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Abstract. By now, a series of advanced wave optical ap-
proaches to the processing of radio occultation (RO) obser-
vations are widely used. In particular, the canonical trans-
form (CT) method and its further developments need to be
mentioned. The latter include the full spectrum inversion
(FSI) method, the geometric optical phase matching (PM)
method, and the general approach based on the Fourier in-
tegral operators (FIOs), also referred to as the CT type 2
(CT2) method. The general idea of these methods is the ap-
plication of a canonical transform that changes the coordi-
nates in the phase space from time and Doppler frequency
to impact parameter and bending angle. For the spherically
symmetric atmosphere, the impact parameter, being invari-
ant for each ray, is a unique coordinate of the ray manifold.
Therefore, the derivative of the phase of the wave field in
the transformed space is directly linked to the bending angle
as a single-valued function of the impact parameter. How-
ever, in the presence of horizontal gradients, this approach
may not work. Here we introduce a further generalization of
the CT methods in order to reduce the errors due to horizon-
tal gradients. We describe, in particular, the modified CT2
method, denoted CT2A, which complements the former with
one more affine transform: a new coordinate that is a linear
combination of the impact parameter and bending angle. The
linear combination coefficient is a tunable parameter. We de-
rive the explicit formulas for the CT2A and develop the up-
dated numerical algorithm. For testing the method, we per-

formed statistical analyses based on RO retrievals from data
acquired by the Constellation Observing System for Meteo-
rology, Ionosphere, and Climate (COSMIC) and collocated
analysis profiles of the European Centre for Medium-Range
Weather Forecasts (ECMWF). We demonstrate that it is pos-
sible to find a reasonably optimal value of the new tunable
CT2A parameter that minimizes the root mean square differ-
ence between the RO retrieved and the ECMWF refractivity
in the lower troposphere and allows the practical realization
of the improved capability to cope with horizontal gradients
and serve as the basis of a new quality control procedure.

1 Introduction

The first step in the development of the wave optical (WO)
approach to the processing of radio occultation (RO) ob-
servations was made by Melbourne et al. (1994) who used
the thin screen approximation for the atmosphere combined
with the back propagation (BP) technique. This approach
was further developed under the name of Fresnel inversion
by Mortensen and Høeg (1998). Although the accuracy of
this approximation in the lower troposphere was insufficient
for practical application, its basic idea was correct. It con-
sisted in the reduction of the influence of the diffraction by
using the BP, which made the inversion results independent
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from the observation distance and canceled the resolution re-
striction due to the Fresnel zone size.

Later works (Gorbunov et al., 1996a; Karayel and Hin-
son, 1997; Gorbunov and Gurvich, 1998a, b) developed a
different understanding of the BP technique. The BP wave
field evaluated in some plane was not considered as the ac-
tual wave field but as a representation of the original field
observed at low Earth orbit (LEO); in this representation, the
effects of diffraction and multipath propagation were signif-
icantly reduced. This, in a straightforward way, allowed the
evaluation of the geometric optical (GO) bending angle pro-
file, which was inverted in the framework of the standard GO
scheme (Ware et al., 1996; Kursinski et al., 1997).

The further development of the WO approach based on
the representation view relied upon the concept of the canon-
ical transform (CT) originating from classical mechanics
(Arnold, 1978; Goldstein et al., 2014), generalized for quan-
tum mechanics by Fock (1978) and mathematically substan-
tiated by Egorov (1985) and Egorov and Shubin (1993).
Later on, this concept obtained an extensive mathematical
development (Treves, 1982a, b; Hörmander, 1985a, b). The
correspondence between quantum and classical mechanics is
the same as the link between wave optics and geometrical
optics.

In both cases, there is a strict mathematical representa-
tion (quantum mechanics or wave optics) and its asymptotic
solution (classical mechanics or geometrical optics). While
the evolution of de Broglie waves of probability or electro-
magnetic waves is described by the Hamilton operator, the
evolution of rays or classical trajectories of particles is de-
scribed by the Hamilton system. The Hamilton operator is
obtained from the Hamilton function by the substitution of
the momentum operator instead of classical momentum. Ac-
cordingly, for the classical problem, the phase space is intro-
duced, the dimension of which equals double the geometric
dimension because to each geometrical coordinate, we can
conjugate the corresponding momentum. For the wave prob-
lems, momentum is understood as the ray direction vector.

The canonical transforms arise when we consider the class
of the transforms of the phase space that conserve the canon-
ical form of the Hamilton dynamical system. It was first
demonstrated by Fock (1978) that these transforms have a
very simple implementation in quantum mechanics: they cor-
respond to linear transforms of the wave function. The kernel
of this transform is derived in classical terms, but still it de-
scribes a short-wave asymptotic solution of the wave prob-
lem. This idea was later mathematically developed first by
Egorov (1985) and Egorov and Shubin (1993) and then by
Treves (1982a, b) and Hörmander (1985a, b).

The application of the CT approach for the RO observation
processing was pioneered by Gorbunov (2002), who com-
bined it with the BP. The idea of the CT without BP was first
developed by Jensen et al. (2003, 2004), and later the general
view of these results in the framework of the CT approach
was developed by Gorbunov and Lauritsen (2004a, b). Fi-

nally, it was recognized that the different methods – CT (Gor-
bunov, 2002), full spectrum inversion (FSI) (Jensen et al.,
2003), phase matching (PM) (Jensen et al., 2004), and CT
of the second type (CT2) (Gorbunov and Lauritsen, 2004a) –
were, in fact, different approximations of the same solution,
for which Fourier integral operators (FIOs) provided the gen-
eral transform approach (Gorbunov and Lauritsen, 2004a).

The idea of the CT approach is as follows. Given the
observations or RO complex signal u(t) as a function of
time t , which can be represented through its amplitude
A(t) and phase φ (t), u(t)= A(t)exp(iφ (t)). It is conve-
nient to use eikonal or phase path 9 (t)= φ (t)/k, where
k = 2π/λ is the wavenumber, and λ is the wavelength.
Thus, u(t)= A(t)exp(ik9 (t)), and k is the large parame-
ter. The signal is composed of multiple sub-signals ui (t)=
Ai (t)exp(ik9i (t)) corresponding to interfering rays. For
each sub-signal, it is possible to introduce the instantaneous
frequency k9̇i = kσi . However, the instantaneous frequency
cannot be introduced for their composition.

The multipath propagation problem consists in the decom-
position of the signal equal to the sum or different sub-signals
to retrieve the ray structure of the observed field. The solution
of this problem discussed in the aforementioned papers con-
sisted in the transform of the observed wave field u(t) into
a different representation. The new coordinates in the trans-
formed space were the ray impact parameter p and bend-
ing angle ε. The transform (t,σ )→ (p,ε) is canonical (Gor-
bunov and Lauritsen, 2004a), which allows for writing the
corresponding linear transform 8̂2, where the subscript 2 in-
dicates that it is a CT of the second type (Arnold, 1978; Gold-
stein et al., 2014) that maps the original field u(t) to a field
in the impact parameter representation û (p)= 8̂2 [u(t)](p).
The idea of the choice of the ray impact parameter as the new
coordinate is based on the fact that in a spherically symmetric
medium, the ray impact parameter is the ray invariant, which
is known as Bouguer’s law. The locally spherically symmet-
ric medium is the basic approximation used in the inversion
of RO data. For the real atmosphere with horizontal gradi-
ents, the dynamic equation for p was derived by Gorbunov
and Kornblueh (2001), who demonstrated that the derivative
of p with respect to the ray arc length is equal to the horizon-
tal component of the refractivity gradient in the occultation
plane. Strong horizontal gradients may result in the situation
when dependence ε (p) becomes multivalued (Healy, 2001;
Gorbunov and Lauritsen, 2009), which was referred to as the
impact parameter multipath (Zou et al., 2019).

The idea explored in the present manuscript consists in the
further development of the CT approach by using a general-
ized transform with the coordinate p′ = p+βε. Unlike the
standard CT approach, for which the form of the new coordi-
nates in the phase is known in advance, this transform has the
tunable parameter β that can take into account the statistical
impact parameter multipath effect.

The paper is organized as follows. In Sect. 2, we discuss
the canonical transform in wave optics and quantum mechan-
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ics in general terms, including a brief review of FIOs. Based
on this context, we discuss in Sect. 3 the application of the
CT method for RO and introduce the particular phase space
and the specific choice of coordinates, as well as the new
generalization, adding an affine transform with a tunable pa-
rameter for improving the coping capability with horizontal
gradients. In Sect. 4, we discuss the practical modifications
needed to readily advance existing numerical implementa-
tions of the CT algorithm and present results of our perfor-
mance evaluation from processing actual observed Constel-
lation Observing System for Meteorology, Ionosphere, and
Climate (COSMIC) RO data, including how to find an opti-
mal value of the tunable parameter to minimize the retrieval
errors in the lower troposphere. Section 5 finally provides the
summary and main conclusions of the paper.

2 General concept of canonical transform in wave
optics

The canonical transforms (CTs) in classical mechanics are a
class of transforms of the coordinates and momenta conserv-
ing the Hamiltonian form of the dynamical equation (Arnold,
1978; Goldstein et al., 2014). Fock (1978) introduced the CT
into quantum mechanics. Note that the first Russian edition
of the monograph by Fock appeared as early as 1929. Be-
cause the relation between classical and quantum mechanics,
on one side, and the relation between geometrical and wave
optics, on the other side, are the same, we can immediately
apply the approach introduced by Fock (1978).

We assume that the wave field can be represented in the
standard form:

u(t)= A(t)exp(ik9 (t)) , (1)

where t is the observation time, 9 (t) is the eikonal, k =
2π/λ is the wavenumber, λ is the wavelength, and A(t) is
the amplitude. The time t can be associated with a specific
spatial location of the observation, as is the case in RO, but
u(t) can also be looked at as a generic signal.

The amplitude A(t) and the derivative of 9 (t) are as-
sumed to be slowly changing within an oscillation period. In
this case, the wave field is termed quasi-monochromatic with
an instant amplitudeA(t) and frequency ω(t)= k9̇ (t). Oth-
erwise, more generally, the field should be equal to a super-
position of quasi-monochromatic components:

u(t)=
∑
j

A(j) (t)exp
(
ik9(j) (t)

)
, (2)

where the upper index j enumerates the components,A(j) (t)
are their amplitudes, and 9(j) (t) are their eikonals. Each
component has its own instant amplitude and frequency.

When discussing the CTs, it is necessary to bear in mind
that most of the relations have an asymptotic nature, in which
k is the large parameter (or λ is the small parameter). The rea-
son is as follows. Given measurements of wave field, each

monochromatic component can be interpreted in terms of
wave fronts and rays defined in terms of instant tones of the
signal. At the observation point at time moment t , each com-
ponent has a single ray, and its direction is linked to the nor-
malized frequency σ (t)= 9̇ (t) through the geometry of the
observation trajectory.

Therefore, for a specific class of signals, including quasi-
monochromatic ones and their superpositions, it is possible
to introduce a phase space (t,σ ). Although the original sig-
nal is 1-D, this space is 2-D, and the structure of the signal
can be described in terms of the function σ (t) which can be
both single valued for quasi-monochromatic signals or mul-
tivalued for their superpositions.

Consider RO observations. The original signal corre-
sponds to a range of rays starting at the transmitter and the
phase space σ (t) is a very smooth continuous line. As the
signal propagates through the atmosphere, its structure gets
more and more complicated. Still, in the phase space, its
topological structure remains the same; it is always a single
continuous line, although it may not be single-valued with re-
spect to time t , which corresponds to multipath propagation
(Gorbunov, 2002; Gorbunov and Lauritsen, 2004a). Such a
line representing the signal structure is referred to as the ray
manifold (Mishchenko et al., 1990).

The outstanding and still simple idea of Fock (1978) was
that the classical CTs correspond to linear integral trans-
forms of the wave field with oscillating kernels. This class of
transform was later named Fourier integral operators (FIOs)
(Egorov, 1985; Egorov and Shubin, 1993; Treves, 1982a, b;
Hörmander, 1985a, b). The general form of such an operator
first discussed by Fock (1978) has the following form:

û (p)=

√
−
ik

2π

∫
a2 (p, t)exp(ikS2 (p, t)) u(t)dt

≡82 [u(t)](p), (3)

where p is a new coordinate in the mapped space. We use
notation 82 and, accordingly, a2 and S2 because this type of
operator was referred to as the FIO of the second type (Gor-
bunov and Lauritsen, 2004a), while the FIO of the first type
is the composition of a Fourier transform and a second type
FIO (Egorov, 1985; Egorov and Shubin, 1993). This type of
operator is linked to the corresponding type of the CT gen-
erating function (Arnold, 1978; Goldstein et al., 2014). Note
that historically FIOs of the second type appeared first, but
in mathematical works, it was FIOs of the first type that were
discussed first.

Considering now u(t) as a quasi-monochromatic signal,
we can derive the asymptotic form of transform (Eq. 3) using
the stationary phase principle:

û (p)=

√
−
ik

2π

∫
a2 (p, t)A(t)exp(ik(S2 (p, t)+9 (t))) dt

≡82 [u(t)](p) . (4)
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The stationary phase point ts (p) of this integral satisfies the
equation

∂

∂t
S2 (p, t)+ 9̇ (t)= 0. (5)

Accordingly, the transformed field, under the assumption
that Eq. (5) has a single solution ts (p), is also quasi-
monochromatic and can be written as follows:

û (p)= A′ (p)exp
(
ik9 ′ (p)

)
= A′ (p)exp(ik (S2 (p, ts (p))+9 (ts (p)))) . (6)

Its instantaneous frequency equals the following:

ξ (p)= 9̇ ′ (p)=
d

dp
(S2 (p, ts (p))+9 (ts (p)))=

=
∂

∂p
S2 (p, ts (p))+

(
∂

∂t
S2 (p, t)+ 9̇ (t)

)∣∣∣∣
t=ts(p)

dts
dp

=
∂

∂p
S2 (p, ts (p)) , (7)

by virtue of Eq. (5). Recalling that 9̇ (t)= σ , which is the
original momentum, we have the following relation between
the canonical coordinates (t,σ ) and (p,ξ) in the original and
mapped spaces:

∂S2

∂t
=−σ,

∂S2

∂p
= ξ, (8)

which can be expressed in terms of the differential dS2:

dS2 = ξdp− σdt, (9)

and, vice versa, the requirement that the right-hand part in
Eq. (9) should be equal to a full differential dS2 of a function
S2 (p, t) is a necessary and sufficient condition for the trans-
form (t,σ )→ (p,σ ) to be canonical (Arnold, 1978; Gold-
stein et al., 2014). The function S2 (p, t) is then termed the
generating function of the canonical transform.

In terms of FIO, S2 (p, t) is referred to as its phase func-
tion, and a2(p, t) is its amplitude function. The phase func-
tion, which specifies the canonical transform, is of primary
importance, while the amplitude function is derived using
energy conservation (Gorbunov and Lauritsen, 2004a). We
see, therefore, that by using classical or geometric optical
concepts, it is possible to write down the asymptotic form
of the quantum or wave optical operator, implementing the
transformation of the original signal into a different repre-
sentation. If the structure of the original signal is represented
as a ray manifold in the phase plane, such a transform is ap-
plied to the coordinates in this space. In particular, it may be
possible to find such a coordinate system in which the ray
manifold geometry will be exceptionally simple.

Figure 1. Radio occultation observation geometry with relevant ge-
ometrical variables indicated (for description see Sect. 3.1)

3 The canonical transform method for RO and its
generalization

Here we discuss the application of the CT technique for the
analysis of RO observations (Fig. 1) by first reviewing the
different existing variants (Sect. 3.1) and then introducing the
new generalized CT method (Sect. 3.2) and an application-
relevant formulation for readily updating existing algorithms
(Sect. 3.3).

3.1 Canonical transform method in different existing
variants

The RO observation geometry is schematically represented
in Fig. 1. The wave emitted by a transmitter Tx is received
by a receiver Rx in low Earth orbit. The transmitter is borne
by a satellite belonging to one of the modern Global Naviga-
tion Satellites Systems (GNSS), including GPS, GLONASS,
Galileo, etc. Due to the movement of the transmitter and re-
ceiver, the ray descends or ascends in the atmosphere, which
allows for the derivation of the atmospheric profiles from
the bending angles ε (p) (Ware et al., 1996; Kursinski et al.,
1997). The CT technique is used for the retrieval of the bend-
ing angle profile from the wave field measurements.

The first approach of processing RO data, belonging to the
class of CT, was back propagation (BP) (Gorbunov et al.,
1996a; Karayel and Hinson, 1997; Gorbunov and Gurvich,
1998a, b). In this technique, the field was linearly trans-
formed to be recalculated to the BP plane locate at coordinate
xB :

uB (y)=

√
ik

2π

∫
u(t)exp(−ik |rB (y)− rR (t)|)

|rB (y)− rR (t)|1/2
×

× |sinφ (ṙR (t) ,rB (y)− rR (t)) ṙR (t)|dt, (10)

where 2-D vector rB (y) equals (xB ,y), and φ(a,b) is the
angle between vectors a and b. This transform is preceded
by the stationarization of the transmitting satellite and pro-
jection of the satellite movement to the vertical plane. It is
important that the BP field is not the real field in the BP
plane because the BP procedure assumes vacuum propaga-
tion. This procedure results in some representation of the
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original wave field with reduced diffraction effects due to the
reduction of the propagation distance. The new coordinate y
is more favorable for finding a unique projection of the ray
manifold that disentangles the multipath propagation. Still,
this coordinate is not the best choice.

A much better coordinate for the new representation
should be the impact parameter p because in a spherically
symmetric medium, it is an invariant for each ray due to
Bouguer’s law, and thus it is unique for each ray. A dynamic
equation for the variation of p along the ray as a function of
the horizontal gradient of refractivity was obtained by Gor-
bunov and Kornblueh (2001). The idea of complementing the
BP technique with one more transform that maps the field to
the impact parameter representation was pioneered by Gor-
bunov (2002). It was the first application of the FIO of the
first type, which has the form

û (p)=

√
−
ik

2π

∫
a1 (p,σ )exp(ikS1 (p,σ )) ũ (σ )dσ

≡81 [u(t)](p), (11)

where the only difference from the second type operator is
that it acts upon the Fourier-transformed field ũ (σ ). It can be
looked at as the composition of the Fourier transform, which
itself is a second type FIO and another second type FIO. Be-
cause the Fourier transform is a simple rotation of the phase
space by π/2: (t,σ )→ (σ,−t), the equation for the phase
function of the first type takes the following form (Arnold,
1978; Goldstein et al., 2014):

dS1 = ξdp+ tdσ. (12)

Gorbunov (2002) applied this operator to the back-
propagated field. To this end, using the normal vector ν =(
η,
√

1− η2
)

to the straight ray, we express the impact pa-
rameter:

p(y,η)=−xη+ y

√
1− η2. (13)

Now it is necessary to find the canonical transform (y,η)→

(p,ξ) whose characteristic property in the 2-D case is
the conservation of the volume element, as follows from
Eq. (12):

∂ξ

∂η

∂p

∂y
−
∂ξ

∂y

∂p

∂η
= 1. (14)

It is enough to consider solutions ξ = ξ(η). Then, from
Eq. (14), we readily derive

∂ξ

∂η
=

(
∂p

∂y

)−1

=
1√

1− η2
,

ξ = arcsinη. (15)

This results in the solution for the phase and amplitude func-
tions:

S2 (p,η)= p arcsinη− x
√

1− η2,

a2 (p,η)=

√
∂2S

∂p∂η
=

(
1− η2

)−1/4
. (16)

This defines the FIO, which is applied to the backpropagated
wave field uB (y) and produces the mapped field

û (p)= A′ (p)exp
(
ik

∫
ξ (p)dp

)
. (17)

The derivative ξ (p) of its eikonal is algebraically linked to
the bending angle:

ε(p)=−ξ (p)− arcsin

xT p+ yT
√
r2
T −p

2

r2
T

 , (18)

where (xT ,yT )= rT is the transmitter position in the occul-
tation plane. Because the cross term in S2, which depends
both on p and η, is linear with respect to p, the integration
over new coordinate ξ = arcsinη turns it to pξ , and, there-
fore, the operator is reduced to the Fourier transform in com-
bination with a nonlinear change in coordinates. This indi-
cates that this operator allows for a fast implementation. A
similar idea will be applied below.

The complicated nature of the BP+CT algorithm stimu-
lated further studies (Gorbunov and Lauritsen, 2002, 2004b)
where the idea was expressed of applying the FIO directly to
the observed wave field u(t), without intermediate and nu-
merically expensive steps like BP. Full spectrum inversion
(FSI), developed by Jensen et al. (2003), was the first solu-
tion of this type, although with some restrictive assumptions.
However, the general solution was just 1 year away; the phase
matching (PM) method was developed by Jensen et al. (2004)
and then put into the context of the CT approach by Gor-
bunov and Lauritsen (2004a), who introduced an approach
based on the linearized canonical transform that reduced the
FIO to the composition of nonlinear coordinate changes and
the Fourier transform. This algorithm was termed the second
type CT or CT2. An important advantage of the PM and CT2
methods consists in the fact that they operate with the real
transmitter and receiver orbits without the stationarization.

In order to arrive at the phase function of the FIO of the
second type, consider the expression for the derivative of the
phase of the observed wave field:

9̇ = σ(p,y)= pθ̇ +
ṙT

rT

√
r2
T −p

2+
ṙR

rR

√
r2
R −p

2. (19)
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Using Eq. (8), we derive the phase function:

S2(p, t)=−

∫ (
pθ̇ +

ṙT

rT

√
r2
T −p

2+
ṙR

rR

√
r2
R −p

2
)

dy =

=−

∫ (
pdθ +

drT
rT

√
r2
T −p

2+
drR
rR

√
r2
R −p

2
)
=

=−pθ −

√
r2
T −p

2+p arccos
p

rT
−

√
r2
R −p

2

+p arccos
p

rR
, (20)

where θ , rT , and rR are functions of time t . We do not repro-
duce here the derivation of the amplitude function a2 (p, t),
which uses simple geometrical considerations (Gorbunov
and Lauritsen, 2004a). This phase function, although provid-
ing the accurate solution, has a disadvantage: its cross term
depending on both p and t , generally speaking, cannot be de-
composed as g1 (p)g2(t), and the FIO cannot be reduced to
a Fourier transform in compositions with nonlinear coordi-
nate changes. This is only possible in some particular cases,
e.g., for circular orbits, when the phase function equals pθ ,
and using θ as a new coordinate instead of time reduces the
operator to the Fourier transform. This method was referred
to as FSI.

To find an approximate solution that significantly reduces
the computational costs at the expense of an insignificant re-
duction of accuracy, the representation of the approximate
impact parameter was introduced. The impact parameter p is
a function of t,σ : p = p(t,σ ). We introduce its approxima-
tion p̃:

p̃ (t,σ )= p0 (t)+
∂p0

∂σ
(σ − σ0 (t))= f (t)+

∂p0

∂σ
σ,

f (t)= p0 (t)−
∂p0

∂σ
σ0 (t)=

= p0−

dθ
dt
−

drG
dt

p0

rG

√
r2
G−p

2
0

−
drL
dt

p0

rL

√
r2
L−p

2
0

−1

σ0, (21)

where σ0(t) is a smooth model of normalized Doppler fre-
quency, p0(t)= p(t,σ0(t)), and ∂p0/∂σ = ∂p/∂σ |σ=σ0(t).
We now parameterize the trajectory with the coordinate
ϒ = ϒ(t). For brevity, we use the notation u(ϒ) instead of
u(t (ϒ)). For the coordinate ϒ and the corresponding mo-
mentum η, we use the following definitions:

dϒ =
(
∂p0

∂σ

)−1

dt =
∂σ

∂p0
dt,

η =
∂p0

∂σ
σ. (22)

Finally, we arrive at the following linear canonical transform
(ϒ,η)→ (p,ξ):

p̃ = f (ϒ)+ η,

ξ =−ϒ. (23)

The generating function of this canonical transform is easily
computed from the differential equation:

dS2 = ξdp̃− ηdϒ =−ϒdp̃− (p̃− f (ϒ))dϒ

S2(p̃,ϒ)=−p̃Y +

ϒ∫
0

f (ϒ ′)dϒ ′. (24)

For the new coordinate ϒ , we have the following relation:

dϒ = dθ −
drG
rG

p0√
r2
G−p

2
0

−
drL
rL

p0√
r2
L−p

2
0

. (25)

For circular orbits, this approximation, once again, reduces
to FSI. To evaluate the bending angle, we use the fact that
the momentum of the field in the mapped space equals −ϒ .
We also evaluate the accurate impact parameter p as follows.
Given the dependence ϒ(p̃), it is possible to find the corre-
sponding time t (p̃). Using Eq. (21), we infer

σ (p̃)= (p̃−p0 (t (p̃)))

(
∂p0

∂σ

)−1

+ σ0 (t (p̃)) ,

p (p̃)= p(t (p̃) ,σ (p̃)). (26)

Finally, for each impact parameter p, we determine the coor-
dinateϒ (p)=−ξ (p) and, therefore, the corresponding mo-
ment of time t = t (ϒ (p)) when this ray was observed; the
bending angle is then evaluated from the geometrical rela-
tion:

ε (p)= θ (t (ϒ (p)))− arccos
p

rT (t (ϒ (p)))

− arccos
p

rR (t (ϒ (p)))
. (27)

This method, termed CT2, indicates both a high accuracy and
numerical performance. This discourse leads us to the con-
clusion that there is a family of closely related WO methods
that are based on the same principle. The observed wave field
is subjected to a linear integral operator with an oscillating
kernel that transforms the field into a different representation.
The representation is chosen in such a way that the projection
of the ray manifold to the new coordinate axis is unique. The
operation is also referred to as the unfolding of multipath.
Finally, such methods as CT, FSI, PM, and CT2 involve the
evaluation of the same integral transform under different as-
sumptions and approximations. The difference in the results
of the application of these WO methods is less significant
than the difference coming from other parts of RO data pro-
cessing systems, including cut-off, filtering, and quality con-
trol (QC) procedures (Gorbunov et al., 2004, 2011).

3.2 Generalized canonical transform method

All the modifications of the CT approach discussed above re-
lied upon impact parameter p as the unique coordinate of the
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ray manifold. However, the impact parameter is, generally
speaking, not invariant for each ray, and its perturbations due
to horizontal gradients may result in breaking the above con-
dition. To see this, consider the ray equations in the Hamilton
form. They are derived from the Hamilton function

H (r,p)=
1
2

(
p2
− n2 (r)

)
, (28)

where p is the momentum, and n(r) is the refractivity field.
The Hamilton system has the following form:

ṙ=
∂H

∂p
, ṗ=−

∂H

∂r
, 9̇ = pṙ,

ṙ= p, ṗ= n∇n, 9̇ = n2, (29)

where p is the classical momentum. Because |p| = |∇9| =
n, we arrive at the following differential relation between
the parameter τ of this system, the ray arc length s, and the
eikonal

dτ =
ds
n
, d9 = nds. (30)

Equation (29) has a form that is specific for the Cartesian co-
ordinates. Consider an arbitrary coordinate system with the
metric tensor gij : ds2

= dxigijdxj , where xi are the compo-
nents of vector r, and we follow the Einstein tensor notation
implying the summation over each pair of upper and lower
indexes of the same name. If we define the momentum by
the relation pi = gij ẋj , the form pdr is invariant, the trans-
form to the new coordinates

(
pi, xi

)
is canonical, and the

canonical form of the Hamilton system also remains invari-
ant (Arnold, 1978), provided that the Hamilton function is
defined as follows:

H (r,p)=
1
2

(
pig

ijpj − n
2 (r)

)
, (31)

where gij is the matrix inverse to gij . This results in the fol-
lowing form of the ray equations:

ẋi =
∂H

∂pi
= gijpj , ṗi =−

∂H

∂xi
= n

∂n

∂xi
−

1
2
pk
∂gkj

∂xi
pj .

The 2-D approximation (Zou et al., 2002) allows us to treat
rays as plane curves. Consider polar coordinates (r,θ) with
the metric tensor:

gij =

(
1 0
0 r2

)
, gij =

(
1 0
0 r−2

)
. (32)

Then we have the following equations:

pθ = r
2θ̇ = nr

rdθ
ds
= nrsinψ,

ṗθ = n
∂n

∂θ
,

ṗr = r̈ = n
∂n

∂r
+
p2

r3 , (33)

where ψ is the angle between vectors ṙ and r. The angular
component of the momentum pθ coincides with the ray im-
pact parameter p, which is invariant in a spherically layered

Figure 2. Impact parameter multipath, old coordinate (impact pa-
rameter) lines, and modified coordinate lines.

medium but is perturbed by the horizontal gradients (Gor-
bunov et al., 1996b; Gorbunov and Kornblueh, 2001; Healy,
2001; Gorbunov and Lauritsen, 2009).

The variations in the ray impact parameter, which is no
longer an invariant coordinate in the ray space, seem to un-
dermine the elegant idea of the CT approach. Still, the CT
method can be applied using the same formulas, but the co-
ordinate p will now acquire a different meaning: it will be
understood as the “effective impact parameter”, i.e., the im-
pact parameter which would result in the observed Doppler
frequency shift if the atmosphere were spherically layered
(Gorbunov et al., 2019; Gorbunov and Lauritsen, 2009). Ac-
cordingly, the evaluated bending angle will also be the “ef-
fective” bending angle. The reason is that for the evaluation
of the real bending angle, understood as the angle between
the ray directions at the transmitter and receiver, two corre-
sponding values of the impact parameter are required, which
cannot be derived from the single variable, the Doppler fre-
quency. This, by itself, is not a significant problem because
the assimilation of bending angle profiles can be based on
the effective values (Gorbunov et al., 2019) provided that the
observation operator correctly implements their evaluation.

More importantly, horizontal gradients may result in mul-
tivalued ray manifold projections when using the effective
impact parameter p as the coordinate in the mapped space.
This situation is termed “impact parameter multipath” (Zou
et al., 2019). Theoretically, for any ray manifold perturba-
tion, there always exists an unfolding coordinate transform.
This follows from the fact that topologically the ray manifold
is always a continuous line without self-crossing. However,
this coordinate transform depends on the a priori unknown
horizontal gradients of refractivity.

A typical multivalued bending angle profile (Gorbunov
and Lauritsen, 2009; Zou et al., 2019) is shown in Fig. 2.
From numerical simulations, it can be inferred that there is
a kind of asymmetry; the impact parameter multipath mani-
fests itself mostly in ascending spikes but hardly in descend-
ing spikes. Accordingly, in order to better unfold the multi-
path, it must be possible to use another coordinate in such a
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way that the modified coordinate lines are sloped. Therefore,
we modify the transform Eq. (23) in order to use another co-
ordinate,

p̃′ = p̃+βϒ, (34)

where β is a tunable parameter and has dimensions of
length/angle (km/rad). Although the optimal value of this pa-
rameter should be different for individual events, the afore-
mentioned asymmetry results in the conclusion that the pre-
ferred value of β is expected to be negative. Therefore, it
may be possible to find its optimal value that, in the statisti-
cal sense, will minimize errors due to the impact parameter
multipath.

The modified canonical transform Eq. (23) is written as
follows:

p̃′ = f (ϒ)+βϒ + η ≡ f ′ (ϒ)+ η,

ξ =−ϒ. (35)

Using the modified function f ′ (ϒ) instead of the original
one, we will obtain the expression for the modified FIO 8̂′2.
The advantage of this approach is that it can be implemented
by a very simple modification of the existing CT2 algorithm.
Using the numerical implementation of the modified CT will
allow us to study its influence upon the RO inversion statis-
tics in the lower troposphere.

We denote the generalized FIO 8̂
(β)
2 u(p̃). Now we can

consider the wave field in the impact parameter represen-
tation, û

(
β; p̃′

)
= 8̂

(β)
2 u

(
p̃′
)
. The standard CT algorithm

corresponds to the evaluation of û (0; p̃)= 8̂(0)2 u(p̃) with
β = 0.

It is possible to arrive at a quantitative estimate of β based
on Gorbunov and Kornblueh (2001), Gorbunov and Laurit-
sen (2009), and Zou et al. (2019). We expect that |β|.δp/δε,
where δp is the typical variation in impact parameter due
to the horizontal gradients, and δε is the corresponding
bending angle variation. Assuming that δp ≈ 0.1 km, and
δε ≈ 0.01 rad, we arrive at a first quantitative estimate of
β ≈−10 km/rad.

3.3 Affine transform for updating existing CT
algorithms

Modification of existing numerical algorithms may not be so
straightforward as it follows from the above mathematical
considerations. In order to avoid this, it is possible to com-
plement an existing implementation of any WO-based nu-
merical algorithm by an additional affine transform.

We will now derive the transform between û (0; p̃) and
û
(
β; p̃′

)
. We can write the following transform between

these representations:

p̃′ = p̃−β (ξ − ξ0) ,

ξ ′ = ξ, (36)

where ξ0 is the reference point. This is an affine transform
in the (p̃,ξ) plane. This suggests the abbreviation CT2A for
the new generalized form, which stands for the CT2 comple-
mented by the affine transform.

The generating function of transform (36) S
(
p̃′,ξ

)
is de-

fined by

dS(β) = ξdp̃′+ p̃dξ, (37)

which is equivalent to the following system:

∂S(β)

∂p̃′
= ξ,

∂S(β)

∂ξ
= p̃ = p̃′+β (ξ − ξ0) . (38)

From this, we can conclude that

S(β)
(
p̃′,ξ

)
= p̃′ξ +β

(ξ − ξ0)
2

2
. (39)

This phase function defines the FIO of the first type:

û
(
β; p̃′

)
=

√
−
ik

2π

∫
exp

(
ikS(β)

(
p̃′,ξ

))
ũ (ξ)dξ

≡ 8̂′
(β)

1 [u(t)](p̃) . (40)

Finally, we can write the operator relation

8̂
(β)
2 = 8̂

′
(β)

1 8̂
(0)
2 , (41)

which can be used for the modification of the existing version
of operator 8̂(0)2 .

The above derivation allows for one more generalization.
We can consider β = β (ξ). In this case, the phase function is
derived in a straightforward way:

S(β)
(
p̃′,ξ

)
= p̃′ξ +

∫
β (ξ)(ξ − ξ0)dξ. (42)

Using β (ξ)=
∑
βj ξ

j results in a simple analytical expres-
sion for S(β) with a set of tuning parameters βj . In this work,
we, however, use a constant β.

4 Implementation and numerical performance
evaluation

Our implementation of the CT2A algorithm was based on
the existing program code with the addition of the parame-
ter β and using the modified function f ′ (ϒ) as defined by
Eq. (35). Practically, this only required the modification of
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Figure 3. Statistics for latitude band 0–10◦. (a) Amount of data. (b) RMS relative difference in refractivity COSMIC–ECMWF 1NCE.
(c) RMS relative difference in refractivity CT2A–CT2. All are functions of the parameter β.

Figure 4. Statistics for latitude band 10–20◦. (a) Amount of data. (b) RMS relative difference in refractivity COSMIC–ECMWF 1NCE.
(c) RMS relative difference in refractivity CT2A–CT2. All are functions of the parameter β.

a few lines in the program code that implements the CT2
method, as well as the implementation of one more command
line parameter.

In our numerical validation, we retrieved COSMIC refrac-
tivity profiles NC using COSMIC data from the year 2008
on the 1st and 15th of every month, leading to a total of 24 d
and altogether around 60 000 RO events. We used collocated
ECMWF refractivity profilesNE, i.e., interpolated to the cor-
responding COSMIC RO event location, as the reference. To
this end, we employed ECMWF analyses at 1◦ latitudinal and
longitudinal resolution with 91 vertical levels covering the
altitude range up to about 80 km. The refractivity was eval-
uated from pressure, temperature, and humidity fields. The
tangent point drift was taken into account. We used the root
mean square (RMS) relative difference in COSMIC from

ECMWF1NCE, defined as
√〈
((NC−NE)/NE)

2〉, which in-
cludes both systematic and random deviations.

Figures 3 through 11 show the statistical values of 1NCE
as a function of latitude and parameter β. We averaged over
10◦ wide latitude bands including both the Southern Hemi-
sphere and Northern Hemisphere. The parameter β changed
in the interval from −4 to −12 km/rad with a step of −1.

These results indicate that for the latitudes of 0–30◦ and
for the altitudes of 2.5 km, the application of the CT2A al-
gorithm, together with our quality control (QC) procedure,
results in the reduction of the RMS relative difference in re-
fractivity profiles COSMIC–ECMWF1NCE. The amount of
data in the altitude range below 3 km that passes the QC
slightly decreases with increasing β. Above the height of
about 0.4 km, the increasing value of β reduces 1NCE. Be-
low 0.4 km, there is an optimal value of β in the interval from
−4 to −9 km/rad, depending on the altitude and latitude. For
the latitudes higher than 30◦, the application of CT2A is not
expedient.
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Figure 5. Statistics for latitude band 20–30◦. (a) Amount of data. (b) RMS relative difference in refractivity COSMIC–ECMWF 1NCE.
(c) RMS relative difference in refractivity CT2A–CT2. All are functions of the parameter β.

Figure 6. Statistics for latitude band 30–40◦. (a) Amount of data. (b) RMS relative difference in refractivity COSMIC–ECMWF 1NCE.
(c) RMS relative difference in refractivity CT2A–CT2. All are functions of the parameter β.

Figure 7. Statistics for latitude band 40–50◦. (a) Amount of data. (b) RMS relative difference in refractivity COSMIC–ECMWF 1NCE.
(c) RMS relative difference in refractivity CT2A–CT2. All are functions of the parameter β.
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Figure 8. Statistics for latitude band 50–60◦. (a) Amount of data. (b) RMS relative difference in refractivity COSMIC–ECMWF 1NCE.
(c) RMS relative difference in refractivity CT2A–CT2. All are functions of the parameter β.

Figure 9. Statistics for latitude band 60–70◦. (a) Amount of data. (b) RMS relative difference in refractivity COSMIC–ECMWF 1NCE.
(c) RMS relative difference in refractivity CT2A–CT2. All are functions of the parameter β.

Figure 10. Statistics for latitude band 70–80◦. (a) Amount of data. (b) RMS relative difference in refractivity COSMIC–ECMWF 1NCE.
(c) RMS relative difference in refractivity CT2A–CT2. All are functions of the parameter β.
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Figure 11. Statistics for latitude band 80–90◦. (a) Amount of data. (b) RMS relative difference in refractivity COSMIC–ECMWF 1NCE.
(c) RMS relative difference in refractivity CT2A–CT2. All are functions of the parameter β.

The statistics for different β, presented in the above fig-
ures, was evaluated independently, i.e., the statistical ensem-
bles were different. Figures 12 and 13 show the statistics for
the common datasets including events passing QC for both
β = 0 and current values of β. The statistical differences
between refractivity retrieved with β = 0 and other values
of β are indistinguishably small (never exceeding a level of
0.0005 %). Here the reduction of1NCE is slightly more than
in Figs. 3 and 4

This indicates that CT2A acts as a QC procedure not in-
volving any external data and only based on the internal
properties of observed signals. On average, CT2A provides a
higher cut-off height which is estimated from the CT ampli-
tude by correlating it with the θ function (Gorbunov et al.,
2006). By looking at the ray manifold in the phase space
from different directions, it is possible to choose ray mani-
fold pieces where its structure is most stable.

5 Summary and conclusions

In this study, we discussed the general idea of the canonical
transform (CT) method and provided a new generalization
adding more flexibility for application in RO processing. CTs
in classical mechanics (geometrical optics) are implemented
in quantum mechanics (wave optics) by linear operators with
oscillating kernels. Such operators are referred to as Fourier
integral operators (FIOs). During the past century, this ap-
proach acquired a solid theoretical basis. In numerous math-
ematical monographs, one finds the advanced theory of FIOs.
The central role in this theory is played by the concept of the
ray manifold and its projections.

In quantum mechanics and wave optics, FIOs were em-
ployed for the quantization procedure, i.e., the construction
of the asymptotic quantum (quasi- or semiclassical) solutions
on the basis of the classical (geometric optical) ones. The

idea of the CT method for processing RO observations is the
reverse: the reconstruction of the geometric optical solution
from the wave optical one, which can be referred to as the
dequantization.

Although there have been many modifications, like orig-
inal CT combined with back propagation (BP), full spec-
trum inversion (FSI), phase matching (PM), and CT of type
2 (CT2), there is no essential difference between these FIO-
based methods. The difference consists of the approximation
of the phase function of the FIO leading to the correspond-
ing approximate representation of the impact parameter and
bending angle and in the specific implementation (such as
cut-off, filtering, and quality control procedures). All these
methods map the wave field into the representation of the
impact parameter p. This choice of the coordinate in the
mapped space has its reasons: in the case of a spherically
symmetric medium, the impact parameter is always a unique
coordinate of the ray manifold.

The implementation of this idea in the real, non-
spherically symmetric atmosphere encounters some difficul-
ties. First, in the strict sense, there is no such quantity as the
impact parameter as a unique variable any more, but it is still
possible to operate with the effective impact parameter de-
rived from Doppler frequency shift using the same relations
as for a spherically symmetric medium. This quantity can be
implemented in the observation operator for the variational
assimilation of RO observations, canceling errors due to hor-
izontal gradients. However, the above property of the impact
parameter, which is supposed to be a unique coordinate of the
ray manifold, does not always hold for the effective value. In
some cases, the situation referred to as the impact parameter
multipath may occur, resulting in retrieval errors in atmo-
spheric profiles derived from RO data.

In order to mitigate this fundamental shortcoming, we in-
troduced a generalization of the CT approach. We used a gen-
eralized definition of the coordinate in phase space, defined

Atmos. Meas. Tech., 14, 853–867, 2021 https://doi.org/10.5194/amt-14-853-2021



M. Gorbunov et al.: Generalized canonical transform method 865

Figure 12. Statistics for latitude band 0–10◦ evaluated for subsets common for β = 0 and each other value of β. (a) Amount of data. (b) RMS
relative difference in refractivity COSMIC–ECMWF 1NCE. (c) RMS relative difference in refractivity CT2A–CT2. All are functions of the
parameter β.

Figure 13. Statistics for latitude band 10–20◦ evaluated for subsets common for β = 0 and each other value of β. (a) Amount of data. (b) RMS
relative difference in refractivity COSMIC–ECMWF 1NCE. (c) RMS relative difference in refractivity CT2A–CT2. All are functions of the
parameter β.

as a linear combination of the impact parameter and bending
angle. Because this can be understood as an affine transform
of the phase space, we coined the abbreviation CT2A for the
new method. This transform has a parameter β which can be
tuned to optimize the algorithm’s performance.

We implemented the CT2A algorithm by modifying our
existing program code for the CT2 method. In order to eval-
uate its statistical performance under real RO observation
conditions, including challenging horizontal gradients in the
lower troposphere, we processed a large ensemble of COS-
MIC RO data for the year 2008 on the 1st and 15th day of
every month, adding up to a total of about 60 000 RO events.
We used the total relative difference in COSMIC from collo-
cated ECMWF analysis profiles over the lower troposphere
as the metric for this evaluation and the tuning parameter es-
timation.

For the latitudes of 0–30◦ and for the altitudes between 0.4
and 2.5 km, the application of the CT2A algorithm decreased
the COSMIC–ECMWF difference metric with increasing pa-
rameter β. For the altitudes below 0.4 km, the optimal value
of parameter β is found to be −4 to −9 km/rad. This was
achieved on account of a slight decrease in the amount of data
passing through the whole retrieval chain including the QC.
This indicates that the CT2A itself implements a QC proce-
dure that does not involve any external information about the
atmospheric refractivity but is only based on the analysis of
the structure of the observed signals.

Overall, these results suggest that the CT2A method is not
only theoretically an innovative generalization of the CT or
FIO class of methods but also practically a valuable advance-
ment for RO processing in that it can improve the capability
to cope with challenging horizontal gradient conditions in the
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lower troposphere and serve as the basis of a new QC proce-
dure.
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