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Abstract. Methane (CH4) is the second most important an-
thropogenic greenhouse gas with a significant impact on ra-
diative forcing, tropospheric air quality, and stratospheric
water vapor. Remote sensing observations enable the detec-
tion and quantification of local methane emissions across
large geographical areas, which is a critical step for under-
standing local flux distributions and subsequently prioritizing
mitigation strategies. Obtaining methane column concentra-
tion measurements with low noise and minimal surface inter-
ference has direct consequences for accurately determining
the location and emission rates of methane sources. The qual-
ity of retrieved column enhancements depends on the choices
of the instrument and retrieval parameters. Here, we studied
the changes in precision error and bias as a result of dif-
ferent spectral resolutions, instrument optical performance,
and detector exposure times by using a realistic instrument
noise model. In addition, we formally analyzed the impact
of spectrally complex surface albedo features on retrievals
using the iterative maximum a posteriori differential opti-
cal absorption spectroscopy (IMAP-DOAS) algorithm. We
built an end-to-end modeling framework that can simulate
observed radiances from reflected solar irradiance through a
simulated CH4 plume over several natural and artificial sur-
faces. Our analysis shows that complex surface features can
alias into retrieved methane abundances, explaining the ex-
istence of retrieval biases in current airborne methane ob-
servations. The impact can be mitigated with higher spec-
tral resolution and a larger polynomial degree to approxi-
mate surface albedo variations. Using a spectral resolution
of 1.5 nm, an exposure time of 20 ms, and a polynomial de-

gree of 25, a retrieval precision error below 0.007 molem−2

or 1.0 % of total atmospheric CH4 column can be achieved
for high albedo cases, while minimizing the bias due to sur-
face interference such that the noise is uncorrelated among
various surfaces. At coarser spectral resolutions, it becomes
increasingly harder to separate complex surface albedo fea-
tures from atmospheric absorption features. Our modeling
framework provides the basis for assessing tradeoffs for fu-
ture remote sensing instruments and algorithmic designs. For
instance, we find that improving the spectral resolution be-
yond 0.2 nm would actually decrease the retrieval precision,
as detector readout noise will play an increasing role. Our
work contributes towards building an enhanced monitoring
system that can measure CH4 concentration fields to deter-
mine methane sources accurately and efficiently at scale.

1 Introduction

Anthropogenic greenhouse gas emissions have been ris-
ing continuously, affecting the global climate and the en-
vironment (Stocker et al., 2013). Among the most impor-
tant anthropogenic emissions are carbon dioxide (CO2) and
methane (CH4). Due to a much shorter lifetime of CH4
(≈ 9 years) compared to CO2 (≈ 500 years), CH4 has gained
attention as a target for mitigation efforts to achieve short-
and medium-term reductions in global warming (Montzka
et al., 2011; Prather et al., 2012; Shindell et al., 2012). In gen-
eral, anthropogenic methane emissions are also much more
uncertain than those of carbon dioxide, which can often be
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characterized to within approximately 10 % just from bud-
get assumptions (Gurney et al., 2019). For instance, just the
question of whether or not the leak rate in the natural gas
extraction system is 1 % or 2 % is equivalent to a 100 % un-
certainty in methane emissions from these leaks. At the same
time, leak rate outliers (Frankenberg et al., 2016; Duren et al.,
2019; Cusworth et al., 2021) are often local in nature and eas-
ily fixable, representing a win–win scenario if faulty equip-
ment or practices can be readily detected and then efficiently
mitigated. As CH4 reduction plays a significant role in cli-
mate mitigation efforts, one key step in emission reduction
is determining where these emissions are coming from. This
is underpinned in the 2018 NASA Decadal Survey, which
names the identification and understanding of CH4 emissions
as one of the top priorities in the efforts to improve future cli-
mate projections and help lead the way in emission reduction
(National Academies of Sciences and Medicine, 2018).

Remote sensing instruments using absorption spec-
troscopy have been available as one effective solution for
measuring atmospheric CH4 concentration over large geo-
graphical areas. Space-based CH4 retrieval techniques from
satellite observations such as the SCanning Imaging Absorp-
tion SpectroMeter for Atmospheric CHartographY (SCIA-
MACHY; Frankenberg et al., 2005a, 2011) and the Green-
house gases Observing SATellite (GOSAT; Parker et al.,
2011, 2015; Turner et al., 2015) were dedicated missions
with CH4 as a key target. They used CH4 absorption fea-
tures in the 1.6 or 2.3 µm bands to retrieve column CH4 con-
centration across the globe. The TROPOspheric Monitoring
Instrument (TROPOMI), with a spatial resolution of a few
kilometers, has also been shown to be capable of identifying
regions of high emissions (de Gouw et al., 2020; Hu et al.,
2018). These satellites, which have been designed by the at-
mospheric community, have particular sets of goals and in-
strument specifications that are mostly targeted towards ob-
taining observations of the regional-scale methane distribu-
tions with high accuracy and precision. Most of these satel-
lites were designed to measure gradients of methane concen-
tration across hundreds to thousands of kilometers of scale as
this enables surface flux inversions at the global scale. Typ-
ically, all of these instruments have one feature in common
– they have very high spectral resolution (0.05–0.25 nm) to
distinguish individual methane absorption lines from spec-
trally smooth surface albedo variations. However, due to their
coarse spatial resolutions, the measurements are not yet at a
level where local sources can be identified, attributed to a
specific source type (e.g., compressor station or well pad),
and mitigated directly.

One potential solution to fill this scale gap is to use an
airborne instrument that has a much higher spatial resolu-
tion, such as the Methane Airborne MAPper (MAMAP; Ger-
ilowski et al., 2011) or the next-generation Airborne Vis-
ible InfraRed Imaging Spectrometer (AVIRIS-NG; Thorpe
et al., 2017). The latter is based on the insight that methane
column enhancements at high spatial resolution (a few me-

ters) can be so high that the retrieval of the absorbing fea-
ture can be done, even with a moderate spectral resolution
(5–10 nm). If the methane column is expressed similar to the
Dobson unit, i.e., as the thickness of a layer of pure gas which
would be formed by the total column amount at standard
conditions, then the layer thickness at current background
methane conditions would only be about 1.6 cm. Thus, a pure
methane layer of only 1.6 mm would enhance the total col-
umn by 10 %, which is certainly realistic for measurements
of methane point sources at fine spatial resolution.

Bradley et al. (2011) and Thorpe et al. (2014) were among
the first to show that moderate resolution instruments can de-
tect methane plumes, even when the strong 2.3 µm methane
band is convolved with the AVIRIS (resolution of 10 nm) or
AVIRIS-NG (5 nm) instrument line shape functions. While
individual lines are hard to resolve, the strong methane band
in this range causes enough fine structure in terms of bulk
absorptions by a multitude of methane lines within the in-
strument resolution. Previous studies by Frankenberg et al.
(2016), Duren et al. (2019), and Cusworth et al. (2021) have
utilized AVIRIS-NG to conduct field campaigns in Cali-
fornia and the Four Corners region, where they could cre-
ate a map of methane enhancements in the area and detect
several hundreds of individual methane sources, which fol-
lowed a heavy tail flux distribution. The concept of this air-
borne spectrometer provides a promising opportunity for lo-
cal source detection and quantification. However, the instru-
ment was not originally designed for methane detection, and
it does not meet the same precision and accuracy require-
ments as those satellites from the atmospheric community for
methane retrieval at a global scale, which require precision
better than 1 %, which is equivalent to enhancements of about
19 ppb (parts per billion) in XCH4 (or 4×1017 molec..cm−2,
0.007 molem−2 or 152 ppmm). One significant drawback of
coarse spectral resolution is the occurrence of retrieval arti-
facts that often correlate with specific surface features (see
Fig. 1). This can confound the detection and quantification
of methane point sources in the analysis and obviate the
robust detection of subtle gradients at larger spatial scales
(Jongaramrungruang et al., 2021). Even though most strong
plumes can be observed, the uncertainties in the overall de-
tection and quantification at the regional level can present
persistent problems and often involve human judgment to
isolate plumes from artifacts. In fact, during the Califor-
nia survey, the Four Corners study, and the Permian survey
(Duren et al., 2019; Frankenberg et al., 2016; Cusworth et al.,
2021), human analysts were involved in a manual process to
look through each flight line to classify true emission sources
from false positives. Similarly, in previous space-based stud-
ies to locate and approximate a large emission source, such
as a blowout event, prior information about the location of
the source is usually already known, making it much eas-
ier to find a true methane source from space-based measure-
ments over the area after the fact. There are ongoing efforts to
develop automated plume detection for existing instruments.
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Figure 1. Example of the systematic outliers from a retrieved
AVIRIS-NG scene (b) compared with an RGB image (a).

Future real-time monitoring systems would greatly benefit
from next-generation instruments that would reduce retrieval
artifacts and provide retrievals with improved accuracy, such
that remote sensing measurements can be analyzed to locate
and quantify plumes automatically and at scale. This moti-
vates the origination of this study.

If we had the opportunity to design a new instrument that
is optimized for methane retrievals at fine spatial resolution
(sub 50 m), then what would the specifications of this instru-
ment look like? Thorpe et al. (2016) proposed a 1 nm in-
strument to mitigate the drawbacks of AVIRIS-NG. To fully
evaluate optimal performance metrics, we have to consider
the tradeoff between spectral and spatial resolutions and con-
comitant changes in detector noise characteristics. On the
one hand, the instrument needs to meet the requirements of
the atmospheric community so that it can unambiguously dif-
ferentiate methane from other confounding factors. On the
other hand, the instrument should have an adequate inte-
gration time to achieve a high spatial resolution with suffi-
cient signal-to-noise levels. Here, we investigate this trade-
off and evaluate the risks and benefits for methane retrievals
at fine resolutions with the purpose of successfully detect-
ing and quantifying local sources in mind. We built an end-
to-end modeling framework that can generate reflected so-
lar radiance through a methane plume of known concentra-
tion over realistic surfaces and perform the retrieval from the
corresponding observed radiance under a given instrument to
output the predicted methane concentration in each column.
Our model calculates the noise-equivalent spectral radiance
(NESR) as a function of incoming radiance and instrument
parameters, such as integration time, detector size, quantum
efficiency, readout noise, and spectral resolution, rather than
prescribing the signal-to-noise ratio (SNR) as an independent
variable. By varying the instrument and retrieval parameters,
we can derive the associated precision error and bias from

the retrieval. We also compare the tradeoff between the two
most frequently used fitting windows in the 1.6 and 2.3 µm
ranges.

Section 2 outlines the background on radiative transfer,
followed by data and methodology on the forward model
with realistic surface reflectances, instrument operators, and
retrieval setups. The results and discussion are provided in
Sect. 3. The final section contains the concluding remarks
and future steps.

2 Data and methodology

For the sake of simplicity, we ignore the impact of atmo-
spheric scattering, as Rayleigh scattering is negligible in the
near-infrared, and the impact of aerosols is rather small com-
pared to methane enhancements in the near-field of local
sources. While aerosols can cause small systematic biases
in the retrieved methane amount, their impact on measuring
anomalies caused by methane plumes should be rather small.
In addition, the precision error is not strongly affected by
neglecting atmospheric scattering, and experience with pre-
vious moderate resolution methane mapping has shown that
surface interferences are more crucial. In the absence of at-
mospheric scattering, and assuming a Lambertian surface,
the reflected radiance as measured by an instrument at the
top of the atmosphere in the nadir direction can be modeled
as follows:

Lλ = I0,λ · rλ · Tλ↑ · Tλ↓ ·
cos(SZA)

π
, (1)

where I0 stands for the incoming solar irradiance spectrum,
Tλ↓ is the atmospheric transmission along the photon light
path downwards to the surface, rλ is the surface albedo, Tλ↑
is the transmission along the light path on the way up from
the surface to the instrument, and SZA is the solar zenith an-
gle. Figure 2 illustrates a schematic for Eq. (1). The subscript
λ denotes the wavelength dependence of these variables. The
multiplication in Eq. (1) is element-wise for each wavelength
in the spectral range of interest.

2.1 Incoming solar irradiance

We constructed I0,λ by multiplying a continuum level spec-
trum with a high-resolution solar transmission spectrum that
includes absorption features in the Sun’s photosphere, which
are the so-called Fraunhofer lines. These absorption features
are caused by trace elements in the solar photosphere. The
continuum spectrum is obtained from Meftah et al. (2018)
with a 0.2 nm resolution. We fitted a third-order polynomial
to this measured spectra in a 1.4–2.5 µm range to obtain a
smooth continuum spectrum. A disk-integrated solar trans-
mission spectrum is obtained from a tabulated line list com-
piled by Toon (2015). We interpolated the baseline and trans-
mission spectra to a common 0.01 nm resolution grid and
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Figure 2. A schematic for reflected sunlight from the Sun through
the atmosphere to a spectrometer in space.

multiplied them to obtain a high-resolution solar irradiance
I0,λ.

2.2 Atmospheric transmission

The atmospheric transmission can be modeled using the
Lambert–Beer law by dividing the atmosphere into vertical
layers, each with a constant pressure, temperature, and gas
number density. We calculate absorption cross sections for
each layer using the HITRAN (high-resolution transmission
molecular absorption database) spectral database (Gordon
et al., 2017) and a Voigt line shape. The transmission then
reads as follows:

Tλ = exp

(
−

(∑
i

∑
k

ni,k σi,k(λ)×AMFk

))
, (2)

where i denotes the ith gas species, k is the kth layer, n is
the vertical column density (moleculem−2), and σ is the gas
absorption cross section (which is a function of pressure, P ,
and temperature, T ). The air mass factor (AMF) per layer de-
notes the ratio of the integrated number concentration along
the actual photon light path and the geometric vertical inte-
gration. In the absence of scattering, it is 1 cos (SZA), for the
incoming light at SZA, and equal to 1, for the outgoing light
as seen in nadir.

The transmission of the atmosphere is calculated from the
background gas concentrations from the top of the atmo-

sphere (TOA) to the surface. In addition, we consider the
enhancements due to local gas emissions which we primar-
ily considered to reside between the atmospheric boundary
layer (BL) and the surface. The instrument is assumed to be
located at the TOA.

For the background transmission, we divided the atmo-
sphere into 72 layers and used an atmospheric profile for
p and T from the Four Corners area (lat = 36.8

◦

, long =
−108

◦

). We considered H2O, CO2, and CH4 in the back-
ground. The concentration of H2O is obtained from the
Modern-Era Retrospective analysis for Research and Appli-
cations (MERRA) reanalysis (Rienecker et al., 2011) ver-
tical profile. For simplicity, background CO2 and CH4 are
set to volume mixing ratios of 400 ppm (parts per million)
and 2000 ppb, respectively. For the gas enhancement within
the BL, 300 vertical layers are used to model a simulated
3D methane plume enhancement from large eddy simulation
(LES) output. The LES enables a realistic simulation of how
methane concentrations from a point source evolve in space
and time, as it generates the time-resolved three-dimensional
CH4 distribution in the boundary layer. The full description
of the LES model setup for the CH4 plume emanating from a
point source can be found in Matheou and Bowman (2016),
with the model parameterization and initialization detailed in
Jongaramrungruang et al. (2019). We computed the gas ab-
sorption cross sections in each layer using an open-source Ju-
lia radiative transfer tool that calculates the cross section effi-
ciently using the HITRAN database and graphics processing
unit (GPU) capability (Gordon et al., 2017). A Voigt absorp-
tion line shape is used in our study. We note that we used 300
vertical layers in the BL in the full forward model to simu-
late the observed outgoing spectra, but we will use a much
smaller number of layers in the retrieval step (more details in
Sect. 2.4).

2.2.1 Surface reflectance

To analyze the impact of surface spectral features, we
compiled a database of different surface albedos from the
ECOSTRESS spectral library (Meerdink et al., 2019), to in-
vestigate the impact on our traditional retrieval technique that
we use from space, in which the surface is typically char-
acterized by a low-order polynomial in wavelength. In fact,
many spectroscopic measurement techniques rely on the fact
that atmospheric features exhibit sharp absorption features
while the surfaces are spectrally smooth (Platt and Stutz,
2008). From a physical perspective, this is related to more
rapid quenching of an excited state in solids or liquids and
the suppression of rotational energy levels. At the same time,
this separation of high-frequency atmospheric features from
low-frequency surface features is at the core of our study, as
instruments such as AVIRIS(-NG) have spectral resolutions
that can blur the separation between frequencies, allowing
the surface features to alias into methane retrievals.
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Figure 3. Albedo spectral variations near 2.3 µm from distinct sur-
face reflectances in our database.

The compiled database contains more than 2000 surfaces
over five main categories of rock, soil, mineral, photosyn-
thetic and non-photosynthetic vegetation, and artificial con-
struction materials. Examples of these surface albedos near
the 2.3 µm CH4 absorption range are shown in Fig. 3. The
typical spectral resolution of the database is 2 nm, and we re-
sampled all spectra to a common grid, which is subsequently
used with spline interpolation in our high-resolution forward
model at 0.01 nm.

Based on this database, we can create an arbitrarily di-
verse set of surfaces underlying the simulated 3D methane
field. For example, a checkerboard-style tile consisting of
3× 10 surfaces can be constructed before we overlay the 3D
plume. A retrieval can then be applied for each pixel across
the source to visualize the impact on precision error and bias
caused by different surfaces. We also used LANDSAT data
(Wulder et al., 2019) to represent a natural distribution of sur-
faces in the Durango area, Colorado. Although it is a 30 m
resolution, we can up-sample the surface grids to 5 m each.
At each pixel, we matched the measured surface albedo from
LANDSAT observations at 0.48, 0.56, 0.65, 0.87, 1.61, and
2.20 µm to the closest possible surface in our database and
queried its full albedo spectra for our simulations.

2.3 Instrument operators

2.3.1 Convolution and observed spectra

The actual observed spectrum that is recorded by the instru-
ment is the convolution of the high-resolution incident light
Lλ with the instrument line shape, denoted here as the instru-
ment kernel. This convolution is performed in the intensity
space given by the following:

〈L(λ)〉 =

∞∫
−∞

L(λ′)φ(λ− λ′)dλ′, (3)

where L(λ) is the incident spectra on the device, and 〈〉 de-
notes the convolution with the instrument kernel φ. The con-
volved spectrum can then be interpolated and resampled to

the output wavelength grids (λout) of the instrument in an
observing spectral range of interest. These output spectra are
used as the measurement vector in the retrieval process (more
details in Sect. 2.4).

The instrument kernel φ is modeled using a Gaussian dis-
tribution with zero mean and a given full width at half max-
imum (FWHM). In our experiment, we treated the FWHM
as an independent variable that varies between 0.04 and
10.0 nm. The FWHM is a key property of an instrument that
determines what spectral variations can be resolved. For in-
stance, if the spectral resolution is coarser than the rotational
fine structure of a vibrational–rotational absorption band, the
P and R branches of this band will appear as just two sep-
arate broadband absorption features. The spectral sampling
interval (SSI) varied accordingly with FWHM. Here, we use
two cases of SSI equal to FWHM / 2.5 (near-Nyquist sam-
pling in atmospheric sounders) and FWHM/1.0 (critical sam-
pling as in AVIRIS-type imaging spectrometers).

2.3.2 Noise-equivalent spectral radiance

Towards designing the optimal instrument, we have to eval-
uate the trade space of the spectral resolution, spatial resolu-
tion, and detector characteristics. Previous studies have eval-
uated the trade space between the signal-to-noise ratio (SNR)
and spectral resolution, treating the SNR as an independent
variable when varying the spectral resolution (Thorpe et al.,
2016; Cusworth et al., 2019; Ayasse et al., 2019). However,
the SNR deteriorates at a higher spectral resolution, as fewer
photons are being counted by each detector pixel. To evalu-
ate this properly, we start working from an instrument model
directly where the noise is a function of incoming radiance
and parameters, such as integration time, F number, detec-
tor pixel, and then the spectral resolution, as described in
Strandgren et al. (2020). In this approach, the SNR will be
a dependent variable based on our instrument specifications
and the actual observed radiance.

The electronic signal measured by each detector pixel can
be expressed as follows (Strandgren et al., 2020):

S = 〈Lλ〉
πAdet

4f 2
num
· η ·Qe ·1λ · tint, (4)

where 〈Lλ〉 is our simulated radiance, Adet is the detector
pixel area, fnum is the instrument’s F number, η is the optical
efficiency of the spectrometer, Qe is the quantum efficiency
of the detector, 1λ is the SSI, and tint is the integration time.

For the NESR, we consider two dominant noise terms,
namely shot noise (proportional to

√
S) and effective read-

out noise σro, as follows:

NESR= σLλ =
√
S+ σ 2

ro. (5)

For the analyses in this study, we varied FWHM from 0.04 to
10.0 nm and integration time from 5 to 105 ms with other de-
fault parameter setups, as described in Table 1, unless stated
specifically otherwise.
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Table 1. A table for default parameter settings in our simulations.

Parameter Value

Integration time 20 ms
Detector size 30.0 µm
F number 2.4
Quantum efficiency 0.95
Optical bench efficiency 0.5
Readout noise 100.0 e

2.4 Retrieval setup

2.4.1 Forward model

The retrieval forward model is similar to that described ear-
lier in previous sections. The main difference is that we now
treat the methane concentration in the boundary layer as el-
ements of the state vector that we want to retrieve, as the
methane profile is unknown during the observation. A much
smaller number of layers to represent methane enhancements
within the boundary layers is used. This is an important con-
sideration when dealing with moderate spectral resolution,
since the information content is not high enough to discrimi-
nate between different layers. Polynomial terms are also used
to represent the change in surface reflectance with wave-
length. The forward model can be written mathematically as
follows:

yλ = F(x)= 〈Lλ0 · Tλ↑ · Tλ↓〉

D∑
d=1

adP
d(λ)︸ ︷︷ ︸

≈rλ

, (6)

where y is the measurement vector, P d(λ) is a Legendre
polynomial term at degree d , ad is a coefficient for each
P d(λ), and D is the number of polynomial degrees used in
the retrieval. To evaluate the polynomial degree within the
fitting range, we converted the wavelength range within the
fitting window to span −1 through 1. Here, the state vector
x consists of the vertical column density (moleculem−2) of
the respective gases in different layers and the polynomial
coefficients accounting for low-frequency surface features.

In our experiment, we set the number of water vapor and
methane concentration layers to be 2 and 10, respectively. We
vary the number of the polynomial degree, D, to investigate
its ability to disentangle the surface spectral variations from
the atmospheric features while simultaneously considering
different instrument spectral resolutions. Spectrally smooth
surface albedos might only require a few polynomial co-
efficients, while more complex surface features within the
260 nm fitting window can require more than 25 coefficients,
as will be shown later.

2.4.2 Optimal estimation

To solve for the optimal state vector from this nonlinear
system, we used the iterative maximum a posteriori differ-
ential optical absorption spectroscopy (IMAP-DOAS) ap-
proach (Frankenberg et al., 2005a). Based on maximizing the
a posteriori probability density function as introduced to the
atmospheric community by Rodgers (2000), the iterative so-
lution can be written as follows:

xi+1 = xa + (KT
i S−1

ε Ki +Sa
−1)−1KT

i S−1
ε

· [y−F(xi)+Ki(xi − xa)], (7)

where xi is the state vector at the ith iteration, xa is a priori
state vector, Sε is the measurement error covariance matrix,
Sa is the a priori covariance matrix, and Ki is the Jacobian
of the forward model evaluated at xi . F(xi) stands for a for-
ward model at each xi . When consecutive changes in the re-
duced χ2 of the fit drop below a tolerance level of 10−3, we
stop the iterations. The Jacobian matrix Ki is computed ana-
lytically in each ith iteration, using automatic differentiation
techniques. The a priori covariance matrix Sa helps constrain
the fit based on the possible range of concentration (thus, Sa
is a square matrix with a size equal to the length of xi). Here,
we use loose prior constraints, thus having no significant im-
pact on the retrieved total columns or posterior errors. The
measurement error covariance matrix Sε is a matrix in which
the diagonal elements are the estimated variances of instru-
ment noise at the observed wavelength grid λout (thus, Sε is
a square matrix with a size equal to the length of λout). These
variances are computed from the instrument noise model out-
lined in Sect. 2.3.2.

2.4.3 Error estimations

The a posteriori error estimate Ŝ= (KT SεK+S−1
a )−1 pro-

vides the full error covariance matrix of the retrieved state
vector x̂. The quantity of interest in our application for CH4
detection and quantification is the total column concentration
of CH4. To obtain this quantity from our retrieval, we can
find the summation of the state vector elements over indices
corresponding to CH4. We can, thus, define a summation op-
erator h, of the same size as the state vector, filled with ones
where the CH4 state vector elements are located and the zeros
are elsewhere. The summation of the total column is readily
derived as hT x̂, and the variance of the total column is com-
puted as hT Ŝh (Rodgers, 2000). The bias error is obtained
as the difference between the best estimated value in the ab-
sence of instrument noise and the true CH4 vertical column
enhancement.

2.5 LES CH4 plumes

The LES is used to generate the time-resolved three-
dimensional CH4 distribution in the boundary layer. This
provides a realistic distribution of how methane concentra-

Atmos. Meas. Tech., 14, 7999–8017, 2021 https://doi.org/10.5194/amt-14-7999-2021



S. Jongaramrungruang et al.: Remote sensing of methane plumes: instrument tradeoff analysis 8005

Figure 4. A schematic showing the setup for a methane plume over
different surface tiles, each of which contains one surface albedo
from our database.

tions from a point source on the ground evolve across the
area. The flow in the boundary layer is driven by a con-
stant geostrophic wind in the x direction, influencing the
shape of the plume. We conducted LES experiments with a
geostrophic wind speed of 4 ms−1, with a range of emission
rates from 50 to 5000 kgh−1.

To simulate the reflected sunlight over the area of a CH4
emission source, we use the output from LES that has a real-
istic 3D concentration field of CH4 at a prescribed emission
rate and overlay this on top of surface tiles of different albe-
dos. Within each tile, the albedo is chosen from a distinct
surface in our database. Figure 4 illustrates this conceptual
setup.

At each spatial pixel, the high-resolution outgoing re-
flected radiance can be calculated and subsequently be con-
volved with the instrument kernel. This yields the simulated
observed radiance at each pixel that we implemented as a
measurement vector. Accordingly, the pixel radiances are
then converted to signal strength in electrons and respective
noise levels using our instrument model. The IMAP-DOAS
algorithm is applied to retrieve the column CH4 and provide
error estimates. We can vary the instrument parameters and
the number of polynomial degrees in the retrieval to explore
their relationship with the associated errors.

3 Results and discussion

3.1 Simulated high-resolution and observed radiance

As a first step towards understanding the effect of the in-
strument spectral resolution, we simulated high-resolution
spectrum 〈Lλ〉 in the 1.6 and 2.3 µm bands and their cor-
responding Jacobians for instruments, with FWHM of 0.2,
1.5, 5.0 and 10.0 nm. This simulation is based on a CH4
concentration profile near an origin of the methane plume,
with an emission rate of 200 kgh−1, over a construction con-
crete (albedo index 1 in Fig. 3), with the simulations shown

in Fig. 5. As the instrument’s FWHM increases, individual
absorption lines are increasingly blurred, and the less high-
resolution absorption features are recorded. The Jacobian
represents the change in radiance with respect to the changes
in gas concentration. Here we show the Jacobian for CH4 and
H2O close to the ground. For the 1.6 µm band, the total radi-
ance is in the range of 20–30 mW m−2 nm−1 sr−1, and we
observed the strongest absorption feature between 1.66 and
1.67 µm, covering the Q branch in the 2ν3 band. On the other
hand, for the 2.3 µm band, the radiance varies from around
10 to 3 mW m−2 nm−1 sr−1 across the band. The CH4 ab-
sorption features are much stronger and more prominent over
a wider range from 2.2 to 2.4 µm. To compare the two fit-
ting windows in terms of their effectiveness in CH4 measure-
ments, we explore errors associated with the CH4 retrieval
using each of these bands in the next section.

3.2 Comparisons of two CH4 fitting windows

We investigate the comparison between using two different
CH4 fitting windows near 1.6 and 2.3 µm. At 1.6 µm, the in-
coming solar irradiance is higher, which could enhance the
signal-to-noise ratio. However, at 2.3 µm the CH4 absorption
features are more numerous and prominent over a broader
wavelength range, which should increase sensitivity for the
CH4 retrieval. Thus, there is a potential tradeoff between the
advantages and disadvantages of both retrieval windows. It
is not immediately obvious which fitting window would re-
sult in a lower precision error. This could also depend on the
spectral resolution, as the spectral fine structure changes with
increasing FWHM differently in both windows. Understand-
ing this tradeoff will help guide the development of future
instruments.

Resolving which band is better suited for minimizing CH4
retrieval errors also depends on typical surface albedos at
1.6 and 2.3 µm. We visualized the relative values of surface
albedo at 1.6 and 2.3 µm across all surfaces in our database
colored by their main surface categories in Fig. 6. Most sur-
faces lie in the region where their albedos at 1.6 and 2.3 µm
are relatively equal (along the 1 : 1 line). Only a few surfaces
have a much higher albedo at 2.3 µm compared to that at
1.6 µm, while there is a cluster of low albedo surfaces for
which the 1.6 µm albedo is about twice as high as at 2.3 µm.
To compare the two fitting windows, we take two extreme
surface examples, i.e., one with an albedo of 0.87 at 1.6 µm
and 0.14 at 2.3 µm and another one with and albedo of 0.21 at
1.6 µm and 0.79 at 2.3 µm. We also consider a representative
surface with an equal albedo of 0.51 at both 1.6 and 2.3 µm.

In Fig. 7, we compared the precision errors based on the
two fitting windows over the three surfaces using a polyno-
mial degree of 25 and using fitting windows as displayed in
Fig. 5. In this simulation, only the FWHM is varied, and an
oversampling of 2.5 is used (i.e. FWHM = 2.5 · SSI). Other
instrument parameters are set according to Table 1. The cor-
responding NESR of each detector pixel is then computed us-
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Figure 5. Simulated reflected solar radiance, through a plume of 200 kgh−1, over a concrete surface, as observed by instruments of different
FWHM in the two fitting windows of 1.6 µm (a–c) and 2.3 µm (d–f). The gray background is the originally calculated spectra at 0.01 nm.

Figure 6. Scatterplot showing the relative values of reflectance at
1.6 vs. 2.3 µm from our database of different surface albedos from
the ECOSTRESS spectral library. Each point is a distinct surface,
and the color shows the type to which it belongs. Cross marks rep-
resent three example surfaces that we used in the comparison anal-
yses.

ing the instrument noise model, enabling us to compute the
changing noise levels with instrument resolution. We note
that the number of detector pixels used varies considerably
in this simulation, as they correspond to the window length
(275 nm in the 2.3 µm band) divided by SSI. Thus, a FWHM
smaller than 0.65 in the 2.3 µm band would require more
than 1000 detector pixels, which can be hard to achieve from
a detector point of view, especially at fast readout rates as
required for high spatial resolution. This can preclude very

Figure 7. A plot showing precision errors from the CH4 column
retrieval in the 1.6 µm band (dotted) and the 2.3 µm band (solid) over
three distinct surfaces (colored), using instruments with different
FWHM (in the unit of molem−2).

fine spectral resolution if a large spectral bandwidth is re-
quired, which can be beneficial, especially if it allows addi-
tional species to be measured (such as CO2). In addition, at a
coarser spectral resolution, the full well capacity of the detec-
tor might be reached, which puts an upper limit of maximum
SNR values per detector pixels (maximum SNR of 1000 for
a full well capacity of 106 electrons).

Here, we observe that the precision error is actually not
monotonically improving with finer spectral resolution as the
SNR deteriorates in these cases. For the 2.3 µm band, the op-
timum is actually around 0.2 nm, which may appear surpris-
ing. For darker surfaces, the precision, using a 1 nm resolu-
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tion, can be equal to an instrument with 0.05 nm resolution.
Interestingly, the precision errors using the 1.6 µm band de-
teriorate much more with increasing FWHM than using the
2.3 µm band. The reason for this is related to the methane
band structure in both windows, as can be seen in the Ja-
cobians (see Fig. 5). In the 1.6 µm band, most of the fine
structure in the P and R branches is lost once the FWHM
is coarser than the separation of the rotational fine structure,
leaving only the Q branch as spectrally distinct, even at lower
spectral resolution. This could also be seen in SCIAMACHY,
for which the FWHM in the 1.6 µm band was relatively low,
namely about 1.3 nm (Frankenberg et al., 2005b). With the
loss of spectral fine structure, the precision deteriorates more
rapidly, as low frequency variations in the Jacobians can be
confused with surface albedo features, thus not directly con-
straining methane abundances. The situation in the 2.3 µm
band is different as the absorption structures are very dif-
ferent and cover many more methane features that are ir-
regularly spaced. Thus, some unique bulk methane absorp-
tion features persist even at spectral resolutions as coarse as
10 nm. In fact, this is the reason methane could be observed
with the imaging spectrometer at similar resolutions (Thorpe
et al., 2014), enabling high spatial resolution mapping from
airborne instruments.

Overall, our retrievals in the 2.3 µm band consistently yield
lower precision error compared to that from the 1.6 µm band.
This difference is most highlighted for a surface with a much
higher albedo at 2.3 µm compared to 1.6 µm. This is because
a decrease in solar irradiance at 2.3 µm is now compensated
for by increased albedos, resulting in observed radiances be-
ing relatively close to those at 1.6 µm, allowing for the effect
of absorption depth and structure to be the sole driving force
for a better performance. This effect is still seen for most typ-
ical surfaces of equal albedos at both 1.6 and 2.3 µm, where
the precision error from the 2.3 µm band is consistently lower
than that from the 1.6 µm regions for instruments with any
FWHM. The only scenario where the retrieval at 1.6 µm
could perform better is under an extreme example, where a
surface has a much higher albedo at 1.6 µm compared to at
2.3 µm and when FWHM is lower than 0.2 nm. These results
indicate that the stronger and broader absorption of CH4 in
the 2.3 µm fitting window plays a more dominant role in the
retrieval performance compared to the stronger solar irradi-
ance (and sometimes higher albedo) in the 1.6 µm case. Since
the latter condition for a better performance in the 1.6 µm
band is much more unlikely, we focus the following analysis
on the 2.3 µm fitting window.

3.3 Spectral fit and error analysis with various
instruments

Here, we evaluate the instrument performance of hypotheti-
cal yet realistic spectrometers covering the 2.3 µm range. If
we restrict ourselves to the number of spectral pixels in a
fast detector, as used for AVIRIS-NG (480 spectral pixels),

we can achieve a FWHM of around 1.5 nm, minimizing the
precision error under the hard constraint of a limited detec-
tor size. It would also still allow for joint retrievals of CO2
at 2 µm, as envisioned in Strandgren et al. (2020). This res-
olution allows us to still resolve significantly more spectral
fine structure than current measurements at 5 or 10 nm res-
olution, which often exhibit retrieval interferences with sur-
face features, as seen in Fig. 1. Our primary focus here is
to quantify the impact of the spectral resolution on the abil-
ity to unequivocally separate surface spectral features from
those in the atmosphere.

To demonstrate the impact of surface reflectance on ob-
served spectra, Fig. 8a shows two reflected spectra through
exactly the same CH4 concentration profile as observed by
the same instrument with FWHM of 1.5 nm but over con-
struction concrete as compared to a vegetation surface. Evi-
dently, not only do the observed spectra change in absolute
value, but their spectral variations are also different within
the fitting window and are more complex for vegetation than
for concrete. This exemplifies an important role that sur-
face albedo plays in the retrieval, potentially interfering with
the methane absorption lines. To further validate this point,
Fig. 8b shows examples of residuals from the best spectral
fits for each of these two spectra, using IMAP-DOAS as de-
scribed in Sect. 2.4.2, with a polynomial degree of 11. The
noise level indicates the theoretical 1σ noise level, which is
expected from the instrument. In Fig. 8a, these residuals are
hardly visible as they are close to the noise level. Clearly, the
fit quality is different between the two surfaces, as evidenced
by a higher residual for reflected sunlight from the vegetation
surface compared to a sample construction concrete. How-
ever, differences are subtle and might not be detectable if
noise levels are high or fewer detector pixels are available. In
practice, given an observed spectrum, our retrieval needs to
differentiate the atmospheric feature from the surface feature
in order to obtain the best estimate of methane enhancement
with minimal bias and precision error. The performance of
the retrieval will be influenced by the observing instrument
and the representation of surface reflectance in our forward
model.

In this section, we performed the retrieval error analy-
sis for different instrument parameters, namely the FWHM
and exposure (integration) times. Since the surface albedo
is another important factor in the retrieval performance, as
shown in Fig. 8, we also explored using different degrees in
the polynomial terms in our forward model (see Sect. 2.4.1),
as a large number of polynomial degrees is required to cap-
ture the effect of surface albedo spectral variability (e.g., a
polynomial degree of 11 still caused subtle yet systematic
residuals for vegetation). For a given choice of instrument
specification and polynomial degree, the IMAP-DOAS algo-
rithm is performed to predict the column methane concen-
tration and, thereby, derive error estimates. We kept the true
methane concentration fixed to a given vertical profile near
the source emission with a flux rate of 200 kgh−1. First, to
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Figure 8. (a) The observed spectra through exactly the same CH4 source over two different surfaces, namely construction concrete and
vegetation, as observed by an instrument with a FWHM of 1.5 nm and the best spectral fit. (b) The associated spectral residuals and an
expected 1σ noise level for the instrument measurement.

illustrate potential bias that could arise from a variety of sur-
faces in real-world scenarios, we randomly selected 100 sur-
faces from our database and used each of them as a surface
underlying the CH4 column. By retrieving the observed radi-
ance using different instrument FWHMs and different num-
bers of polynomial degrees, we analyzed the range of result-
ing biases for each case. The bias distribution across the 100
surfaces is shown in Fig. 9. When a polynomial degree of
5 is used in our retrieval, the range of biases observed is
(−0.2, 0.8) molem−2 compared to just within (−0.15, 0.15)
and (−0.02, 0.02) molem−2, with a polynomial degree of 11
and 25, respectively. This result suggests that some surfaces
interfere strongly with the retrieval, leading to very high bi-
ases (>100 % from typical anomalies in plumes) when a low
number of polynomial degrees is used, as this causes a for-
ward model error. This implies that the use of a higher poly-
nomial degree has a significant consequence in terms of min-
imizing the bias in our retrieval results, especially when we
have no prior information about surfaces in the vicinity of
emission sources. A polynomial degree of about 25 seems to
capture most but not all surface effects. However, an instru-
ment such as AVIRIS(-NG) only has 26 (52) detector pixels
covering the entire fitting window, thus not allowing us to use
such high polynomial degrees, as it would render the problem
underdetermined. This clearly illustrates the problem in sep-
arating surface and atmospheric features at coarse spectral
resolutions, as the problem becomes increasingly ill-posed
with a coarser spectral resolution. This is an integral part in
obtaining the reliable detection and quantification of local
methane sources at a global scale, as is also shown later in
Sect. 3.4.1. In general, an instrument with a smaller FWHM
leads to smaller observed biases, as expected, by its ability to
capture more high-frequency CH4 absorption features. Fur-
thermore, with an SSI of FWHM / 2.5, biases using higher
polynomial degrees show a smaller range compared to the
case with an SSI=FWHM, as surface features are harder

to discern if atmospheric features are not oversampled. In
the following analyses, we, therefore, primarily show the re-
sults from the case of SSI=FWHM / 2.5, unless otherwise
stated. This also fulfills the Nyquist sampling requirement
for typical atmospheric retrievals, which might sometime in-
volve spectral shifts. The impact of spectral shifts is ignored
here but would be another reason for both oversampling and
higher spectral resolution.

Next, we investigated how the precision error varies with
the instrument parameters such as FWHM and the exposure
(integration) time. While FWHM governs the shape of the
methane Jacobians, the exposure time is an important fac-
tor determining potential spatial resolution and SNR. Fig-
ure 10 shows this relationship using a fixed exposure time of
20 ms, with varying polynomial degrees on Fig. 10a and with
fixed polynomial degree (25) and varying exposure time in
Fig. 10b. Other parameters are set according to Table 1, and
the underlying surface is a construction concrete (albedo in-
dex 1 in Fig. 3). If we vary the polynomial degree, the impact
on precision is negligible for FWHM<0.5 nm, very small for
FWHM<1.5 nm, but diverging from one another for FWHM
>2 nm. The reason for this effect is that the polynomial de-
gree determines which spectral variations can be purely at-
tributed to methane and which might be caused by surface
features, which eliminates its use to constrain methane. At a
fine spectral resolution, the methane fit is mainly driven by
the atmospheric high-frequency structure. Thus, the polyno-
mial degree plays no significant role. At a coarser spectral
resolution, most atmospheric features are blurred and can be
partially confused with the surface, causing a divergence in
the precision error with increasing FWHM. A 1.5 nm FWHM
still allows us to sample sufficient atmospheric fine struc-
ture to minimize the impact of surface interferences and will
achieve a sub-percent precision error for a wide range of ex-
posure times.
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Figure 9. Plots showing a range of biases that occur over 100 randomly sampled surfaces when different FWHM, SSI, and polynomial
degrees are used.

Figure 10. (a) Precision error as a function of instrument FWHM for different numbers of polynomial degrees used in the retrieval (with an
exposure time of 20 ms). (b) Precision error as a function of instrument FWHM for different exposure times (with a polynomial degree of
25).

If we vary the exposure times, the precision error de-
creases with the increase in the exposure time as the device
can collect more photons resulting in an overall stronger sig-
nal. There exists a range of FWHM values that minimize the
precision error for each exposure time. Generally, the range
lies between 0.1 and 0.3 nm. At low exposure times, readout
noise becomes increasingly important and leads to a larger
precision change when exposure times are varied. Thus, it is
vital that an appropriate value of FWHM is chosen in order
to achieve low precision error while we use a high degree of
the polynomial, such as 25, in our retrieval to simultaneously
reduce the bias from surface interferences. It is interesting to
note that the FWHM with the best precision moves towards
higher FWHM with decreasing exposure times, which is a
consequence of the increasing role of the readout noise at the
detector.

For example, using a FWHM of 1.5 nm and an exposure
time of 25 ms, a precision error of 0.007 molem−2 can be
achieved, which is about 1 % of the background total column

amount of 0.7 molem−2. In low Earth orbit, with a satellite
speed of 7 kms−1, 25 ms corresponds to a spatial resolution
of 175 m. Spacecraft nodding would allow us to slow down
the effective ground speed by about a factor of 10, render-
ing a 1 % total column precision for<20 m spatial resolution
feasible from space using existing fast readout short-wave
infrared (SWIR) detectors. This would be equivalent to mea-
suring a pure methane layer of only 0.16 mm thickness.

3.4 2D retrieval over realistic surfaces

In Sects. 3.1, 3.2, and 3.3, we analyzed the impact of surface
interferences and instrument specifications on the quality of
the CH4 retrieval. The choice of parameters such as FWHM,
exposure time, and the number of polynomial degrees leads
to significantly different precision errors and biases. These
errors in each retrieval column ultimately affect the detection
and quantification of CH4 source in 2D scenes observed over
various geographical areas across the globe. In this section,
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we illustrate how the retrieved CH4 plume appears using dif-
ferent instruments and retrieval choices.

3.4.1 Occurrence of false positives and false negatives

To explore the 2D pattern of a retrieved methane plume over
a variety of realistic surfaces, we overlaid an LES simu-
lated CH4 plume on top of a checkerboard-style land con-
sisting of 30 surfaces. We then apply the instrument kernel
and IMAP-DOAS algorithm to retrieve column CH4, pixel
by pixel, across the 2D scene. A combination of a FWHM
of 1.5 and 5.0 nm, with an SSI of FWHM / 2.5, and poly-
nomial degrees of 5, 11, 25, and 50 are adopted. A case of
SSI=FWHM is also used for a FWHM of 5.0 nm, which is
equivalent to the AVIRIS-NG instrument. The emission rate
of the CH4 source is equal to 200 kgh−1. The spatial distribu-
tion of the true CH4 distribution is shown in Fig. 11, showing
local enhancements than can exceed 10 % of the total back-
ground atmospheric column. The corresponding retrievals
under different surfaces and instrument scenarios are shown
in Fig. 12. The deviation of the predicted CH4 from the true
column value in each pixel is a combination of precision er-
ror and bias. In this result, the overall mean enhancement that
emerges over each surface type, in contrast to the true plume
in Fig. 11, could be interpreted as a retrieval bias, while the
presence of a speckle-like texture over each surface can be
viewed as the retrieval precision error driven by instrument
noise for a given surface albedo (larger for dark surfaces).
Meanwhile, the bias is related to a systematic shift in the
retrieved methane column enhancement from the true value
due to surface interference in resolving the methane absorp-
tion features. In general, based on the visualization in these
2D plots, the more the retrieved enhancement scene resem-
bles the true CH4 concentration map, the better the perfor-
mance of the instrument and retrieval is. Specifically, when a
low polynomial degree of 5 was used in the retrieval, we ob-
served significant retrieval biases (both positive and negative)
over various surfaces. Evidently, these biases can act to de-
ceive the true location and enhancement of an actual methane
plume, especially if the surfaces have elongated shapes like a
plume (not like a checkerboard here). As the number of poly-
nomial degrees in the retrieval increases, the level of biases
decreases over the scene, enabling the actual methane plume
enhancement to be better identified. This is also manifested
in the reduced χ2 values which describe how well an ob-
served spectrum was fitted (i.e., the smaller, the better). As
shown in Fig. 13, the value of reduced χ2 drops from 5 to
become increasingly closer to 1 when a polynomial degree is
changed from 5 to 11, 25, and 50. We note that the 10 sur-
faces in the bottom row of this checkerboard-style tile, from
left to right, are the 10 surfaces, with their albedo spectral
variations shown earlier in Fig. 3. The pink quartzite (sixth
on the list of these 10 surfaces) is an extreme case, where we
see an unusually strong variation near 2.2 µm, resulting in a
persisting bias even at a polynomial degree of 25. Neverthe-

less, generally, when a polynomial degree of 25 is used, most
of the biases across surfaces seem to disappear, but surpris-
ingly complex surfaces, such as quartzite, can occur across
various natural landscapes and artificial surfaces in cities.

At the same time, using higher polynomial degrees results
in higher precision errors, as can be seen from the speckle-
like texture in the retrieved scene. To illustrate how precision
deteriorates as we increase the polynomial degree for a given
instrument FWHM, Fig. 14 shows the rise in precision er-
ror when using polynomial degrees of 50, 25, and 11 relative
to using the polynomial degree of 5. We can clearly see that
the precision error deteriorates with a higher polynomial de-
gree, particularly at coarser FWHM. This is consistent with
what we observed earlier in Sect. 3.3. Based on this analysis,
we found that using an instrument with a FWHM of 1.5 nm
would allow for higher polynomial degrees, such as 25, to be
utilized with a relatively small increase in the precision error.
For an instrument with a FWHM of 5 nm, using a polyno-
mial degree of 25 or 50 results in a larger precision error
increase, underlining the potential problems that could occur
when complex surface albedo features exist. The main phys-
ical reason for the deterioration in the precision of low spec-
tral resolution instruments is that a lower degree polynomial
in the fitting routine is equivalent to a hard a priori constraint
suggesting that only spectrally smooth surfaces exist. The re-
trieval itself then attributes some of the broadband variations
in the methane Jacobian to be only attributable to changes
in methane and not surface albedos, thus providing a tighter
constraint on the methane abundances. For higher resolution
instruments, most of the information content for methane is
located within the fine structure of the methane absorption
lines and less on the broadband variations, causing a much
smaller increase in the precision errors if higher polynomial
degrees are used.

These results indicate that a narrow FWHM (such as
1.5 nm) and a high number of polynomial degree (at least
25) are needed to reduce both precision errors and biases due
to surface interference. In this way, we can obtain a higher
quality retrieved scene in order to effectively identify and
quantify emission sources over the majority of the surfaces.
If low polynomials are used, high biases are likely to occur
over certain surface types. These can cause false positives
or negatives in the observational systems, complicating the
analysis of the locations and the emission rates of the CH4
sources. This can cause a significant problem for both human
analysts and AI models (Jongramrungruang et al., 2021) that
rely on the spatial distribution of observed enhancement to
make predictions.

To further show an example over a real-world high emis-
sion area, we queried a realistic surface distribution over a
well pad in the Durango area, Colorado, from LANDSAT.
At each location, this data set provides surface albedos at the
wavelengths of 0.48, 0.56, 0.65, 0.87, 1.61, and 2.20 µm. The
RGB image of this particular location and its corresponding
albedo near 2.2 µm are shown in Fig. 15. Based on the albe-
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Figure 11. A nadir view of a simulated CH4 plume from the LES with a prescribed flux rate of 200 kgh−1. The background wind speed is
4 m/s−1 along the x axis.

Figure 12. Retrieved CH4 column over 30 different surfaces with varying instrument scenarios. The top row shows the results for an
instrument with a FWHM of 1.5 nm, while the second row shows the results for an instrument with a FWHM of 5.0 nm. Both the top and
middle rows have SSI=FWHM / 2.5. The bottom row shows the results for an instrument with FWHM of 5.0 nm and SSI=FWHM. The
biases drop significantly as the polynomial degrees increase.

dos in the seven bands available in this LANDSAT scene at
each pixel, we found the best-matching surface in our high-
solution surface database from the ECOSTRESS spectral li-
brary. We used this surface to simulate a semi-realistic CH4
scene with an emission emerging from the ground in the
vicinity of a well pad. The retrieved CH4 enhancement is
shown in Fig. 16. Once again, when an instrument with a
FWHM of 5.0 nm is used in conjunction with a low polyno-
mial degree of 5, high biases occur over most surfaces across
the area. In particular, oil shale and sandstone are the two
surfaces that exhibit strong surface interference, as observed
in Fig. 16f. Evidently, the resulting bias occurs at a level that
dwarfs the true plume enhancement, rendering it impossible
to identify the location of the emission sources, let alone the
ability to obtain an accurate quantification of total emission
in the area. However, by using a higher polynomial degree
of 25, the biases across surfaces are greatly reduced, albeit
with slightly higher noise. Nonetheless, this noise is reduced
when FWHM decreases from 5.0 to 1.5 nm. We note that this
reduction in precision error when we decrease the instrument
with a FWHM from 5.0 to 1.5 nm could be even more appar-
ent over some other surfaces with lower albedos compared to
the ones in this scene. Visually, we can already see that the
actual CH4 plume in terms of its location and strength can

be much more easily identified and distinguished from the
surface artifacts with the FWHM of 1.5 nm and polynomial
degree of 25. This finding demonstrates how achieving low
bias and precision error in the observation and the retrieval
process across diverse surfaces profoundly benefit the detec-
tion and quantification of true CH4 sources. This analysis
provides insight to how future instruments can be designed
to enable an effective and accurate CH4 source detection and
quantification across the globe. In the next section, we further
illustrate the retrieval performance when a local CH4 plume
of various emission rates is observed by an instrument with
a higher spatial resolution (such as 30 m).

3.4.2 Effect of spatial resolutions and flux rates

In the previous section, we have shown a 2D retrieved scene,
assuming that an observing instrument has a spatial resolu-
tion of 5 m. In this section, we repeated the 2D scene retrieval
analysis with a spatial resolution of 30 m by averaging the re-
flected sunlight through a CH4 plume simulated at 5 m spatial
resolution into 30 m spatial resolution prior to applying an in-
strument operator. We present this analysis with this design
consideration for the 30 m spatial resolution and the expo-
sure time of 40 ms to evaluate the potential of future spec-
trometers on board satellites in the coming years. The 2D
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Figure 13. A plot showing the values of reduced χ2 from the retrieval for different instrument FWHM and polynomial degrees. As the
polynomial degree becomes higher, the reduced χ2 decreases, implying a better spectral fit.

Figure 14. The increase in precision errors when the polynomial degrees of 50, 25, and 11 are used, as compared to the polynomial degree
of 5 case. The increase is computed for a given FWHM and SSI, according to each row.

scenes retrieved at a 30 m spatial resolution by instruments
of different FWHM and polynomial degrees are illustrated
in Fig. 17. The choice of a FWHM of 1.5 nm and a poly-
nomial degree of 25 remains very effective in removing sur-
face biases across the scene, and the location of CH4 plume
can be distinguished. It is important to note, however, that
the retrieved CH4 column concentration near the source pix-
els becomes more diluted as the spatial resolution decreases.
This is because the local CH4 plume distribution at an emis-
sion rate of, e.g., 200 kgh−1 varies greatly on scales of just
a few meters. Having demonstrated that an instrument with
a FWHM of 1.5 nm and a polynomial degree of 25 can sig-
nificantly reduce precision error and biases due to surface
interference, we use this setup to investigate what the 2D re-
trieved scenes look like for sources of different emission rates
to understand the lower limit of CH4 emission rates that can
potentially still be detected.

The retrieved scenes for the CH4 emission rates, from 50
to 2000 kgh−1, are shown in Fig. 18, and the corresponding
scenes showing the ratio of retrieved methane concentration
and precision error in each pixel are given in Fig. 19. The
ratio, n, of the pixel enhancement to the precision error rep-
resents a n−σ probability event that this pixel enhancement

would have randomly happened, purely due to noise, in the
absence of a true CH4. A ratio value above 4 would imply
that there is only a probability of lower than 1 in 15 000 that
this would happen by chance due to random noise. Thus, the
ratio of 4 can be a simple and useful metric to imply where
the actual CH4 enhancement pixels are. Based on this met-
ric, we found that CH4 source detection can still be possible
for plumes with emission rates as low as approximately 50–
100 kgh−1.

4 Conclusions

We built an end-to-end modeling framework that can sim-
ulate radiances from reflected sunlight through methane
plumes over a variety of surfaces. In this study, we simu-
lated a realistic 3D CH4 concentration field from a point
source, using an LES, and varied the underlying surfaces
where the emission occurs using a comprehensive surface
albedo database from the ECOSTRESS spectral library con-
sisting of over 2000 surface types. The observed radiances
and their NESR for various instrument configurations are
modeled directly as a function of incoming radiance and in-
strument parameters, such as the FWHM of the line shape
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Figure 15. RGB and 2.2 µm albedo images of a realistic surface distribution in the Durango area, Colorado, from LANDSAT.

Figure 16. Retrieved CH4 column over a well pad in the Durango, Colorado, area with varying instrument FWHM and polynomial degrees
in the retrieval. The realistic surface distribution is based on LANDSAT data. The use of a polynomial degree of 25 and a FWHM of 1.5 nm
can reduce biases and precision error over this scene.

function and the integration time, without having to prescribe
the SNR a priori. Based on the modeled radiance, we applied
the IMAP-DOAS algorithm to retrieve methane column en-
hancements.

We compared the tradeoff between the two most fre-
quently used fitting windows for CH4 in the 1.6 and 2.3 µm
ranges. Our analysis has shown that, despite a higher solar
radiance near 1.6 µm, the stronger absorption feature of CH4
near 2.3 µm leads to a consistently lower precision error for
the 2.3 µm fitting band. The rare occasion of a 1.6 µm fit-
ting window outperforming the 2.3 µm retrieval band hap-
pens only when both FWHM is lower than 0.2 nm and, si-
multaneously, a surface in consideration has a much higher
albedo near 1.6 compared to 2.3 µm. For the purpose of build-
ing an instrument to detect methane emissions accurately at
sufficiently fine spatial resolutions across most global sur-
faces, we believe that the 2.3 µm band can perform better than
the 1.6 µm band and should be prioritized in most scenar-
ios. We primarily considered the fitting window in the 2120–
2395 nm range to study the impact of instrument parameters
and retrieval choices on the retrieval bias and precision error.

To highlight the impact of surface interferences, the num-
ber of polynomial degrees is varied in the IMAP-DOAS re-
trieval experiments. This framework allows us to derive the
corresponding precision error and bias when different sets
of instrument parameters and the number of polynomial de-
grees are used in the retrieval of CH4 column concentra-
tion. Our analysis shows that the number of polynomial de-
grees used to represent surface spectral variations in the re-
trieval algorithm has a significant impact on the bias of the
retrieved methane columns, causing a positive bias as large

as 0.8 molem−2 for a retrieval with a polynomial degree of
5 compared to 0.2 and only 0.02 molem−2 for degrees of 11
and 25, respectively, across the majority of surfaces. Using
a higher polynomial degree, however, is found to simultane-
ously increase the precision error for methane retrieval, as
this relaxes the constraints on the possible methane absorp-
tion contribution in spectral variations of the observed radi-
ance. This is particularly evident at a FWHM of greater than
2 nm. Thus, using an instrument with a lower FWHM, such
as 1.5 nm, will allow for a high number of polynomial terms
to be used while inducing a smaller deterioration in preci-
sion error. For example, we found that an instrument with a
FWHM of 1.5 nm and the exposure time of 20 ms can achieve
a precision error of less than 0.007 molem−2 (or less than
1.0 % of the total column in the atmosphere) over a typical
construction concrete surface with an albedo of 0.35, even
when a polynomial degree of 25 is used.

Having low bias in the retrieval is integral to removing
correlated surface features in the retrieval enhancement map.
These surface features from retrieval errors likely appear
as false positives and, subsequently, cause significant im-
pacts on the detection and quantification of true CH4 sources.
To demonstrate the significance of surface interferences, we
used a realistic surface distribution over a well pad from the
Durango area, Colorado, as a background surface with an
LES methane plume of 200 kgh−1 to create a synthetic emis-
sion in a real-world environment. Our results illustrated that,
when an instrument with a high FWHM (such as 5 nm) is
used with a low polynomial degree (such as 5), a large re-
trieval bias appears broadly across the 2D scene. These in-
terferences occur severely over surfaces such as oil shale and
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Figure 17. A plot similar to Fig. 16 but at 30 m resolution. Retrieved CH4 column over a well pad in the Durango, Colorado, area with
varying instrument FWHM and polynomial degrees in the retrieval. The realistic surface distribution is based on LANDSAT data. The use
of a polynomial degree of 25 and a FWHM of 1.5 nm can reduce biases and precision errors across the scene.

Figure 18. Retrieved CH4 column over a well pad in the Durango, Colorado, area for plumes of various emission rates. The spatial resolution
is 30 m, the instrument FWHM is 1.5 nm, and the polynomial degree in the retrieval is 25. The realistic surface distribution is based on
LANDSAT data. Column enhancement in the vicinity of the CH4 plume is increasingly visible as the source emission rate becomes larger.

sandstone, resulting in difficulties in clearly distinguishing a
true plume from areas of systematic biases. Nevertheless, by
using a lower FWHM value, such as 1.5 nm, and the polyno-
mial degree of at least 25, we have illustrated the ability to
obtain a low retrieval bias across the entire scene and to effec-
tively differentiate the source location from the background.
We also repeated the 2D retrieval analysis for 30 m spatial
resolution, by averaging the radiance per unit area from 5
to 30 m2, and adjusted the exposure time to 40 ms, which
could be achievable for future satellites. Again, our results
have shown that using a FWHM of 1.5 nm and a polynomial
degree of 25 plays a crucial role in resolving surface features
and removing false positives, ultimately giving us the ability
to distinguish the true emission location. In the absence of
bias, the ratio of the retrieved column enhancement and the
retrieval precision error in our retrieved 2D scenes indicates
that it might be possible to detect a CH4 emission source with
a flux rate as low as 50–100 kgh−1.

This study highlights the effect of changing the instrument
FWHM, exposure times, and the polynomial degree on min-
imizing retrieval errors. The FWHM and exposure time are
intrinsic to how a spectrometer is designed, as opposed to de-
scribing a spatial resolution, which depends on external fac-
tors such as the viewing geometry and the speed of a remote
sensing platform. Further studies will be required to deter-
mine how these variables are implemented into an observing
system that can achieve specific spatial resolutions of inter-
est. Additional considerations, such as the device saturation

constraint, will also influence the ultimate achievable expo-
sure time for a newly designed instrument. Our end-to-end
simulator, which includes an instrument model and retrieval,
can be generalized to study the performance of future instru-
ments with specific engineering requirements.

The findings in this study can inform future satellite in-
strument designs and the retrieval algorithm in order to have
robust observations capable of separating real plumes from
surface interference. Reducing both bias and precision error
can have a profound benefit, both for manual analysis by hu-
mans and for an automated model plume detection, such as
an artificial neural network (ANN) approach. This will en-
able the analytic chain to have a higher accuracy and level of
confidence in detecting and quantifying more subtle methane
sources from observed scenes across large geographical ar-
eas.

The modeling framework in this work could also be gen-
eralized to improve the detection and quantification of CO2,
with minor modifications on a different fitting window and a
different magnitude of flux rate in the emission simulations.
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Figure 19. Ratio of retrieved CH4 excess column, divided by the posterior precision error, over a simulated scene in the Durango, Colorado,
area for plumes of various emission rates. The spatial resolution is 30 m, the instrument FWHM is 1.5 nm, and the polynomial degree in the
retrieval is 25. The realistic surface distribution is based on LANDSAT data. Ratios higher than 4 imply a probability, of lower than 1 in
15 000, that the pixel enhancement happens by random noise.
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