility response
function using a second DMA operated in stepping or scan-
ning mode (Rader and McMurry, 1986; Suda and Petters,
2013; Dawson et al., 2016). The humidified mobility re-
sponse function is influenced by the particle size distribu-
tion, aerosol charge distribution, and growth factor frequency
distribution function of the upstream aerosol. Gysel et al.
(2009) show that the inversion from the humidified mobility
response function to the growth factor frequency distribution
is an ill-posed problem.

The inverse solution of ill-posed problems is character-
ized by strong sensitivity to noise superimposed on the data.
Regularization methods are needed to relate an observed in-
strument response to the underlying physical property of
the system under investigation. A common inverse method
is Lo regularization, developed independently by Phillips
(1962), Twomey (1963), and Tikhonov (1963). Some ex-
amples of Lj regularization involving atmospheric measure-
ment techniques include inversion to find aerosol micro-
physical properties from measurements of optical properties
(Dubovik and King, 2000; Miiller et al., 2019), retrieve trace
gas concentrations from remote sensors (Borsdorff et al.,
2014), or estimate fluxes from a combination of measure-
ments and atmospheric transport models (Krakauer et al.,
2004). Application of L, regularization for problems involv-
ing DMAs include the reconstruction of the particle size dis-
tribution downstream of a single DMA (Wolfenbarger and
Seinfeld, 1990; Kandlikar and Ramachandran, 1999; Taluk-
dar and Swihart, 2003; Petters, 2018) and inversion to find
size-mass distributions from coupled DMA-—particle mass
analyzer measurements (Rawat et al., 2016; Sipkens et al.,
2020).

To date, L, regularization has not been applied to the
inversion of HTDMA data. However, multiple other ap-
proaches have been used to estimate the growth factor fre-
quency distribution from the humidified mobility response
function. Stolzenburg and McMurry (1988) introduce the
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TDMA(fit method. TDMA(fit assumes a multi-mode normally
distributed hygroscopic growth factor frequency distribution.
Parameters of the growth factor frequency distribution are
varied such that the error between the modeled and ob-
served humidified mobility response functions is minimized.
Cubison et al. (2005) apply the optimal estimation method
(OEM) to derive the growth factor frequency distribution.
This method uses an estimate of the covariance matrix, the
measurements, and the forward model to retrieve the growth
factor frequency distribution. The advantage of the optimal
estimation method over TDMA(fit is that it is nonparamet-
ric; i.e., it makes no prior assumption about the functional
form of the growth factor frequency distribution. However,
the method sometimes produces oscillatory and negative so-
Iutions. Gysel et al. (2009) introduce TDMAinv, a piecewise
linear version of TDMAfit. The piecewise method is also
nonparametric. Constrained minimization is applied to find
the growth factor frequency distribution; this avoids the nega-
tive solutions encountered in the optimal estimation method.
Gysel et al. (2009) briefly discuss the role of multiple charges
in the inversion and state that “the measured humidified mo-
bility response function is a superposition of contributions
from different dry sizes ... and appropriate data inversion
is hardly possible. Unfortunately an SMPS-style multicharge
correction cannot be applied because the relative contribu-
tions from singly and multiply charged particles to every
data point of the MDF cannot be distinguished.” (In the di-
rect quote, SMPS denotes scanning mobility particle sizer —
Wang and Flagan, 1990 — and MDF denotes mobility distri-
bution function.) Nevertheless, Shen et al. (2021) compute
the contribution of multiply charged particles to the humidi-
fied mobility response function assuming that the larger mul-
tiply charged particles express the mean growth factor. How-
ever, they state that the correction of growth factor frequency
distribution for multiply charged particles “is too compli-
cated” (Shen et al., 2021) due to the need for multidimen-
sional integration. Finally, Oxford et al. (2020) introduced a
forward model named TAO that corrects for the contribution
of multiply charged particles to the signal when interpreting
volatility tandem DMA measurement.

This work revisits the challenge of performing an SMPS-
style inversion of the humidified mobility distribution to re-
trieve the growth factor frequency distribution while also ac-
counting for multiply charged particles. L, regularization is
used to find the inverse. The remainder of the work is struc-
tured as follows: Sect. 2 describes the theory of L, regular-
ization and the numerical solution of the equations. The soft-
ware package RegularizationTools.jl is introduced, which is
a general domain-independent implementation of L, regu-
larization. Forward models for transfer through the single
DMA and tandem DMA are formulated using the formal-
ism developed in Petters (2018) and cast into matrix form
using abstractions introduced in RegularizationTools.jl. Sec-
tion 3 uses synthetic data to demonstrate that L, regulariza-
tion can be used to invert the humidified mobility distribu-
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tion function to find the growth factor frequency distribution.
Section 4 uses real-world data to showcase improvements
for size distribution inversion and the newly introduced tan-
dem DMA inversion that were added to the freely available
software package DifferentialMobilityAnalyzers.jl (Petters,
2018). Finally, Sect. 5 summarizes the improvements, advan-
tages, and limitations of the methodologies introduced in this
work.

2 Theory

Section 2.1 and 2.2 use the following linear algebra nota-
tion. Capital bold roman letters denote matrices (A), bold
italic letters denote vectors (x) and lowercase italic sym-
bols denote scalars (). AT denotes the matrix transpose, and
AT = (ATA)7'AT is the matrix pseudo-inverse. Section 2.3
uses additional notation described there.

2.1 L; regularization
2.1.1 Theory

The formalisms closely follow the description in Hansen
(2000). Consider a system of equations

b=Ax +e, (D

where b is the measured response, A is the design matrix
(which may or may not be square), x is the true quantity of
interest, and € is the random error. The regular least-squares
solution computed using the pseudo-inverse via x = ATh
is often dominated by contributions from the error, and the
thus-obtained estimate for x is useless. Regularization ad-
dresses this issue by solving the minimization problem

xA=argmin{||Ax—b||%+)»2||L(x—x0)||%}, )

where x) is the regularized estimate of x, | - ||2 is the Eu-
clidean norm, L is a filter matrix, A is the regularization pa-
rameter, and x( is a vector of an a priori estimate of the
solution. The a priori estimate can be taken to be xo =0
if no a priori information is known. The filter matrix is of-
ten taken to be the identity matrix I or a derivative opera-
tor. Common choices are the first and second derivative op-
erator defined as the upper bidiagonal(—1, 1) and the upper
tridiagonal (1, —2, 1) matrix, respectively. For A = 0, the so-
lution is equivalent to x; = ATh. The limit limy_, soX3 = Xo
applies. Thus the regularization parameter “interpolates” be-
tween the noisy ordinary least-squares solution and the a pri-
ori estimate x.

The analytical solution for Eq. (2) is the regularized nor-
mal equation

X = (ATA + )\QLTL) B (ATb + )\ZLTLxO) , 3)
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which is derived by taking the derivative of the right-hand
side of Eq. (2) with respect to x, setting it to zero, and solv-
ing for x. Equation (3) is in standard form if L. = I. The opti-
mal regularization parameter can be obtained using a variety
of techniques, including the L-curve method (Hansen, 2000)
and generalized cross-validation (GCV; Golub et al., 1979).
Both methods use metrics that penalize solutions with large
variance (amplified noise) or large bias.

The L-curve method involves a plot of log |Ax; — b||% VS.
log ||IL(x) —x0) ||%. The optimal A occurs at the corner of the
resulting L curve, which can be found algorithmically. How-
ever, automating the L-curve method can be more challeng-
ing than other automated methods, as further discussed be-
low.

The generalized cross-validation estimator presents a
mathematical shortcut to compute the leave-one-out cross-
validation estimate, which removes one point from the data,
creates a model, computes the error between the model and
data point not included in the data, and then averages the re-
sult over all permutations. It is given by

2

vy = MA=A0PIE @
trl—A;)

where A, b is Ax;, A, is the influence matrix, tr is the ma-
trix trace, and n is the size of b. The optimal A, coincides
with the global minimum of V ()). Equation (4) requires that
the system is in standard form. For systems in non-standard
form, conversion to standard form is required before com-
puting V(). In many cases Aop; values found by the L-curve
method and generalized cross-validation are similar, and the
retrieved solutions x, are nearly indistinguishable. Differ-
ences between these two estimates are related to the compu-
tational speed to converge and robustness, i.e., that the sys-
tem converges to the optimal solution.

2.1.2 Algorithms

Equation (3) can be solved straightforwardly using any soft-
ware that supports linear algebra operations. This brute-force
approach, however, is slow. Efficient algorithms to solve
Egs. (3) and (4) have been developed. The algorithms used
here are briefly described. If L # I, Eq. (3) is transformed to
standard form using the generalized singular value decompo-
sition of A and L as derived by Eldén (1982) and summarized
by Hansen (1998). Equation (3) is solved using Cholesky
factorization when possible since it is the computationally
fastest approach (Lira et al., 2016). If Cholesky factorization
fails, one of the fallback solvers selected by the linear algebra
package of the programming language is used. Equation (4)
is solved using the singular value decomposition of A and the
iterative algorithm described in Bates et al. (1986). The op-
timal Ao for generalized cross-validation is found by min-
imizing V(A) on a bounded interval using Brent’s method
(Mogensen and Riseth, 2018). The optimal Aqpt for the L-
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curve method is found by maximizing Eq. (18) in Hansen
(2000) on a bounded interval using Brent’s method.

2.1.3 Classification of methods

The inverse problem can be solved using specific methods.
Here, method refers to the content of the filter matrix L,
whether an a priori estimate is used, and whether constraints
are imposed on the solution. Methods are encoded through
the following expression:

LyxoDe Bjip,upy (alg), )

where Ly denotes the order of the filter matrix L, xg de-
notes whether an a priori estimate is used, D. denotes
whether data-based constraints are used (explained further
below), and Bjip,ub) denotes whether a lower bound (Ib) or
upper bound (ub) is imposed on the solution (explained
further below). The argument (alg) denotes constraints on
the search algorithms, e.g., L curve or GCV and/or the
bounded interval over which A is varied. The expression
is composable. For example, the method L, denotes in-
version using the second-order derivative without an a pri-
ori estimate, data-based constraints, and lower and/or up-
per bound constraints. The method LgByo,1j(alg =L curve,
A1 =0.01, A, = 100) denotes inversion with L =1, impos-
ing that all values of x;, € [0, 1], the use of the L-curve
method, and Ao, € [0.01, 100]. If alg is unspecified, defaults
of alg=GCV, A1 =0.001, and X, = 1000 are implied. This
approach of method encoding provides a convenient classi-
fication system to enumerate the set of available methods as
well as to specify the method in a high-level application in-
terface for software function calls. There are eight combi-
nations by which to compose methods via Eq. (5), L, Lxy,
LxoB, LxoD, LxoBD, LB, LBD, and L D. Combined with
the three most common filter matrices Lo =1, L = upper
bidiagonal(—1, 1), and L, = upper tridiagonal(1, —2, 1), this
results in 24 unique methods.

Data-based constraints. Huckle and Sedlacek (2012) pro-
posed a two-step data-based regularization where the filter
matrix is modified according to

L=1¢D;H (6)

where L is one of the finite-difference approximations of
a derivative, D; is diag(|xi|,..., |Xn|), and X is the recon-
struction of x using Ly. In the case that |X;| < €, those ele-
ments are set to be equal to €, where 0 < € <« 1. The method
L1 Dj._7 represents a filter matrix with a first-order deriva-
tive operator applied to Eq. (6) with € = le — 2. Exponen-
tial notation is used because subscripts are difficult to super-
script.

Lower/upper bound constraints. The retrieved x; from the
regularized normal equation can have oscillatory and/or non-
physical solutions. An alternative approach is to treat Eq. (2)
as a constrained minimization such that the solution is sub-

Atmos. Meas. Tech., 14, 7909-7928, 2021

M. D. Petters: Revisiting matrix inversions

ject to the optional constraint xj, < X < Xxyp. Here, the fol-
lowing procedure is implemented for the bounded search:
first, the optimal Aop is found using the regularized normal
equations. The thus-obtained solution x is truncated at the
upper and lower bounds and then passed as an initial condi-
tion to a least-squares numerical solver. Ceres Solver (Agar-
wal et al., 2020) is used with the dogleg method and QR
solver as implemented in the freely available LeastSquare-
sOptim.jl! library. The net result is an optimized solution that
is within the specified upper and lower bounds. The upper
and lower bounds are vectors of the same size as x.

2.1.4 Software implementation

L, regularization, as described in the previous sections, is
implemented in a freely available software package Regu-
larizationTools.jl that is written by the author and provided
as a supplement to this work. The implementation is in the
Julia programming language (Bezanson et al., 2017). The
package has a similar name and some overlap with the pack-
age Regularization Tools by Hansen (2007). However, the
packages differ in software architecture, programming lan-
guage, and scope. RegularizationTools.jl provides a simple
high-level interface to compute x; using a single function
call; for example

xA = invert(A, b, LyxoB(k, Xg, Ib,ub); alg =: L_curve), (7)

where Eq. (7) is in a form that would be directly used as
computer code. In Eq. (7) A denotes the design matrix A,
b denotes the observation vector b, and LixoB is a parame-
terized algebraic data type that encodes the specific method
in accordance with Eq. (5). The arguments of LyxoB are k,
which specifies the order, and xo, which specifies the vector
of the a priori estimate x¢; lb and ub are vectors that specify
the lower and upper bounds. Other methods can be specified
according to Eq. (5). Examples are provided in the documen-
tation of the package.

2.2 Computing the design matrix

The design matrix can be obtained from a forward model
y=F(x,c), (8)

where y is a vector representing the error-free observations,
x is the vector of true inputs, ¢ is a vector of controlling
parameters, and F is the linear forward model function that
maps over x to compute y subject to the constraint of ¢. The
matrix of the linear transformation y = Ax is then given by

A=[F(e)) F(e2) ... F(en)], 9

where eq, ..., e, is the standard basis. RegularizationTools.]l
also provides an abstract generic interface that simplifies

1https://github.c0m/matthieugomez/LeastSquaresOptim.j1 (last
access: 10 December 2021).
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computation of the design matrix from arbitrary forward
models of linear processes. Examples demonstrating how to
use this generic interface are provided in the documentation
of the package. The examples include the solution for transit
through the tandem DMA described further below, the solu-
tion of the Fredholm integral equation of the first kind given
by Baart (1982), the optical convolution that underlies size
distribution retrieval from scattering and absorption proper-
ties (Miiller et al., 2019), and the 2D Gaussian blur function
encountered in image processing.

2.3 Design matrices for differential mobility analyzers

Differential mobility analyzers consist of two electrodes held
at a constant or time-varying electric potential. Cylindrical
(Knutson and Whitby, 1975) and radial (Zhang et al., 1995;
Russell et al., 1996) electrode geometries are the most com-
mon. Charged particles in a flow between the electrodes are
deflected to an exit slit and measured by a suitable detec-
tor, usually a condensation particle counter. The fraction of
particles carrying k charges is described by a statistical dis-
tribution that is created by the charge conditioner used up-
stream of the DMA. The functions governing the transfer
through bipolar charge conditioners, single DMAs, and tan-
dem DMAs are well understood (Knutson and Whitby, 1975;
Rader and McMurry, 1986; Reineking and Porstendorfer,
1986; Wang and Flagan, 1990; Stolzenburg and McMurry,
2008; Jiang et al., 2014).

The DMA selects particles by electrical mobility. The re-
lationship between mobility and mobility diameter is well
known and well defined. The relationship is given, for ex-
ample, in Eq. (2) in Petters (2018). This work also makes
use of the “apparent + 1 mobility diameter”. It is defined as
the conversion from mobility to diameter assuming singly
charged particles using the mobility grid scanned by either
DMA 1 or DMA 2. The apparent + 1 mobility diameter rep-
resents the natural diameter axis of a DMA response func-
tion, i.e., a plot of the raw detector response versus the nom-
inal DMA setpoint diameter. It is an equivalent measure of
mobility. The apparent + 1 mobility diameter is ambiguous.
Larger particles carrying more than one charge may have the
same apparent + 1 mobility diameter as smaller particles car-
rying fewer charges. The “apparent growth factor” is defined
as the apparent 4 1 mobility diameter scanned by DMA 2 di-
vided by the nominal selected dry diameter in the DMA.

The traditional mathematical formulation of transfer
through the DMA is summarized in Stolzenburg and Mc-
Murry (2008) and references therein. Briefly, the integrated
response downstream of the DMA operated at voltage Vj is
given by a single integral that includes a summation over
all selected charges. The size distribution is measured by
varying voltage V1, which produces the raw response func-
tion defined as the integrated response downstream of the
DMA as a function of upstream voltage. The size distribu-
tion is found by inversion. The basic mathematical problem
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associated with inverting the response function to find the
size distribution is summarized by Kandlikar and Ramachan-
dran (1999). The integral is discretized by quadrature to find
the design matrix that maps the size distribution to the re-
sponse function. L, regularization is one of several methods
to reconstruct the size distribution from the response func-
tion (Voutilainen et al., 2001; Kandlikar and Ramachandran,
1999).

The integrated response downstream of a tandem DMA
that is operated at voltages V7 and V» requires evaluating in-
tegrals of the upstream particle size distribution over size and
the grown particle size distribution over size. The integra-
tion must be repeated for each charge state. Scanning over
a range of voltages V, results in the raw tandem DMA re-
sponse function. For the forward calculation, the objective is
to find a design matrix that maps the growth factor frequency
distribution to the raw TDMA response function.

Petters (2018) introduced a computational approach to
model transfer through the DMA. The main idea of the ap-
proach is to provide a domain-specific language comprising a
set of simple building blocks that can be used to algebraically
express the response functions intuitively through a form of
pseudo-code. The main advantage of this approach is that
the expressions simultaneously encode the theory governing
the transfer through the DMA and the algorithmic solution to
compute the response function. The resulting expressions are
concise. They are easily identified within actual source code
when working through the examples provided with the pack-
age documentation. This makes the code easily modifiable by
non-experts to change existing terms or add new convolution
terms without the need to develop algorithms.

A disadvantage of the computational approach compared
to the traditional mathematical approach is that computa-
tion lacks standardization of notation. This can blur the
line between general pseudo-code and language-specific syn-
tax. Some of the applied computing concepts may be less
widely known when compared to standard mathematical ap-
proaches. Nevertheless, the author believes that the advan-
tages of the computational approach outweigh the draw-
backs. Therefore, this work builds upon the expressions re-
ported in Petters (2018). Updates and clarifications to the ear-
lier work are noted where appropriate.

The computational language includes a standardized rep-
resentation of aerosol size distributions, operators to con-
struct expressions, and functions to evaluate the expressions.
Size distributions are represented as a histogram and inter-
nally stored in the form of the SizeDistribution compos-
ite data type. Composite data types combine multiple ar-
rays into a single symbol for ease of use, thus facilitating
faster experimental design and analysis. The size distribu-
tion data type SizeDistribution includes vectors of the se-
lected mobility bins considered by the DMA, +1 mobil-
ity diameter bin edges and +1 mobility diameter bin mid-
points computed from the mobility grid, number concen-
tration, log-normalized spectral density, and logarithmic bin

Atmos. Meas. Tech., 14, 7909-7928, 2021



7914

widths. SizeDistributions are denoted in blackboard bold font
(e.g., m, ). SizeDistributions are the building block of com-
posable algebraic expressions through operators that evalu-
ate to transformed SizeDistributions. For example, ny +ny is
the superposition of two size distributions, @ -n is the uniform
scaling of the concentration fields by factor a, A -n is the ma-
trix multiplication of A and concentration fields of the size
distribution, and T -n is the elementwise scaling of the diam-
eter field by factor 7. (Note that Petters, 2018, used 7. -n as
the elementwise scaling. The extra dot has been dropped to
stay consistent with the current software implementation.)

Generic functions are used to evaluate expressions. The
function ) (f,m) evaluates the function f(x) for x =
[1,...,m] and sums the results. If f(x) evaluates to a vector,
the sum is the sum of the vectors. The function map(f, x)
applies f(x) to each element of vector x and returns a vec-
tor of results in the same order. The function foldl(f, x)
applies the bivariate function f(a,x) to each element of
x and accumulates the result, where a represents the ac-
cumulated value. If no initial value is provided, as is the
case in this paper, foldl applies the function to the first
two elements of the list to compute the first a. For ex-
ample foldl(—, [1, 2, 3]) evaluates the function —(a, x) and
yields 1 —2 — 3 = —4. The function mapfoldl( f, g, x) com-
bines map and foldl. It applies function f to each element in
x such that y = f(x) and then reduces the result using the
bivariate function g(a, y), where a represents the accumu-
lated value. For example, mapfoldl(sqrt, —, [4, 16, 64]) eval-
uates to foldl(—, [2,4,8]) =2 —4 — 8 = —10. The function
vcat(x , y) concatenates arrays x and y along the first di-
mension in Julia. However, other programming languages
may concatenate along a different dimension as the definition
of horizontal and vertical is arbitrary. Passing vcat to foldl
(or mapfoldl) will result in a concatenated array. Anony-
mous functions are used as arguments of reducing functions.
Anonymous functions are denoted as x — expression, where
x is the argument consumed in the evaluation of the expres-
sion. These functions are generic and represent widely used
computing concepts. They are implemented in most modern
programming languages.

DMA geometry, dimensions, and configuration are ab-
stracted into composite types A (configuration comprising
flow rates, power supply polarity, and thermodynamic state)
and § (DMA domain defined by a mobility—size grid). Each
DMA is fully described by a pair A, . Subscripts and su-
perscripts are used to distinguish between different configu-
rations in chained DMA setups, e.g., with §; and §, denot-
ing the first and second DMA, respectively. Application of
size distribution expressions to transfer functions constructs
a concise model of the transmitted DMA mobility distribu-
tion, denoted as the DMA response function. Implementation
of the language is distributed through a freely available and
independently documented package DifferentialMobility An-
alyzers.jl, written in the Julia language. Expressions in the
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text are provided in general mathematical form for readabil-
ity.

Petters (2018) gives a simple expression that models trans-
fer through the DMA. The function TS?Z’: (k,z%) evaluates
to a vector representing the fraction of particles carrying k
charges that exit DMA®- as a function of mobility

T2 (k. 2%) = Q(Z.2°/k.k) - To(k. Dp1) - Ti(Dp1).  (10)

size

where z* is the centroid mobility selected by the DMA (de-
termined by the voltage and DMA geometry), Z is a vec-
tor of particle mobilities, €2 is the diffusing DMA transfer
function (Stolzenburg and McMurry, 2008), T is the charge
frequency distribution function (Wiedensohler, 1988), and
T; is the diameter-dependent penetration efficiency function
(Reineking and Porstendorfer, 1986). The diameter D 1 =
Dy(Z,k =1) and evaluates to a vector of diameters. The
function €2 has been updated from Petters (2018). The ver-
sion in Petters (2018) computed the shape of the transfer
function for the mobility diameter corresponding to singly
charged particles and then applied the same shape of the
transfer function and diffusional loss to the multiply charged
particles. The functional 2 depends on three arguments
Q(Z, 7%, k) and implicitly on the DMA configuration A (i.e.,
Eq 13 in Stolzenburg and McMurry, 2008). The output is a
vector along the mobility grid Z. The maximum transmis-
sion occurs at Z/z® = 1. The last argument denotes the num-
ber of charges. It is used to compute the mobility diameter
from z* and in turn the diffusion coefficient which is required
to account for diffusional broadening of the transfer func-
tion. The output of Tsli\z’e’S (k, z*%) is the transmission of parti-
cles through the DMA in terms of the true particle mobility
diameter. This is achieved by passing z°/k as an argument
of 2, which corresponds to the centroid mobility setting for
the DMA to transmit particles with k charges under the as-
sumption that they carry only a single charge. The net result
is that D 1 = D,(Z,k = 1) becomes equal to the true mo-
bility diameter axis. As a consequence the charge fraction
T.(k, D) 1) and penetration efficiency 7;(D 1) are evalu-

ated at the correct diameter. The function Tsli\z’f(l, z%) evalu-
ates to a vector of the same length as Z. Performing an el-
ementwise sum over all TS?Z’CB (k,z%) (where the sum is over
all charges k) produces the net transmission probability func-
tion. Multiplication of the transmission probability function
with the input distribution results in the mobilitg/ distribu-
tion transmitted by the DMA. Examples for Tsli\z’e 1,z% -m,
Ts?z’ea (2,7%) -m, and Tsji\z’e‘s (3,7z%) - m are shown in Fig. 2, right
panel, in Petters (2018). Note that Eq. (10) can be evaluated
using arbitrarily discretized Z vectors.

Petters (2018) also gives an expression that evaluates to the
convolution matrix for passage through a single DMA that is
valid in the context of the size distribution measurement sys-
tem, e.g., SMPS. Since the expression includes a summation

over all charges, the information on the particle physical di-
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ameter of multiply charged particles is lost.

A = mapfoldl{z® — Sk — T2k, 2%, m1T, veat, Zs),  (11)

size
where m is the upper number of multiply charged particles, T
is the transpose operator, and Z; is a vector of centroid mo-
bilities scanned by the DMA. The matrix is square if Z; = Z
in Eq. (11). However, this is not a necessary restriction. Equa-
tion (11) evaluates to the same as Eq. (8) in Petters (2018),
but the notation is revised to be more general by removing the
Julia-specific splatting construct and replacing it with more
widely used generic functions.

To help with parsing the expression, Ts?zf (k, z%) evaluates
to a vector of transmission for k charges and setpoint cen-
troid mobility z* as a function of the entire mobility grid
(e.g., 120 bins discretized between mobility z; and z). The

function X[k — TA’a(k,zS),m] superimposes the vectors

S1Z€
for all charges. Mapping z°® — X[k — Tsli\z’e‘S (k, z%),m] over

the centroid mobility grid Z produces an array of vectors,
each corresponding to the transmission for a single size bin.
Transposing the vectors and reducing the collection through
concatenation produces the design matrix that links the mo-
bility size distribution to the response function; i.e.,

r=An+e, (12)

where r is the response distribution, n is the true mobility size
distribution, and € is a vector denoting the random error that
may be superimposed as a result of measurement uncertain-
ties. By design m and r are SizeDistribution objects, which
represent the distribution as a histogram in both spectral den-
sity units (dN/dIn D) and concentration-per-bin units. The
latter is the raw response function, where each element corre-
sponds to the integrated response downstream of DMA 1 for
a set upstream voltage (or corresponding z° or apparent + 1
mobility diameter but not true physical diameter for multiply
charged particles). Note, however, that the response function
is not a true particle size distribution in the scientific sense
since information about multiply charged particles is lost.
The representation of r as a SizeDistribution object is to al-
low response functions to be used in the expression-based
framework used here.

The mobility distribution exiting the humidity conditioner
and before entering DMA 2 in the humidified tandem DMA
is evaluated using the expression
My = g0+ [ 7507 (k.2 n]. a3)
where go = Dwet/ Dary is the diameter growth factor, Dgyy is
the selected diameter by DMA 1, Dy, is the diameter af-
ter the humidifier, Tsli\zé’al (k,z®%) is as in Eq. (10), and n is
the mobility size distribution upstream of DMA 1. Subscripts
are used to differentiate DMA 1 and 2 which possibly have
different geometries, flow rates, thermodynamic states, and
mobility grids, e.g., A1, Ay and &1, §>. To help parse Eq.
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(13), the product Tsf\z‘e’a' (k, z%) - m evaluates to the transmit-
ted mobility distributions of particles carrying k charges at
the setpoint mobility z° in DMA 1. The size distribution is
grown by the growth factor gg, which is achieved by apply-
ing the - operator to the product Ts?zfs‘gl (k, z%) - n. Equation
(13) assumes that gg applies to all particle sizes.

The total humidified apparent 4+ 1 mobility diameter dis-

tribution mfz exiting DMA 2 is given by

m

m? =" (0 M), (14)

k=1

where m is upper number of charges on the multiply charged
particles and

Oy = mapfoldl{z*
— [QM2(Z, 2k, K) - T2 (D D1, veat, Zso) - (15)

is the convolution matrix for transport through DMA 2 and
particles carrying k charges. In Eq. (15), Z; is a vector of
centroid mobilities scanned by DMA 2. Note that the choice
of Z inside 2 is up to the user. Sensible choices are Z = Z; ;
or Z = Z,, the implications of which are further discussed
later. Equations (14) and (15) have been modified from those
in Petters (2018) in the following manner. The convolution
matrix Ok is computed individually for each charge. The ver-
sion in Petters (2018) computed the matrix corresponding
to singly charged particles and then applied the same ma-
trix to multiply charged particles. Since O is now charge
resolved, it is moved into the summation in Eq. (14). Com-
putation of Ok through Eq. (15) has been revised to be more
general by removing a Julia-language-specific construct. O
computed by Eq. (15) produces the same matrix as in Pet-
ters (2018). The resulting mf 2 size distribution represents the
apparent + 1 mobility diameter scanned by DMA 2. Equa-
tions (13)—(15) relax an approximation made in a similar
treatment in Petters (2018). There it was assumed that the ap-
parent 4+ 1 mobility diameter (and thus apparent growth fac-
tor) for particles carrying multiple charges is the same as for
singly charged particles. This is incorrect. Particles carrying
more than a single charge alias at a smaller particle size (Gy-
sel et al., 2009; Shen et al., 2021). The effect is due to the size
dependence of the slip-flow correction factor and is captured
by the revised charge-resolved convolution matrices Ok.

If the aerosol is externally mixed, the humidified apparent
growth factor distribution function exiting DMA 2 is given
by

0]

m?2 =fpg. [Xn: (Ok-Mil)] dgo , (16)

0 k=1

where Py is the growth factor probability density function
and the diameters resulting from the intermediate calculation

Yo (Ok . Mil) are normalized by Dgyy. mfz in Eq. (16)
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is the forward model through the tandem DMA. Using the
notation in Sect. 2.2,

F(x,c) =/pg. [Z (Ok.Mi'>i|dgo , (17)

0 k=1

where x is the discrete representation of the true P, and
the vector ¢ of constraining parameters comprises the DMA
setups A1, Az, 81, and 8, and upstream size distribution n.
Computer code that creates a forward model for tandem
DMAs has been added to the DifferentialMobilty Analyz-
ers.jl package and is annotated in the documentation of the
package.

For purposes of the forward model, the mobility grid for
DMA 1 is discretized at a resolution of i bins by specify-
ing the Z vector in Eq. (10). If the Z vector does not match
that of the aerosol size distribution m, the size distribution
bins are interpolated onto the diameter bins corresponding to
the Z bins. Transmission through DMA 1 is computed for
a specified z° (the dry mobility) and go (the growth factor)
via Eq. (13). The resulting Mi' lies on the same Z grid with
i bins. Any mismatches between the apparent growth factor
and the underlying Z grid are resolved via interpolation im-
plicit in the - operator. (f - m is the uniform scaling of the
diameter field of the size distribution by factor f. If the re-
sulting diameters are off the original diameter grid, the re-
sult is interpolated onto the grid defined within m.) The mo-
bility grid for DMA 2 is represented by the vector Z> in
Eq. (15) and discretized at a resolution of j bins over a cus-
tom mobility range. If the vector Z inside the square brackets
of Eq. (15) [QA292(Z, 25/ k, k).-T,AZ"SZ(D,,,l)] equals that of
DMA 1, the product Ok~Mi1 will map the i bins from DMA 1
to the j bins in DMA 2. Alternatively, if the Z vector inside
the square brackets of Eq. (15) is taken to be equal to Z; », the
matrices Oy are square and of dimension j x j. In that case,
the transmitted and grown distribution from DMA 1 (i bins
along the mobility axis of DMA 1) is interpolated onto the
mobility grid of DMA 2 prior to evaluating Og 'Mil . The ad-
vantage of this approach is that for j < i, the matrices Oy are
smaller and subsequent calculations are faster. The forward
model, defined by Eq. (14), can be evaluated for arbitrary
go values. Thus the growth factor probability distribution Py
in Eq. (17) can be discretized into n arbitrary growth factor
bins. A natural choice is to accept growth factor values that
coincide with the mobility grid of DMA 2; i.e., the bins align
with g = D, 1/Dgq, where Dy is the nominal diameter se-
lected by DMA 1, D, ; is equal to D,(Z, k = 1). However,
this is not required for evaluating Eq. (17). Equation (17) is
cast into matrix form such that the humidified mobility dis-
tribution function is given by

m?2 = BPg +¢, (18)

where the matrix B is understood to be computed for a spe-
cific input aerosol size distribution and € is a vector that de-
notes the random error that may be superimposed as a result
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of measurement uncertainties. If the grids used to represent
the growth factor distribution and that of DMA 2 do not align,
interpolation is used to map the growth factor bins from the
growth factor distribution onto those corresponding to the
DMA 2 grid. The choice of i, j, and n, the ranges of mobil-
ity grids for DMA 1 and DMA 2 and the range of the growth
grid for P, is only constrained by computing resources and a
physically reasonable representation of the problem domain.
Reasonable choices are i = 120 and j = n = 60, where the
range in apparent growth factor spans 0.8 < g < 5.0. The
size of B is j x n. Uncertainties in the size distribution prop-
agate into B. The main influence of the error will be the rela-
tive fraction of +1, 42, and 43 charged particles. Assuming
a random error of 20 % in concentration, the overall ef-
fect on mf 2 is expected to be small. Note that interpolation is
widely used in this framework. Interpolation may affect how
errors propagate through the model. Interpolation in Eq. (13)
is unavoidable. However, interpolation can be minimized by
working with non-square Ok and matching the grid of P, to
that of DMA 2. Informal tests working with different binning
schemes suggest that the influence of interpolation choices
on the final result is smaller than typical experimental errors.
Figure 1 shows an example application of Eq. (18) for an
input growth factor frequency distribution where all particles
are assumed to have the same growth factor of ~ 1.6. The
frequency distribution is evaluated along a discrete growth
factor grid with 120 bins with the range 0.8 < g < 5. Note
that the size grid (or apparent growth factor grid) must be
extended to large sizes to capture the growth of multiply
charged particles computed via Eq. (13). The assumed in-
put size distribution is bimodal with mode diameters of 60
and 140nm, geometric standard deviations of 1.4 and 1.6,
and number concentrations of 1300 and 2000 cm ™~ in modes
1 and 2, respectively. The assumed sheath-to-sample flow ra-
tios are 5:1 in both DMAs. The product BP, is the raw
response that would be measured by a condensation particle
counter at the exit of the instrument. The contribution of +1,
+2, and +3 charged particles to the total can be computed via
Ok - Mil . Although the nominal growth factor is the same for
all sizes, the apparent mode of the growth factor decreases
with increasing particle charge (see also Gysel et al., 2009;
Shen et al., 2021). Therefore the axis is denoted as the appar-
ent growth factor. Summing the partial distributions results in
BP,, demonstrating that the matrix equation correctly maps
P, to the response, including multiply charged particles.
Figure 2 shows the relationship between four illustrative
growth factor frequency distributions and the modeled ap-
parent mobility distribution functions. The apparent mobility
distribution function represents the raw particle concentra-
tion that would be measured by a detector as a function of the
apparent 4+ 1 mobility diameter. The diameter axis is normal-
ized by the dry diameter selected by DMA 1. The selected
examples comprise a testbed to evaluate the feasibility of an
SMPS-style matrix-based inversion to recover Pg. The Pop-
ulations example consists of an external mixture with com-
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Figure 1. (a) Input growth factor probability density dF/dg assuming that all particles have a single growth factor of ~ 1.6. The area
under the curve evaluates to unity. (b) Modeled apparent mobility distribution function calculated using Eq. (15) and partial distributions for

individual charges of k equals 41, 42, and 4-3 computed via Oy -Mi' . The example is free of measurement error; i.e., € = 0. The black trace
is what would be observed by a hypothetical measurement with a condensation particle counter.
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Figure 2. (a) Illustrative input growth factor probability density distributions. The area under the curve evaluates to unity. (b) Corresponding
modeled apparent mobility distribution function calculated using Eq. (15). The example is free of measurement error; i.e., € = 0.

positions corresponding to four unique growth factors. The
Bimodal example is the superposition of two Gaussian distri-
butions with 70 % of particles in the less hygroscopic mode.
The Truncated example is a Gaussian distribution truncated
at g = 1.0. The Uniform example is a uniform distribution
over a fixed interval. All frequency distributions integrate to
unity, thus accounting for 100 % of the particle population.
The dry diameter and assumed input size distribution to com-
pute the matrix B are the same as in Fig. 1. However, unlike
in Fig. 1, the frequency distribution and matrix are evalu-
ated along a coarser discrete growth factor grid with 60 bins
with the range 0.8 < g < 5. Note that the growth factor bin
width is not constant, with wider bins at larger growth fac-
tors. This is due to the evaluation of the humidified size dis-
tribution along a geometrically stepped mobility grid. As will
be shown next, 60-bin resolution is a suitable compromise
between speed, accuracy, and resolution when computing the
matrix-based inversion to infer P, from noise-perturbed ap-
parent growth factor frequency distributions.
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3 Matrix inversion of the humidified mobility
distribution function using synthetic data

Simulated examples are used to test if Eq. (18) is invert-
ible. Figure 3 shows an example simulation for the Bimodal
growth factor distribution test case. The humidified apparent
growth factor distributions are calculated using Eq. (18). The
noise-free example corresponds to € = 0 and represents the
idealized measurement. Poisson counting statistics are simu-
lated by converting concentration to the expected number of
counts for a typical particle counter flow rate and bin inte-
gration time. Counts in each bin are computed by drawing a
pseudo-random number from a Poisson distribution and con-
verting the result back to concentration. Lower flow rates and
shorter integration times increase the noise perturbation of
the apparent growth factor distribution. The apparent growth
factor distribution is then inverted using the LoD1.—3Bo,1]
and LyxoByo,1] method. Here Bjg 1) is shorthand for setting
all lower bounds equal to zero and all upper bounds equal
to 1. The a priori estimate x is taken to be the normalized ap-

Atmos. Meas. Tech., 14, 7909-7928, 2021



7918

M. D. Petters: Revisiting matrix inversions

@ ®) .
T < 2.0
! B
g =
2 (%]
= c
c 3] 1.5
.0 [a) M Truth
= 5 H No noise >
S mo=1pm 5 W LD, 3Bg ¢, 0.002
c = X
[} —g B L%0Bjg 43, 0.003
e o
5 S o5
O g ©

0 0.0

1.0 1.5 2.0 2.5 1.0 1.5 2.0 2.5

Apparent Growth Factor (-)

Growth Factor (-)

Figure 3. (a) Humidified apparent growth factor distribution function for the Bimodal example comprising superposition of two Gaussian

distributions with 70 % of particles in the less hygroscopic mode. The distributions are calculated as mfz = BPg+e. “No noise” corresponds
toe =0.“Q = 11pm” corresponds to the simulated Poisson noise equivalent for a condensation particle counter measuring at a flow rate of
1L min~! and bin integration time of 2 s per bin. (b) Inverted growth factor probability density distribution using the LyD1._3BJg, 1] and
L2x0 B[o,1] method. The area under the curve evaluates to unity. The a priori estimate x is the normalized apparent growth factor distribution.
Values in the legend (0.002 and 0.003) correspond to the root mean square error between the true input (Truth) and the regularized solution

evaluated in frequency space.

parent growth factor distribution derived from the measured
response function, where the normalization ensures that the
sum over all bins is unity. Note that the inversion is per-
formed treating the growth factor distribution in units of fre-
quency instead of frequency density. This choice enables the
upper bound constraint of unity. Since the true noise-free in-
put growth factor frequency distribution is known, the fidelity
of the inversion can be evaluated by computing the root mean
square error between the noise-free solution and the regular-
ized solution. Evaluating the root mean square error in fre-
quency rather than frequency density space results in more
comparable values when contrasting narrow and broad prob-
ability distribution functions. The figure shows that both in-
version methods produce a root mean square error between
0.002 and 0.003. Values less than 0.01 are typical of the re-
construction of Bimodal distributions at this bin resolution
(see Supplement). Visual evaluation of the agreement be-
tween the reconstruction and the input suggests that either
method is suitable for inversion.

Figure 4 is similar to Fig. 3, showing an example simula-
tion for aerosol with uniform composition; i.e., all particles
have the same growth factor. Although the LyxoBo,1] ap-
proach correctly infers the most probable growth factor, the
predicted distribution is incorrect. Multiple modes to the left
and right of the main mode are observed. The L,xo method
produces an oscillatory solution with negative values (not
shown). The small modes are the residual of this oscillatory
solution that is truncated by the enforced [0,1] bound and the
inability of the least-squares solver to converge on a better
solution. A large root mean square error of 0.107 results. In
contrast, the data-constrained method Lo D1.—3 B[, 1] leads to
better reconstruction of the true input. The main advantage of
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the LoDj.—3Bjo,1] inversion method over Lyxo B[, 1] is that
it is better able to reconstruct inputs with sharp edges.

The total number of composable regularization methods
according to Eq. (5) is 24. Half of these methods do not
include lower and upper bounds, and these are not suitable
for tandem DMA inversion due to the negative and oscilla-
tory solutions for narrow inputs. The remaining 12 methods
have been systematically tested using Monte Carlo analy-
sis described in detail in the supporting information. Briefly,
60000 inversions were performed on synthetic data simi-
larly to the examples shown in Figs. 3 and 4. The total
number concentration, dry diameter, number of bins, and
random seeds were varied, and the root mean square er-
ror was evaluated for each simulation. Results compiled in
Fig. S1 show that all of the methods perform equally well
for the Bimodal, Uniform, and Truncated examples shown in
Fig. 3. Method LoDi.—3Bo,1] outperforms the other meth-
ods for grids with < 60 growth factor bins with the range
0.8 < g <5 and test cases with either one (e.g., Fig. 4) or
two discrete populations. However, even LoD1.—3Bjo,1] can
lead to results similar to the example Lx¢B[o,1] shown in
Fig. 4 for some random seeds. Higher-resolution grids gen-
erally lead to poor performance for discrete populations even
for method LoD1.—3Bjo,1.

An alternative approach to fit single-component data is to
perform a nonlinear least-squares fit to match the apparent
growth factor distribution using the forward model while re-
stricting the number of compositions to either one or two.
This corresponds to a two- or four-parameter fit. Results from
this procedure are either one or two growth factors and one
or two fractions. The corresponding methods are denoted
as LSQ; and LSQ», respectively. In the example shown in
Fig. 4, LSQ; has the smallest root mean square error and is
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Figure 4. (a) Humidified apparent growth factor distribution function assuming that all particles have a single growth factor of ~ 1.6. The
black histogram corresponds to the input to the inversion, which is the noise-perturbed apparent growth factor distribution with the simulated
Poisson noise equivalent for a condensation particle counter measuring at a flow rate of 1 Lmin~! and bin integration time of 2s per
bin. Colored lines depict the predicted apparent growth factor distributions based on the corresponding inversion shown in the right panel.
(b) Inverted growth factor frequency distribution from the noise-perturbed spectrum. The true growth factor frequency distribution (black
line) is obscured behind the gold and blue lines and is as in Fig. 1, left panel. Colors correspond to the inverted size distribution using the
LoDie—3Bj0,1}, L2x0Bjo,1] and LSQ methods. The a priori estimate x is the normalized apparent growth factor distribution. Values in
the legend (0.107, 0.086, 0.001) correspond to the root mean square error between the true noise-free solution and the proposed solution.

the best method to reconstruct the true growth factor. The
LSQ; method is most suitable for inferring the growth fac-
tor for laboratory measurements when it is known that the
aerosol is internally mixed and only a single growth factor is
expected.

Which method, however, should be selected when invert-
ing real-world data and when the number of components
is unknown? Since the true solution is also unknown, the
root mean square error between the truth and reconstruc-
tion is unavailable. It is, however, possible to compute the
residual between the measured apparent growth factor dis-
tribution and the predicted apparent growth factor distribu-
tion from different reconstructions. A large residual can be
used to flag truncated oscillatory solutions such as Lyx By, 1
for narrow/single-composition cases. Similarly, the residual
is high if the true input is a broad growth factor frequency
distribution that is attempted to be fitted using LSQ;. For ex-
ample, the red spectrum in the left graph of Fig. 4 shows poor
agreement with the input and results in a much larger resid-
ual than LSQ; (values not shown). Therefore, a proposed un-
supervised inversion scheme is to compute the solution of
LSQjq, LSQy, and LoD1.—3Bjo,1] and then select the solution
with the lowest residual relative to the apparent growth factor
distribution.

Note, however, that the low residuals between the apparent
growth factor distribution and the model do not automatically
ensure that the algorithm has a good or adequate solution.
Additional tests should be performed to validate the physical
plausibility of the solution. For example, the retrieved growth
factors should be physically plausible at the applied relative
humidity. The mode of the apparent growth factor distribu-
tion and the mode of the inverted growth factor distribution
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should be similar. A histogram of the root mean square error
between can be plotted for a large dataset. Visual inspection
of fits for large root mean square error can be used to derive
a threshold above which reconstructions are automatically
rejected. The integrated probability density function of the
reconstructions should be near unity. Deviations from unity
may occur due to concentration errors between the size distri-
bution measurement and the growth factor distribution mea-
surement, unaccounted transmission losses, and errors from
the inversion. Reconstructions deviating significantly from
unity should be flagged and rejected.

A limitation of the above approach is that the forward
model (and thus matrix B) assumes that the larger multiply
charged particles have the same growth factor frequency dis-
tribution as the smaller singly charged particles. This lim-
itation can in principle be eliminated by specifying a 2D
probability frequency distribution that also depends on the
dry diameter. Constructing an appropriate forward model that
adds another integration dimension to Eq. (17) is straightfor-
ward. An inversion that solves for the 2D frequency distri-
bution, similarly to those performed elsewhere (Rawat et al.,
2016; Sipkens et al., 2020), is feasible using the algorithms
in RegularizationTools.jl and has been attempted by the au-
thor. In practice, however, this approach proved impractical.
For example, using 10 dry diameters and a 30-bin size res-
olution results in a large inversion matrix. Adding an inte-
gration dimension to the forward model and recomputing
this matrix for each scan significantly slows the inversion.
Furthermore, interpolation is needed to estimate the growth
factor frequency distribution for the multiply charged par-
ticles. The physical size of the multiply charged particles
depends on their charge. For example, +2 charged particles
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are approximately 1.5 times larger than +1 charged particles.
The diameter of the multiply charged particles will therefore
not necessarily coincide with any of the 10 dry diameters
selected for direct measurement. This introduces additional
uncertainty due to assumptions that need to be made in the
interpolation scheme. Errors from scans with low non-zero
concentration at the edge of the size distribution propagate
back into the inversion at other dry sizes. Finally, only a sin-
gle size distribution can be used to compute the matrix B.
Collecting data for 10 dry sizes can take 20 min or longer,
during which the aerosol size distribution may change, thus
invalidating the use of a single inversion matrix. In situa-
tions where the temporal evolution of the size distribution
is predictable, e.g., environmental chamber measurements,
Kalman smoothing might be used to predict the in-between
states (Ozon et al., 2021b, a). Although no exhaustive anal-
ysis was performed, the compounding errors during a 2D
inversion seem to outweigh the benefits of relaxing the as-
sumption that 42 and +3 charged particles have the same
growth factor frequency distribution as the +1 charged parti-
cles.

4 Inversion of real-world data
4.1 Data sources
4.1.1 Bodega Marine Laboratory

Aerosol size distribution data to contrast inversion schemes
were obtained from measurements taken at Bodega Marine
Laboratory (39°18'25” N, 123°3/58” W) between 16 January
and 8 March 2015 as part of the CalWater 2/ACAPEX cam-
paign. A subset of the data have been published by Atwood
et al. (2019). Sample flow was brought into a mobile lab-
oratory using an inlet, dried to 1042 % relative humidity
using a Nafion membrane drier, and brought to charge equi-
librium using an X-ray source (TSI 3088, TSI Inc., Shore-
view, MN, USA) prior to entering a cylindrical DMA col-
umn (TSI 3081). The DMA was configured to measure the
size distribution in scanning mobility particle sizer mode.
Voltage was scanned exponentially from 10kV to 10V over
300s. A condensation particle counter (TSI 3771, flow rate
1Lmin~") and a cloud condensation nuclei counter (DMT
Model 100, Droplet Measurement Technologies, Boulder,
CO, USA, flow rate 0.3L min_l) were used to measure par-
ticle concentration downstream of the DMA. The sheath-to-
sample flow rate in the DMA was 5 : 1.3 L min~!. Raw DMA
response distributions comprising concentration measured
by a condensation particle counter (CPC) vs. apparent + 1
mobility diameter were constructed along a 120-bin, geomet-
rically stepped mobility grid. Response distributions are de-
noted as r. The apparent 4+ 1 mobility diameter is computed
from the centroid mobility selected by the DMA assuming
that all particles are singly charged. The dynamic diameter
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range for this setup is from 12 to 550 nm. The inversion ma-
trix A is computed using Eq. (11) for the diffusionally broad-
ened transfer function (Stolzenburg and McMurry, 2008) and
transmission loss correction through the DMA (Reineking
and Porstendorfer, 1986). Inclusion of these terms results in a
more ill-posed inverse problem due to increasing overlap be-
tween the kernels (Kandlikar and Ramachandran, 1999). The
DMA response functions were inverted using the Loxo B0, 0]
and L Bjp, ) methods. The a priori estimate for LoxoBo,o0]
was taken to be xo =S~ !r, where S is obtained by sum-
ming the rows of A and placing the results on the diagonal
of S (Talukdar and Swihart, 2003). The method Lox( Bjo,00]
with xo = S~1r is essentially equivalent to the method used
by Petters (2018), where it was shown that the thus-inverted
spectra are similar to those output by the inversion algorithm
employed by the commercial TSI Aerosol Instrument Man-
ager software suite. Small differences between LxoBjo,o0]
employed here and the approach of Petters (2018) include
the use of generalized cross-validation instead of the L-curve
method to search for the optimal regularization parameter
and the method to eliminate negative values after inversion.
Petters (2018) truncated negative values instead of using a
least-squares numerical solver as described in Sect. 2.1.3.

4.1.2 Southern Great Plains site

Aerosol size distribution and humidified tandem DMA data
to illustrate the tandem DMA inversion schemes were taken
from measurements made by the US Department of Energy
(DOE) Atmospheric Radiation Measurement (ARM) pro-
gram. The Southern Great Plains (SGP) site is located in La-
mont, OK, USA (36°36'26.4" N, 97°29'15.5” W), in a rural
continental setting that is surrounded by agricultural activity
as well as oil and gas production. The aerosol evolution at the
site is influenced by frequent new-particle-formation events
(Hodshire et al., 2016; Chen et al., 2018; Marinescu et al.,
2019). Number concentrations fluctuate in response to the
nitrate and organic aerosol cycle on short timescales and syn-
optic weather variability on longer timescales. During winter
months, the inorganic aerosol composition at the site is dom-
inated by nitrate aerosol (Jefferson et al., 2017; Mahish et al.,
2018), and hygroscopicity derived from scattering measure-
ments is largest during those months (Jefferson et al., 2017).

The instruments and measurements are part of the Aerosol
Observing System (AOS; Uin and Smith, 2020). The instru-
ments are operated by DOE personnel, and data are dis-
tributed through a publicly accessible archive. Size distribu-
tions were measured with a scanning mobility particle sizer
(TSI Model 3936; Kuang, 2016). Data in the archive have
already been inverted and are reported at 5Smin intervals.
Humidified DMA response functions were measured using
a humidified tandem DMA (Model 3100, Brechtel Manufac-
turing, Inc., Hayward, CA, USA). The first and second DMA
are operated at a 5:0.63Lmin~! and 5: 1 Lmin~' sheath-
to-sample flow ratio, respectively (Janek Uin, personal com-

https://doi.org/10.5194/amt-14-7909-2021



M. D. Petters: Revisiting matrix inversions

(a)
MT\ 50
=
£ 40
c o
2 I
-
© 30 E
= a
g 20 =
C
S 2
] zZ
— ©
2 10
£
=}
=z 0

10 50 100 500

Apparent +1 Mobility Diameter (nm)

7921

(b)
1500
1000
| | LoxoB[O’m]
| LzB[O’W]
500 M xo

10 50 100 500

Mobility Diameter (nm)

Figure 5. (a) Raw DMA response function for a single scan on 5 March 2015 at 10:40 UTC at Bodega Marine Laboratory. (b) Inverted size
distribution using the LoxB[o,c0] and L3 B|y, o0] method and the a priori estimate of the solution x( = S—1r.

munication, 2021). The instrument measures the humidified
mobility distribution function at 85 % relative humidity for
50, 100, 150, 200, and 250 nm dry-diameter particles. Typi-
cal data density results in 228 scans per day, with equal cov-
erage for the five dry sizes. Pre-processing that has already
been applied to the archived data accounts for conversion
between mobility and apparent mobility diameter, the size-
dependent detector counting efficiency, and number count
smearing during the scan resulting from insufficient particle
counter response time. When divided by the dry diameter,
the archived data correspond to the apparent growth factor
distribution evaluated by the forward model in Eq. (17).

The matrix B was evaluated for each scan using the flow
rates given above, the dimensions of the DMAs given in
Lopez-Yglesias et al. (2014), and the aerosol size distribu-
tion measured by the co-located SMPS with the timestamp
closest to the scan of the humidified tandem DMA. Typical
time differences between the two instruments’ scan times are
between 1 and 3 min. The humidified size distribution was
interpolated onto a discrete growth factor grid with 60 bins
with the range 0.8 < g < 5.0 to match the matrix B. The
data were then inverted using the LoD1.—3Bo,1] method.
The method Lo D1.—3B|o,17 was further constrained such that
growth factors (gf’s) < 1 are disallowed. This is achieved by
setting the upper bound to zero for bins with gf < 1. Growth
factors of less than unity can occur due to particle restruc-
turing upon humidification (Mikhailov et al., 2004; Shingler
et al., 2016) or evaporation during transit through the humid-
ifier and second DMA. Both effects are assumed to be less
important for ambient aerosol compared to the desire to con-
strain the inversion. In addition, the efficacy of the LSQ; and
LSQ; methods for inverting the data was tested. For each
scan, the root mean square error between the measured ap-
parent growth factor distribution and the predicted growth
factor distribution was evaluated for all three inversion ap-
proaches (LoD1.—3B[0,1], LSQ1, and LSQ>). The method
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that resulted in the smallest residual was taken to be the in-
verted growth factor frequency distribution.

4.2 Results

4.2.1 Inversion of size distribution data (Bodega
Marine Laboratory site)

Figure 5 shows a real-world example size distribution re-
sponse function gridded into 120 size bins. The total particle
concentration is ~ 2000 cm~>. The ragged structure is typ-
ically explained by random noise due to Poisson counting
statistics. However, in this example the noise level is larger
than Poisson counting statistics alone, which is thought to be
due to the processing of raw data internal to the specific CPC
model that was used to collect the data. At this diameter reso-
lution and with inclusion of the diffusion and loss terms in the
forward model, the unregularized matrix inverse is entirely
dominated by amplified random noise and is useless. The
Loxo Bjo,00) method converges to the solution with slight am-
plification of the random noise presented in the raw response
function. The random noise is carried over into the a priori
estimate xo = S~ !r, which roughly represents the noise vis-
ible in the reconstructed solution. Nevertheless, Loxo B0, 0]
is highly robust and unlikely to go astray because x is an
excellent approximation of the solution at diameters of less
than 100 nm where singly charged particles dominate and is a
good initial estimate for larger particles. Second-order inver-
sion using L3 B[o,o0] produces a smooth, denoised solution
due to application of the derivative operator in the regular-
ization filter matrix. The solution converges even though no
a priori estimate is used; i.e., xo = 0. Inclusion of an a pri-
ori in the form of LoxoBjo,«0] is possible. However, noise in
the a priori propagates into the solution, thus negating the in-
tended benefit of the second-order Tikhonov matrix. The al-
gorithms specified in Sect. 2.1.2 significantly speed up the in-
version relative to previous versions of the software (Petters,
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2018). Wall-clock times on an i7-8559U CPU for the inver-
sion of a single spectrum are 5 and 2 ms for LoxoBo,o0] and
L7 Bjo,o0], respectively. This contrasts to the 500 to 1000 ms
required by the brute-force algorithm — approximately equiv-
alent to LoxoB[o,00] — used previously. Finding the global
minimum of V()) to identify the optimal regularization pa-
rameter also eliminates the occasional failure to converge
when the L-curve algorithm is used (Petters, 2018). Either
LoxoBo,00] or L2B[0,00], combined with generalized cross-
validation, is suitable for use in routine unsupervised inver-
sion of size distribution data.

Figure 6 shows the time evolution of the normalized par-
ticle size distributions over a 7-week period. The normal-
ization is to highlight changes in the mode diameter(s). In
general, the aerosol at the site is dominated by continental
rural background conditions and the land—sea breeze circu-
lation (Atwood et al., 2019). The time series is punctuated
by aerosol transported from the California Central Valley
to the site through the Petaluma Gap (Martin et al., 2017).
Periods of low particle concentration occurred during the
passage of an atmospheric river on 7-9 February 2015 and
a marine inflow event on 27-28 February 2015. The at-
mospheric river brought heavy precipitation and marine air
masses from the southwest direction, while the marine in-
flow event brought strong winds and precipitation-free mar-
itime air from the northwest direction. Several periods of pro-
longed modal growth were observed starting, e.g., 11 and
24 February and 1 March 2015. Figure 6 demonstrates the
influence of inversion noise on visualizing the dynamic evo-
lution of the size distribution. The denoised Ly B[, o] solu-
tion significantly improves visualization of modes without
the need to reduce the size resolution in the inversion. The
signal is especially improved during low-concentration peri-
ods during the atmospheric river passage and marine inflow
event.

4.2.2 Inversion humidified tandem DMA data (DOE
ARM SGP site)

Figure 7 shows real-world examples of growth factor fre-
quency distributions for five dry sizes. Also shown for con-
text is the evolution of the normalized aerosol number size
distribution. Figure 7 shows dynamic evolution of the size
distribution with sudden changes in mode diameter, sev-
eral apparent new particle formation events, and several pro-
longed modal growth events. The distribution of the meth-
ods selected for best inversion was LSQ; (~5 % of spec-
tra), LSQ2 (~50 % of spectra), and LoD1.—3Bjo,1] (~45 %
of spectra). In Fig. 7, the LSQ, inverted frequency distribu-
tions show a clean bimodal structure (two colors per scan),
while the LoD1.—3Bjo,1] spectra appear more smeared. The
250 nm dry-diameter data show a dominant contribution of
more hygroscopic particles with gf ~1.5-1.6 and a small
contribution of less hygroscopic particles with gf ~ 1.05-1.2.
Similar trends are observed for 200, 150, and 100 nm par-
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ticles. However, the hygroscopicity of the dominant mode
decreases with decreasing diameter. The fraction of cases
where a broad hygroscopicity frequency distribution is ob-
served is larger than for the 250 nm particles. Notably, time
periods with broad growth factor frequency distributions are
observed at multiple sizes. For example, the period of 9-11
February 2020 shows a broad frequency distribution at 100,
150, 200, and 250 nm dry diameters. Occasionally temporal
trends in the hygroscopicity of the less hygroscopic mode are
observed. For example, the growth factor of the less hygro-
scopic mode systematically increases on 20 February 2020
for 150, 200, and 250 nm particles, indicative of a chemi-
cal transformation of some, but not all, of the particles. The
50 nm dry-particle hygroscopicity frequency distributions are
also predominantly bimodal. However, the overall growth
factor is significantly smaller, with most gf < 1.2.

5 Discussion, summary, and conclusions

RegularizationTools.]l is a general-purpose software package
to invert data using L, regularization. It is included as a sup-
plement to this work and published as free software through
the GNU General Public License. The package implements
well-established numerical algorithms (Golub et al., 1979;
Eldén, 1982; Bates et al., 1986; Hansen, 1998, 2000; Mo-
gensen and Riseth, 2018) and filter matrices (Huckle and
Sedlacek, 2012). Systems with up to ~ 1000 equations can
be inverted. The upper limit is determined by the need to
compute the generalized singular value decomposition of the
design matrix and filter matrix, which has at minimum O (n?)
time complexity. The time to compute the generalized singu-
lar value decomposition exceeds several tens of seconds for
systems exceeding 1000 equations. Iterative methods to sup-
port inversion of large-scale systems have been formulated
(e.g., Lampe et al., 2012), but these are currently not imple-
mented.

The software package can be used to simplify the proto-
typing of a wide variety of inverse problems that arise in
science and engineering applications. Although the package
does not add any novel regularization methods, it provides
a systematic method to categorize inversion methods via the
expression in Eq. (5). A total of 24 basic permutations can be
combined with a set of hyperparameters to attempt the inver-
sion of ill-posed problems. Hyperparameters include bound-
ary constraints, values for a priori estimates, and the lower-
bound € for the Huckle and Sedlacek (2012) two-pass inver-
sion approach. Users can define custom filter matrices and
thus are able to further extend the number of methods. Equa-
tion (7) provides an example of a simplified interface that al-
lows testing of different permutations with a simple function
call. Furthermore, a generic interface is provided to translate
arbitrary linear forward models defined by a computer func-
tion into the corresponding matrix of linear transformation.
This obviates the need to explicitly write out the Fredholm
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Figure 6. Time evolution of the normalized particle size distributions collected between 16 January and 7 March at Bodega Marine Labora-
tory. The normalization is for each size distribution such that the maximum of the spectral density equals unity. The red color visualizes the
time evolution of the mode diameter of the dominant mode. Top panel: inverted using Lox( B[g,o0]; bottom panel: inverted using L Bj oo]-

integral equation and discretize it using the quadrature or the
Galerkin method. For example, the forward model for trans-
fer of a growth factor frequency distribution through the tan-
dem DMA in Eq. (17) represents a triple integral and also
contains a sum term for the multiple charges. Explicit dis-
cretization of this model would be tedious compared to the
method employed here. As demonstrated in the documenta-
tion of the package, the generic interface can readily be used
to solve other common inversion problems. Only a few lines
of new code are needed to reproduce the essential core of the
algorithm used in the unsupervised inversion of lidar data
(Miiller et al., 2019), which involves the retrieval of a size
distribution from multi-wavelength scattering and absorption
data (see package documentation for code).

L, regularization is one of several techniques that is suit-
able for inverting size distribution data (e.g., Voutilainen
et al., 2001; Kandlikar and Ramachandran, 1999). The tech-
nique has been used previously for size distribution inver-
sion (e.g., Wolfenbarger and Seinfeld, 1990; Talukdar and
Swihart, 2003; Petters, 2018). An advantage of this method
is that data can be inverted when the number of data chan-
nels becomes large (Talukdar and Swihart, 2003). In contrast,
Bayesian inversion schemes, which are not further discussed
here, are suitable for uncertainty quantification (Voutilainen
et al., 2001). To the author’s knowledge the package Dif-
ferentialMobility Analyzers.jl is the only publicly available
free software for size distribution inversion from DMA data.
This work extends the capabilities of that package. The
LoxoB[o,00) and L Bjo,«0] methods can be used with gen-
eralized cross-validation to perform fast unsupervised in-
version of size distribution data. Convergence issues result-
ing from the use of the L-curve method used previously
(Petters, 2018) are resolved by switching to the generalized
cross-validation approach to find the optimal regularization
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parameter. Higher-order inversions resulting in smooth, de-
noised solutions are now available. It is expected that such
denoised spectra will benefit unsupervised machine-learning
approaches that seek to extract features from such datasets
(e.g., Joutsensaari et al., 2018; Atwood et al., 2019), although
this hypothesis has not been tested by the author. Revision
of the numerical algorithms improves the speed of inversion
by a factor of ~200. The millisecond inversion speed for
a single scan permits rapid inversion of large datasets and
facilitates inversion in real time during data acquisition on
low-cost and low-computational-power hardware platforms.
For example, the inversion has been tested on ARM Cortex
A72/A53 64 bit reduced-instruction-set architecture used by
the ROCKPro64 single-board computer. The Julia language
provides tier-1 support for this architecture. Julia binaries are
available; DifferentialMobilitity Analyzers.jl and Regulariza-
tionTools.jl compile and run without any modification. Inver-
sion speeds on the order of several tens of milliseconds are
fast enough on this inexpensive but relatively low powered
platform to permit embedding the inversion into the data ac-
quisition and display software and running the inversion be-
fore each display update.

To the author’s knowledge this is the first time L, regu-
larization has been applied to the inversion of tandem DMA
data. Inversion of simulated data shows that an SMPS-style
matrix-based inversion is possible while also accounting
for multiply charged particles. Application of solution con-
straints fixes the issue of oscillatory and negative solutions
that were encountered with the matrix-based optimal estima-
tion method used by Cubison et al. (2005). The 12 methods
that include boundary constraints were systematically tested
against five test cases. All of the methods performed simi-
larly well when inverting frequency distributions. However,
poor results were obtained when inverting narrow distribu-
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Figure 7. (a) Time evolution of the normalized particle size distributions collected between 6 and 22 February at the Southern Great Plains
research site. The normalization is for each size distribution such that the maximum of the spectral density equals unity. (b—f) Inverted growth
factor frequency distributions at 85 % relative humidity for 250, 200, 150, 100, and 50 nm particles, respectively.

tions or data produced by single compositions. The method
LoD1.—3Bjp,1] is often, but not always, able to invert these
data. For narrow distributions a nonlinear least-squares fit
with either one or two growth factors, termed LSQ; and
LSQ3, can fill this gap. Ambient data can be inverted by
applying all three methods and then selecting the inversion
with the smallest root mean square error between the data
and the prediction. In contrast to previous inversion routines
(Stolzenburg and McMurry, 1988; Cubison et al., 2005; Gy-
sel et al., 2009), explicit knowledge of the aerosol size dis-
tribution is needed. These data can be obtained either using
a co-located scanning mobility particle sizer or by configur-
ing the tandem DMA to also measure the size distribution
every few scans. The resulting algorithm is unsupervised and
nonparametric; i.e., it can be fully automated and does not re-
quire any a priori assumption about the functional form of the
growth factor frequency distribution. The speed of the inver-
sion algorithm is much slower than for size distribution in-
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version for several reasons. For each scan, the matrix B must
be recomputed to account for changes in the size distribution.
This requires recomputing the generalized singular value de-
composition for B and L, which is slow. Furthermore, three
inversions are computed for each scan. The LSQ; and LSQ;
methods use a gradient descent algorithm together with the
forward model, which is slower than the matrix inverse. Nev-
ertheless, a single day’s worth of data can be inverted on a
regular personal computer within a few minutes.
Application of the inversion to a 16 d dataset demonstrates
that the thus-obtained growth factor frequency distribution
data can reveal significant details about the mixing state of
the aerosol. The inverted dataset is suitable as input to carry
out common analyses made with growth factor frequency
distributions. Examples include the characterization of the
evolution of the aerosol mixing state as a function of time,
characterization of changes in the growth factor with the
dry diameter and its relationship to chemical composition,
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or characterization of the growth factor at the mode diam-
eter of particles during modal growth events (Park et al.,
2008; Wu et al., 2013; Jung and Kawamura, 2014). Ad-
ditional examples include the decomposition of the hygro-
scopicity frequency distributions into distinct growth factor
classes (Swietlicki et al., 2008), evaluation of the temporal
trends of spectral concentration for hygroscopicity-resolved
data (Royalty et al., 2017), evaluation of the accuracy of (or-
ganic) mass concentration measured by aerosol mass spec-
trometers through hygroscopicity constraints (Jimenez et al.,
2016), and inclusion of growth factor frequency distributions
to account for the mixing state in aerosol hygroscopicity to
cloud condensation nuclei closure (Mahish et al., 2018).

Code and data availability. Current and future versions of the
DifferentialMobilityAnalyzers.jl and RegularizationTools.jl are
also hosted on GitHub. Details about the SGP HTDMA data
and the SMPS data are provided in the references. Source
code to reproduce the figures, derived datasets, and archived
versions of the software packages is available via Zenodo:
https://doi.org/10.5281/zenodo.5550382 (Petters, 2021).
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