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Abstract. The ability of single-frequency, millimeter-
wavelength radar reflectivity observations to provide use-
ful constraints for retrieval of snow particle size distribu-
tion (PSD) parameters, snowfall rates, and snowfall accu-
mulations is examined. An optimal estimation snowfall re-
trieval that allows analyses of retrieval uncertainties and in-
formation content is applied to observations of near-surface
W-band reflectivities from multiple snowfall events dur-
ing the 2006–2007 winter season in southern Ontario. Re-
trieved instantaneous snowfall rates generally have uncer-
tainties greater than 100 %, but single-event and seasonal
snow accumulations from the retrieval results match well
with collocated measurements of accumulations. Absolute
fractional differences are mainly below 30 % for individual
events that have more substantial accumulations and, for the
season, 12.6 %. Uncertainties in retrieved snowfall rates are
driven mainly by uncertainties in the retrieved PSD param-
eters, followed by uncertainties in particle model parame-
ters and, to a lesser extent, the uncertainties in the fall-speed
model. Uncertainties attributable to assuming an exponential
distribution are negligible. The results indicate that improve-
ments to PSD and particle model a priori constraints provide
the most impactful path forward for reducing uncertainties in
retrieved snowfall rates. Information content analyses reveal
that PSD slope is well-constrained by the retrieval. Given the
sensitivity of PSD slope to microphysical transformations,
the results show that such retrievals, when applied to radar
reflectivity profiles, could provide information about micro-
physical transformations in the snowing column. The PSD
intercept is less well-constrained by the retrieval. While ap-
plied to near-surface radar observations in this study, the re-
trieval is applicable as well to radar observations aloft, such

as those provided by profiling ground-based, airborne, and
satellite-borne radars under lighter snowfall conditions when
attenuation and multiple scattering can be neglected.

1 Introduction

Radar observations focused on snowfall from platforms out-
side the established weather surveillance radar networks have
become ubiquitous over the last 2 decades, largely due to
increased interest in the role of snowfall in mid- and high-
latitude microphysics, hydrology, and climate. This research
accelerated with the advent of satellite-borne radars flown
by missions to quantify global hydrometeor and precipita-
tion properties. These satellite-borne radars (specifically the
CloudSat mission’s Cloud Profiling Radar (CPR) (Tanelli
et al., 2008) and the Global Precipitation Measurement
(GPM) mission’s Dual-frequency Precipitation Radar (DPR)
(Toyoshima et al., 2015), with two others anticipated to
launch in the coming decade) are capable solely of measuring
vertical profiles of radar reflectivity factor (hereafter, reflec-
tivity) along with path-integrated attenuation under certain
conditions. To understand the capabilities of these satellite-
borne radars for quantifying snowfall, we must know how
well radar reflectivity observations constrain snowfall prop-
erties.

To these ends, CloudSat and GPM have contributed to
multiple field experiments involving ground-based radars
and designed to provide, in part, ground validation data for
the radar remote sensing of snowfall: the Canadian CloudSat-
CALIPSO Validation Project (C3VP) (Hudak et al., 2006),
the Global Precipitation Measurement (GPM) Cold-season
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Precipitation Experiment (GCPEx) (Skofronick-Jackson et
al., 2015), the Light Precipitation Validation Experiment
(LPVEx) (Petersen et al., 2011), the International Collabo-
rative Experiment during the PyeongChang 2018 Olympics
and Paralympics (ICE-POP) (Chandrasekar et al., 2019), and
the Olympic Mountains Experiment (OLYMPEx) (Houze et
al., 2017). These and a number of smaller, more focused field
campaigns (Pettersen et al., 2020; Schirle et al., 2019) have
made extensive use of small K-band profiling radars, e.g.,
METEK’s Micro Rain Radar (MRR, Klugmann et al., 1996),
but several experiments, including C3VP, GCPEx, and ICE-
POP, have deployed ground-based, W-band scanning, or pro-
filing radars. Although these ground-based radars may pro-
vide advanced capabilities such as Doppler velocity measure-
ment, their reflectivity measurements in snowfall are a valu-
able resource for examining the capabilities of the satellite-
borne radars (Maahn et al., 2014; Matrosov et al., 2008).

The ability of radar reflectivity to constrain snowfall prop-
erties, however, has not been well-evaluated. Snowfall ex-
hibits a wide range of microphysical characteristics that in-
fluence radar reflectivity and snowfall rate. Most notable
to casual observers are variations in particle habits: pris-
tine dendrites, needles, columns, plates, and bullets; aggre-
gates of the same; pellets and graupel for example. Un-
derlying these differences in habit are variations in mass,
and, given a particular mass, variations in how mass is dis-
tributed within the particle. Unlike longer-wavelength radars
for which radar backscattering properties of snow particles
are sensitive primarily to particle mass, at millimeter wave-
lengths those properties are additionally sensitive to parti-
cle shape. Investigations of particle mass and area (an as-
pect of shape) (Kajikawa, 1972, 1975, 1982; Zikmunda and
Vali, 1972, 1977; Heymsfield, 1972; Locatelli and Hobbs,
1974; Mitchell et al., 1990; Mitchell, 1996; Heymsfield and
Miloshevich, 2003) have painstakingly determined the broad
extent of these variations. Along with differences in single-
particle properties, populations of falling snow particles vary
substantially in their concentrations with size (i.e., the spec-
tral particle size distribution, PSD) based on measurements
from the ground (e.g., Nakada and Terada, 1935; Imai et
al., 1955; Gunn and Marshall, 1958; Rogers, 1973; Brandes
et al., 2007) and, more recently, with the advent of imag-
ing particle probes, from aircraft (e.g., Passarelli, 1978; Gor-
don and Marwitz, 1984, 1986; Braham, 1990; Woods et al.,
2008; Heymsfield et al., 2008, and references therein). The
observed particle concentrations vary over several orders of
magnitude.

In radar-based remote sensing scenarios when these prop-
erties are not known, these variations produce uncertainty
in the relationship between radar reflectivity factor (here-
after, reflectivity) and associated water content and snow-
fall rate. A common approach to estimating this uncertainty
has been to evaluate modeled reflectivities, water contents,
and snowfall rates using a range of assumed particle mod-
els and PSDs. The results are often expressed using relation-

ships between reflectivity and snowfall rate (“Z–S” relation-
ships) (Liu, 2008; Kulie and Bennartz, 2009; Matrosov et al.,
2008, 2009). This approach allows the uncertainty in a re-
trieved snowfall rate to be estimated, but the existing stud-
ies have not provided insight into the dominant sources of
uncertainty nor into the ability of observed radar reflectivity
to constrain various properties controlling the snowfall rate.
Posselt et al. (2015) examined uncertainties and information
content for radar observations of mixed- and ice-phase re-
gions of a convective storm but targeted radar systems with
more advanced capabilities. Mascio and Mace (2017) used
CloudSat and aircraft observations to assess how uncertain-
ties in the ice particle mass-dimension relationship contribute
to radar reflectivity forward model uncertainties but used
known, observed particle size distributions and did not ex-
amine the influence of the mass-dimension uncertainties on
snowfall retrieval performance.

In this work, we provide uncertainty and information con-
tent analyses for retrieving snowfall from observations of
radar reflectivity at millimeter wavelengths, focusing on W-
band (94 GHz). The results are representative of the gen-
eral problem of estimating snowfall from such remote radar
reflectivity observations without supplementary collocated
observations of snow particle mass-dimension relationships,
fall speeds, and particle size distributions. The results apply
particularly to observations by the CPR (Tanelli et al., 2008)
and by the DPR’s Ka-band radar, but also to reflectivity mea-
surements from ground-based radars such as the MRR (Klug-
mann et al., 1996) and the Department of Energy Atmo-
spheric Radiation Measurement (ARM) program’s Millime-
ter Wavelength Cloud Radar (Moran et al., 1998) and Ka-
band ARM Zenith Radar (KAZR) (Bharadwaj et al., 2013).
The retrieval method used here is the foundation for the re-
trieval used for CloudSat’s 2C-SNOW-PROFILE product;
that application is the subject of a future companion pa-
per. Our objectives here are to identify the snowfall prop-
erties that are best constrained by such observations and the
most significant sources of uncertainty in the radar retrieval
of snowfall. The results establish a performance baseline
for reflectivity-only observations of snowfall, indicate where
uncertainty reduction efforts should be focused, and sug-
gest what improvements to radar-observing systems could be
most beneficial.

The analyses use the optimal estimation (OE) retrieval
technique (Rodgers, 2000), which inherently diagnoses in-
formation content and uncertainties in retrieved quantities
subject to specified uncertainties in measurements, forward
models, and a priori knowledge of the quantities to be re-
trieved (L’Ecuyer et al., 2006; Cooper et al., 2006). The re-
trieval produces best estimates of snow size distribution pa-
rameters by using the radar reflectivity observations to refine
a priori estimates of those parameters (Sect. 2). The infor-
mation content metrics provided by OE require all sources
of uncertainties in the retrieval process to be specified. These
are discussed in Sect. 3. Ground-based radar and precipita-
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tion observations allow the retrieval to be tested, showing that
size distribution width is best constrained by the retrieval and
that uncertainties in retrieved size distribution parameters
(but not uncertainties due to the assumed exponential form of
the PSD itself) are the strongest contributors to uncertainties
in estimated snowfall rates (Sect. 4). The results suggest that
the retrieved size distribution widths could be useful for di-
agnosing changes in PSD resulting from microphysical pro-
cesses (Lo and Passarelli, 1982) and that improved observa-
tional constraints on size distribution parameters, as might be
provided by dual-wavelength radar observations (Matrosov,
1998), would likely enhance snowfall retrieval performance
(Sect. 5).

2 Retrieval method

The retrieval uses measurements of reflectivity to estimate
snow microphysical properties and to quantify water content
and snowfall rate. At the wavelengths characteristic of cloud
radars such as CloudSat and shorter-wavelength precipita-
tion radars, scattering by precipitation-sized particles does
not follow the Rayleigh approximation, and both attenuation
and multiple scattering may affect the radar signal. At these
wavelengths, snow particle scattering and extinction proper-
ties depend not only on mass, but on shape as well. With even
simple parameterized expressions for particle mass, shape,
and size distribution, single-frequency observations of radar
reflectivity alone are insufficient to reasonably constrain the
resulting set of parameters.

To address this insufficiency, retrievals must incorporate
a priori information about particle microphysical and scatter-
ing properties. This is accomplished here using OE (Rodgers,
2000), a Bayesian technique that allows a priori information
to be included explicitly. The input for this retrieval is the Ze
observed by the radar for a range gate identified as containing
snow. For notational consistency with other work, we show
this as a vector:

y =
[
Zobs
e,1

]
. (1)

A forward model F (x, b̃) relates y to x, a state vector of
unknown properties to be retrieved, as

y = F (x, b̃)+ ε, (2)

where b̃ are parameters not being retrieved but which influ-
ence the forward model results. The forward model approx-
imates the true physical relation between x and y, and there
are uncertainties associated with both the observations y and
the forward model parameters b̃. ε represents the total uncer-
tainty due to all sources. OE attempts to find x̂, an estimate
of the state which maximizes the posterior conditional prob-
ability density function (PDF) P(x|y), subject also to prior
knowledge about the values of x. This prior knowledge is
described by expected values xa and their covariances Sa .

Assuming Gaussian statistics for the model-measurement er-
rors and the a priori state, minimizing the cost function

8(x,y,xa)=
(
y−F (x, b̃)

)T
S−1
ε

(
y−F (x, b̃)

)
+ (x− xa)

T S−1
a (x− xa) (3)

with respect to x gives this PDF, where Sε is the covari-
ance matrix representing the uncertainties ε. The Gaussian
assumption is reasonable if the expected values and covari-
ance matrices are known for the model-measurement uncer-
tainties and the a priori state, but other details are lacking. In
that case, the Gaussian form maximizes the entropy of a PDF
(Shannon and Weaver, 1949; Rodgers, 2000). Assuming an
alternate form would introduce constraints on the retrieval
that are not justified based on the limited knowledge of the
PDF.

Provided the forward model is not excessively nonlinear,
Newtonian iteration

x̂i+1 = x̂i +
(

S−1
a +KT

i S−1
ε Ki

)−1

[
KT
i S−1

ε

(
y−F (x̂i, b̃)

)
−S−1

a (x̂i − xa)
]

(4)

leads to x̂, where K is the Jacobian of the forward model with
respect to x, and Ki =K(x̂i). Iteration continues until the
squared difference in successive x̂i normalized by the current
estimate of the a posteriori covariance Ŝx is much smaller
than the number of state vector elements (Rodgers, 2000). At
convergence, this covariance of x̂ is obtained as

Ŝx =
(

K̂T S−1
ε K̂+S−1

a

)−1
, (5)

where K̂=K(x̂). As a diagnostic test of the results, a
χ2 statistic is calculated using the retrieved state vector in
Eq. (3). A value near the number of observations suggests
correct convergence (Marks and Rodgers, 1993). Several
metrics, determined from the retrieved state and based on
information theory, provide insight into the retrieval perfor-
mance; these metrics are presented in Sect. 4.

2.1 The forward model

To assess the information provided purely by reflectivity ob-
servations, whether from ground-, aircraft-, or space-based
radars, the retrieval ignores attenuation and multiple scatter-
ing. This treatment would be appropriate for cases with little
intervening scattering and extinction between the radar and
observed snowfall, such as when the radar bin containing the
snowfall of interest is near the radar or under light snowfall
conditions. For such a case, the singly-scattered reflectivity
Zss
e as a function of range R from the radar is given by

Zss
e (R)=

34

‖Kw‖
2π5

Dmax∫
Dmin

N(D,R)σbk(D,R)dD, (6)
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where σbk(D,R) is the backscatter cross section for particle
size D at range R, N(D,R) is the PSD at range R, 3 is the
radar wavelength, and Kw is the dielectric factor for water.

2.1.1 Forward model parameters: snow particle model

Backscattering and extinction cross sections depend inti-
mately on particle mass, shape, and orientation relative to
the radar beam. These properties are highly variable for snow
particles, and the approach used here is to specify their PDFs
a priori using best estimates and treat their variability as a
source of uncertainty in the retrieval. We adopt the common
model (e.g., Locatelli and Hobbs, 1974; Mitchell, 1996) in
which mass and horizontally projected area are described us-
ing power laws,

m(DM)= αD
β
M, (7)

Ap (DM)= γD
σ
M, (8)

on particle maximum dimension, DM, and use the parti-
cle properties and shape “B8pr-30” (Wood et al., 2015), an
idealized branched spatial particle that was found to min-
imize bias in simulated reflectivities versus coincident W-
band radar observations. That work used in situ measure-
ments and remotely sensed X-band reflectivity observations
of snow from C3VP (Hudak et al., 2006) along with pre-
viously reported single-particle measurements to develop
best estimates and covariances for the power-law parame-
ters α, β, γ , and σ . These results then constrained discrete
dipole approximation calculations using DDSCAT (Draine
and Flatau, 1994) to obtain best estimates of snow parti-
cle single-scattering properties and their uncertainties at the
desired wavelengths. These a priori descriptions of size-
resolved particle mass, Ap, σbk, σext, and their uncertainties
constitute the particle model used in the retrieval and are
summarized in Appendix B.

2.2 The retrieved state

The relationship described by Eq. (6) requires information
about particle size distributions and single-scattering proper-
ties. With scattering properties and their uncertainties speci-
fied a priori as described in Sect. 2.1.1, this leaves the snow
PSD parameters and their PDFs to be determined by the re-
trieval.

Snow PSDs are frequently characterized as exponential:

N(D)=N0 exp(−λD), (9)

where λ is the slope of the distribution and N0 its intercept.
Rogers (1973) used photographs of snowflakes to develop es-
timates of snow size distributions based on actual dimensions
and found snow size distributions to be exponential. Brandes
et al. (2007) evaluated both exponential and gamma forms,
which have the ability to represent sub- or super-exponential
behavior, for snow size distributions observed by a 2D video

disdrometer over the course of several winter seasons. Al-
though about 22 % of the observed snow distributions ex-
hibited super-exponential features, more commonly the fitted
gamma distributions were nearly equivalent to exponential
distributions. Several aircraft-based studies using in situ ob-
servations under a wide range of atmospheric conditions have
confirmed exponential behavior, especially at larger particle
sizes (Passarelli, 1978; Houze et al., 1979; Lo and Passarelli,
1982; Gordon and Marwitz, 1984; Braham, 1990; Woods et
al., 2008). While other studies of aircraft observations have
noted departures from exponential behavior (e.g., “super-” or
“sub-exponential”, Herzegh and Hobbs, 1985), Heymsfield
et al. (2008) examined the suitability of exponential distri-
butions for snow. They found that fitted exponential distribu-
tions, when used to simulate IWC and Ze, could provide gen-
erally good agreement with IWC and Ze calculated directly
from the observed discrete size distributions. These studies
support the adequacy of exponential distributions for retriev-
ing snowfall.D may be an actual dimension of the snow par-
ticle, the diameter of an equivalent mass ice sphere, or the
melted drop diameter. The choice is significant because N0
and λ depend on the choice of D. For this work, we use the
maximum particle dimension, DM, because DM is closely
related to the particle dimensions measured by imagers such
as video disdrometers (Wood et al., 2013) and aircraft par-
ticle probes, making comparisons with other datasets more
straightforward.

The exponential size distribution parameters N0 and λ are
the desired state variables. Values for N0 may range over
several orders of magnitude, so log(N0) is retrieved instead.
The variability of λ is significantly smaller than that of N0;
however, examination of fitted exponential distributions from
C3VP snow events indicated that the distribution of values
for λ was strongly non-Gaussian. The log-transformed val-
ues are much less skewed (Fig. 1a), and accordingly, log(λ)
is retrieved instead. The corresponding state vector to be re-
trieved is then

x̂ =

[
log(N0)

log(λ)

]
, (10)

and the associated covariance matrix obtained from the re-
trieval is of the form

Ŝx =

 s2 (log(N0))
s (log(N0) ,

log(λ))
s (log(N0) ,

log(λ)) s2 (log(λ))

 . (11)

2.3 Prior estimates of the state

For each profile, the a priori state consists of a vector of
expected values xa and the corresponding covariance ma-
trix Sa , having the same sizes as the state vector x (Eq. 10)
and its covariance matrix Sx (Eq. 11). A priori estimates of
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Figure 1. (a) Histograms of λ and log(λ) fitted to C3VP SVI ob-
servations. (b) Estimates of λ and N0 determined from fits to size
distributions from C3VP observations, with values provided from
several earlier studies for comparison.

log(N0) and log(λ) are determined using temperature-based
parameterizations derived using snow PSDs observed during
C3VP and other field experiments. Exponential size distribu-
tions were fit to the observed size spectra from both ground-
based Snowflake Video Imager, or SVI (Newman et al., 2009;
Wood et al., 2013), and from 2D particle probes carried
aboard the National Research Council Canada’s Convair-580
during three C3VP research flights (Fig. 1b). Results from
a number of earlier studies are shown as well for compari-
son, including ground-based observations taken in and near
the Rocky Mountain Front Range (Rogers, 1973; Brandes et
al., 2007); and aircraft observations over the central Sierra
Nevada (Gordon and Marwitz, 1984, 1986), in lake effect
snow over Lake Michigan (Braham, 1990), in synoptic snow-
fall over central Illinois (Passarelli, 1978), and in orographic
and frontal wintertime precipitation in the Pacific Northwest
(Woods et al., 2008). Also shown are similar fits performed
on 2D probe observations from a Wakasa Bay research flight
on 27 January 2003 (Lobl et al., 2007). The results suggest
that the C3VP observations adequately represent snowfall
from a number of different regimes, although the number
concentrations from several studies are at the margins of the
C3VP observations.

Both λ and N0 have been observed to vary log-linearly
with temperature (e.g., Houze et al., 1979; Woods et al.,
2008; and works reviewed in Ryan, 1996). Fits were there-
fore constructed for both parameters using the combined
C3VP aircraft and SVI data and uncertainties estimated us-
ing residual standard deviations (RSDs) calculated for data
binned into 2 K intervals (Fig. 2). The narrow temperature
ranges for the Wakasa Bay and Brandes et al. (2007) obser-
vations make comparisons against the C3VP temperature de-
pendence uninformative. For λ, the Rogers (1973) observa-
tions are largely outside the bounds of the RSDs but are gen-
erally consistent with the C3VP histogram for warmer tem-
peratures. The aircraft observations other than Wakasa Bay
follow a temperature trend similar to the C3VP observations.
For N0, several of the comparison datasets lie mostly above
the RSD bounds but would be well within a +2 RSD bound.

Based on the similarity of C3VP to results from other ex-
periments, the a priori states derived from these observa-
tions can be expected to represent a broad range of snowfall
regimes and were adopted for the retrieval. A priori values
for log(λ) and log(N0) were estimated from the linear fits as

log
(
λap
)
=−0.03053(T − 273.)− 0.08258,

log
(
N0,ap

)
=−0.07193(T − 273.)+ 2.665, (12)

with λ in mm−1, N0 in m−3 mm−1, and T in K. The RSDs
show little variation with temperature except in the vicin-
ity of 240 K, where they increase substantially. These large
RSDs are in response to a few outlying samples with small λ
and N0 values. Accordingly, variances were treated as con-
stant and were estimated as the squared RSDs averaged over
all temperatures. The uncertainty model also includes the
covariance between log(N0) and log(λ). Correlation coef-
ficients were evaluated for each of the temperature-binned
data subsets, giving a mean coefficient of 0.72 with a stan-
dard deviation of 0.12. The a priori covariance was modeled
as 0.72 · s

(
log

(
λap
))
· s
(
log

(
N0,ap

))
:

s2 (log
(
λap
))
= 0.133,

s2 (log
(
N0,ap

))
= 0.95,

s
(
log

(
λap
)
, log

(
N0,ap

))
= 0.26.

(13)

3 Implementation and uncertainty sources

Applying the exponential distribution in Eq. (6), the singly-
scattered non-attenuated reflectivity Zss

e is

Zss
e (R)=

34

‖Kw‖
2π5

DM,max∫
DM,min

N0 exp(−λDM) σbk

(DM, b̃)dDM. (14)

The backscatter cross section σbk has been written to show
its dependence on a vector of parameters b̃ as well as onDM.
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Figure 2. Dependence of log(λ) and log(N0) on temperature. Central red lines show the best-fit relationships, while the upper and lower
blue lines show bounds given by ±1 residual standard deviation. The shaded gray shows the 2D histogram of values for the C3VP surface
and aircraft observations (a and c). Symbols (b and d) match those from Fig. 1 except that, in lieu of symbols for Woods et al. (2008), the
dashed black line shows a linear best fit reported by the authors.

The vector b̃ includes the parameters for the mass- and area-
dimension relations α, β, γ , and σ which were used to con-
struct the particle models from which the scattering proper-
ties were calculated. The tilde indicates that these parameters
are approximations of the true values and a source of uncer-
tainty.

3.1 Model-measurement uncertainties

The error covariance matrix Sε is

Sε = Sy +SF
= Sy +Sss

B +Sss
F ,

(15)

where Sy is the covariance matrix for the measurement un-
certainties and SF is that for the singly-scattered reflectivi-
ties given in Eq. (14). The forward-model uncertainties may
be further decomposed as the sum of two terms: Sss

B , which
is a covariance matrix describing uncertainties due to the for-
ward model parameters b̃, and Sss

F , which is a covariance ma-
trix describing uncertainties due to other assumptions in the
calculation of Zss

e .

3.1.1 Uncertainties for measured reflectivities

The sources of reflectivity measurement error include er-
rors in the absolute radiometric calibration and measurement
noise. For this work, we assume the radar is well-calibrated,
leaving noise as the uncertainty source. To estimate Sy , we
model the noise using the well-characterized CloudSat CPR
(Tanelli et al., 2008). For reflectivities above −10 dBZ, 1
standard deviation of noise as a fraction of the mean signal is
about −16 dB, while for reflectivities below −10 dBZ, noise
is an increasing fraction of the signal, reaching 0 dB at the
minimum detectable signal of −30 dBZ (Richard T. Austin,
personal communication, 4 November 2008). The resulting
uncertainties range from 3 dBZ for a reflectivity of −30 dBZ
to about 0.1 dBZ for reflectivities above −10dBZe (Fig. 3).

3.1.2 Forward model uncertainties

Uncertainties Sss
B due to the forward model parameters b̃ =

(α,β,γ,σ )T that describe the snow particle model were ex-
amined in Wood et al. (2015) as

Sss
B =KbSbKT

b , (16)
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Figure 3. Estimated measurement uncertainty, based on 1 standard
deviation of noise for the CloudSat CPR.

where Kb is the Jacobian of the forward model reflectivi-
ties with respect to the parameters b̃ and Sb is the covari-
ance matrix for the parameters. The Jacobian Kb depends
on the estimated state x̂ and is computed at each iterative
step. At each step, the forward model is used to calculate re-
flectivity perturbations that result from perturbations of the
parameters α, β, γ , and σ . The ratio of each reflectivity per-
turbation to its parameter perturbation gives an element of
the Jacobian. The parameter perturbation affects the reflec-
tivity via changes to the corresponding particle scattering
properties. The perturbed scattering properties are precom-
puted with DDSCAT (Draine and Flatau, 1994) by using the
perturbed parameter to generate discrete dipole models fol-
lowing the process described in Wood et al. (2015). Wood et
al. (2015) found the resulting forward model uncertainties to
be near 5 dB, increasing to as high as 15 dB for very broad
distributions.

Sss
F quantifies uncertainties due to other assumptions and

limitations in the forward model reflectivity calculation.
Wood et al. (2015) looked at uncertainties due to the ran-
dom component of dipole placement within discrete dipole
approximation (DDA) models for a particular particle shape
and found them negligible. Other sources include the as-
sumption of the shape of the distribution as exponential, the
choice of particle shape, and the discretization and truncation
of the integrations over size distribution.

Errors due to the assumed exponential shape were evalu-
ated using a dataset of 4080 SVI-measured, discrete, 5 min-
long snow PSDs from C3VP. Simulated reflectivities and
snowfall rates were calculated using the B8pr-30 particle
model and the Mitchell and Heymsfield (2005) terminal ve-
locity model. Exponential distributions were fit to the ob-
served discrete PSDs using orthogonal distance regression
(Boggs et al., 1992; Jones et al., 2001) with uncertainty es-
timates per Wood et al. (2013). The fitted distributions were
scaled in number concentration to match the snowfall rates
simulated from the discrete distributions. The fitted distribu-
tions were then used to simulate reflectivities for compari-

Figure 4. Actual rms errors and the fitted model for uncertainty due
to the assumed exponential size distribution.

Figure 5. Errors in reflectivity for the Ep and B8pr-45 shapes com-
pared to the B8pr-30 shape. Errors shown are total (bias+ variance)
and variance only.

son against those from the discrete distributions. Errors are
negligible at high reflectivities but increase as reflectivity de-
creases (Fig. 4). Bias is negligible, and the total uncertainty
is modeled as

s2
F (dB)=

[
exp(−(dBZe+ 14)/16)

]2
, (17)

reaching a maximum of 1 dB of uncertainty at −15dBZe.
Uncertainties due to shape were evaluated using the same

SVI dataset to which the alternate particle shapes Ep (ellip-
soidal) and B8pr-45 (branched spatial particle with a larger
aspect ratio than B8pr-30) from Wood et al. (2015) were
applied to simulate reflectivities. These alternate shapes are
constrained to have the same mass-dimension relationship as
used for the B8pr-30 particle model used in this work, so dif-
ferences are due only to particle shape. Figure 5 shows total
and variance-only rms errors. From these results we estimate
the shape uncertainty to be 2 dB.

Finally, truncation and discretization errors were evaluated
using the same SVI PSD dataset. These are errors that result
from the discrete treatment of the integrations over size dis-
tribution, errors due to both the limited maximum DM in the
particle model and in the limited resolution of the particle
model. Truncation errors were evaluated using analytic expo-
nential PSDs fitted to the SVI PSD dataset as described pre-
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viously. The particle model backscatter properties were aug-
mented to DM = 40 mm by linearly extrapolating backscat-
ter efficiencies, and then reflectivities were calculated using
integrations to both the standard (maximum DM = 18 mm)
and augmented size ranges. The bias and scatter of the trun-
cation errors were −0.1 and 0.42 dB. To evaluate discretiza-
tion errors, a high-resolution version of the particle model
backscatter properties was created by interpolating backscat-
ter efficiencies so that the particle size resolution of the par-
ticle model was increased by a factor of 2. Reflectivities
were then calculated and compared against those from the
standard-resolution particle model. The bias and scatter of
the discretization errors were 0.00 and 0.02 dB.

3.2 Snowfall rate and uncertainties

The snowfall rate P in units of liquid water depth per unit
time is

P(R)=
1
ρliq

DM,max∫
DM,min

N(DM,R)m(DM,R)V (DM,R)dDM, (18)

where m(DM,R) is particle mass, V (DM,R) is fall speed,
and ρliq is the density of liquid water. Particle mass is pro-
vided by Eq. (7). Fall speed is assumed to equal terminal
velocity, which is calculated from the model of Mitchell and
Heymsfield (2005) using particle mass, the horizontally pro-
jected area from Eq. (8), and environmental pressure and
temperature from collocated observations. Uncertainties for
the estimated snowfall rate are determined in a manner simi-
lar to that used for the forward model uncertainties. The total
variance SP is decomposed as

SP = Sx̂,P +S
b̃,P
+Sv,P +Sexp,P , (19)

where the terms on the right represent the variances result-
ing from (1) retrieved state uncertainties, (2) particle model
parameter uncertainties, (3) uncertainties in the fall-speed
model and its parameters, and (4) assuming an exponential
form for the PSD, respectively.

Contributions from uncertainties in the retrieved state and
in the particle model parameters are determined using lin-
earized error propagation (e.g., following a form like Eq. 16).
For S

b̃,P
, which gives the snowfall rate variance that re-

sults from uncertainties in the particle model parameters, this
means that the Jacobian K

b̃,P
is calculated for the snowfall

rate with respect to the particle model parameters α, β, γ ,
and σ , following the process described for the reflectivity Ja-
cobian in Sect. 3.1.2. Then

S
b̃,P
=K

b̃,P
SbKT

b̃,P
, (20)

where Sb is the covariance matrix for the particle model pa-
rameters as determined in Wood et al. (2015).

Fall-speed contributions are handled following Wood et al.
(2014). Snowfall rate uncertainties due to the assumed ex-
ponential form of the size distribution are determined using
the SVI PSD dataset in an approach analogous to that for
Eq. (17). In this approach, number concentrations for the fit-
ted exponential distributions were scaled so that reflectivities
were matched, and then snowfall rate errors were evaluated.
The fractional uncertainty in snowfall rate was found to be

fP =−0.06log(P )+ 0.05, (21)

from which the necessary variance can be determined. Un-
certainties from each of the four sources are treated as uncor-
related.

4 Retrieval performance tests with ground-based radar
observations

During C3VP, a vertically pointing W-band radar (the Jet
Propulsion Laboratory’s Airborne Cloud Radar, ACR) was
deployed on the ground at CARE. In all, about 28 h of ACR
radar profiles of snowfall were recorded at approximately
2.8 s intervals. These observations represent 17 distinct snow
events that occurred over 18 d between 3 November 2006 and
2 March 2007; however, most of the accumulations were con-
centrated during nine of the events (Table 1). These observa-
tions include portions of three of the cases that were used
to develop the snow particle microphysical models (cases
SYN1, LES1, and LES2, Wood et al., 2015). Of the nearly
36 000 ACR profiles in these observations, approximately
7300 are from cases SYN1, LES1, and LES2. Further, as de-
scribed in Wood et al. (2015), ACR reflectivities from 12 of
the events between 2 December 2006 and 26 February 2007
were used to constrain the snow particle models’ scattering
properties to give unbiased reflectivities. This overlap should
be kept in mind when evaluating the retrieved snowfall rates
and estimated accumulation, but it should not substantially
affect the assessments of retrieval uncertainties, uncertainty
sources, and information content metrics that follow.

The retrieval was applied to the ACR reflectivities ob-
served in the single range bin nearest the surface, at 197 m
above ground level (AGL). Temperatures and pressures
needed by the retrieval to perform snow detection, calculate
fall speeds, and establish the a priori states were obtained
from nearby surface meteorology observations. Because of
the short distance to the target range bin, attenuation along
the path was neglected. The retrieved snowfall rates produce
a Z–S relationship that is most similar to that developed by
Kulie and Bennartz (2009) for an aggregate particle model
denoted as the Hong (2007) aggregate (HA) (Fig. 7). For
warmer temperatures and mid-range reflectivities, the Z–S
relationship becomes more similar to that of Liu (2008) and
the LR3 relationship of Kulie and Bennartz.
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Figure 6. Histograms of errors for truncation and discretization.

Figure 7. Z–S values as a function of temperature for this retrieval compared against those from M07, Matrosov (2007); L08, Liu (2008);
and KB09_LR3, KB09_HA, and KB09_SS, Kulie and Bennartz (2009).

For comparisons, snowfall rate observations were obtained
at 1 min intervals from the Vaisala FD12P (Vaisala Oyj,
2002) and scaled to provide unbiased accumulations rela-
tive to the nearby Dual Fence Intercomparison Reference, or
DFIR (Goodison et al., 1998). The retrieved ACR snowfall
rates, PACR, were matched to the nearest-in-time observed
snowfall rate, PFD12P.

Time series of PACR and PFD12P show a high degree of
agreement over most of the observing period (Fig. 8a). This
is not extraordinary given the dependence of the retrieval’s
particle microphysical and scattering properties on portions
of the C3VP data. Two notable exceptions occur near time in-
dices 25 000 and 32 500, however, when the FD12P recorded
snowfall rates above 1 mm LWE h−1, while the retrieved val-
ues are substantially smaller. Examining the time series of
ACR reflectivities shows that the ACR did not observe high
reflectivities during these periods (Fig. 8b). The first of these
anomalies occurred on 22 February 2007 from 11:20 to
12:05 UTC, while the second occurred on 1 March 2007 be-
tween 22:15 and 22:50 UTC. For both, the ACR operator

made note of the heavy snowfall, suggesting that both the
FD12P and the ACR observed similar snowfall rates. Based
on soundings, Environment Canada forecasts, and ACR op-
erator observations, these anomalies appear to correspond to
melting aloft, ice pellets, and freezing rain (Wood, 2011).
These conditions could also have been favorable for forma-
tion of large, heavy aggregates. It seems likely that the con-
ditions produced snowfall whose properties were strongly
inconsistent with the particle properties assumed in the re-
trieval, although reflectivities did not change substantially.

Accumulations were calculated from both PACR and
PFD12P with and without the two anomalies described above
(Fig. 9). Accumulations agree substantially during the first
16 h but diverge somewhat beyond that, again noting the de-
pendence of the retrieval’s assumed microphysical and scat-
tering properties on portions of the C3VP data. With the
anomalies included the final difference between the accumu-
lations is 2 mm. With the anomalies removed that difference
is reduced to 0.7 mm. For individual events, absolute frac-
tional differences between the ACR and FD12P accumula-
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Table 1. Accumulations by event for the ACR retrievals. Duration shows the elapsed time of ACR observations for which retrievals were
performed. Fractional differences are relative to FD12P accumulations.

Accumulations

Date Duration ACR FD12P Fractional
h mm LWE difference, %

3 Nov 2006 0.98 0.065 0.11 −40.9 %
2 Dec 2006 0.16 0.007 0.00 –
6 Dec 2006 4.00 0.86 0.80 7.5 %
7 Dec 2006 1.08 0.038 0.093 −59.1 %
8 Dec 2006 0.34 0.018 0.00 –
17 Jan 2007 0.09 9.3e− 04 0.00 –
19 Jan 2007 0.46 0.061 0.13 −53.1 %
20 Jan 2007a 0.32 0.004 2.8e− 04 1329 %
20 Jan 2007b 0.59 0.079 0.0 –
22 Jan 2007 4.29 0.89 0.87 2.2 %
23 Jan 2007 0.76 0.017 0.00 –
26 Jan 2007 0.93 0.045 0.085 −47.1 %
27 Jan 2007 3.36 0.57 1.06 −46.2 %
19 Feb 2007 0.97 0.26 0.18 44.4 %
22 Feb 2007 2.72 0.40c 0.23c 73.9 %
26 Feb 2007 2.41 0.58 0.64 9.4 %
1 Mar 2007 4.23 1.14c 1.57c

−27.4 %
Season 26.3 5.04c 5.77c

−12.6 %

Two distinct events, indicated as a and b, occurred on 20 January 2007. c Accumulations
adjusted to remove anomalies indicated in Fig. 8.

Figure 8. (a) Time series of snowfall rates retrieved from ACR reflectivities and observed. (b) Corresponding time series of ACR reflectivities.
Each time index indicates a 2.8 s observation by the ACR. Snowfall rates retrieved for the ACR used the reflectivity in the range bin nearest
the surface, at 197 m AGL.
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Figure 9. Snow accumulations computed from PACR and PFD12P.
The accumulations are for 17 snow events observed by the ACR on
18 d between 3 November 2006 and 2 March 2007, but accumula-
tions are principally from nine events (Table 1). The events were
concatenated sequentially in time, and the time axis indicates the
cumulative time over all events. (a) Accumulations from all obser-
vations and corresponding retrieval results, (b) accumulations with
two anomalous periods identified in Fig. 8 removed, and (c) frac-
tional differences in accumulations shown in (b), with distinct col-
ors indicating individual events.

tions can range to 50 % and upwards (Table 1), but these large
values are associated mainly with events with small accumu-
lations. For events with larger accumulations, the absolute
fractional differences are mostly below 30 %. At seasonal
timescales, the random components in event-total accumu-
lations are likely uncorrelated, leading to offsetting errors
when calculating seasonal accumulations. The time series
of absolute fractional differences between the ACR-derived
and FD12P accumulations begins with large fractional differ-
ences. Within 5 h and over the initial three events, the frac-
tional differences reduce to less than 5 % and then remain
below 20 % for the remainder of the season.

4.1 Snowfall rate uncertainties

Uncertainties in instantaneous snowfall rate estimates, taken
to be the square root of the total variance evaluated as shown
in Eq. (19), were evaluated by binning the fractional uncer-
tainties by snowfall rate and then averaging and taking stan-
dard deviations. Mean fractional uncertainties range from
150 % to 185 %, and the range for ±1 standard deviation

Figure 10. Instantaneous fractional uncertainties in snowfall rate.
The central line shows mean fractional uncertainties and the error
bars show ±1 standard deviation.

extends from about 145 % to 190 % (Fig. 10). The frac-
tional uncertainties generally increase with increasing snow-
fall rate, but above 0.5 mm LWE h−1 the means and stan-
dard deviations diminish and result from only a small num-
ber of samples in each bin. For comparison, uncertainties
for FD12P precipitation rates at 5 min resolution were esti-
mated at 0.03 mm h−1 for rates less than 0.05 mm h−1, 50 %
for rates up to 0.5 mm h−1, and 30 % for rates larger than
0.5 mm h−1 by Wood et al. (2014) based on comparisons
against the Precipitation Occurrence Sensor System.

To evaluate the importance of each source of uncertainty,
variances from each of the sources from Eq. (19) (retrieved
state, microphysical parameters, fall-speed parameterization,
or exponential distribution) were extracted separately, and
then fractions of total variance were calculated. To allow the
trends in each source to be shown as a function of snowfall
rate (Fig. 11), the fractions were binned by snowfall rate and
averaged. As snowfall rates increase up to 0.5 mm h−1, the
variance due to the retrieved state becomes a more signifi-
cant contributor to the total variance, while the contributions
from the other sources diminish. The contribution due to the
assumed exponential PSD shape is not significant.

The instantaneous uncertainties for snowfall rate include
uncertainties due to random errors and biases in the retrieval
components and observations. For accumulations or mean
rates evaluated over longer time periods, errors due to ran-
dom sources may be reduced and remaining errors can be
more representative of biases in the retrieval. The reduc-
tions in random errors depend on their correlations in time,
however (e.g., Taylor, 1997). When random errors within
events are assumed perfectly positively correlated, end-of-
event PACR accumulations have fractional uncertainties from
1.5 % to 52.4 % (Fig. 12). In actuality, the random error
sources likely decorrelate with increasing separation in time.
While the scales for these decorrelations are not known, with
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Figure 11. Instantaneous fractional variances for snowfall rate re-
solved by source.

Figure 12. End-of-event accumulations and uncertainties. The
PACR accumulation uncertainties are estimated assuming intra-
event errors are perfectly correlated (orange) and decorrelated us-
ing a negative exponential model with a decorrelation scale of 0.5 h
(purple). PFD12P accumulations (blue-green) are shown for com-
parison except for those equal to zero, which are omitted. For clar-
ity, the PACR accumulations are plotted at ±0.02 h (purple/orange)
of their actual durations.

even a modest amount of decorrelation in the errors the un-
certainties are reduced substantially. After applying a neg-
ative exponential decorrelation model with a decorrelation
scale of 0.5 h to intra-event errors, the fractional uncertain-
ties at the ends of individual events are 1.3 % to 18.8 %. The
most significant reductions due to decorrelation occur with
the longer-duration events. The end-of-season PACR accu-
mulation uncertainties, calculated assuming inter-event un-
certainties are uncorrelated, are reduced from 64.9 % for per-
fectly correlated to 11.8 % for decorrelated intra-event errors.

Agreement between observed PFD12P event accumulations
and those from PACR generally improves for events with

larger accumulations and durations (Fig.12). Of the seven
events with accumulations larger than 0.2 mm and dura-
tions of 1 h and longer, the PFD12P accumulations for six
fall within or near the uncertainty bounds of the PACR ac-
cumulations with perfectly correlated errors, while four out
of seven are within or near the much narrower bounds for
errors with decorrelations. This result is also true for the
season as a whole. For the duration of 26.3 h and accumu-
lation of 5.05 mm from PACR, the difference compared to the
PFD12P seasonal accumulation of 5.77 mm is −12.6 %. The
difference is similar to the PACR accumulation uncertainty of
11.7 % for decorrelated errors.

4.2 Information content

The optimal estimation results allow easy calculation of a
number of metrics that quantify retrieval performance in
terms of information content (Rodgers, 2000; Shannon and
Weaver, 1949). These include the averaging kernel matrix

A=
(

K̂T S−1
ε K̂+S−1

a

)−1
K̂T S−1

ε K̂, (22)

the Shannon information content

H =
1
2

log2

∣∣∣Sa Ŝ−1
x

∣∣∣ , (23)

and the degrees of freedom for signal

dS = Tr(A) . (24)

Briefly, the diagonal values of A indicate the degree to which
the corresponding retrieved state variables are determined by
the observations (values nearer 1) versus by the a priori (val-
ues nearer 0). H measures how well the observations serve
to narrow the possible retrieved states in comparison to the
a priori state. Its value can be interpreted as describing the
binary bits of resolution of the observing system (L’Ecuyer
et al., 2006). dS quantifies the number of independent quan-
tities that are determined by the observations. See Rodgers
(2000) for a more complete discussion in the context of re-
trieval theory.

For the ACR retrievals, values forH vary between 0.4 and
1.2 (Fig. 13), indicating that the measurements resolve be-
tween 1.3 and 2.3 distinct states. Values for ds show that the
retrieval produces somewhat less than one independent piece
of information that is significant compared to the measure-
ment and forward model uncertainties. Figure 13c, d show
the diagonal elements of A. While the element relevant to
λ, A

[
log(λ)

]
, is consistently positive, the element for No,

A
[
log(N0)

]
, is near zero and is at times negative. These re-

sults show that log(λ) is moderately to strongly constrained
by the reflectivity observation, while log(N0) is largely de-
pendent on the a priori constraint.

The size distribution plays a significant role in determin-
ing the values of these metrics. Information content H in-
creases as the distribution narrows (Fig. 14a). The increase
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in H accompanies a substantial increase in the magnitude of
the sensitivity of the forward model to log(λ) (Fig. 14b). In
contrast, the sensitivity to log(N0) has a constant value of
10 owing to the reflectivity in dBZe being a linear function
of log(N0) (and so is not shown in Fig. 14). This increased
sensitivity to log(λ) allows the observed reflectivity to better
constrain the retrieved state, particularly the value of log(λ).
As a result, A

[
log(λ)

]
increases from 0.4 to 0.95 as λ in-

creases (Fig. 14c). The behavior of A
[
log(N0)

]
(Fig. 14d) is

quite different. The values are small and are positive for small
values of λ but become negative as λ increases. This be-
havior results from the positive a priori correlation between
log(λ) and log(N0) and the opposing signs of the sensitivi-
ties of dBZe to these two variables. While the forward model
is strongly sensitive to log(λ), its sensitivity to log(N0) is
3–4 times smaller in magnitude. Consequently, the retrieved
value of log(λ) is influenced more strongly by the observa-
tions, while the retrieved value of log(N0) is influenced more
by the a priori estimate of the state. This difference is re-
flected in panels (c) and (d) of Fig. 14.

5 Discussion and conclusions

While millimeter-wavelength, single-frequency radar reflec-
tivity observations alone would seem to have limited utility
for retrieving snowfall properties, the results herein demon-
strate capabilities for quantifying snowfall rate, accumula-
tion, and aspects of the snow PSD. The results were obtained
by applying the radar observations to constrain a priori in-
formation appropriate to a broad range of snowfall regimes.
The results indicate that the approach would provide use-
ful information when applied to observations such as those
from satellite-borne radars, which observe a range of snow-
fall regimes and for which radar observables are limited to
reflectivity.

The results demonstrate the ability of the retrieval to pro-
duce reliable estimates of snow accumulation, particularly
over timescales involving multiple events and more than
several hours of snowfall duration, in spite of large uncer-
tainties in retrieved instantaneous snowfall rates. For the
C3VP season, the retrieval reproduced the observed accumu-
lation within 13 % at the end of the season. These results
were achieved by omitting two particular time periods dur-
ing which the retrieval’s particle property assumptions were
likely very inconsistent with the observed snowfall. Without
this adjustment, the end-of-season absolute difference was
18.9 %, illustrating the need for adequate discrimination of
the precipitation phase in the retrieval process. Keeping in
mind that certain a priori assumptions of the retrieval were
also sourced from the C3VP observations, these results are
probably best viewed as indicating proper function of the re-
trieval. The time series of seasonal accumulation shows that
while the initial fractional differences reach almost 80 %, the
differences diminish with time and increasing accumulation,

Figure 13. Distributions of information content metrics for the ACR
retrieval.

Figure 14. Information content metrics and the forward model Ja-
cobian as functions of λ.
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reaching values of less than 5 % within 5 h. These results are
partly due to offsetting errors between events; however, for
individual events, best agreement between the observed and
retrieved snow accumulations were achieved for events that
were longer in duration and produced more substantial ac-
cumulations. The observed accumulations for these events
were mostly near or within the tighter uncertainty bounds
produced by a decorrelating error model applied to the re-
trieved accumulation. The modest decorrelation used in the
model produces uncertainties in the retrieved event accumu-
lations of only 1 % to 20 %. Thus, despite large instanta-
neous snowfall rate uncertainties for these single-frequency,
millimeter-wavelength retrievals, retrieved rates can be ex-
pected to prove of value for quantifying accumulations over
events, months, seasons, and longer.

Uncertainties in instantaneous retrieval-estimated snowfall
rate are dominated by uncertainties in the retrieved state (the
uncertainties in the estimated PSD), followed by uncertain-
ties in particle model parameters and, to a lesser extent, the
uncertainties in the fall-speed model. Uncertainties due to the
assumption of an exponential PSD form are negligible. There
is a degree of ambiguity here. The uncertainties in the particle
model parameters contribute to the uncertainties in the esti-
mated snowfall rate due to the appearance of the mass term
in Eq. (18) but also contribute to uncertainties in the retrieved
state. We treat these as independent contributions to the un-
certainty. There is likely some covariance that could reduce
total uncertainties, but this is not addressed in the treatment
of snowfall rate uncertainty presented here.

Retrieval performance, quantified in terms of information
content metrics, is determined by the sensitivity of the obser-
vations to the desired state vector, the uncertainties assessed
for the forward models and measurements, and the explicit
assumptions about the uncertainty in the a priori knowledge
of the state. For W-band modeled reflectivities in dB, the
magnitudes of sensitivities for log(λ) are 3–4 times those
for log(N0), and sensitivities are opposite in sign. This con-
tributes to log(λ) being better constrained by the retrieval
than is log(N0). The consequences of these sensitivities are
described more fully in Appendix A. To the extent that pro-
cess information can be gleaned from changes in the slope
parameter over time or space, the retrieval may be useful for
process analyses when more direct observations of PSD are
not available.

Model-measurement uncertainties are dominated by un-
certainties in the particle model parameters (e.g., the coef-
ficients and exponents of the mass- and area-dimension re-
lationships, Table 2), and it is the uncertainties in mass pa-
rameters that are the most substantial contributor (Wood et
al., 2015). For these near-surface observations, contributions
to uncertainties in W-band radar reflectivity from shape, the
assumption of an exponential form for the PSD, and the
discrete-truncated form of the integrations over size distri-
bution were not significant. For longer wavelength radars
that might be used in similar applications (e.g., the MRR or

Table 2. Contributions to uncertainties in forward-modeled and ob-
served reflectivity.

Source Reflectivity, dB

Observed reflectivity <0.5
Particle model 5–15

Shape 2
Assumed exponential <1

Truncation 0.42
Discretization 0

Random dipole locations 0

KAZR), shape uncertainty will likely be even smaller due to
less prevalent non-Rayleigh scattering.

These baseline results suggest several avenues for im-
proving such single-frequency, radar reflectivity-based snow-
fall retrievals. Improved constraints on snow PSD param-
eters, through either reduced a priori uncertainties or bet-
ter observational constraints, are paramount. For ground- or
aircraft-based observations, ancillary measurements of snow
PSDs can improve the a priori constraints. For retrievals from
satellite-borne radar where such measurements are not avail-
able, the a priori state is given by more broadly applica-
ble relationships for PSD parameters like those presented
here. To the extent that a priori states for specific snow-
fall regimes might have smaller uncertainties, knowledge of
regime-specific PDFs for snow PSD parameters would im-
prove retrieval results provided the correct regime can be
diagnosed by the retrieval. Coincident dual-frequency radar
observations may also provide improved constraints on the
snow PSD parameters (Liao et al., 2005; Matrosov, 2011) but
among current satellite-borne instruments, the CPR is single-
frequency, and while the GPM DPR provides dual-frequency
observations, the DPR sensitivities limit observations to
heavier snowfall (Skofronick-Jackson et al., 2019) and im-
plementation of dual-frequency snowfall retrieval has proven
difficult (Iguchi et al., 2018). Finally, model-measurement
uncertainties can be reduced by reducing uncertainties in
particle mass estimates. This may require a more synergis-
tic approach in which improved PSD information is cou-
pled with additional observations such as Doppler velocity
to better constrain the assumed particle model used in the re-
trieval, e.g., moving toward the approach used by Wood et al.
(2014, 2015) with ground-based observations. The methods
presented here, easily adaptable to other observing systems
providing multiple frequency or collocated Doppler velocity
observations, provide the basis from which such improve-
ments can be tested and evaluated.
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Appendix A: Retrieval interpretation

To interpret the behavior of the retrieval, we refer to the dis-
cussion of the information content metrics (Sect. 4.2). The
small values for A

[
log(N0)

]
indicate its value is determined

primarily by the a priori information and the negative signs
do not fit the normal paradigm used to explain the A matrix.
Their explanation reveals details of the significant behavior
of this retrieval. In the application of the retrieval to a single
radar bin, the value of A

[
log(N0)

]
is given by

A
[
log(N0)

]
=

[
s2
(

log
(
N̂0

))( ∂dBZe
∂ log(N0)

)2

+

s
(

log
(
N̂0

)
, log

(
λ̂
))( ∂dBZe

∂ log(N0)

)(
∂dBZe
∂ log(λ)

)]
[
s2
y (dBZe)

]−1
, (A1)

where the carets indicate retrieved values. In the first set of
brackets on the right side, the sign of the first term is clearly
positive, while that of the second term depends on the signs
of the covariance and the two partial derivatives, which are
the elements of the Jacobian of the forward model. As was
shown earlier (Fig. 14), ∂dBZe

∂ log(N0)
is positive while ∂dBZe

∂ log(λ) is
negative. The covariance for the retrieved state changes very
little from the a priori covariance, which is positive and repre-
sents a substantial correlation between log(λ) and log(N0).
This second term, then, is negative and as the magnitude of
∂dBZe
∂ log(λ) increases, the sign of A

[
log(N0)

]
changes from pos-

itive to negative.
These terms represent competing influences on the re-

trieved value of log(N0). These competing influences arise
from the a priori covariance and from the Jacobian of the for-
ward model. The positive covariance requires that a positive
adjustment in log(λ) be accompanied by a positive adjust-
ment in log(N0). In contrast, the Jacobian terms have differ-
ing signs. If the difference between the observed and forward
model reflectivity calls for a positive adjustment to log(λ),
the corresponding adjustment to log(N0) would be negative.

Figure A1 shows this process schematically. The size dis-
tribution that represents the initial state is shown by the soid
line. Assuming that the forward modeled reflectivity for this
state overestimates the observed reflectivity (a positive er-
ror), two responses are possible: log(λ) could be increased,
narrowing the distribution; and log(N0) could be decreased,
reducing the amplitude of the distribution. Absent the covari-
ance between log(λ) and log(N0), the retrieval would ap-
ply both adjustments, likely giving more weight to the ad-
justment of log(λ) because of the stronger sensitivity of the
forward model to that variable. These adjustments are repre-
sented by the heavy arrows labeled δ log(N0) and δ log(λ).
Because of the positive covariance between log(N0) and
log(λ), however, an increase in log(λ) produces an oppos-
ing response that increases log(N0), shown by the upward-
pointing heavy arrow. The resulting size distribution is shown
by the dashed line.

Figure A1. Schematic illustration of the retrieval process. The solid
line represents the initial state of the retrieval, while the dashed
line shows the adjusted state assuming the initial state overestimates
the observed reflectivity. The arrows labeled δ log(λ) and δ log(N0)
show the expected responses of the retrieval based on the sensitiv-
ities of the forward model. The arrow labeled s (log(No) , log(λ))
shows the response due to positive covariance between λ and N0.

For small λ (broad distributions), the magnitude of ∂dBZe
∂ log(λ)

is relatively small, so the covariance-driven adjustment is
small and does not overcome the initial reduction in log(N0).
In these cases, log(N0) decreases in response to a positive
error in the modeled reflectivity. This net response is consis-
tent with the sensitivity of the forward model to log(N0) and
A
[
log(N0)

]
is positive. For large λ (narrower distributions),

the magnitude of ∂dBZe
∂ log(λ) is larger. The covariance-driven ad-

justment is larger also and does overcome the initial reduc-
tion in log(N0). As a result, log(N0) increases in response
to the positive error in the modeled reflectivity. Since this
net response opposes the sensitivity of the forward model,
A
[
log(N0)

]
is negative.

The combination of the strong positive covariance be-
tween log(N0) and log(λ) and the comparatively weak sen-
sitivity of the reflectivity to log(N0) limits the behavior of
the retrieval. For narrower distributions, the retrieval is pre-
vented from simultaneously increasing log(λ) and decreas-
ing log(N0) in response to a positive error in reflectivity.
The opposing behavior, decreasing log(λ) and increasing
log(N0) in response to a negative error in reflectivity, is
also restricted. While correct in a climatological sense since
log(λ) and log(N0) are positively correlated, in nature there
are likely scenes for which such responses would give a more
accurate retrieval. This reasoning demonstrates how other
measurements, specifically those with better sensitivity to
log(N0), would benefit the retrieval.
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Appendix B: Particle model

The properties here are for the particle shape denoted as
“B8pr-30” from Wood et al. (2015), an idealized eight-arm
branched spatial particle. Values for the parameters of the
mass- and area-dimension power functions are

ln(α)=−5.723,
β = 2.248,
ln(γ )=−1.379,
σ = 1.813,

with error covariance matrix

Sb =

0.592 0.212 0.090 0.023
0.212 0.142 0.011 0.007
0.090 0.011 0.335 0.103
0.023 0.007 0.103 0.046

.

These values are appropriate for use with particle sizeDM in
centimeters, mass in grams and area in square centimeters.
The radar backscatter and extinction cross sections are given
in Table B1 versus particle size.
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Table B1. Backscatter and extinction properties for the snow particle model.

DM Cbk Cext DM Cbk Cext
mm m2 m2 mm m2 m2

0.025 5.16253e− 17 3.52024e− 14 3.000 1.60708e− 08 3.31323e− 08
0.050 1.20475e− 15 1.77890e− 13 3.250 1.64139e− 08 4.21088e− 08
0.075 8.27182e− 15 5.00664e− 13 3.500 1.66119e− 08 5.22600e− 08
0.100 3.06847e− 14 9.89618e− 13 4.000 1.55864e− 08 7.74061e− 08
0.125 8.40498e− 14 1.67138e− 12 4.500 1.77554e− 08 1.11609e− 07
0.150 1.92314e− 13 2.58903e− 12 5.000 3.06798e− 08 1.58860e− 07
0.200 7.17250e− 13 5.30976e− 12 5.500 1.93705e− 08 2.00667e− 07
0.250 1.91396e− 12 9.14038e− 12 6.000 1.04092e− 07 2.83080e− 07
0.300 4.35436e− 12 1.48681e− 11 6.500 9.75512e− 08 3.35067e− 07
0.350 8.56280e− 12 2.25304e− 11 7.000 1.49787e− 07 4.13047e− 07
0.400 1.54761e− 11 3.31046e− 11 7.500 2.30734e− 07 5.10512e− 07
0.450 2.58963e− 11 4.69409e− 11 8.000 3.13418e− 07 6.07034e− 07
0.500 4.11161e− 11 6.52071e− 11 8.500 2.88081e− 07 7.06213e− 07
0.600 8.93929e− 11 1.16523e− 10 9.000 2.94080e− 07 8.59293e− 07
0.700 1.75650e− 10 2.00793e− 10 9.500 2.01596e− 07 9.74101e− 07
0.800 3.06043e− 10 3.20526e− 10 10.000 2.07686e− 07 1.12076e− 06
0.900 4.97542e− 10 4.93081e− 10 11.000 2.33291e− 07 1.46061e− 06
1.000 7.65231e− 10 7.27755e− 10 12.000 5.94999e− 07 1.90676e− 06
1.250 1.82454e− 09 1.67311e− 09 13.000 5.45403e− 07 2.27318e− 06
1.500 3.56830e− 09 3.30096e− 09 14.000 6.63279e− 07 2.81244e− 06
1.750 5.83188e− 09 5.75812e− 09 15.000 9.90939e− 07 3.58772e− 06
2.000 8.34684e− 09 9.01675e− 09 16.000 6.39329e− 07 4.18269e− 06
2.250 1.10293e− 08 1.33794e− 08 17.000 7.07551e− 07 4.86569e− 06
2.500 1.38623e− 08 1.90102e− 08 18.000 1.05353e− 06 5.83543e− 06
2.750 1.50482e− 08 2.53761e− 08
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