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Abstract. Contrary to the statements put forward in “Evalua-
tion of measurement data – Guide to the expression of uncer-
tainty in measurement”, edition 2008 (GUM-2008), issued
by the Joint Committee for Guides in Metrology, the error
concept and the uncertainty concept are the same. Arguments
in favor of the contrary have been analyzed and found not to
be compelling. Neither was any evidence presented in GUM-
2008 that “errors” and “uncertainties” define a different rela-
tion between the measured and true values of the variable of
interest, nor does this document refer to a Bayesian account
of uncertainty beyond the mere endorsement of a degree-of-
belief-type conception of probability.

1 Introduction

It has long been recognized that quantitative characterization
of the reliability of a measurement is essential for drawing
quantitative conclusions from the measured data. Various and
often contradictory methods and terminologies emerged over
the years. The Towards Unified Error Reporting (TUNER)
activity aims at a unification of the reporting of errors in es-
timates of atmospheric state variables retrieved from satellite
measurements (von Clarmann et al., 2020). At the request
of the Bureau International de Poids et Mesures (BIPM),
the Joint Committee for Guides in Metrology (JCGM) is-
sued a guideline for how measurement uncertainty should
be dealt with (JCGM, 2008, this source is henceforth refer-
enced as GUM-2008). A Supplement in the context of GUM
is found in JCGM (2012), and several supplements to GUM-
2008 are found on the BIPM website (https://www.bipm.org/

en/publications/guides, last access: 28 February 2022). The
concept of uncertainty was developed long before the GUM-
2008 was issued and has seen several refinements since then
(e.g., Eisenhart and Collé, 1980; Collé, 1987; Colclough,
1987; Schumacher, 1987). A key claim of GUM-2008 is that
the terms “error” and “uncertainty” connote different things
and that the underlying concepts are different. GUM-2008
has been critically discussed by, e.g., Bich (2012), Grégis
(2015), Elster et al. (2013), and The European Centre for
Mathematics and Statistics in Metrology (2019) and more
favorably by, e.g., Kacker et al. (2007).

In this paper we critically assess some of the claims made
in GUM-2008 and, as part of the TUNER activity, discuss its
applicability to remote sensing of the atmosphere. We start
by analyzing GUM’s claim about the differences between
error and uncertainty (Sect. 2), whereby it is important to
distinguish between terminological (Sect. 2.1) and concep-
tual (Sect. 2.2) issues. We find that the concept of the “true
value of the measurand” makes up the alleged key difference.
That is to say, the uncertainty concept endorsed by GUM
is claimed, contrary to traditional error analysis, to be able
to dispense with the concept of the true value that is nei-
ther known nor knowable (GUM-2008, pp. 3 and 5). This
leads to the question of whether, and, if so, how the mea-
sured or estimated value along with the estimated error (or
uncertainty) are related to the true value the measurand has
in reality and what the problems related to the ignorance of
the true value are in the context of error estimation (Sect. 3).
In this context, we first address the question of whether it is
adequate to use the true value, which is typically unknown
and unknowable, in the definition of the term “error” and
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to base error analysis on such a definition (Sect. 3.1). Sec-
ond, we investigate the implications that the inverse nature of
a measurement process has on the probabilistic relationship
between the measured value, the true value, and the measure-
ment (Sect. 3.2). In this context we discuss the problem of the
base-rate fallacy. Further, we investigate whether the alleged
difference between the error concept and the uncertainty con-
cept can be explained by a Bayesian turn in metrology. Third,
we assess the degree to which the nonlinearity of the rela-
tionship between the measured signal and the target quantity
viz. the radiative transfer equation poses additional problems
(Sect. 3.3), and fourth, we scrutinize the claim that there will
always be unknown sources of uncertainty and that it is thus
impossible to relate the measured value along with its uncer-
tainty estimate to the true value (Sect. 3.4). After these more
general considerations we critically discuss the applicability
of the GUM-2008 concept to indirect measurements of atmo-
spheric state variables (Sect. 4). There we discuss the prob-
lems of measurands that are not well defined in the sense of
GUM-2008 (Sect. 4.1) and whether it is really adequate to re-
port the combined error only (Sect. 4.2). Finally (Sect. 5), we
conclude the degree to which the arguments put forward by
the JCGM are conclusive and what the differences between
the error concept and the uncertainty concept actually are.

2 Error and uncertainty

GUM-2008 endorses a new terminology compared to that of
traditional error analysis. In the context of the work under-
taken by the TUNER activity, a project aiming at unifica-
tion of error reporting of satellite data (von Clarmann et al.,
2020), terminological and conceptual divergence is particu-
larly problematic. Without agreement on the concepts and
the terminology of error versus uncertainty assessment, any
unification is out of reach.

According to GUM-2008, the concept of uncertainty anal-
ysis should replace the concept of error analysis. The Inter-
national Vocabulary of Metrology document (JCGM, 2012)
points in the same direction. Thus, some conceptual and ter-
minological remarks seem appropriate. While, on the face
of it, this is quibbling about words, actually, conceptual dif-
ferences between the errors and uncertainties are claimed to
exist. This issue is discussed in the following.

A key claim of GUM-2008 is that the “concept of un-
certainty as a quantifiable attribute is relatively new in the
history of measurements, although error and error analysis
have long been part of the practice of measurement science or
metrology” (JCGM, 2008, Sect. 0.2, l. 1–2; emphases in the
original.). In a note to their Sect. 3.2.3, GUM-2008 states that
“The terms ‘error’ and ‘uncertainty’ should be used prop-
erly and care taken to distinguish between them.” The dis-
cussion of these issues is occasionally led astray, because it
often does not distinguish between two different questions:
first, whether the terms “error” and “uncertainty” have the

same connotation, and second, whether the underlying con-
cepts are indeed different. In the following, we try to shed
some light on these issues.

2.1 Terminological issues

Already in the pre-GUM language there have been subtle
linguistic differences between the terms “error” and “uncer-
tainty”. The error has been conceived as an attribute of a mea-
surement or an estimate, while the term “uncertainty” has
been used as an attribute of the true state, or, more precisely,
an attribute of an agent’s knowledge about the true state. We
perfectly know the result of our measurement – even if it is
erroneous – but we are uncertain about the true value. Be-
cause of the measurement error there is an uncertainty as to
what the true value is. The uncertainty thus describes the de-
gree of ignorance about the true value, while the estimated er-
ror describes the degree to which the measurement is thought
to deviate from the true value. In this use of language, both
terms still relate to the same concept. This notion seems,
as far as we can judge, to be consistent with the language
widely used in the pre-GUM literature since Gauss (1809),
who used the Latin terms error and incertitudo in this way.
Thus, both terms referred to the same thing but from a differ-
ent perspective1. The estimate of the total error includes both
measurement noise and all known components of further er-
rors, random or systematic, caused by imperfections in the
measurement and data analysis system.

It must, however, be noted that the term “error” is an
equivocation. It has been used for both the unknown and
unknowable signed actual difference between the measured
value and the true value of the measurand and for a statistical
estimate of it. The statistical estimate is mostly understood to
be the square root of the variance of the probability density
function of the error23 and thus does not carry any informa-
tion about the sign of the error. Nonlinear error propagation
may in some cases make asymmetric error estimates neces-
sary, but typically these do not carry any information about
the actual sign of the error either. The ignorance of the sign
of the error entails that the true or most probable value can-

1Possolo (2021) expresses this construal in more colorful words:
“[. . .M]easurement uncertainty surrounds the true value of the mea-
surand like a fog that obfuscates it, while measurement error is both
the source of that fog and part and parcel of the measured value.
Measurement uncertainty thus describes the doubt about the true
value of the measurand, while measurement error quantifies the ex-
tent to which the measured value deviates from the true value.”

2When we use variances and standard deviations, we do not
mean sample variances and sample standard variations but simply
the second central moment of a distribution or its square root. In
accordance with GUM-2008, this distribution can represent a prob-
ability in the sense of personal belief and thus can also include sys-
tematic effects. See also Sect. 2.2.

3Other estimates are also used, e.g., robust ones like the in-
terquartile range.
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not simply be determined by subtracting the estimated error
from the measured value.

One of the first major documents where the term “error”
was used with this statistical connotation is, to the best of our
knowledge, “Theoria Motus Corporum Celestium” by Gauss
(1809). Since then, the term “error” has commonly been used
to signify a statistical estimate of the size of the difference be-
tween the measured and true values of the measurand. Sem-
inal publications by Gauss (1816), Pearson (1920), Fisher
(1925), Rodgers (1990), and Mayo (1996) furnish evidence
of this use of the term “error”. The “estimated error” (as a
composite term) is often understood to be a measure of the
width of a distribution around the measured value which tells
the data user the probability density of a certain value to be
measured if the value actually measured was the true value.
One might criticize equivocation of the traditional language,
but one can equally well consider this to be a non-issue and
trust that the context will make it clear what is meant. Often,
some attributes are used for clarification and specification,
e.g., “probable error” (Gauss, 1816; Bich, 2012), “statistical
error” (Nuzzo, 2014), “error estimation” (Zhang et al., 2010),
or “error analysis” (Rodgers, 1990, 2000; Hughes and Hase,
2010).

More recently, GUM-2008 presented a narrower definition
for how we should conceive the term “error” and stipulated a
new terminology, where the term “measurement uncertainty”
is used in situations where one would have said “measure-
ment error” before. According to GUM-2008 (p. 2), the un-
certainty of a measurement is defined as “a parameter, associ-
ated with the result of a measurement, that characterizes the
dispersion of the values that could reasonably be attributed
to the measurand”. Conversely, GUM-2008 (Annex B.2.19)
allows for the term “error” only the connotation “signed dif-
ference”, but their use of the terms “error and error analysis”
in the first sentence of their Sect. 0.2 or “possible error” in
their Sect. 2.2.4 only makes sense if the statistical meaning
of the term “error” is conceded.

In spite of the explicit definition in GUM-2008, there
seems to be no unified stance among GUM-2008 endorsers
as to what “error” is. For example, Merchant et al. (2017)
maintain that “error” connotes only the signed difference,
while Kacker et al. (2007) or White (2016) refer to “error”
as a statistical estimate. Kacker et al. (2007) complain that
GUM-2008 is often misunderstood, and we suspect that the
cause of this might be that GUM-2008 is indeed not suffi-
ciently clear with respect to the differences between the un-
derlying error and uncertainty concepts.

The use of the term “uncertainty” in GUM-2008 seems in-
consistent: the general GUM-2008 concept seems to be that
the “error” has to include all error sources and thus cannot
be known; “uncertainty” is weaker: it is only an estimate of
quantifiable errors, excluding the unknown components. This
view is supported by the following quotation (GUM-2008,
p. viii): “It is now widely recognized that, when all of the
known or suspected components of error have been evaluated

and the appropriate corrections have been applied, there still
remains an uncertainty about the correctness of the stated re-
sult, that is, a doubt about how well the result of the measure-
ment represents the value of the quantity being measured.” It
is not fully clear what this means. One possible reading is
that they use the term “error” in the redefined sense, i.e., as
a quantity which measures the actual deviation from the true
value. Then this statement would be a mere truism, just say-
ing that after all correction and calibration activities there is
still a need for error (in the error concept terminology) esti-
mation. The only other possible reading is that they want to
say that, due to unknown (unrecognized and/or recognized
but not quantified4) error sources, error estimation will al-
ways be incomplete and there remains an additional uncer-
tainty not covered by the error estimation. This often is very
true, but the use of the term “uncertainty” would then be in-
consistent in their document, because here the connotation
of “uncertainty” is the unknown (unquantified or even un-
recognized) part of the error, which by definition cannot be
assessed, while in the main part of their document, the conno-
tation of “uncertainty” seems to be a quantified statistical es-
timate. In summary, it is not clear whether the “uncertainty”
includes the unknown error terms or not.

The introduction of the term “uncertainty of measure-
ment” seems to us a mere linguistic revision of an established
terminology which does not connect to any further insights.
The issue of whether the term “error” should also be used for
a statistical estimate cannot be judged on scientific grounds.
It is a matter of stipulation, although in the main body of
GUM-2008 this stipulation is presented as if it were a fac-
tual statement (“In this Guide, great care is taken to distin-
guish between the terms ‘error’ and ‘uncertainty’. They are
not synonyms, but represent completely different concepts;
they should not be confused with one another or misused.”,
Sect. 3.2, Note 2). The synonymity of “error” and “uncer-
tainty” is thus neither true nor false but adequate or inade-
quate. Instead of quibbling about words, we will, in the next
section, concentrate on the concepts behind these terms.

2.2 Conceptual issues

Although GUM-2008 (Sect. 0.2) claims the “concept of un-
certainty as a quantifiable attribute to be a relatively new
concept in the history of measurement”, we uphold the view
that it has long been recognized that the result of a measure-
ment remains to some degree uncertain even when a thor-
ough measurement procedure and error evaluation are per-
formed. Investigators realized already in the 19th century that
measurement results always have errors. Gauss (1809) and
Legendre (1805) formalized the required procedure of bal-
ancing imperfect astrometric measurements by least squares
fitting, in support of orbital calculations from overdetermined

4Rigorously speaking, within the concept of subjective proba-
bility, recognized but unquantified uncertainties should not exist.
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data sets, and there is no reason to believe that earlier inves-
tigators were unaware of the fact that they were not work-
ing on perfect observational data. The conclusion of Kepler
(1609) concerning the elliptical shape of the orbit of Mars
based on the rich observational data set collected by Brahe
would have been impossible without proper implicit assump-
tions concerning the limited validity of the reported values. A
rich methodological toolbox for error estimation and uncer-
tainty assessment has been developed since then, including
systematic errors and error correlations.

GUM-2008 not only presents traditional error analysis in
a revised language, but also suggests that there is more to
it. That is to say, the entire concept is claimed to be re-
placed (see, e.g., GUM-2008, Sect. 3.2.2, Note 2). We un-
derstand that GUM-2008 grants that the classical concept of
error analysis deals with statistical quantities, but these are
statistical estimates of the difference between the measured
or estimated value and the true value. We take GUM-2008 to
be saying that the reference of even this statistical quantity to
the true value poses certain problems, because the true value
is unknown and unknowable. As a solution of this problem,
the uncertainty concept is introduced, which allegedly makes
no reference to the true value of the measurand and is thus
hoped to avoid related problems. GUM-2008 (particularly
Sect. 2.2.4) unfortunately leaves room for multiple interpre-
tations, but our reading is that an error distribution is under-
stood by GUM-2008 to be a distribution whose dispersion
is the estimated statistical error and whose expectation value
is the true value, while an uncertainty distribution is under-
stood to be a distribution whose dispersion is the estimated
uncertainty and whose expectation value is the measured or
estimated value.

GUM-2008 (p. 5) characterizes error as “an idealized con-
cept” and states that “errors cannot be known exactly”. This
is certainly true, but it has never been claimed that errors can
be known exactly. Since not all relevant error sources are nec-
essarily known, any error estimate remains fallible, but still
it is and has always been the goal of error analysis to provide
error estimates that are as realistic as possible. To use the sta-
tistical conception of “error” and, conceding the fallibility of
its estimated value, it is not necessary to know the true value.
It is only necessary to know the chief mechanisms which can
make the measured value deviate from the true value and to
have estimates available of the uncertainties of the input val-
ues to these mechanisms.

Some GUM-2008 endorsers (e.g., Kacker et al., 2007) try
to draw a borderline between error analysis and uncertainty
assessment in a way that they associate error analysis with
frequentist statistics while uncertainty is placed in the con-
text of Bayesian statistics. Frequentist statistics, we under-
stand, is a concept where the term “probability” is defined
via the limit of frequencies for a sample size approaching in-
finity. This definition is challenged because it involves a cir-
cularity: it is based on the large number theorem, according
to which (strong version) a frequency distribution will almost

certainly converge towards its limit. This limit is then asso-
ciated with the probability. “Almost certainly” means “with
probability 1”. The circularity is given by the fact that the
definiendum appears in the definiens (see, e.g., Stegmüller,
1973, pp. 27). Also, the weak version of the large number
theorem involves the concept of probability and thus poses
a similar problem to the definition of the term “probability”.
We concede that many estimators in error estimation rely on
frequency distributions. It is, however, a serious misconcep-
tion to conclude from this that error analysis is based on a fre-
quentist definition of “probability”. This is simply a non se-
quitur. Frequency-based estimators are consistent with any of
the established definitions of probability, and their use does
not allow any conclusion about the definition of “probability”
in use.

The conceptual differences between error analysis and un-
certainty analysis seem to come down to the different rela-
tions between the measured and true values of the measur-
and. In GUM-2008 (pp. 3 and 5), the claim is made that the
uncertainty concept can be construed without reference to the
unknown and unknowable true value while the error concept
cannot (GUM-2008, p. 3) and that the uncertainty concept is
more adequate because there can always exist unknown er-
ror sources which entail that an error budget can never be
guaranteed to be complete (GUM-2008, p. viii). It is stated
that the uncertainty concept is not inconsistent with the error
concept (GUM-2008, p. 2/3). There are, however, certain in-
consistencies and shortcomings, which are discussed in the
following.

One of the major purposes of making scientific observa-
tions, besides triggering ideas on possible relations between
quantities, is to test predictions based on theories on the real
world (Popper, 1935). To decide whether an observation cor-
roborates or refutes a hypothesis, it is necessary to have an
estimate of how well the observation represents the true state,
because it must be decided how well any discrepancy be-
tween the prediction and the observation can be explained by
the observational error (e.g., Mayo, 1996). Any concept of
uncertainty that is not related to the true state cannot serve
this purpose.

On page 3, GUM-2008 says that the attribute “true” is in-
tentionally not used within the uncertainty concept because
truth is not knowable. In GUM-2008 (p. 59) it is claimed
that the uncertainty concept “uncouple[s] the often confusing
connection between uncertainty and the unknowable quanti-
ties ‘true’ value and ‘error’ ”. The term “measurand” in their
definition, however, is defined as the quantity intended to
be measured (JCGM, 2009); GUM-2008 (p. 32) says basi-
cally the same; GUM-2009 (p. 20) says that the “quantity”
is the same as the “true quantity value”. Inserting this def-
inition into the GUM-2008 definition of uncertainty shows
that, through the back door, uncertainty still refers to the true
value. Thus it is not clear what the difference between the tra-
ditional concept of error analysis and the uncertainty concept
is. Further, it is stated that systematic effects can contribute
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to the uncertainty. GUM-2008 falls short of clarifying how a
systematic effect can be understood other than as a system-
atic deviation between the measurement and the true value
that the concept GUM-2008 apparently tries to avoid. In or-
der to justify the attribution of an uncertainty distribution to
the systematic effects without relying on frequentist statis-
tics, they invoke the concept of subjective probability. With
this it becomes possible to assign an uncertainty distribution
to the combined random and systematic uncertainty, but still
it is not clear how the systematic effect is defined without
reference to the unknown truth.

Subjective probability reflects the personal degree of belief
(GUM-2008, p. 39). Thus, a knowledge-dependent concept
of probability is used in GUM-2008. This approach has been
chosen to allow the treatment of systematic errors as disper-
sions, although the systematic error does not vary and cannot
thus be characterized by a distribution in a frequentist sense
(GUM-2008, p. 60). If we construe “estimated error” and
“estimated value” as parameters of a distribution assigning
to each possible value the probability (in a Bayesian context)
or the likelihood (in a maximum likelihood context5) that it
is the true value, no knowledge of the true value is required.
This is because, by definition, the subjective probability dis-
tribution merely represents the knowledge of the person gen-
erating it. In GUM the error concept is discarded because
the capability of conducting an error estimate allegedly de-
pends on the knowledge of the true value. However, once the
concept of subjective probability has been invoked, no objec-
tive knowledge of the unknowable true value is needed any
longer. The subjectivist can work with the value they believe
to be true. This solves the alleged problem of the error con-
cept, namely, that the true value is unknown.

There is nothing wrong with the subjectivist concept of
probability, nor are we attacking the possibility of combining
random and systematic errors in a single distribution. This
concept, however, makes the knowledge of the true value and
the true error unnecessary, and still the estimated error can be
conceived as a statistical estimate of the absolute difference
between the measured value and the true value. We consider
it untenable and inconsistent to refer to the concept of subjec-
tive probability when it comes in handy and to deny it when
it would solve the conflict between the error and uncertainty
concepts.

Our skepticism about the possibility of dispensing with the
concept of the true value is shared by, e.g., Ehrlich (2014),
Grégis (2015), and Mari and Giordani (2014). Note that in
the International Vocabulary of Metrology (known as VIM)
(JCGM, 2012), although also issued by the JCGM, the con-
cept and definition of the true value are explicitly retained.

In GUM-2008 (p. 2/3), it is claimed that the concept of
uncertainty “is not inconsistent with other concepts of un-
certainty of measurement, such as a measure of the possible
error in the estimated value of the measurand as provided

5See Sect. 3.2 for a deeper discussion of this issue.

by the result of a measurement [or] an estimate characteriz-
ing the range of values within which the true value of the
measurand lies6 (VIM:1984 definition 3.09). Although these
two traditional concepts are valid as ideals, they focus on un-
knowable quantities: the ‘error’ of the result of a measure-
ment and the ‘true value’ of the measurand (in contrast to the
estimated value), respectively. Nevertheless, whichever con-
cept of uncertainty is adopted, an uncertainty component is
always evaluated using the same data and related informa-
tion ...” (emphases in the original). It remains unclear how
the concepts can, on the one hand, be consistent, while, on
the other hand, it is claimed that the error approach and the
uncertainty approach are actually conceptually different and
not only with respect to terminology. Since both concepts,
however, are consistent, it is not clear what the difference in
the concepts consists of.

Interestingly enough, early documents of the history of
GUM (Kaarls, 1980; Bureau International des Poids et Mé-
sures, 1980) provide evidence that the terminological turn
from “error” to “uncertainty” was triggered only by linguis-
tic arguments, based upon the fact that in common language
the term “uncertainty” is often associated with “doubt”,
“vagueness”, “indeterminacy”, “ignorance”, or “imperfect
knowledge”. These early documents provide no evidence
that “error” and “uncertainty” were conceived as two dif-
ferent technical terms connoting different concepts. Any re-
interpretation of the terms “error” and “uncertainty” as fre-
quentist versus Bayesian terms or as operational versus ide-
alistic concepts came later.

The answer to the terminological differences was found
to be contingent upon the underlying stipulation and that any
statement about their equivalence or difference without refer-
ence to a definition is a futile pseudo-statement. The answer
to the question of conceptual differences is less trivial and de-
serves some deeper scientific discussion. The main question
still seems to be how the true value, the error or uncertainty,
and the measured value are related to each other. This ques-
tion will be addressed in the following section.

3 The unknown true value of the measurand

The alleged key problem of the error concept is, in our read-
ing of GUM-2008, that the value of the true value of the mea-
surand is not known and that this true value must appear nei-
ther in the definition of any term nor in the recipes to estimate
it. To better understand this key problem, we decompose it
into four sub-problems.

1. Quantities whose value cannot be determined must not
appear in definitions.

2. The error distribution must not be conceived as a proba-
bility density distribution of a value to be the true value.

6It is not clear how this can be achieved without explicit consid-
eration of the Bayes theorem.
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3. Nonlinearity issues pose problems in error estimation if
the true value is not known, at least in approximation.

4. One can never know that the uncertainty budget is com-
plete because it can always happen that a certain source
of uncertainty has been overlooked; thus, the full er-
ror estimate is an unachievable ideal, and thus the es-
timated error does not provide a link between the mea-
sured value and the true value.

Some of these sub-problems are in some way formulated in
GUM-2008, but it is not exactly specified there why the fact
that the true value of the measurand is unknowable poses a
problem to the scientist applying traditional error estimation.
We have formulated others as devil’s advocates, which are
intended to serve as working hypotheses to critically discuss
the error and uncertainty concepts in the context of indirect
measurements. In the following we will scrutinize these the-
ses one after the other.

3.1 The operational definition

GUM-2008 tries to avoid using the true value of the mea-
surand in the definition of the term “uncertainty”. This strat-
egy is employed because the true value of the measurand is
“not knowable” (GUM-2008, p. 3). It may be puzzling why
it should be necessary to know the value of a quantity to use
it in the definition of a term. The heights of the Colossus
of Rhodes or the Lighthouse of Alexandria are well-defined
quantities, although we have no chance to measure them to-
day7. Also, we might have a clear physical conception of
what the temperature in the center of the Sun might be, al-
though it may not be practicable to put a thermometer there,
and we might even be unable to figure out any other, more so-
phisticated, method to assign an accurate observation-based
value to this quantity. Intuitively, we conceive the definition
of a quantity and the assignment of the value to a quantity as
quite different things.

In GUM-2008 it is claimed that the definition of “uncer-
tainty” is an operational one (p. 2). An operational definition
defines a quantity by stipulating a procedure by which a value
is assigned to this quantity. The concept of operational def-
initions was suggested by Bridgman (1927) in order to give
terms in science a clear-cut meaning. This operationalism, or
at least a narrow conception of it, has its own problems, has
received considerable criticism, and has led to deep philo-
sophical discussions (see, e.g., Chang, 2019). To summarize
these is beyond the scope of this paper, and for here it must
suffice to mention that there are alternatives, such as theoret-
ical definitions or the reduction of the definiendum to previ-
ously defined terms.

7We owe this illustrative example to Possolo (2021).

GUM-2008’s claim that the uncertainty concept is based
on an operational definition leads to two further inconsis-
tencies. First, no unambiguous operation is stipulated on
which the definition can be based, but multiple operations are
proposed, which might give different uncertainty estimates.
Thus, the definition is void. Our critical attitude with respect
to operationalism in the context of GUM-2008 is shared, e.g.,
by Mari and Giordani (2014).

The other problem with the operational definition is the
following: in GUM-2008 (pp. 2–3), it is claimed that the
uncertainty concept is not inconsistent with the error con-
cept, and a few lines later it says that “an uncertainty com-
ponent is always evaluated using the same data and related
information” (emphasis in the original). The latter suggests
that within the error concept the same operations are used as
within the uncertainty concept. Since the operations define
the term and the related concept, the uncertainty concept and
the error concept must be the same.

In summary, the fact that the true value of the measurand
is unknowable is a problem for the definition of the term
“error” and its statistical estimates only if we commit our-
selves to the doctrine that only operational definitions must
be used. If we abandon this dogma, there is nothing wrong
with conceiving of the estimated error as a statistical estimate
between the measured or estimated value and the true value,
and the problem is restricted to the assignment of a value to
this quantity. Related issues are investigated in the following.

3.2 Measurements as inverse processes

Many conceptions of measurement models exist which re-
late the measured value to the true value and, depending on
the context, one can be more adequate than another (Possolo,
2015). GUM-2008 recommends a model that conceives the
estimate of the true value of the measurand as a function of
the measured value. Since in remote sensing of the atmo-
sphere multiple atmospheric states can cause the same set of
measurements and the measurement function would thus be
ambiguous, we prefer a different concept, as outlined in the
following.

The causal error points from the true value to the measured
signal. Thus, the estimation of the true value from a measured
value can be conceived as an inverse process. An argument
along this line of thought, but in a context wider than that
of remote sensing of the atmosphere, has been put forward
by Possolo and Toman (2007). The inverse characteristic of
the estimation problem is particularly true for indirect mea-
surements, e.g., remote sensing, but direct measurements can
easily be conceived as indirect measurements. When read-
ing the thermometer, we actually read the length of the mer-
cury column (the measured value), apply inversely the law
of thermal expansion, and get an estimate of the temperature.
In trivial cases, when a measurement device has a calibrated
scale from which the target quantity can be directly read, the
inverse process is effectively pre-tabulated in the scale. Only
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in these cases are the measured value and the estimate of the
measurand the same.

With a transfer function F available that approximately
describes the process that links the true value x of interest to
the measured value, the expected measured signal yexpected =

F(x) can be estimated. The distribution of the measurement
error around yexpected describes the probability of any value
y to be measured.

Conversely, for a given measurement ymeasured, the inver-
sion of the transfer function allows us to estimate the true
value x. If a genuine inversion of the transfer function is not
possible due to ill-posedness of the inverse problem in the
sense of Hadamard (1902), workarounds like least squares
methods or regularized inversion schemes are available (see,
e.g., von Clarmann et al., 2020, for a summary of some meth-
ods of particular relevance for remote sensing). Counterintu-
itively, however, in general, the estimate will not be the most
probable value of x, nor will the mapping of the measure-
ment error distribution into the x space yield the probability
distribution of any value as the true value. This holds even if
the error distribution is extended to also include systematic
effects and if all error correlations are adequately taken into
account in the case of multi-dimensional measurements. It
is the theorem of Bayes (1763) which makes the difference.
The only inverse scheme where such a probabilistic interpre-
tation is valid in the x space is the maximum a posteriori
method (Rodgers, 2000), which employs a Bayesian estima-
tor.

The non-consideration of the Bayes theorem goes under
the name of “base-rate fallacy”; 50 % of people suffering
from Covid-19 have fever (Robert Koch Institut, 2020), but
this does not imply that the probability is 50 % that a person
with fever has Covid-19. To estimate the latter probability re-
quires knowledge of the percentage of people being infected
with the Corona virus and the probability that a person will
suffer from fever for any reason. In metrology the situation
is quite analogous. There are three possible solutions to cope
with this problem.

The first solution is to apply a retrieval scheme that is
based on a Bayesian estimator. Examples are found, e.g., in
Rodgers (2000) or von Clarmann et al. (2020). On the suppo-
sition that the error budget is complete, the interpretation of
the error bar as the dispersion of a distribution representing
the probability density that a certain value is the true value is
correct. The problem with this approach is that often there is
no firm a priori knowledge about the value of the measurand
available.

The second solution is the application of the principle of
indifference, as applied, e.g., by Gauss (1809). That is, the
same a priori probability is assigned to all possible values of
the measurand. With this, e.g., in the application to a linear
inverse problem and normal distributions of uncertainties, the
Bayesian solution collapses back to a simple unconstrained
least squares solution. Due to the assumption of the equidis-
tribution of the a priori probabilities, the estimated uncer-

tainty of the estimate can still be interpreted as the width
of the probability density function of the true value of the
measurand. This concept of “non-informative a priori”, how-
ever, has its own problems. Even if we ignore some more
trivial problems for the moment, e.g., that some quantities
cannot, by definition, take negative values, this concept can
lead to absurdities: if we assume that we have no knowledge
about, say, the volume density of small-particle aerosols in
the atmosphere and describe this missing knowledge by an
equidistribution of probabilities, this would correspond to a
non-equidistribution of the surface densities, due to the non-
linear relationship between surface and volume. It strikes us
as absurd that information can be generated just by such a
simple transformation from one domain into another. The
principle of indifference, upon which the concept of non-
informative priors is built, is critically but still favorably dis-
cussed, e.g., by Keynes (1921, chap. IV). The concept of
non-informative priors is still criticized even in the Bayesian
community (e.g., D’Agostini, 2003).

The third solution is the likelihood interpretation, which
has been introduced by Fisher (1922). The likelihood that
the true value is x if the measured signal is y equals the
probability density that y is measured if the true value is x.
No prior information is considered. Solution of the inverse
problem by maximizing the likelihood of x does not provide
the most probable estimate of x, and accordingly the error
bar of the solution must not be interpreted as the width of
a probability distribution of the true value. Application to a
linear inverse problem and normal distributions of uncertain-
ties renders formally the same estimator as the Gaussian least
squares solution, but its interpretation has changed. It can no
longer be interpreted as the maximum of a probability den-
sity function of the true value. If need be, in some cases, i.e.,
if the inverse problem is well posed enough to allow an un-
constrained solution, the maximum likelihood estimate can
be post factum transformed into a Bayesian estimate by ap-
plication of the Bayes theorem.

We concede that the interpretation of a measured value as
the most probable true value is problematic. This implies that
the interpretation of the error estimate as the width of a dis-
tribution around the true value is also not generally valid.
These problems could justify some reluctance with regard to
the concept of the true value. This argument, involving the
base-rate fallacy, however, is not invoked in GUM-2008.

Some interpretations of GUM-2008 (e.g., White, 2016;
Kacker et al., 2007) associate it with a Bayesian conception
of probability and seem to suggest that error estimation and
uncertainty analysis are best distinguished in the sense that
the former relies on frequentist statistics while the latter is
founded on Bayesian statistics. Thus one might suspect that
“uncertainty” is simply the Bayesian replacement of error.
Here the following remarks are in order.

1. Many of the methods presented in GUM-2008, includ-
ing their “Type-A evaluation (of uncertainty)”, which is
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the “method of evaluation of uncertainty by the statisti-
cal analysis of series of observations” (p. 3), are from
the frequentist toolbox. Gleser (1998) finds that the
methods suggested in GUM are neither fully frequen-
tist nor fully Bayesian. Furthermore, it is not quite clear
which of Bayes’ methods and principles a scientist has
to use to be a Bayesian (cf. Fienberg, 2006), since the
Bayes theorem is also accepted by non-Bayesians, and
the use of maximum likelihood methods, introduced by
the almost “militant” frequentist (Fisher, 1922), does,
as far as we can judge, not commit one to using a fre-
quentist definition of the term “probability”. The GUM-
2008 does not provide a clear reference to a specif-
ically Bayesian uncertainty analysis method. GUM-
2008 makes reference to Jeffreys (1983) as an authority
of the degree-of-belief concept of probability. Jeffreys,
however, offers no clue as to what the difference be-
tween “error” and “uncertainty” might be. In the context
of measurements or observations, Jeffreys always uses
the term “error” (e.g., op. cit., p. 72), and often we find
statements like “the probable error [...] is the uncertainty
usually quoted” (op. cit., p. 72), “no uncertainty beyond
the sampling errors” (op. cit., p. 389), or “treat the errors
as independent” (op. cit., p. 443). With the statement
that errors are not mistakes (op. cit., p. 13), Jeffreys
explicitly contradicts the GUM pioneers (Kaarls, 1980)
and GUM-2008 endorsers (Merchant et al., 2017). Also,
Press (1989) is referenced by GUM-2008 only to defend
the use of a subjective concept of probability but not in
a context aiming at the clarification of the alleged dif-
ference between “error” and “uncertainty”.

2. If the uncertainty concept was indeed based on a
Bayesian framework, it would be astonishing why it
does not in the first place require one to apply the Bayes
theorem to convert the likelihood distributions to a pos-
teriori probability distributions. The methodology pro-
posed in GUM-2008 is uncertainty propagation. This is
a mere forward (or direct) problem: given that xtrue is
the true value and a measurement procedure with some
error distribution, it returns a probability distribution
for values xmeasured that might be measured. However,
GUM-2008’s definition of uncertainty, “parameter, as-
sociated with the result of a measurement, that charac-
terizes the dispersion of the values that could reason-
ably be attributed to the measurand” (emphasis added
by us), seems associated with another meaning: given a
measured value (“result of a measurement”) and a mea-
surement procedure with some error distribution, what
is the probability density distribution of the “values that
could reasonably be attributed to the measurand” be-
ing the true one? This is an inverse problem for which
the Bayes theorem is applicable rather than uncertainty
propagation.

3. Interestingly enough, Willink and White (2012), who
also use the term “uncertainty” in a frequentist frame-
work, report that the turn to the new terminology hap-
pened already in 1980/81 and make a strong case that
various allegedly purely Bayesian concepts of GUM-
2008 can be given a valid frequentist interpretation.

Thus, we reject the hypothesis that the uncertainty concept
as presented in GUM-2008 is a Bayesian concept. Bayesian-
ism does not help to understand the claimed differences be-
tween the error concept and the uncertainty concept.

3.3 Nonlinearity issues

The uncertainty concept relies on the possibility of evalu-
ating uncertainties caused by measurement errors and “sys-
tematic effects” without knowledge of the true value. This
is certainly granted for linear problems. Here the uncertainty
estimates do not depend on the value of the measurand. This
is because in the linear case Gaussian error propagation of
the type

σ 2
b =

(
∂b

∂a

)2

σ 2
a (1)

or its multi-dimensional variant

Sb = JSaJT (2)

holds. Here a and b are scalar variables, σ 2
a and σ 2

b are the
variances characterizing their errors, Sa and Sb are the error
covariance matrices of vectors a and b, and J is the Jacobian
with elements ∂bi

∂aj
.

For nonlinear problems the situation is more complicated
because ∂b

∂a
or J depends on a or a, respectively, and Gaus-

sian error propagation is valid only in approximation. Within
the concept of error propagation, the concept of moderate
nonlinearity (Rodgers, 2000) can be invoked. That is to say,
the estimated value of the measurand is assumed to be a rea-
sonably good approximation of the measurand, and the par-
tial derivatives needed for Gaussian error estimation are eval-
uated at this estimate. If the resulting error bars are small
enough to ensure that the range covered by the interval de-
fined by the estimated value plus/minus the error bar is con-
fined to the range where linear approximation is justifiable,
then the error estimates are, while less than perfect, still far
better than useless.

The endorser of the uncertainty concept has a problem if
they want to stay consistent with their doctrine. Since knowl-
edge of the true value is denied, it is not clear how Gaussian
error estimation can be applied to the propagation of uncer-
tainties, because it is not clear for which value of the measur-
and the required partial derivatives shall be evaluated.

On the face of it, Monte Carlo error estimation or other
variants of ensemble-based sensitivity studies can serve as an
alternative. These, however, also invoke the nonlinear model
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that links the measured signal with the measurand, and un-
certainty estimates thus still depend on the choice of the es-
timate that represents the true value; any choice of this value
which is not closely related to the true value of the measur-
and will produce uncertainty estimates which are recalcitrant
against any interpretation. Monte Carlo and related methods,
however, are apt for the estimation of the error budget, in-
cluding the systematic effects if f is too nonlinear to justify
Gaussian error estimation if approximate knowledge of the
measurand is conceded.

In summary, the evaluation of uncertainties in the case of
nonlinearity poses a problem to the scientist who denies ap-
proximate knowledge of the true value of the measurand, be-
cause the uncertainty estimate depends on the assumed value
of the measurand, and it must be assumed that it represents
the true value reasonably well. Within the framework of error
analysis this assumption is allowed, and measurement errors
as well as systematic effects can thus also be evaluated for
nonlinear inverse problems.

3.4 Incompleteness of the error budget

The arguments put forward above are based on the supposi-
tion that the error budget is complete. Beyond measurement
noise, the total error budget includes systematic effects in the
measured signal, uncertainties in parameters other than the
measurand that affect the measured signal, and effects due to
the chosen inverse scheme. If our reading of GUM-2008 is
correct, then the most severe criticism by GUM-2008 of the
“error concept” is that one can never be sure that the error
budget is indeed complete and that the error estimate thus
does not characterize the difference between the value esti-
mated from the measurement value and the true value.

The precision of a measurement is a well-behaved quan-
tity in the sense that it is testable in a straightforward way:
from at least three sets of collocated measurements of the
same quantity, where each set is homogeneous with respect
to the expected precision of its measurements, the variances
of the differences provide unambiguous precision estimates
(see, e.g., McColl et al., 2014, or Stoffelen, 1998). The sit-
uation is more difficult for biases. Persistent differences be-
tween different measurement systems do not tell us what the
bias of one measurement system with respect to the – unfor-
tunately unknowable – truth is, because the comparison mea-
surement system may be biased as well. Even if the number
of measurement systems is quite large, it is not guaranteed
that the mean bias of all of them is zero, and an infinite num-
ber of measurement systems is out of reach in the real world.
Up to that point we concede that a positive proof of the com-
pleteness of the error budget is impossible, but this is not the
end of the story.

A falsificationist (Popper, 1935) approach is more promis-
ing. It follows the rationale that it will never be possible to
prove that our assumptions about the bias of a measurement
system are correct. Instead, we estimate the bias as well as

we can and use it as a best estimate of the bias until some test
provides evidence that the estimate is incorrect. Such a test
typically consists of the intercomparison of data sets from
different measurement systems. If the bias between these
data sets is larger than the combined systematic error esti-
mates, at least one of the systematic error estimates is too
low and has to be refuted. Further work is then needed to
find out which of the measurement systems is most likely to
underestimate its systematic error. Conversely, as long as the
mean difference of the measurements of the same measurand
can be explained by the combined estimate of the systematic
errors of both measurement systems, the systematic error es-
timates can be maintained, although this is, admittedly, no
proof of the correctness of the error estimates. However, as
long as severe tests as described above are executed and the
error estimates cannot be refuted, it is rational to believe that
they are sufficiently complete.

4 The applicability of GUM-2008 to remote sensing of
the atmosphere

In this section we identify issues where GUM-2008 clashes
with the needs of error or uncertainty estimation in the field
of remote sensing of atmospheric constituents and temper-
ature. These issues are (1) that since the atmospheric state
varies quasi-continuously in space and time, the measurand
is not well defined, and (2) there are applications of atmo-
spheric data where the total uncertainty estimate alone does
not help.

4.1 What if the measurand is not well defined?

On macroscopic scales, atmospheric state variables vary con-
tinuously in space and time. On microscopic scales, the typ-
ical target quantities, concentrations, or temperature are not
even defined. A typical example of this problem is the vol-
ume mixing ratio (VMR) of a certain species at a point in
the atmosphere (see also von Clarmann, 2014). The deter-
mination of a quantity like this requires a canonical ensem-
ble of air, but in the real, inhomogeneous, atmosphere, this
quantity does not exist. It is an uninstantiated ideal. Due
to these inhomogeneities, the air volume sounded must be
infinitesimally small; i.e., it must approach a point. In the
real atmosphere there is either a target molecule at this point
(VMR = 1) or another molecule (VMR = 0) or no molecule
at all (undefined VMR due to division by zero). Thus, one
measures only averages over finite inhomogeneous air vol-
umes. This approach, supposedly the only possible approach,
clashes with the premise of GUM-20088 that the measurand
needs to be well defined. Measuring atmospheric state vari-
ables requires the specification of the region the average is

8In GUM-2008 this problem is recognized, but no solution is of-
fered; the term “definitional uncertainty” is introduced in this con-
text but is not applied in practice.
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made over. The relevant toolbox of atmospheric data char-
acterization includes concepts like resolution and averaging
kernels (see Rodgers, 2000, for details). Since this type of
measurement is apparently out of the scope of GUM-2008,
the latter is quite silent with respect to solutions to the prob-
lem of the characterization of measurements of quantities
that are not well defined. Broadening the scope and appli-
cability of the GUM-2008 framework to include less than
ideally defined measurands and measurements that demand
inverse methods would significantly increase the value and
utility of the GUM-2008 approach. Relevant recommenda-
tions on data characterization developed within the TUNER
activity (von Clarmann et al., 2020) aim at helping to reach
this goal.

4.2 The combined error

One of the positive aspects of GUM-2008 is that it breaks
with the misleading concept of characterizing systematic er-
rors with “safe bounds” (Kaarls, 1980; Kacker et al., 2007;
Bich, 2012). This concept was sometimes endorsed by error
statisticians subscribing to frequentism. Within a frequentist
concept of probability, a probabilistic treatment of system-
atic errors was not easily possible because, due to its system-
atic nature, a systematic error cannot easily9 be character-
ized by a frequency or probability distribution. The concept
of subjective probability solves this problem. With the sub-
jectivist’s toolbox, it is no longer a problem to assign prob-
ability density functions, standard deviations, and so forth
when characterizing systematic errors. This possibility is a
precondition for aggregating systematic and random errors
to give the total error. GUM-2008, however, goes a step fur-
ther and even denies the necessity of reporting random and
systematic errors independently. Here we have to raise severe
objections.

von Clarmann et al. (2020) explicitly recommend that er-
ror estimates be classified as random or systematic10. In con-
trast, GUM-2008 (E.3.3/E3.7) states that “In fact, as far as
the calculation of the combined standard uncertainties [...] is
concerned, there is no need to classify uncertainty compo-
nents and thus no real need for any classificational scheme.”
If indeed meant as written, we challenge the claim that a
total combined error budget is sufficient and that therefore
no classification scheme is needed at all. Characterizing the
measurement of a unique quantity, e.g., the value of a natural

9The qualification not easily was chosen because frequentists
still might sample over multiple universes or apply other measures
to squeeze systematic errors in a frequentist concept.

10In this context it is important to note that, in contrast to some
older conceptions, von Clarmann et al. (2020) define “systematic
errors” as bias-generating errors and “random errors” as variance-
generating errors. To avoid confusion with the older conceptions,
one can instead use the descriptive terms “persistent” and “volatile”
errors as suggested by Possolo (2021). This is not done here to
maintain consistency with von Clarmann et al. (2020).

constant agreed upon by the calibration authorities, by a sin-
gle error margin might be sufficient. However, most measure-
ments, and particularly those of atmospheric state variables
such as temperature and concentrations of trace species, deal
with quantities varying with time and space. Any sensible
use of the resulting data sets requires a clear distinction be-
tween statistical and systematic error budgets. For exam-
ple, for time series analysis targeted at the determination of
trends, the total error budget is of no use, but the random error
budget is needed instead. This is because any purely additive
systematic error component cancels out in this application,
and its consideration in the error budget would unduly dis-
tort the weights of the data points available. In summary, the
denial of the importance of distinguishing between random
errors and systematic errors does not provide proper guid-
ance and altogether is a strong misjudgment. The data users
must be provided with all information required to tailor the
relevant error budget to the given application of the data.

Benevolent readers of GUM-2008 take the GUM authors
to be saying only that the aggregation of estimated errors to
give the total error budget follows the same rules for system-
atic and random errors and that the criticized statement is not
meant to deny the importance of distinguishing between ran-
dom and systematic errors beyond the mere aggregation pro-
cess. If this reading is correct, we agree, but here GUM-2008
leaves room for interpretation.

5 Conclusions

We have mentioned above that the uncertainty concept de-
pends on the acceptance of the subjective probability in the
sense of degree of rational belief. Without that, an error bud-
get including systematic effects would make no sense be-
cause systematic effects cannot easily be conceived as prob-
abilistic in a frequentist sense; that is to say, the resulting
error cannot be conceived as a random variable in a fre-
quentist sense. Being forced to adopt the concept of prob-
ability as a degree of rational belief, it makes perfect sense
to conceive, after consideration of the Bayes theorem (see
Sect. 3.2), the distribution with expectation x̂ and covariance
based on σx,total as the probability distribution which tells
the rational agent the probability of any value being the true
value.

The denial that a valid connotation of the term “error” is a
statistical characterization between a measured or estimated
value and the true value of the measurand would be an at-
tempt to brush away centuries of scientific literature. This is,
however, a matter of stipulation or convention and thus be-
yond the reach of a scientific argument. We thus take GUM-
2008 to be conceding that both the concepts, error analy-
sis and uncertainty assessment, aim at providing a statisti-
cal characteristic of the imperfectness of a measurement or
an estimate. We understand GUM-2008 in the sense that the
problem of the error concept is that it conceives the estimated
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error as a statistical measure of the difference between the
measured or estimated values and the true value. Since the
true value is unknowable, according to GUM-2008 the term
“error” can neither be defined nor its value known.

It has been shown that the problem of the unknown true
value of the measurand is a problem for the definition of
terms like “error” or “uncertainty” only if the concept of an
operational definition is pursued. This concept, however, has
its own problems and is by no means without alternatives.
As soon as the concept of an operational definition is given
up, problems associated with defining the estimated error as
a statistical estimate of the difference between the measure-
ment or estimate and the true value of the measurand disap-
pear, and the problem remaining is only one of assigning a
reasonable value to this now well-defined quantity.

Since GUM-2008 did not provide many reasons why, in
the context of indirect measurements, the error allegedly can-
not be estimated without knowledge of the true value or why
an uncertainty distribution does not tell us anything about
the true value, we list the most obvious ones one could put
forward to bolster this claim. These are the problem of the
base-rate fallacy, the problem of nonlinearity, and the prob-
lem that one can never know that the error budget is com-
plete. The problem of the base-rate fallacy can be solved by
either performing a Bayesian inversion or by conceiving the
resulting distribution as a likelihood distribution. Astonish-
ingly enough, the GUM-2008’s “dispersion or range of val-
ues that could be reasonably attributed to the measurand” is
determined without explicit consideration of prior probabili-
ties and thus cannot be interpreted in terms of posterior prob-
ability. The problem of nonlinearity can be solved either by
assuming that the estimate is close enough to the true value
and linearizing around this point or by Monte Carlo studies.
A GUM-oriented scientist, who has to avoid referring to the
true value, is at a loss in the case of nonlinearity because
any estimate of the uncertainty of the estimate will be correct
only when evaluated at the true value or an approximation
of it. The problem of the unknown completeness of the error
budget can be tackled by performing comparisons between
measurement systems. While this will never provide positive
proof of the completeness of the error budget, it still justifies
rational belief in its completeness, and if error or uncertainty
distributions are conceived as subjective probabilities in the
sense of degrees of rational belief, this is good enough. In
summary, if (a) our reading of GUM-2008 is correct in the
sense that the traditional error analysis can deal with a sta-
tistical quantity and that the key difference between the “er-
ror” and “uncertainty” concepts is their relation to the true
value of the target quantity and (b) that our list of arguments
against the error concept is complete, and finally if (c) our
refutation of these arguments is conclusive, then the claim
that the “error” concept and the “uncertainty” concepts are
fundamentally different is untenable.

Beyond this, reasons have been identified that bring the
applicability of the GUM-2008 concept to atmospheric mea-

surements into question. At least we can state that GUM-
2008, by presenting its terminological stipulation about the
terms “error” and “uncertainty” in the guise of a factual state-
ment, has triggered a linguistic discussion that distracted at-
tention away from the more important issues of how the
principles of error or uncertainty estimation, whatever one
prefers to call them, could be made better applicable to mea-
surements beyond the idealized cases covered by their docu-
ment.
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