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Abstract. A new methodology for performing long-term
source apportionment (SA) using positive matrix factoriza-
tion (PMF) is presented. The method is implemented within
the SoFi Pro software package and uses the multilinear en-
gine (ME-2) as a PMF solver. The technique is applied to a
1-year aerosol chemical speciation monitor (ACSM) dataset
from downtown Zurich, Switzerland.

The measured organic aerosol mass spectra were analyzed
by PMF using a small (14 d) and rolling PMF window to
account for the temporal evolution of the sources. The rota-
tional ambiguity is explored and the uncertainties of the PMF
solutions were estimated. Factor–tracer correlations for aver-
aged seasonal results from the rolling window analysis are
higher than those retrieved from conventional PMF analy-
ses of individual seasons, highlighting the improved perfor-
mance of the rolling window algorithm for long-term data.

In this study four to five factors were tested for every
PMF window. Factor profiles for primary organic aerosol
from traffic (HOA), cooking (COA) and biomass burning
(BBOA) were constrained. Secondary organic aerosol was
represented by either the combination of semi-volatile and
low-volatility organic aerosol (SV-OOA and LV-OOA, re-

spectively) or by a single OOA when this separation was
not robust. This scheme led to roughly 40 000 PMF runs.
Full visual inspection of all these PMF runs is unrealistic
and is replaced by predefined user-selected criteria, which
allow factor sorting and PMF run acceptance/rejection. The
selected criteria for traffic (HOA) and BBOA were the corre-
lation with equivalent black carbon from traffic (eBCtr) and
the explained variation ofm/z 60, respectively. COA was as-
sessed by the prominence of a lunchtime concentration peak
within the diurnal cycle. SV-OOA and LV-OOA were eval-
uated based on the fractions of m/z 43 and 44 in their re-
spective factor profiles. Seasonal pre-tests revealed a non-
continuous separation of OOA into SV-OOA and LV-OOA,
in particular during the warm seasons. Therefore, a differ-
entiation between four-factor solutions (HOA, COA, BBOA
and OOA) and five-factor solutions (HOA, COA, BBOA, SV-
OOA and LV-OOA) was also conducted based on the crite-
rion for SV-OOA.

HOA and COA contribute between 0.4–0.7 µgm−3

(7.8 %–9.0 %) and 0.7–1.2 µgm−3 (12.2 %–15.7 %) on aver-
age throughout the year, respectively. BBOA shows a strong
yearly cycle with the lowest mean concentrations in sum-
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mer (0.6 µgm−3, 12.0 %), slightly higher mean concentra-
tions during spring and fall (1.0 and 1.5 µgm−3, or 15.6 %
and 18.6 %, respectively), and the highest mean concentra-
tions during winter (1.9 µgm−3, 25.0 %). In summer, OOA
is separated into SV-OOA and LV-OOA, with mean concen-
trations of 1.4 µgm−3 (26.5 %) and 2.2 µgm−3 (40.3 %), re-
spectively. For the remaining seasons the seasonal concen-
trations of SV-OOA, LV-OOA and OOA range from 0.3 to
1.1 µgm−3 (3.4 %–15.9 %), from 0.6 to 2.2 µgm−3 (7.7 %–
33.7 %) and from 0.9 to 3.1 µgm−3 (13.7 %–39.9 %), respec-
tively. The relative PMF errors modeled for this study for
HOA, COA, BBOA, LV-OOA, SV-OOA and OOA are on
average ±34%, ±27%, ±30%, ±11%, ±25% and ±12%,
respectively.

1 Introduction

Atmospheric aerosols are at the center of scientific and po-
litical air quality discussions due to their highly uncertain
direct and indirect climate effects (IPCC, 2013) and nega-
tive impact on human health (e.g., Peng et al., 2005). Regu-
latory policies addressing these effects require characteriza-
tion and understanding of aerosol physicochemical proper-
ties, sources and formation processes. During the past years,
the study of submicron particulate matter (PM1) has gained
interest (Hallquist et al., 2009), in particular the organic frac-
tion comprising 20 %–90 % of the total submicron aerosol
mass (Jimenez et al., 2009). Atmospheric aerosols are typ-
ically classified as primary or secondary aerosols, where
primary aerosols are directly emitted into the atmosphere
and secondary aerosols are formed by reaction of precur-
sor gases. Aerodyne aerosol mass spectrometers (AMSs) and
aerosol chemical speciation monitors (ACSMs) have become
important and widely used instruments for the online chem-
ical characterization of non-refractory submicron aerosol
(NR-PM1) (Canagaratna et al., 2007; Ng et al., 2011b; Fröh-
lich et al., 2013). The resulting aerosol data can be utilized
to study seasonal trends of PM1 sources to support emission
reduction strategies. This is highly relevant for very polluted
areas like China and India but also for Europe, where par-
ticulate matter concentrations substantially decreased during
the last 2 decades but still frequently exceed legal thresh-
olds (Barmpadimos et al., 2011, 2012; European Environ-
ment Agency, 2019).

Source apportionment of organic aerosol (OA) measured
with an AMS and/or ACSM is typically performed using the
positive matrix factorization algorithm (PMF, Paatero and
Tapper, 1994). PMF solutions describe the complex, time-
dependent organic aerosol composition as a linear combi-
nation of static factor profiles (for AMS/ACSM data, mass
spectra) and their time-dependent contributions. Factors can
represent a primary organic aerosol emission (POA) or sec-
ondary organic aerosol (SOA).

Many organic source apportionment studies with AMS
(see review by Zhang et al., 2011) and ACSM data (e.g., Au-
rela et al., 2015; Budisulistiorini et al., 2013; Canonaco et al.,
2013; Fröhlich et al., 2015; Li et al., 2017; Minguillón et al.,
2015; Reyes-Villegas et al., 2016; Ripoll et al., 2015; Schlag
et al., 2016; Sun et al., 2013, 2018; Tiitta et al., 2014; Wang et
al., 2017; Zhang et al., 2019; Zhu et al., 2018) have success-
fully employed the PMF algorithm. PMF results suffer from
rotational ambiguity (Paatero et al., 2002); i.e., several PMF
results exist with a similar goodness of fit. An approximate
method for the quantification of the rotational uncertainty,
i.e., the amount of rotational ambiguity (Paatero et al., 2014),
can be obtained using the global f peak tool, which allows
exploration of a single one-dimensional transect through the
multidimensional solution space and is discussed for AMS
data in Ulbrich et al. (2009). This approach only leads to a
rough estimate of the rotational uncertainty, as it allows in-
vestigation of only a single transect whose selection is un-
controllable, while other rotations remain entirely inacces-
sible. An improved method for both uncertainty estimation
and factor resolution was demonstrated by Canonaco et al.
(2013), where intelligent exploration of rotations was imple-
mented introducing a priori information in the form of fac-
tor profiles in the multilinear engine (ME-2, Paatero, 1999).
Moreover, Ulbrich et al. (2009) also estimated the statistical
uncertainty via the resampling bootstrap technique (Efron,
1979). This method generates a set of new input matrices for
analysis from random resampling of the original input data.
This resampling perturbs the input data by including repli-
cates of some points while excluding others, with the main
assumption that the overall properties of the analyzed data
(fingerprints of the factors, contributions of the factors) are
not systematically changed; i.e., changes are purely statisti-
cal. If a sufficient number of resamples has been carried out,
the variation within the identified factors across all bootstrap
runs is regarded as representing their statistical uncertainty.

A crucial limitation of the traditional PMF approach is
that the time-dependent variability of the composition of the
organic aerosol sources cannot be properly modeled using
static profiles in a year-long PMF model. Both POA and
SOA may have time-dependent composition. For example,
vehicles utilize different fuel blends in winter and summer
for traffic (Agrola, 2017), while biomass burning may be
dominated by different burning types and/or materials in dif-
ferent seasons, e.g., domestic heating in winter, agricultural
waste/residue burning in spring/fall, and wildfires in summer.
SOA sources may likewise be affected by seasonal changes
in either precursor emissions (e.g., monoterpene emissions
increase exponentially with temperature) or physicochemical
processes (e.g., gas–particle partitioning, oxidant concentra-
tions) (Hallquist et al., 2009). Amongst others, Canonaco et
al. (2015), Daellenbach et al. (2017) and Sun et al. (2018)
showed that ACSM SOA mass spectra possess distinct sea-
sonal trends which need to be considered during the PMF
analysis. For Zurich, Stefenelli et al. (2019) and Qi et al.
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(2019) were able to demonstrate this seasonal variability
of SOA characteristics by molecular analysis, with terpene-
related SOA being dominant in summer and aged wood burn-
ing organic aerosol being dominant in winter.

Technically, modeling seasonally dependent mass spectra
from a given source family, e.g., traffic, biomass burning, or
SOA, can be achieved in two ways. PMF can be applied to
a multi-season dataset, with time-dependent source compo-
sition modeling of a single factor per source or source class,
similar to typical representations of SOA in short-term field
campaigns by two factors with different degrees of oxygena-
tion (Zhang et al., 2011). However, multi-factor representa-
tions of seasonal changes are likely to significantly increase
the complexity of the PMF solution, primarily due to a rapid
increase in the number of factors and thus leading to difficul-
ties in interpretation. Another possibility is to perform PMF
over a small, moving time frame such that the factor profiles
evolve with time while maintaining a single factor per source
family. This is likely the best choice for long-term data, due
to both the relative simplicity of the solution and important
savings in computational and evaluation time. The latter is
also more compatible with a continuously growing dataset,
e.g., for online source apportionment studies, where the en-
tire dataset does not have to be completely reanalyzed when
new data are included, in contrast to classical batch analy-
ses. Parworth et al. (2015) have already shown the effective-
ness of such an approach, i.e., employing a small and moving
PMF window for analyzing remote long-term ACSM data
with only a few unconstrained aerosol sources/components.
However, a rotational and statistical uncertainty exploration
was not conducted.

This study presents the analysis of ACSM data measured
in Zurich between February 2011 and February 2012. The
dataset includes several sources that were difficult to sepa-
rate using unconstrained PMF, which are constrained using
known POA sources in ME-2 for a small and rolling time
window. This strategy allows us to adequately account for
time-dependent variation of the POA and SOA factor pro-
files. The applied constraining technique allows for a more
comprehensive and quantitative assessment of the rotational
uncertainty than the global f peak tool could achieve. The
statistical uncertainties of PMF solutions are estimated using
a bootstrap resampling technique. In this study, the size of
the rolling window, tightness of constraints, and several other
parameters, e.g., number of PMF repeats per rolling window,
are discussed and validated.

2 Instruments and methods

2.1 Instrumentation and sampling site

An ACSM (Aerodyne Research, Inc., Billerica, MA, USA)
was deployed at the Kaserne station, an urban background
station in the city center of Zurich (Switzerland), between

February 2011 and February 2012 (Lanz et al., 2007, 2008;
Canonaco et al., 2013). The ACSM is an instrument based on
Aerodyne aerosol mass spectrometer (AMS) technology but
optimized for long-term measurements with minimal mainte-
nance requirements. The ACSM measures the real-time com-
position of non-refractory submicron particulate matter, cus-
tomarily referred to as NR-PM1. The instrument is described
in detail in Ng et al. (2011b) (see also Jayne et al., 2000;
Jimenez et al., 2003; Allan et al., 2003, 2004; and Cana-
garatna et al., 2007, for a more detailed description of the
AMS technique). Technical problems in the ACSM inlet sys-
tem during the last third of the campaign resulted in a total
of 2–3 weeks of missing data.

The ACSM in Zurich was operated with a scan rate of
1 samu−1 between m/z 10 and 140 and produced averaged
scans every 15 min. The data were re-averaged to 30 min to
obtain higher signal-to-noise ratios for ME-2 analysis. To
obtain quantitative mass concentrations for ACSM data, a
collection efficiency parameter (CE) needs to be applied to
account for the incomplete detection of aerosol species due
to particle bounce at the instrument vaporizer (Middlebrook
et al., 2012). The effects of the nitrate mass fraction and
particle acidity on CE have been parameterized for ambi-
ent data (Middlebrook et al., 2012). As discussed previously
(Canonaco et al., 2013, 2015), CE= 1 for the current study
is assumed because of otherwise systematic overestimation
compared to the PM10 measurements by a tapered oscillat-
ing microbalance (TEOM, FDMS 8500, Thermo Scientific)
calibrated by gravimetric measurements of offline PM10 fil-
ters.

The meteorological data (temperature, relative humidity,
solar radiation, precipitation, wind speed and wind direc-
tion) and trace gases (CO, NOx, O3, total hydrocarbons) were
measured by the Swiss National Air Pollution Monitoring
Network, NABEL (Empa, 2010). Equivalent black carbon
(eBC) was measured with an Aethalometer AE 31 (Magee
Scientific Inc., Berkeley, CA, USA). The data were corrected
for loading effects and multiple scattering using the method
of Weingartner et al. (2003). Mass absorption cross sections
as determined by Herich et al. (2011) were used to convert
babs (λ= 880nm) to eBC. The measured absorption coeffi-
cients at wavelengths 470 and 880 nm using the alpha values
based on Zotter et al. (2017) were used to estimate the con-
tributions to eBC from traffic (eBCtr) and biomass burning
(eBCwb).

Seasonal PMF runs performed on the ACSM data in earlier
studies (Canonaco et al., 2013, 2015) showed three primary
OA factors and one to two secondary OA factors contribut-
ing throughout the measurement year. Among the primary
OA factors a traffic-related hydrocarbon-like organic aerosol
(HOA) factor was found, which correlated with NOx and
eBCtr, as well as a biomass burning organic aerosol (BBOA)
factor, which correlated with eBCwb, as also shown in other
studies (Lanz et al., 2007, 2008; Ulbrich et al., 2009; Zhang
et al., 2011; Canonaco et al., 2013). Given that in summer the
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daily values of m/z 60 were always higher than the thresh-
old for biomass burning impact identified in Cubison et al.
(2011), BBOA was also modeled during the warm seasons.
The third primary OA factor was assigned to cooking-related
organic aerosol (COA) and exhibited enhanced concentra-
tions during mealtimes, similarly to previous studies (Allan
et al., 2010; He et al., 2010; Slowik et al., 2010; Sun et al.,
2011; Mohr et al., 2012; Crippa et al., 2013; Elser et al.,
2016). For warm days during the first winter and in spring,
summer and fall the variability of the bulk OOA (oxygenated
organic aerosol) was captured by two distinct factors, i.e.,
SV-OOA (semi-volatile oxygenated organic aerosol) and LV-
OOA (low-volatility oxygenated organic aerosol). For the re-
maining colder period only one OOA factor accounted for
the variation of the bulk OOA.

2.2 Methods

2.2.1 The multilinear engine (ME-2)

ME-2 (Paatero, 1999) is a powerful engine for solving the
positive matrix factorization algorithm (PMF, Paatero and
Tapper, 1994). Model configuration and post-analysis are
performed by Source Finder (SoFi Pro 6.8, Datalystica Ltd.,
Villigen, Switzerland) within the Igor Pro software environ-
ment (Wavemetrics, Inc., Portland, OR, USA) as described in
Canonaco et al. (2013). In its bilinear mode, PMF describes
the measured data matrix X as a product of two matrices,
G and F, and the residual matrix E. In element notation the
equation is

xij =

p∑
k=1

gik · fkj + eij . (1)

In the measured matrix X the columns j are the m/zs, and
each row i represents a single mass spectrum. p is defined as
the number of factors of the selected model solution, i.e., the
number of columns of G and the number of rows of F. Each
column of the matrix G represents the time series of a fac-
tor, whereas each row of F represents the factor profile (i.e.,
mass spectrum); both are indexed by k. In an unconstrained
PMF run in ME-2, the model is initialized with random en-
tries in G and F (“seed”) and the quantity Q is minimized
with respect to all model variables by means of the conjugate
gradient algorithm (Paatero, 1999):

Q=

n∑
i=1

m∑
j=1

(
eij

σij

)2

, (2)

where eij are the elements of the residual matrix E and σij
represents the measurement uncertainty for the input point
xij .

To compare Q values from various PMF runs with a dif-
ferent size and/or number of factors,Q is normally scaled by
the remaining degrees of freedom (Qexp, which depends on

the size of the input data and the number of chosen factors):

Qexp =m · n−p(m+ n). (3)

PMF is subject to rotational ambiguity, in which different
combinations of G and F yield similar Q values. Some of
these combinations may contain mixed factors and/or envi-
ronmentally unreasonable descriptions of the data. Previous
work has shown that constraining expected factor profiles us-
ing the a-value approach for AMS/ACSM data is an efficient
method for isolating the set of environmentally interpretable
PMF runs (Lanz et al., 2008; Canonaco et al., 2013; Crippa
et al., 2014). The a value determines the extent to which the
m/z in the mass spectral profile, also referred to as anchor
(fkj ), is allowed to vary during the model iteration according
to

f ′kj = fkj ± a · fkj . (4)

The index j stands for the actual variable (m/z) of the kth
factor, and the a value is its scalar product. For example, an
a value of 0.1 allows for a variability of ±10% during the
iterative process. This implies that some variables might in-
crease and some might decrease within this limit. Note that
after renormalizing the solution, the extent to which the con-
strained values changed might be slightly outside the de-
fined a-value range. For example, consider a case where the
a value is set to 0.1 for all variables of a factor profile. The
values of all variables but one could decrease by 10 %, while
the value of this single variable might increase by 10 % dur-
ing the iteration. After renormalizing the factor profile out-
side ME-2 by, e.g., the sum of the profile, the intensity of
this single variable will exceed the boundaries set with the a
values during the PMF iteration. Moreover, note that the a-
value approach defines only the boundaries of a solution and
does not imply any weighting within these boundaries.

2.2.2 PMF input preparation step

The organic data and error matrices (Allan et al., 2003) are
computed using the ACSM local tool version 1.5.3.2 (Aero-
dyne Research, Inc., Billerica, MA, USA) in Igor Pro. Weak
(signal-to-noise ratio between 2 and 0.2) and bad (signal-to-
noise ratio below 0.2) variables were downweighted accord-
ing to the recommendations in Paatero and Hopke (2003).
Them/z 16, 17, 18 and 28 variables that are replicates of the
variability of m/z 44 were removed for the PMF calculation
and recalculated a posteriori as a function of them/z 44 con-
tribution attributed to each factor profile (Elser et al., 2016).
This approach is preferable to downweighting (Ulbrich et al.,
2009), as it maintains a direct mathematical relationship be-
tween m/z 44 and its dependent variables, which can oth-
erwise be distorted by dynamic weighting of outliers in the
PMF robust mode.
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2.3 New rolling method using ME-2

The new method consists in performing PMF runs on a
small and moving window that is translated across the en-
tire dataset. At each step, many individual PMF runs are per-
formed, and the resulting runs are accepted or rejected ac-
cording to predefined criteria. The window is then moved to
the next position, with the distance between window posi-
tions being significantly smaller than the window size itself.
The set of all accepted PMF runs determines the final source
apportionment solution and is also used to assess model un-
certainties.

The novelty of this method compared to Parworth et al.
(2015) lies in the application of ME-2 for enhanced control
of the matrix rotations and in the automated application of
user-defined criteria to determine the set of accepted PMF
runs. Moving properties of the window (window runs) are
discussed in Sect. 2.3.1, whereas the main settings of PMF
within a window (PMF runs) are described in Sect. 2.3.2.

2.3.1 The rolling strategy

PMF analysis is conducted on a subset of data defined by
a small window that is moved in 1 d increments across the
entire dataset and as such allows capturing of seasonal vari-
ations of the factor profiles. Note that rolling windows con-
taining less than 10 % of real data are automatically skipped
by the rolling algorithm. This avoids performance of PMF
runs over large gaps due to, e.g., calibrations or instrument
failures. The window size (swin) is a free parameter that re-
quires optimization. The rolling window PMF analysis of
Parworth et al. (2015) utilized a 2-week window, arguing
that this length is representative of the average lifecycle of
aerosols in the atmosphere. Even for (low-time-resolution)
ACSM data, 2 weeks have been shown to provide enough
temporal variability to distinguish sources with similar fac-
tor profiles such as HOA and COA (Fröhlich et al., 2015).
In the present study, likewise a 14 d window is selected after
additionally assessing the performance of 3, 7, 21, and 28 d
windows.

The model performance in response to swin is assessed
by monitoring the value of Q/Qexp (which decreases as the
mathematical goodness of fit improves) and the number of
non-modeled time points (nnon-modeled) as a percentage of
the total number of measurements. nnon-modeled is defined as
any ACSM time point for which the user-defined criteria (see
Sect. 2.3.3 and 2.3.4) are not met for any PMF runs that in-
clude this measurement (note that for most points this will
include PMF runs from multiple overlapping windows). Fig-
ure 1a shows Q/Qexp and nnon-modeled as a function of swin.
The Q/Qexp values are minimized for a 7 d window and are
approximately 15 % higher for the 3 and 14 d windows and
45 % higher for the 21 and 28 d windows. nnon-modeled shows
a minimum for 14 d with a slight increase for larger windows
and a steep increase for smaller swin.

A 14 d window has been chosen for the current dataset, as
this avoids significant increases in Q/Qexp without induc-
ing unacceptably high nnon-modeled. Moreover, because the
1 d step of the rolling window is smaller than the 14 d width,
each time point is included in 14 different window runs (ex-
cept for those within the first or last 14 d of the dataset). As
discussed later, these repeats aid the uncertainty analysis.

2.3.2 Window settings

The rolling strategy described above defines a new window
after every window shift. Within this new window, a PMF
run, referred to as repeat in the text, is generated via ME-2,
which initializes new seeds, a values, and bootstrap resam-
pling of the PMF input. The seed initializes all model entries
in G and F, and unconstrained information therein is ran-
domly initialized. Additionally, a priori information on the
factors from the seasonal pre-tests is used to confine the so-
lution space and thus to decrease the rotational ambiguity of
the solution.

In the current study, constraints are applied only to profiles
of the POA factors, namely traffic (HOA), cooking (COA)
and biomass burning (BBOA). The HOA and COA profiles
are taken from Crippa et al. (2013), while BBOA is the av-
eraged mass spectrum reported by Ng et al. (2011a). These
anchor profiles were also successfully used for the seasonal
analysis of the Zurich–Kaserne data (Canonaco et al., 2013,
2015).

Every constrained factor profile applied in a PMF run re-
quires a sensitivity analysis of the a value to identify the
range of reasonable solutions (Canonaco et al., 2013; Crippa
et al., 2014; Elser et al., 2016). Typically, variation of the
a value of one or more constrained factor profile(s) allows
exploration of a region in the solution space that includes en-
vironmentally reasonable solutions. In the present analysis,
the goal is to consider all PMF runs (not just the best one)
that are mathematically and environmentally reasonable. Re-
cent studies have systematically investigated the entire solu-
tion space allowed by the a values, e.g., by conducting PMF
runs covering every combination of a values over the range 0
to 1 with a step of 0.1 (Elser et al., 2016; Bozzetti et al., 2017;
Daellenbach et al., 2017). However, this approach is not com-
putationally practical for moving window analysis. For in-
stance, given that three factors are constrained in this present
study, the above a-value exploration strategy would require
113
= 1331 PMF runs for a-value exploration per window

run. Also, each combination of a values would require a
minimum of 100 PMF runs for bootstrap analysis (Norris et
al., 2014). Furthermore, the seasonal pre-tests indicated that
both four- and five-factor solutions should be assessed (cor-
responding to one or two OOA factors). In total, this would
require 1331× 100× 2∼ 2.66× 105 PMF runs per window.
Moreover, the daily shift of the rolling window will initialize
the window runs 351 times (1 year minus the swin), resulting
in 1331×100×2×351∼ 9.35×107 PMF runs for a system-
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Figure 1. The mathematical metric Q/Qexp (left axis, red points) and the percent of non-modeled time points (non-modeled) (right axis,
blue points) over the entire dataset are reported as a function of window size (swin), maximum a value (amax), and number of PMF repeats
per window (xPMF). In each plot, two of these three parameters are fixed at their optimum values and the third is varied: (a) swin, (b) amax,
and (c) xPMF. Optimum values are swin = 14d, amax = 0.4, and xPMF = 50. For all runs, criteria are defined as described in Sect. 2.3.3.

Table 1. Overview of the rolling mechanism and the repeats of the PMF analysis.

Rolling mechanism: – a 14 d time window is defined
– window is shifted by 1 d over the entire dataset

PMF analysis: – for each window a four- and five-factor (HOA, COA, BBOA and one up to two OOAs) PMF run is performed,
where HOA, COA and BBOA are constrained within the a-value approach.

– PMF runs are initialized 50 times from random starting points for the unconstrained information in G and
F (seeds). The a values for the constrained factor profiles are randomly and independently varied
from a = 0 to a = 0.4 with a resolution of a = 0.1 (a-value exploration). In each run the PMF input
is resampled within the bootstrap method.

atic analysis. This will require several months of computation
even on modern PCs with multicore processors. To overcome
these computational issues, two strategies were considered
for reducing the number of runs required for a-value explo-
ration. In both cases, a systematic exploration of the a-value
space is replaced by randomly generated a values between
zero and an upper limit (amax). For the first strategy, the amax
limit was fixed at one, and the number of repeats (xPMF) was
adjusted until the same criteria described above for swin op-
timization were satisfactory. However, this approach was re-
jected, as executing the full set of PMF runs required com-
putational times on the order of months (see Part A of the
Supplement) and therefore was impractical on regular PCs.

The second strategy, which is used here, exploits the a pri-
ori information of the sources. If some factor profiles are
known to be present and their source profiles are known to
some extent, there is no need to explore regions in the so-
lution space, for which these factor profiles may drastically
depart from their realistic anchors.

Therefore, amax undergoes a systematic scan from zero
upwards, with model performance assessed by Q/Qexp and
nnon-modeled, as described above for the swin estimation. The
current strategy counts as a local-minimum algorithm, as the

full parameter space (swin, amax, xPMF) is not fully inves-
tigated. Moreover, pre-tests based on literature data, i.e., a
14 d PMF window for swin (Parworth et al., 2015) and an up-
per a value of 0.3 amax (Crippa et al., 2014), represented the
starting condition for the parameter optimization discussed
in Fig. 1.

Figure 1b shows an almost flat Q/Qexp, while that of the
nnon-modeled behaves as a quadratic function with a minimum
at a = 0.4. For a values below 0.4 the constrained finger-
prints cannot optimally adapt to the current input. Given only
50 random a-value explorations out of 1331 (see above) of
the entire a-value space for every PMF window, outcomes
for higher amax may be purely stochastic and lead to a high
degree of mixing and consequently rejection of the PMF runs
(high nnon-modeled). a = 0.4 represents the optimum amax and
is set as a free parameter for the a-value exploration.

The random resampling of the PMF input uses the boot-
strap approach for every repeat. A window comprising 14 d
with at most 48 (number of scans per day) × 14 (d) =
672 time points will create resamples containing again 672
new time points, where some time points may occur multi-
ple times and others may be absent. As above, Q/Qexp and
the percentage of nnon-modeled are monitored as a function of
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the xPMF. Figure 1c reveals a constant Q/Qexp, whereas the
number of nnon-modeled decreases and stabilizes from 50 re-
peats onwards. We conclude that 50 repeats per window are
sufficiently high for the bootstrap strategy. Note that the final
number of PMF runs per time point may be higher than xPMF
due to the overlapping PMF runs resulting from the rolling
strategy. The total number of PMF runs for this study equals
50 (xPMF)× 351 (number of days)× 2 (four- and five-factor)
= 35 100 runs and required approximately 3 d on a modern
multicore PC.

2.3.3 The post-PMF analysis

Manual inspection of all generated PMF runs is impracti-
cal and is replaced by an automated procedure based on
pre-defined user criteria that (1) identifies and sorts uncon-
strained factors and (2) determines whether each PMF run
should be accepted or discarded. Examples of user-defined
criteria could include the factor correlation with an exter-
nal tracer in terms of either the overall time series or diurnal
pattern or characteristic temporal features, e.g., a prominent
lunch peak for a cooking factor. Modeled PMF factors for
which no factor criteria are satisfied, i.e., very poor score val-
ues due to factor mixing/swapping or sampling of transient
sources not accounted for, typically yield nnon-modeled.

In addition to determining whether an individual PMF run
should be accepted or rejected, the criteria are used to de-
termine the identity of unconstrained factors. While the po-
sitions of constrained factors within the F and G matrices
are pre-defined for constrained factors, the same is not true
of unconstrained factors, and these must be correctly identi-
fied prior to further data analysis. Consequently, all possible
combinations for sorting unconstrained factor positions are
evaluated (factor identification) and their scores combined
together. As criteria with various score ranges are potentially
possible, e.g., correlation coefficient, lunch peak ratio, the
explained variation (EV; see Eq. 5) of m/z 60 and variable
fractions, these score values must be corrected before being
added up. z-score transformation as a linear correction is ap-
plied, where at the end the score distribution of each crite-
rion possesses a mean value of 0 and a standard deviation
of 1. Finally, the z-score transformed combination with the
highest values is chosen to represent the PMF result for a
specific PMF run. This is essential in the case of the two un-
constrained factors SV-OOA and LV-OOA in this study. Note
that this requires criteria to be defined for a minimum of all
factors but one (i.e., p− 1 factors).

Considering the large amount of PMF runs by the rolling
window algorithm, the main advantage of this criteria-based
inspection is that the complexities of a factor profile and time
series are reduced to single values (“scores”). Based on the
score plots, potentially promising PMF runs can be further
investigated and validated. This significantly improves the ef-
ficiency of PMF analysis by discarding PMF runs where the
score for any criterion falls below the user-defined thresh-

old (“bad PMF runs”). In contrast to conventional analyses,
where a single PMF run often represents an optimal descrip-
tion of the dataset, the entire set of PMF runs classified as
environmentally reasonable is used for the analysis and pre-
sentation. This provides a more comprehensive and robust
representation of the dataset and supports uncertainty assess-
ment.

To determine whether an individual PMF run is accepted
or rejected, acceptance thresholds are defined for each of the
selected criteria. These thresholds are free parameters and
must be defined for each criterion separately. A threshold
is inferred either from previous studies or from significance
tests or similar statistical analyses (see the discussion for the
HOA and COA thresholds in Sect. 2.3.4 for such an exam-
ple).

The computational time required for criteria application
subsequent averaging is typically on the order of minutes to
hours with a modern multicore PC, depending on the num-
ber of accepted PMF runs. Thereafter, the results can be in-
spected in real time, allowing the user to efficiently investi-
gate the set of PMF runs and, if needed, test various criteria.

2.3.4 Chosen criteria in this study

In this study one criterion per factor was defined, although
it is possible to apply multiple criteria to the same factor,
as each criterion is assessed individually on an accept/reject
basis.

Figure 2 shows the criterion scores calculated for each
PMF run, with each plot representing an individual factor.
The grey points show the score values for all PMF runs, the
blue points denote PMF runs where criterion thresholds are
satisfied, and the green points represent PMF runs where cri-
terion thresholds for all criteria are simultaneously fulfilled.
These green points are then used to compute the final PMF
solution. The criteria and their corresponding thresholds ap-
plied for each criterion (blue points in Fig. 2) are also re-
ported in Table 2 (first value).

In the current study, the thresholds for the criteria of HOA
and COA were determined based on statistical analyses with
the help of the results from conventional (no rolling tech-
nique) seasonal PMF from previous studies (Canonaco et
al., 2013, 2015). The contributions of HOA and its tracer
eBCtr were bootstrapped together and the correlation coef-
ficient (RPearson) was evaluated each time, leading to a dis-
tribution for RPearson. Similarly, the time series of COA was
bootstrapped and the lunch peak enhancement in COA eval-
uated each time (COA11+12+13 h/COA9+10+14+15 h), leading
to a distribution for the lunch peak concentration. Finally,
the 10th percentile value was chosen as the threshold score
value. These seasonal thresholds are also visible as steps in
the score plots (blue points in Fig. 2a and b, respectively) and
are also reported in Table 2 (second value in brackets). For
spring 2011, summer 2011 and winter 2012, however, the
resulting thresholds for HOA either caused too many miss-
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Figure 2. PMF runs sorted based on the scores (grey points), PMF runs fulfilling the criterion thresholds (blue points) and PMF runs fulfilling
criterion thresholds in all criteria (green points). The five criteria are (a) diurnal correlation between HOA and eBCtr (seasonal thresholds
from statistical analysis), (b) relative lunch peak for COA (seasonal thresholds from statistical analysis), (c) explained variation of m/z 60
for BBOA, (d) f 44 in the LV-OOA profile and (e) f 43 in the SV-OOA profile, respectively. Note that (e) contains three episodes with zero
points, which represent four-factor solutions automatically selected by the algorithm, where no five-factor solution was manually selected
(and the SV-OOA criterion is thus irrelevant).

ing time points (RPearson = 0.8) or had rather non-significant
correlation coefficients (RPearson = 0.2, with a p value of
0.4, n= 24 as for the other seasons). Hence, these thresh-
olds were systematically lowered for spring 2011 and in-
creased for winter 2012 to achieve the highest possible corre-
lation coefficient with maximal data coverage, i.e., the same
nnon-modeled when considering all PMF runs for these periods
in these criteria.

NOx is a typical tracer for HOA in urban areas. However,
due to incomplete NOx measurement coverage in this cam-
paign (especially during spring and fall), eBCtr is used as a

traffic tracer and the RPearson correlation coefficient is com-
puted between the diurnal cycle of eBCtr and the HOA factor.

As is frequently the case, no chemical tracers for COA
were available in this study. Previous measurements in
Zurich (Canonaco et al., 2013, 2015) have demonstrated a
strong diurnal pattern for COA, with an increased concentra-
tion during lunchtime. As a proxy for COA, the lunchtime
COA enhancement is monitored (Table 2).

The wood burning contribution to black carbon (eBCwb)
as determined by the eBC source apportionment (eBC-SA)
method of Sandradewi et al. (2008) was considered as a
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Table 2. Criteria scheme employed in this study. The first value represents the applied threshold for the final PMF solution and the values in
brackets for HOA and COA stand for the threshold value coming from the seasonal resampling analysis. f 44 for LV-OOA is used for factor
sorting rather than as an acceptance/rejection threshold.

Factor Criteria types Criteria thresholds

Winter Spring Summer Fall Winter
2011 2011 2011 2011 2012

HOA Daily cycle correlation (RPearson) between HOA and eBCtraffic 0.6 (0.6) 0.7 (0.8) 0.5 (0.2) 0.6 (0.6) 0.5 (0.2)
COA Rel. lunch peak (11+ 12+ 13h) to (9+ 10+ 14+ 15h) 1.2 (1.2) 1.1 (1.1) 1.1 (1.1) 1.2 (1.2) 1.1 (1.1)
BBOA Explained variation of m/z 60 0.25 0.25 0.25 0.25 0.25
LV-OOA f 44 in profile N/A
SV-OOA f 43 in profile 0.08

NA: not available.

possible criterion for BBOA but then rejected. The eBC-SA
analysis applies to air masses highly influenced by biomass
burning and has been validated for winter data only. Uncer-
tainties in eBCwb during warm seasons, when the biomass
burning contribution is small, have been shown to be quite
high (Harrison et al., 2013). Therefore, it was decided to use
another metric for BBOA, exploiting the key spectral feature
at m/z 60. For BBOA the explained variation (EV) (Paatero,
2010) for m/z 60 is monitored as follows:

EVj,k =

n∑
i=1

(∣∣gik · fkj ∣∣/σij )
n∑
i=1

((∑p

h=1

∣∣gih · fhj ∣∣+ eij )/σij ) . (5)

This threshold is chosen following the recommendation in
Paatero (2010), where a variable modeled by its mean ex-
plains already ∼ 25 % of the variation. If the measured vari-
ability of a variable is explained by a specific factor, that
factor must capture more than the mean value of the vari-
able, and hence Paatero (2010) recommended 30 %–35 % as
a minimum EV. However, using 30 % or 35 % as a thresh-
old resulted in several weeks of non-modeled time points,
in particular for spring and fall 2011. An a value of 25 % re-
sulted in a reasonable compromise between EV and the num-
ber of non-modeled time points. Note that this approach re-
quires the assumption that m/z 60 should be predominantly
explained by BBOA, which is likely true when the fraction
of the OA signal occurring atm/z 60 (f 60) is relatively high.
However, for measurements where f 60 is low, m/z 60 is
more likely to also have contributions from other sources.
A rough guideline for utilizing this criterion is a threshold
for biomass burning influence of f 60= 0.003 as identified
by Cubison et al. (2011). In the current dataset, ∼ 85% of
all measured time points exceeded this threshold. Every mea-
sured day was observed to comprise at least some time points
(in winter, spring and fall almost all points but in summer
mostly evening points) above this threshold, suggesting that
the criterion is valid throughout the dataset.

Ng et al. (2010) described higher f 43 and lower f 44 for
the mass spectrum of SV-OOA and vice versa for LV-OOA.
Therefore, f 43 and f 44 are used as proxies for SV-OOA
and LV-OOA or OOA, respectively. For LV-OOA (Fig. 2d,
Table 2) all score values are allowed here, whereas for SV-
OOA (Fig. 2e, Table 2) the PMF runs meeting the thresholds
for the five-factor solutions are selected. This threshold cor-
responds to the point where nnon-modeled is minimal with re-
spect to this criterion; i.e., considering all PMF runs in this
criterion leads to the same nnon-modeled at the highest possible
f 43 for SV-OOA.

The criterion of SV-OOA is further used to differentiate
between four- and five-factor solutions on the window runs.
For the PMF windows where no five-factor solution with
SV-OOA is selected, the set of four-factor solutions in the
corresponding PMF window is automatically selected (green
points at zero in Fig. 2e). Finally, the averaging procedure
also controls and prevents that four- and five-factor solutions
are simultaneously considered for the averaging of single
time points by privileging five-factor solutions; i.e., any time
point containing accepted PMF runs with both four- and five-
factor solutions retains only the five-factor solution.

3 Results

3.1 Brief statistical analysis of the rolling result

The amount of nnon-modeled resulting from the criteria and
thresholds reported in Table 2 yields 99.31 % data cover-
age, corresponding to a total of only 3 non-modeled days.
Overall, the selected criteria resulted in 1970 accepted PMF
runs (∼ 5.6% out of the 35 100 PMF runs). The Q/Qexp has
an average value of 4.4 and a median of 4.8, and the first
and third quartiles are 3.7 and 5.5, respectively. These val-
ues are reasonable, given that many previously conducted
AMS studies reported values between 1 and 10 (Zhang et
al., 2011). On average, each data point has 43 replicates
(median= 24, first and third quartiles 9 and 60, respectively),
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which are used to assess the statistical uncertainty of the PMF
solution as discussed in Sect. 3.5.

3.2 Factor time series

3.2.1 Overview

Figure 3a shows the time series of each factor for the en-
tire dataset as a mean, averaged over all accepted PMF runs.
The data from Fig. 3a are re-averaged to monthly and sea-
sonal means and shown in Fig. 3b and c, respectively. For
Fig. 3c, seasons are defined as follows: winter is December–
February, spring is March–May, summer is June–August,
and fall is September–November.

In winter, spring and fall the concentrations of primary
organic aerosols (HOA, COA and BBOA) are approxi-
mately 40 % compared to the 60 % of the (secondary) oxy-
genated organic aerosols (SV-OOA, LV-OOA or OOA). In
summer the primary fraction decreases to reach minimum
values of 30 % compared to 70 % of OOA. The relative
fractions of HOA and COA are rather constant, contribut-
ing on average between 0.4–0.7 µgm−3 (7.8 %–9.0 %) and
0.7–1.2 µgm−3 (12.2–15.7 %), respectively, throughout the
year. BBOA shows a strong yearly cycle with the low-
est mean concentrations in summer (0.6 µgm−3, 12.0 %),
slightly higher mean concentrations during spring and fall
(1.0 and 1.5 µgm−3, or 15.6 % and 18.6 %, respectively) and
the highest mean concentrations during winter (1.9 µgm−3,
25.0 %). Only during summer, the bulk OOA is completely
separated into SV-OOA and LV-OOA, with mean concen-
trations of 1.4 µgm−3 (26.5 %) and 2.2 µgm−3 (40.3 %), re-
spectively.

For the remaining seasons the seasonal concentrations
of SV-OOA, LV-OOA and OOA comprise 0.3–1.1 µgm−3

(3.4 %–15.9 %), 0.6–2.2 µgm−3 (7.7 %–33.7 %) and 0.9–
3.1 µgm−3 (13.7 %–39.9 %), respectively.

The time series of the primary OA factors HOA, COA
and to some extent BBOA are rather spiky (Fig. 3a), under-
lining a strong influence of local sources. The COA spikes
that are present from May 2011 through the end of Septem-
ber 2011 are likely due to local barbecuing events during
the evening, as also observed in an earlier study at this site
(Lanz et al., 2007). The highest COA concentrations are ob-
served in early July 2011, where the NR-PM1 mass concen-
trations reached 70 µgm−3, and correspond to three consec-
utive evenings/nights of a yearly Latin American dance and
grill festival (Caliente). During this festival, the courtyard
containing the measurement site was filled with food and
grill stands, explaining the dominant contribution of COA.
Throughout the summer and spring and less frequently in
fall/winter SV-OOA was modeled in addition to LV-OOA.
This warm period was characterized by high daily temper-
atures and induced on the one hand variability in the con-
densed OOA allowing for separation of SV-OOA and LV-

OOA and on the other hand increased emissions of biogenic
SV-OOA precursors (Canonaco et al., 2015).

3.2.2 Daily cycles

Figure 4 summarizes the weekday (left) and weekend (right)
daily cycles for the modeled factors. The daily cycle of HOA
follows the averaged daily cycles of the estimated traffic of
eBC (eBCtr) and of NOx. The same is true for the daily cy-
cle of BBOA following that of the biomass burning of eBC
(eBCwb). HOA, eBCtr and NOx exhibit a clear rush-hour
peak on weekdays and none on the weekend. During the
weekdays, a small lunch peak is visible for COA, underly-
ing the meal activity during the working days and the pres-
ence of many restaurants in this area. There are no evident
differences between the weekday and weekend daily cycles
of LV-OOA, SV-OOA and OOA. LV-OOA and OOA show
rather flat daily cycles, similarly to their inorganic aerosol
tracers SO2−

4 and NH+4 , respectively. This is in line with their
most-likely regional background, as already suggested ear-
lier (Canonaco et al., 2015). Only the concentration of SV-
OOA tends to decrease during the afternoon, suggesting its
volatile nature, similarly to its inorganic aerosol tracer NO−3 .
The weekly cycle for HOA, COA, BBOA and the OOAs,
including their tracers eBCtr, NOx , eBCwb, SO2−

4 , NO−3 and
NH+4 , respectively, are reported in Supplement B. Apart from
OOA, the weekly cycles for HOA, BBOA, SV-OOA and LV-
OOA are in good agreement with their tracers.

3.2.3 Comparison with external data

The analysis and further validation of the PMF runs using
the criteria-based selection are performed on the PMF re-
sults of the rolling windows, and therefore correlations are
performed over 14 d in this study. The performance of the
rolling strategy can then be verified by the factor–tracer cor-
relation, e.g., on average over the seasons (Table 3). More-
over, the same factor-to-tracer correlations are also evaluated
for the seasonal pre-tests (PMF runs over the seasons with no
rolling strategy) and are reported in brackets in Table 3.

NOx data are available only in winter and fall 2011. Both
NOx and eBCtr are correlated with HOA over the full year
and within individual seasons. The correlation values with
NOx, are lower compared to those found in Canonaco et al.
(2013). However, in Canonaco et al. (2013) the data cov-
ered mostly the two winters including some parts of spring
and fall. For the latter two seasons NOx data were not prop-
erly validated and was consequently removed from further
analysis (no NOx data are available for spring and summer).
Moreover, in Canonaco et al. (2013) the model validation
was strongly based on the first winter period, and when per-
forming the correlation between HOA and NOx data for that
period only, the correlations were similar also in the current
study (not shown in the table).
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Figure 3. (a) 30 min average concentrations, (b) relative contributions and (c) pie charts for the calendar seasons of the sources between
February 2011 and February 2012. Gaps in the data represent interruptions due to maintenance and/or technical problems of the ACSM
during the last third of the campaign, mostly due to clogging of the ACSM inlet orifice. The lower values in the pie charts are the seasonal
mean contributions in µgm−3. Note that the OOA factors are represented either as LV-OOA and SV-OOA (five-factor solution) or OOA
alone (four-factor solution).

BBOA shows substantial correlation with eBCwb in fall
and winter, as also found in Canonaco et al. (2013), while
the correlation is low in spring and very low in summer.
These low correlations are expected, since the determination
of eBCwb is highly uncertain when the eBCwb/eBCtraffic ratio
is low. Wood burning source apportionment of eBC data, as
already stressed above, is not suited under warm conditions
with low biomass burning contributions. However, the corre-
lation is good over the full year, as the problematic data yield
eBCwb concentrations near zero anyway, and the correlation
is thus driven by the data with high signal-to-noise ratios.

High correlations between LV-OOA and SO2−
4 are seen

over the year as well as for spring and fall, whereas they are
lower in summer, as shown in Table 3, in contrast to Lanz et
al. (2007) (RPearson = 0.5 between LV-OOA and SO2−

4 dur-
ing a summer AMS campaign). The correlation between SV-
OOA and NO−3 is higher for winter 2011 and summer but
lower in spring and fall. This is understandable, as the spring
and fall represent the transition between modeling SV-OOA
and LV-OOA (summer) compared to one OOA only (win-
ter). The correlation between SV-OOA and LV-OOA for win-
ter 2012 is not shown due to the low number of time points
for which both OOAs were modeled. OOA correlates well
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Figure 4. The weekday (a) and weekend (b) diurnal cycles for the entire period (February 2011–February 2012). The thick lines represent
the medians and the shaded areas span the interquartile ranges. Typical external tracers are also shown for comparison, i.e., eBCtr and NOx
for HOA, eBCwb for BBOA, SO2−

4 for LV-OOA, NO−3 for SV-OOA and NH+4 for OOA.

Table 3. Correlation coefficients (R2
Pearson) with a significance level of p ≤ 0.01 between the factor contribution and expected tracers over

the year and the meteorological seasons as defined above. The first value describes the correlation for the rolling result, whereas the value in
brackets is for the seasonal PMF result (no rolling).

Factor Year Winter Spring Summer Fall Winter
2011 2011 2011 2011 2012

HOA/NOx 0.29 0.18 (0.21) – – 0.33 (0.24) 0.17 (0.18)
HOA/eBCtr 0.36 0.45 (0.44) 0.28 (0.28) 0.22 (0.08) 0.38 (0.31) 0.42 (0.27)
COA – – – – – –
BBOA/eBCwb 0.32 0.36 (0.23) 0.22 (0.07) 0.06 (0.01) 0.35 (0.22) 0.43 (0.41)
LV-OOA/SO2−

4 0.48 0.37 (0.41) 0.60 (0.50) 0.30 (0.26) 0.54 (0.30) –
SV-OOA/NO−3 0.05 0.24 (0.06) 0.03 (0.01) 0.31 (0.29) 0.15 (0.04) –
OOA/NH+4 0.60 0.71 0.58 – 0.39 0.70 (0.59)

with NH+4 throughout the year in accordance with summer
and winter data reported previously (Lanz et al., 2007, 2008;
Canonaco et al., 2013). In contrast to the OOAs, few differ-
ences are observed for BBOA, HOA, or COA between the
two winters. This supports the conclusion that the different
OOA behavior in these two winters reflects actual meteoro-
logical and chemical differences rather than mixing and/or
splitting between the POA and SOA factors.

Importantly, the rolling results show generally higher cor-
relations with the external tracers than do the conventional
seasonal PMF runs (values in brackets in Table 3). This
demonstrates that the rolling approach generally outperforms
the conventional seasonal PMF analysis.

3.3 Time-dependent factor profiles

The mean factor profiles of the six modeled
sources/components over the entire year are presented
in Fig. 5. Error bars show 1 standard deviation of profile
variability across the entire measurement year. Note that this
variability comprises both the time-dependent variation of
the factor profiles and the PMF error (see Sect. 3.5 for more
details on the discussion of the errors in this study).

A better understanding of the temporal variation of the fac-
tor profiles is gained when inspecting them over time. Figure
6 shows the fractional contributions ofm/z 41, 43, 44, 55, 57
and 60 to each factor profile as a function of time. Each vari-
able is normalized by its mean contribution. In general, the
variation of the fractions for the primary OA factors (HOA,
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Figure 5. The mass spectra of the six factors. The spectra have been
truncated at m/z 100 to facilitate the comparison of the key m/z in
the lower range. Error bars represent 1 standard deviation of the
profile variability across the entire year.

COA and BBOA) seems small compared to the variability of
the oxygenated factors (LV-OOA, SV-OOA and OOA). The
primary OA factors show low profile variability with almost
no seasonal pattern. Note that minimum and maximum val-
ues of these variables for the primary OA factors (less pro-
nounced for HOA and COA) reach ∼ 0.6 and 1.4, respec-
tively, i.e., the boundaries given by amax. The 75th percentiles
of the a values for HOA, COA and BBOA touches amax less
than 0.9 % of the time and the 90th percentile hits amax 34 %,
24 % and 73 % of the time (see Supplement D Fig. S5). This
suggests that the factor profiles are not limited by the con-
straining technique, but rather by the employed scheme of
criteria. Allowing for higher amax and loosening the criteria
threshold would most likely increase the variability in these
ions but would also lead to mixed and environmentally un-
reasonable solutions.

This is different for the oxygenated factors. LV-OOA, SV-
OOA and OOA for example contain high m/z 60 for the
colder season, likely indicating significant impact of biomass
burning (Canonaco et al., 2015; Heringa et al., 2011; Qi et
al., 2019). In addition, m/z 57 shows a strong seasonal pat-
tern, i.e., high in winter and low during summer for SV-OOA
and LV-OOA. Strong peaks are also observed for m/z 43 in
LV-OOA during summer. This is due to less oxygenated bulk
LV-OOA compared to the winter in Zurich, when LV-OOA or
OOA represent more oxygenated aerosol with higherm/z 44
and lowerm/z 43, as already noted in Canonaco et al. (2015).
SV-OOA also contains a very strong increase in m/z 55 dur-
ing the Caliente episode. Most likely one COA factor alone
is insufficient to capture all the variability of m/z 55. As a
consequence, PMF uses an additional factor for modeling

the variability of m/z 55; here, SV-OOA which may con-
tain some characteristics of cooking SOA, as the latter has
been shown to have non-negligible contribution at m/z 55 as
well (Klein et al., 2016). Further evidence comes from Fig.
6e (and also Fig. S4 in the Supplement), where m/z 55 and
m/z 43 peak around Caliente in SV-OOA and LV-OOA, re-
spectively. Moreover,m/z 44 drops in LV-OOA. This implies
that SV-OOA has some characteristics of cooking, while LV-
OOA becomes more SV-OOA-like during Caliente. The pe-
riod of influence of these peaks lasts until 8–10 d before and
after Caliente, most likely as it is incorporated during the
window runs 14 d before and after Caliente.

The time-dependent mass spectral matrix of the factors can
be found in the Supplement Section C, although a detailed
analysis is beyond the scope of the current study. When em-
ploying this type of analysis, future studies should investigate
in more detail changes in the variables in the factor profiles.
This information might provide new insights on seasonal or
source-specific markers, essential for source apportionment
analyses.

3.4 Residual analysis

Figure 7a and b show the scaled residuals as functions ofm/z
and time, respectively. The scaled residuals do not reveal any
systematic over- or under-estimation. The data scatter around
zero with the interquartile range almost always between ±3
throughout the entire year, evidencing the good quality of
the PMF solution on average (±3 is the reasonable range for
scaled residuals defined in Paatero and Hopke, 2003). The
highest residuals occur during the Caliente festival (begin-
ning of July), as shown by the dark red spike (interquartile
range) in the time-series plot (Fig. 7b), when the PMF solu-
tion is strongly influenced by extremely local and short-term
cooking and biomass burning sources that are not fully cap-
tured by the retrieved COA and BBOA factors.

This results in a change in the factor profiles of COA and
BBOA and SV-OOA (as already stressed in Sect. 3.3). How-
ever, the COA, BBOA and SV-OOA profiles roughly 8–10 d
before and after Caliente are again consistent with those re-
trieved during the rest of the season, i.e., the unique finger-
print during the Caliente episode does not strongly influence
the solution of the PMF windows around Caliente. A few
other episodes in spring (May) and at the end of the summer
(September) reach also higher scaled residuals. In the current
dataset, these likely indicate PMF runs that have not fully
captured profile responses to rapid meteorological changes
(colder to warmer season and vice versa). This happens on a
shorter timescale than the chosen PMF window and as a con-
sequence cannot be fully captured by the 14 d PMF windows,
causing PMF solutions with mixed factor profiles and higher
scaled residuals. Note that during the last third of the mea-
surement the scaled residual distribution tends to be broader.
This is due to technical problems on the ACSM inlet system
mainly related to the filter valve clogging, causing noisier
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Figure 6. Daily averaged fractions of important AMS/ACSMm/z tracers. Each variable is normalized by its mean to better stress its temporal
variation.

signals and consequently noisier PMF results for the valve
switching system employed at that time. This condition is
not accounted for by the ACSM error model and increases
the scaled residuals.

3.5 Uncertainty of the PMF solution

Within this study, each PMF run combines a random selec-
tion of a values for the three constrained POA factors with
random (time-based) resampling of the input matrix. PMF
runs satisfying the acceptance criteria are retained for the fi-
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Figure 7. (a) Scaled residuals over m/zs, (b) scaled residuals over time and (c) total histogram of scaled residuals.

nal result, leading to several repeats for each time point i.
The variability among these repeats at each i can be used
to infer the rotational and statistical uncertainty. These two
types of uncertainties are discussed below and are collec-
tively referred to as PMF error within this study. Additional
contributions to the overall uncertainty of this analysis that
are not assessed here include anchor profile selection as well
as the error related to the criteria construction, such as the
type of criterion (correlation, diurnal, profile characteristics,
etc.), tracer selection, and its related threshold selection. The
proposed relative PMF error in percentage in this study is
given by the following formula:

PMFerror =
100
2 · n
·

n∑
i=0

(
σ

avg

)
i

, (6)

where σ is the standard deviation and avg is the mean value
of all replicates of a time point i. The probability density
function (pdf) of PMFerror for each time point i( σavg )i is re-
ported in Fig. 8. The relative PMF errors are given by the
center of the lognormal fit (x0) as visualized in Fig. 8 and
are for HOA, COA, BBOA, LV-OOA, SV-OOA and OOA
±34%, ±27%, ±30%, ±11%, ±25% and ±12%, respec-
tively.

The data reported in Fig. 8 were first log-transformed,
as the untransformed distribution was skewed to the right,
mostly due to time points with low signal-to-noise ratio that
would have had a stronger impact on the final error calcula-
tion using an untransformed, i.e., linear representation.

4 Recommendations and current limitations

The techniques described in this study are relevant for long-
term source apportionment (SA) studies, in particular for
ACSM data. The stability of the primary profiles (HOA,
COA and BBOA) suggests that they are rather independent
of the season and that employing primary OA factors com-
ing from other SA studies (here profiles from an AMS SA
in Paris conducted years earlier) using, e.g., the a-value con-
straints works even for long-term SA. However, this outcome
is not completely independent, as it results from the defined
amax as well as the applied scheme of criteria with their cor-
responding criteria thresholds. Increasing these thresholds
would most likely increase the variation in the POA factor
profiles but would also favour more mixing between these
factors. Significant seasonal changes in factor profiles were
found for SV-OOA and LV-OOA. Hence, the rolling mech-
anism is essential when accurately apportioning the oxy-
genated organic aerosol fraction. The use of a 14 d window,
as already proposed by two former studies (Fröhlich et al.,
2015; Parworth et al., 2015), was shown to be appropriate
for this long-term SA analysis and represents a promising
starting point for future long-term SA studies, although de-
tailed evaluation for datasets with other sources and temporal
characteristics is needed.

In general, selection of the rolling window size (swin)
should consider both the fraction of non-modeled time points
(see Fig. 1) and interactions between swin and solution ac-
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Figure 8. Probability density functions for the PMFerror of the six factors as a logarithmic representation on the x axis.

ceptance criteria. The latter point is illustrated by the use
of the relative intensity of the COA lunchtime peak in this
study. This peak was observed to be almost absent during
the weekend. As a consequence, avoiding systematic biases
in the fraction of non-modeled time points requires the swin
to be larger than 7 d to guarantee the presence of weekdays
in every window run. Employing a reliable tracer even dur-
ing the weekends for the cooking source would have allowed
for a better exploration of swin below 7 d, as similar Q/Qexp
values resulted for 3, 7 and 4 d windows, as shown in Fig. 1.

The importance of defining the proper number of factors
is strongly emphasized when analyzing transient events, e.g.,
the Caliente episode. This becomes even more important
when performing automated source apportionment schemes,
where the ability of factors to dynamically change and adapt
to the current window run is limited, as is the case for the
current rolling mechanism presented in this study. During
Caliente the variability of m/z 55 required two cooking fac-
tors to achieve complete apportionment. With only one cook-
ing factor allowed, other unconstrained factors (especially
SV-OOA) took on some cooking characteristics. This re-
sulted in mixed SV-OOA and LV-OOA factors, as m/z 55
and 43 were clearly peaking around Caliente for SV-OOA
and LV-OOA, respectively. Relevant transient events that
should still be part of the SA result would most likely re-
quire further attention with additional and separate PMF
runs, where the user can better control the required number
of factors and swin. Such problems are clearly evident from
diagnostics such as increased residuals (Fig. 7b) and sudden

changes in factor profiles (Figs. S3 and S4), facilitating their
appropriate identification and treatment. A 14 d window is
likely too large for transient events representing a small frac-
tion of swin, where the latter strongly influences the contribu-
tions of the data for swin days around the event.

Crippa et al. (2014) already demonstrated for 25 AMS
datasets that an amax of 0.3 for the constrained information
was often required for those SA studies. For the present al-
gorithm and dataset, an amax of 0.4 was shown to be ideal.
Smaller amax did not allow the constrained profiles to suffi-
ciently adapt to the data, whereas higher values were subject
to mixing of the profiles. a-value limits strongly depend on
how well the fingerprint matches the PMF input. Fingerprints
applied obtained by SA analyses of other locations or dur-
ing other meteorological conditions might require a higher
a-value limit compared to those extracted from, e.g., a pre-
analysis conducted on a subset of the PMF input.

The other remaining free parameters (xPMF and in partic-
ular the choice of the criteria and their corresponding thresh-
olds) must be assessed by the user for any new SA study, as
they may strongly depend on site/source characteristics and
tracer availability. Moreover, investigation of various tracers
as criteria candidates for one source is also very desirable, as
it allows us to quantify errors when discussing factor-tracer
interchangeability.

Unlike batch-style PMF (i.e., a single PMF run encom-
passing the entire dataset), here corrections or scaling fac-
tors affecting entire rows or columns of the input data ma-
trix should be applied prior to SA analysis. For example, the
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collection efficiency (CE) parameter applied for ACSM data
analysis is applied to all measured m/zs of a mass spectrum
and does not alter the relative contributions obtained by a
single PMF result. However, it does affect the overall source
apportionment returned by the rolling window strategy pre-
sented within this study. This comes from the fact that the
final source apportionment result is the aggregate of a set of
accepted solutions whose criteria for acceptance may include
goodness of correlation with an external tracer, and such cor-
relations are affected by CE. Therefore, applying CE post-
PMF will require the user to re-evaluate the score plots and
to reassess the criteria thresholds.

It is likely that the PMF errors reported above can be fur-
ther reduced by further refinements to the rolling window al-
gorithm. One major limitation is the application of season-
specific criteria thresholds. In the future, criteria thresholds
with a higher temporal resolution are certainly desirable. An-
other major limitation is the continuous presence of the pri-
mary OA factors during the entire analysis. Similarly to the
(de)activation of SV-OOA within this study, in the future one
or more factors should be (de)activated during the evolution
of the rolling approach to better cope with the complex and
dynamic real atmospheric conditions.

5 Conclusions

A rolling-window PMF algorithm was applied to NR-PM1
organic data measured with an ACSM between February
2011 and February 2012 in downtown Zurich, Switzerland.
The rolling approach allows for a source apportionment of
time-dependent factor profiles and has several advantages,
e.g., very fast PMF runs of rather small PMF runs (few sec-
onds for 14 d windows) compared to conventional batch anal-
ysis (several minutes, as the PMF run is always the entire
dataset) or one factor per source compared to several fac-
tors in batch analysis to cope with time-varying factor pro-
files. Moreover, the rolling technique is particularly help-
ful for the analysis of automated and/or continuous analysis
of both long-term and continuously growing datasets, where
batch analysis is at best inefficient and probably not feasible.
Factor–tracer correlations were shown to be higher for the
averaged seasonal analysis (from the rolling window) than
for the seasonal pre-tests (PMF runs with no rolling). This
highlights the improved performance of the rolling PMF runs
compared to conventional batch PMF analysis for long-term
data.

PMF runs were conducted where the a values of the con-
strained factor profiles were randomly changed within the
boundaries 0 to amax in conjunction with the bootstrap re-
sampling strategy. The resulting PMF runs were selected and
studied using the criteria scheme based on information on
the sampling site from previous SA studies. This method has
shown its usefulness when evaluating and studying hundreds
of thousands of PMF runs. The criteria used here consisted of

features in the diurnal patterns of HOA and COA, the amount
of explained variation of m/z 60 attributed to BBOA, and
representation of OOA by one or two factors depending on
the difference between SV-OOA and LV-OOA in f 43 values.

The separation between the primary OA factors (HOA,
COA and BBOA) and oxygenated organic aerosol (SV-OOA,
LV-OOA and OOA) was rather robust throughout the year.
HOA and COA were rather constant, whereas BBOA showed
a very strong seasonality with the highest contribution in
winter and lowest in summer. The model separated OOA
into SV-OOA and LV-OOA mainly during the warm season
(spring and summer), including a warm episode during the
first winter. The strongest changes in the factor profiles were
visible for the oxygenated species SV-OOA and LV-OOA,
whereas the primary species HOA, COA and BBOA showed
smaller variations. Hence, the rolling mechanism is certainly
essential when properly apportioning the oxygenated organic
aerosol fraction.

The model was still able to separate a semi-volatile frac-
tion for the colder seasons based on the variation in m/z 43
and 44, where very little variation was present in nitrate, of-
ten used as a tracer of SV-OOA.

The rotational and statistical uncertainties were assessed
via random a-value exploration and bootstrap resampling.
The relative PMF errors (expressed by the standard deviation
divided by the average concentration of all replicates per time
point) are on average±34%,±27%,±30%,±11%,±25%
and ±12% for HOA, COA, BBOA, LV-OOA, SV-OOA and
OOA, respectively.

Finally, the free parameters tested and validated in this
study, i.e., the 14 d window length, 0.4 as upper limit for the
a value of the constrained primary OA factor profiles, to-
gether with the scheme of criteria and the xPMF per window
run, depend on the sources and meteorological conditions of
downtown Zurich. When applying this new rolling strategy
on datasets dissimilar to Zurich, some or all of these param-
eters might be subject to investigation to achieve a complete
and quantitative source apportionment analysis.
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