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Abstract. This study presents the first-ever complete char-
acterization of random errors in dual-polarimetric spectral
observations of meteorological targets by cloud radars. The
characterization is given by means of mathematical equa-
tions for joint probability density functions (PDFs) and error
covariance matrices. The derived equations are checked for
consistency using real radar measurements. One of the main
conclusions of the study is that the convenient representation
of spectral polarimetric measurements including differential
reflectivity ZDR, correlation coefficient ρHV , and differential
phase8DP is not suited for the proper characterization of the
error covariance matrix. This is because the aforementioned
quantities are complex, non-linear functions of the radar raw
data, and thus their error covariance matrix is commonly de-
rived using simplified linear relations and by neglecting the
correlation of errors. This study formulates the spectral po-
larimetric measurements in terms of a different set of quan-
tities that allows for a proper analytic treatment of their er-
ror covariance matrix. The results given in this study allow
for utilization of spectral polarimetric measurements for ad-
vanced meteorological applications, among which are varia-
tional retrieval techniques, data assimilation, and sensitivity
analysis.

1 Introduction

Cloud radars are a major component of state-of-the-art,
ground-based observation platforms (Illingworth et al., 2007;
Kollias et al., 2020). Their unique capabilities make these in-
struments extremely valuable for cloud and precipitation re-
search. First, these radars have Doppler capabilities; i.e., they

can independently characterize hydrometeors coexisting in
the same volume but moving with different speeds relative
to the radar (Kollias et al., 2007). Second, the high sensi-
tivity and vast dynamic range make cloud radars capable
of measuring return signals from a wide range of particle
sizes, which is a challenging task for other instruments like
lidars (Bühl et al., 2013). Third, due to relatively low atten-
uation of microwave signals by liquid water, cloud radars
profile clouds up to the top even in the presence of light
to moderate rain. These capabilities promote cloud radars
for investigation of different formation and development pro-
cesses throughout the life cycle of clouds. For instance, cloud
radars help to characterize initial ice formation and devel-
opment in mixed-phase clouds (Bühl et al., 2019a, b), im-
prove characterization of pure liquid clouds (Rusli et al.,
2017; Acquistapace et al., 2017), estimate rates of aggre-
gation (Kneifel et al., 2015, 2016) and riming (Kalesse
et al., 2016; Moisseev et al., 2017; Kneifel and Moisseev,
2020), and quantitatively analyze solid and liquid precipita-
tion (Matrosov, 2005; Matrosov et al., 2006, 2008; Tridon
and Battaglia, 2015; Tridon et al., 2017, 2019).

Many cloud radars have dual-polarization capabilities. An
interest in polarimetry-based methods in the cloud radar
community has been growing, which is indicated by a num-
ber of studies during the last decade (Matrosov et al., 2012;
Oue et al., 2015; Lu et al., 2015; Myagkov et al., 2016a, b;
Matrosov et al., 2017; Oue et al., 2018; Myagkov et al.,
2020). Vertically pointed cloud radars often operate in the
LDR (linear depolarization ratio) mode; i.e., they transmit a
linearly polarized wave (either horizontally or vertically) and
receive co- and cross-polarized components of the backscat-
tered signal (e.g., Görsdorf et al., 2015). The LDR mode
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is efficient for clutter removal and detection of the melt-
ing layer and columnar-shaped ice particles. As shown by
Matrosov et al. (2001), however, the applicability of the LDR
mode at low elevation angles might be limited due to its high
sensitivity to the orientation of cloud particles. Therefore,
scanning polarimetric cloud radars often have polarimetric
modes which are less sensitive to the orientation. One such
mode is the hybrid mode (also denoted as the STSR (simul-
taneous transmission and simultaneous reception) or STAR
(simultaneous transmission and reception) mode in the lit-
erature). Radars with the hybrid mode emit the horizontal
and vertical components of the transmitted wave simulta-
neously (Myagkov et al., 2015; Bringi and Chandrasekar,
2001, Sect. 4.7). Cloud radars with the hybrid mode allow
for adoption of polarimetry-based methods developed during
the last several decades for centimeter-wavelength meteoro-
logical radars (further denoted as precipitation radars).

Operational precipitation radars are used by weather ser-
vices to continuously scan the atmosphere, providing polari-
metric variables integrated for a scattering volume. In addi-
tion to the integrated quantities, cloud radars with the hy-
brid mode enable spectrally resolved polarimetric observa-
tions and, therefore, can provide the same set of polarimetric
variables for different types of cloud particles coexisting in
the same resolution volume (Oue et al., 2015; Myagkov et al.,
2016b, 2020). Spectral observations are in general possible
with precipitation radars (Spek et al., 2008; Dufournet and
Russchenberg, 2011; Pfitzenmaier et al., 2018). Such mea-
surements, however, are not performed by operational radars
due to fast azimuth scanning.

Spectral polarimetry can be used for a development of ad-
vanced retrieval methods. For example variational retrievals
developed for dual-frequency spectra (Tridon and Battaglia,
2015; Tridon et al., 2017) could be applied also to spectral
polarimetry. Moisseev and Chandrasekar (2007) presented
first attempts to retrieve profiles of raindrop size distributions
using polarimetric spectra from a precipitation radar. This ap-
proach, however, has not yet been explored in polarimetric
cloud radars.

Recent review studies (Zhang et al., 2019; Morrison et al.,
2020; Ryzhkov et al., 2020) demonstrate that polarimetric
observations from precipitation radar networks are highly
beneficial for the evaluation and development of numerical
weather prediction and cloud resolving models. The high
value of polarimetric observations is given by their sensi-
tivity to microphysical properties of cloud and precipitation
particles such as size, shape, number concentration, state of
matter, density, and orientation (Kumjian, 2013). Polarimet-
ric cloud radars are not yet widely used for model improve-
ment. This, however, does not indicate that cloud radar po-
larimetry is not informative relative to precipitation radars.
Conversely, the cloud radar spectral polarimetry can essen-
tially complement available measurements.

The development of both quantitative retrievals and data
assimilation algorithms requires the characterization of the

systematic and random measurement errors. The former type
of errors is solved by a calibration. Calibration aspects of po-
larimetric quantities have been intensively studied for both
precipitation and cloud radars (Chandrasekar et al., 2015)
and are out of the scope of this study. In the case of radar
observations of meteorological targets, random errors can be
characterized from measurements if raw (unaveraged) data
are available. Cloud radars, however, rarely store raw data
because of the high data rate. Therefore, commonly used ap-
proaches to characterize random errors are based on statis-
tical models of the received radar signals. Random errors in
radar signals can be represented by a joint probability density
function (PDF) of amplitudes and phases in the two orthog-
onal polarimetric channels. The joint PDF for polarimetric
observations obtained for a single pulse can be found in Mid-
dleton (1996, chap. 9.2). Single-pulse measurements, how-
ever, are rarely used in the radar meteorology because of the
low sensitivity and higher requirement for storage space. The
observed radar spectra almost always result from the averag-
ing of a number of return pulses. Lee et al. (1994) showed
a derivation of a joint probability density function of polari-
metric variables for the case of averaging. The authors used
a number of assumptions applicable for Earth’s surface ob-
servations using synthetic-aperture radars. It turns out that
the same assumptions are applicable to spectral polarimetric
observations of meteorological targets. This allows for using
a similar approach in analytic characterization of errors in
spectral polarimetric observations.

A number of studies (e.g., Hogan, 2007; Cao et al.,
2013; Yoshikawa et al., 2014; Chang et al., 2016; Huang
et al., 2020) characterize the joint PDF of polarimet-
ric radar measurements by the error covariance matrix.
There are, however, problems with existing approximations
of the error covariance matrix for polarimetric observa-
tions. First, the elements in the main diagonal of the er-
ror covariance matrix – variances of random errors – are
found using the first-order Taylor approximation following
Bringi and Chandrasekar (2001). Conventional polarimetric
variables such as differential reflectivity, correlation coeffi-
cient, and differential phase are, however, highly non-linear
functions. Therefore, the approximation may lead to biases
in the error variance estimates, especially when signal-to-
noise ratios (SNRs) and/or the number of averaged samples
is low. This problem becomes important for cloud radars col-
lecting polarimetric variables with a high spatial, temporal,
and spectral resolution. Second, non-diagonal components
of the error covariance matrix are typically set to zero as-
suming no correlation between errors in measured quantities,
but validity and effects of this assumption are not discussed.
The information content of measurements is, however, higher
when errors are correlated (chap. 3.2.6 in Rodgers, 2000),
and therefore non-negligible off-diagonal elements of the co-
variance matrix should not be ignored.

This study is based on well-known statistical properties
of polarimetric radar signals. Using certain simplifications
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valid for spectral measurements we extend the error model
available in the literature and thus derive mathematical ex-
pressions characterizing random errors in spectral polarimet-
ric observations of meteorological targets. The study is or-
ganized as follows. We review the measurement method of
spectral polarimetry with radars operating in the hybrid mode
in Sect. 2. In Sect. 3 the likelihood functions of the common
polarimetric radar variables are rigorously derived. The error
covariance matrix of polarimetric measurements is derived
in Sect. 4 by taking into account the correlations among the
various measurement random errors. In Sect. 5 the validity
of expressions derived for the likelihood functions and error
covariance matrix is checked using real raw measurements
from a cloud radar.

2 Basics of radar spectral polarimetry in the hybrid
mode

This section introduces known relations between a raw cloud
radar signal, complex amplitudes, and spectral polarimetric
variables for observations of meteorological targets. These
relations are based on the same set of assumptions in-
troduced in classical works of Doviak et al. (1979) and
Bringi and Chandrasekar (2001) for precipitation radars.

Note that since pulsed radars are currently more common
in the meteorological community, we use the term “pulse” to
refer to a type of the transmitted radar signal in Sects. 2–
4. For radars with frequency-modulated continuous wave
(FMCW) signals, however, the term “chirp” should be used.
Later, in Sect. 5 we use measurements from a FMCW radar,
and therefore the term “chirp” is used there.

2.1 Complex amplitudes of radar measurements

Radar polarimetric measurements are made on an orthogo-
nal measurement basis defined by feeders of the antenna sys-
tem. In the hybrid mode the measurement basis is typically
Cartesian and formed by the horizontal (h) and vertical (v)
components. Further this basis is denoted as the h–v basis.
Dual-polarimetric cloud radars have two receivers dedicated
to the orthogonal polarimetric components of the received
signal. For each transmitted pulse the receivers provide range
profiles of in-phase Ih,v and quadrature Qh,v components,
where indices h and v denote the polarization state. Note that
this study does not cover the radar signal processing to get
the Ih,v and Qh,v profiles. This information can be found in
a radar handbook (e.g., Skolnik, 2008, chap. 6). Using Nfft
profiles of Ih+ iQh and Iv+ iQv, where i is the imaginary
unit, the radar calculates complex Doppler spectra in the hor-
izontal and vertical channel, respectively, applying the fast
Fourier transformation (FFT) along the time dimension. The
complex Doppler spectra are represented by complex ampli-
tudes Ṡ for each spectral component and each range bin. In
the following, Ṡh and Ṡv denote the measured complex am-

plitudes of the analyzed spectral component in the horizontal
and vertical channels, respectively (the dot hereafter denotes
a complex quantity).

2.2 Coherency of complex amplitudes in range and
velocity domain

Different range bins as well as different spectral components
are often considered to be statistically independent because
the corresponding complex amplitudes result from non-
coherent scattering of numerous independently moving parti-
cles. Some correlation, however, can be expected due to sam-
pling effects and the FFT spectral leakages (e.g., Sect. 5.3 in
Marple, 2019). For instance, the power scattered from parti-
cles located close to the end of a range bin is distributed be-
tween this and the following range bins. These effects depend
on filter properties and used FFT windows. It is challeng-
ing to give a general analytical solution taking these effects
into account. Therefore, these effects are out of the scope of
this study. For the sake of simplicity the following analysis is
shown only for a single range bin and a single spectral com-
ponent. Since movements of particles in neighboring range
and spectral bins are not related, statistical properties of an
individual bin considered in the following are not affected by
sampling effects and spectral leakages. The neglection of the
dependence of the neighboring bins (due to sampling effects
and spectral leakages) leads to an underestimation of the in-
formation entropy when a complete spectrum and/or spectral
profile is analyzed. This worst case assumption, however, al-
lows for a relatively easy and universal characterization of
measurement errors. Future studies may improve the error
characterization by considering the sampling and leakage ef-
fects.

2.3 Coherency of complex amplitudes in time domain

Unlike precipitation radars which perform rapid azimuth
scans, cloud radars are typically pointed to a certain direc-
tion or make slow scans to get non-broadened Doppler spec-
tra. Doviak et al. (1979) showed (Eq. 5.2 therein) that the co-
herency between the adjacent samples depends on the wave-
length and the sample repetition period. Cloud radars typ-
ically have the pulse repetition frequency on the order of
10 kHz and Nftt in the range of 128 to 1024. This results
in getting a single spectrum every 0.01–0.1 s. For such sam-
pling properties of cloud radars any significant coherency be-
tween adjacent samples of a spectral line requires the spec-
tral broadening not exceeding at most a few centimeters
per second. The turbulent spectral broadening, however, ex-
ceeds a few centimeters per second even in stratiform non-
precipitating clouds (Borque et al., 2016). Therefore, con-
secutive samples of complex amplitudes for a spectral line
can be considered to be independent.
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2.4 Statistical properties of complex amplitudes

Introduce a measurement column vector

m̂= [R̂h, Ĵh, R̂v, Ĵv]
T (1)

with R̂ and Ĵ being real and imaginary parts of a complex
amplitude Ṡ, indices h and v denoting the polarization state,
and T being the transposition sign; the circumflex is used
hereafter to emphasize measured quantities. The probability
density function (PDF) of m̂, given the true covariance ma-
trix 6m of m̂, can be written as follows:

fm
(
m̂|6m

)
= (2π)−2det(6m)

−
1
2 e−

1
2 m̂

T6mm̂. (2)

Note that throughout the study a PDF is a function of
measured quantities (e.g., m̂ in Eq. 2) with fixed parame-
ters (e.g., 6m in Eq. 2). The same PDF is called a likelihood
function if the measured quantities are fixed, and the PDF is
viewed as a function of parameters.

Doviak et al. (1979) showed that for meteorological tar-
gets I andQ components are jointly normal with zero mean,
zero correlation, and equal standard deviation. The authors
explain that these properties are due to scattering from a large
number of particles moving in an unpredictable way in a scat-
tering volume. SinceNfft is much smaller than the number of
particles in a resolution volume, the properties are also valid
for relations between R̂h and Ĵh and between R̂v and Ĵv.

The measured complex amplitudes Ṡh and Ṡv, however,
can be correlated. Taking these properties into account, the
true covariance matrix 6m is defined in the following way
(Eq. 5.178 in Bringi and Chandrasekar, 2001):

6m =


σ 2

h 0 qσhσv sσhσv
0 σ 2

h −sσhσv qσhσv
qσhσv −sσhσv σ 2

v 0
sσhσv qσhσv 0 σ 2

v ,

 , (3)

where σh is the standard deviation of R̂h and Ĵh, σv is the
standard deviation of R̂v and Ĵv, q is the correlation between
R̂h and R̂v, and s is the correlation between R̂h and Ĵv.

2.5 Polarimetric variables

Since for meteorological targets R̂h is not correlated with Ĵh,
and R̂v is not correlated with Ĵv, the absolute phases of Ṡh
and Ṡv are uniformly distributed from 0 to 2π and thus un-
informative. Therefore, the polarimetric observations in the
hybrid mode can be represented by a 2× 2 covariance ma-
trix B (Eq. 4.130 in Bringi and Chandrasekar, 2001) instead
of the true covariance matrix 6m:

B= eeT =

(
Bhh Ḃhv
Ḃ∗hv Bvv

)
, (4)

where

e = (Ṡh, Ṡv)
T
; (5)

the overline indicates the expected value; Bhh and Bvv repre-
sent total powers of the horizontal and vertical components
of the received signal, respectively; Ḃhv is the covariance be-
tween the horizontal and vertical components of the received
signal; and ∗ is the complex conjugation sign. Note that in
general Bhh, Bvv, and real and imaginary parts of Ḃhv can be
calibrated in any quantity that is proportional to the power
(watts) received by the radar, e.g., classical radar reflectivity
(mm6 m−3) or even arbitrary units (Myagkov et al., 2016a).
Recall that in this study the covariance matrix B corresponds
to a single spectral component. Such spectral representation
of vector signals was introduced by Wiener (1930).

The elements of B are related to the statistics of the com-
plex amplitudes Ṡh and Ṡv as follows:

Bhh = var(R̂h)+ var(Ĵh)= 2σ 2
h , (6)

Bvv = var(R̂v)+ var(Ĵv)= 2σ 2
v , (7)

Ḃhv = Rhv+ iJhv = (q + js)σhσv, (8)

where Rhv and Jhv are real and imaginary parts of Ḃhv.
In the precipitation radar community, dual-polarized mea-

surements are rarely represented by B. Instead a set of po-
larimetric variables are used. Therefore, the same polarimet-
ric variables (but spectrally resolved) are introduced in this
study. Introduce a vector

c = (Bhh,ZDR,ρHV,8DP)
T, (9)

where ZDR is the differential reflectivity, ρHV is the corre-
lation coefficient, and 8DP is the differential phase. In this
study ZDR, ρHV, and 8DP are defined for each spectral line
using elements of corresponding B:

ZDR =
Bhh

Bvv
, (10)

ρHV =

√
R2

hv+ J
2
hv

BhhBvv
, (11)

8DP = atan
(
−
Jhv

Rhv

)
. (12)

Note that elements of the matrix B are in general af-
fected by noise. The noise in both polarimetric chan-
nels is not known exactly. Typically, it is estimated
from spectra using, for example, the algorithm from
Hildebrand and Sekhon (1974). A subtraction of noise lev-
els from corresponding diagonal terms of the covariance ma-
trix B to get an estimate of signal-only powers leads to oc-
casions when the covariance matrix is no longer positively
semi-definite. In this case, ρHV calculated from the noise-
corrected covariance matrix can exceed 1, which is beyond
the range of valid values. In order to avoid this problem, we
characterize radar measurements without noise subtraction.
A further advantage of this approach is that spectral lines
containing noise only can also be correctly characterized.
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3 Likelihood of elements of the covariance matrix B

Any measurement is affected by inherent uncertainty. As
many other measurement devices, radars also attempt to re-
duce uncertainty in measurements by means of an average
over multiple independent samples. The result of the aver-
age maximizes the likelihood of the measurements, while the
characterization of the distribution of the observations yields
an estimate of the uncertainty in the measurements.

Assume the following problem. The state of the atmo-
sphere is represented by the state vector x. A forward model
F maps x into a vector

F(x)= b = (Bhh,Rhv,Jhv,Bvv)
T (13)

in the space of observations. The actual measurement vector
is

b̂ = (B̂hh, R̂hv, Ĵhv, B̂vv)
T
= b+ ε, (14)

where

B̂hh = 〈ṠhṠ
∗

h 〉, (15)

R̂hv = Re
(
〈ṠhṠ

∗
v 〉
)
, (16)

Ĵhv = Im
(
〈ṠhṠ

∗
v 〉
)
,and (17)

B̂vv = 〈ṠvṠ
∗
v 〉 (18)

are constituents of the measured covariance matrix B̂,
and ε represents the vector of measurement random er-
rors in each component of b̂. In Eqs. (15)–(18) Re and
Im are the real and imaginary parts of a complex num-
ber; <> denotes averaging over Ns independent complex
spectra calculated from non-overlapping time sequences.
The estimators Eqs. (15)–(18) are the same as given in
Bringi and Chandrasekar (2001, chap. 6.4.5). The only dif-
ference is that within this work the variables are calculated
using complex amplitudes for a spectral line instead of us-
ing in-phase and quadrature components (I/Q hereafter) as
is done by precipitation radars. What is the likelihood of b̂
given the state vector x? In the case that the forward model
provides a unique and accurate relation between x and b, the
problem is equivalent to finding fb(b̂|b,Ns) – the likelihood
of b̂ – given the true vector of measurements b and the num-
ber of averaged spectra Ns.

In a general case, elements of the vector b̂ can be corre-
lated. In this case the derivation of the likelihood function
fb(b̂|b,Ns) is challenging. In order to simplify the deriva-
tion, we follow an approach identical to the one demonstrated
in Rodgers (2000, Sect. 2.3.1 therein). The author considers
a multivariate PDF with correlated errors. He transforms the
coordinate system in such a way that orthogonal compo-
nents of the error vector are independent (uncorrelated). On
this basis, the joint PDF can be represented by the product
of independent, univariate PDFs for each individual com-
ponent. Thus, following a similar approach, the derivation

of fb(b̂|b,Ns) provided in this section is developed in four
steps.

In Sect. 3.1 we change the basis from h–v to the one on
which elements of the vector b̂ become independent. On the
new basis, the joint multivariate likelihood function can be
represented by the product of the likelihood functions of each
independent element. The likelihood of a single indepen-
dent element is relatively simple to describe analytically. In
Sect. 3.2 a formal derivation of the likelihood function on this
new basis is provided. The solution for fb(b̂|b,Ns) is given in
Sect. 3.3 converting back to the original space and applying
the rule of change in variables. As mentioned above, the radar
observations are often represented by the vector c. Therefore,
Sect. 3.3 also provides the likelihood fc(ĉ|b,Ns) for the con-
ventional representation of polarimetric measurements.

Note that in this section we keep only equations required
to understand the principle of the derivation. The extensive
calculus required to prove the formulas used in the section is
provided in the Appendix.

3.1 Step 1: change in basis and diagonalization of the
covariance matrix B

As previously mentioned, Ṡh and Ṡv are, in general, corre-
lated. There is, however, always a basis on which the pro-
jections of Ṡh and Ṡv become completely uncorrelated. This
basis is further denoted as the c–x (co-polar and cross-polar)
basis. The conversion of the vector e on the h–v basis to the
vector eD on c–x basis is made using the unitary operator Q:

eD =

(
Ṡc
Ṡx

)
=Qe. (19)

The calculation of the matrix Q is given in Appendix A. Real
and imaginary parts of Ṡc are jointly distributed normally
with the zero mean, zero correlation, and standard deviation
σc. Real and imaginary parts of Ṡx are also jointly distributed
normally with zero mean and zero correlation but have, in
general, a different standard deviation σx .

A transformation from the basis h–v to the basis c–x also
changes the covariance matrix of the measurements. The co-
variance matrix D of measurements on the c–x basis is diag-
onal and can be found as follows:

D=
(
Dcc 0
0 Dxx

)
=Q†BQ. (20)

In Eq. (20) † is the Hermitian conjugate. Zero off-diagonal
terms in D indicate that there is no correlation between the
orthogonal components, i.e., Ṡc and Ṡx . Expanding Eq. (20),
the elements of the matrix D can be found as follows:

Dcc = q
2
11Bhh+ |q̇12|

2Bvv− 2q11 (R12Rhv+ J12Jhv) (21)

Dxx = |q̇12|
2Bhh+ q

2
11Bvv+ 2q11 (R12Rhv+ J12Jhv) , (22)

where q̇nm represents elements of Q, with n and m being
indices of row and column, respectively;

q̇12 = R12+ iJ12. (23)

https://doi.org/10.5194/amt-15-1333-2022 Atmos. Meas. Tech., 15, 1333–1354, 2022



1338 A. Myagkov and D. Ori: Analytic characterization of random errors

Similar to relations between the powers and the standard
deviations given in Eqs. (6) and (7), σ1 and σ2 are related to
Dcc and Dxx , respectively:

Dcc = var(Rc)+ var(Jc)= 2σ 2
c (24)

Dxx = var(Rx)+ var(Jx)= 2σ 2
x . (25)

The measured values D̂cc,

D̂cx = R̂cx + iĴcx, (26)

and D̂xx represent elements of the matrix D̂:

D̂=Q†B̂Q. (27)

Note that the operator Q here is the same as in Eq. (20) and
not recalculated using B̂.

3.2 Step 2: likelihood function of the measurements on
the c–x basis

In the previous step, measurements were represented on a
new – c–x – basis on which the orthogonal components of
the measurement vector are independent. On this basis the
joint multivariate likelihood function can be represented as
a product of likelihood functions with a single element as
an argument. This allows for a relatively easy mathematical
description of the likelihood function on the c–x basis.

By definition, the off-diagonal elements of the covariance
matrix D are zeros (see Eq. 20). This implies no correla-
tion between Ṡc and Ṡx . In this case, the likelihood function
fd(d̂|b,Ns), where

d̂ =
(
D̂cc, R̂cx, Ĵcx, D̂xx

)T
, (28)

can be written as a multiplication of likelihood functions of
individual components:

fd(d̂|b,Ns)=f
(
D̂cc|b,Ns

)
f
(
R̂cx |b,Ns

)
×f

(
Ĵcx |b,Ns

)
f
(
D̂xx |b,Ns

)
. (29)

The derivation of the formulas for the calculation of the
likelihood functions is tedious and provided in full in Ap-
pendix B for the interested reader. The likelihoods of the in-

dividual components can be computed as follows:

f
(
D̂cc|b,Ns

)
=
Ns

σ 2
c

χ2
2Ns

(
Ns

σ 2
c

D̂cc

)
, (30)

f
(
D̂xx |b,Ns

)
=
Ns

σ 2
x

χ2
2Ns

(
Ns

σ 2
x

D̂xx

)
, (31)

f
(
R̂cx |b,Ns

)
=

(2Ns)
a
|R̂cx |

−b

√
π22Ns(σcσx)a0(Ns)

Kb

×

(
|2NsR̂cx |

σcσx

)
, (32)

f
(
Ĵcx |b,Ns

)
=

(2Ns)
a
|Ĵcx |

−b

√
π22Ns(σcσx)a0(Ns)

Kb

×

(
|2NsĴcx |

σcσx

)
, (33)

where χ2
k is the chi-squared distribution with k degrees of

freedom,

a = (2Ns+ 1)/2, (34)
b = (1− 2Ns)/2, (35)

0 is the gamma function, andKµ is the Bessel function of the
second kind of order µ. Recall that σc and σx in Eqs. (30)–
(33) are derived from the elements of b using Eqs. (21)–(22)
and Eqs. (24) and (25). Derivation and Monte Carlo evalua-
tion of Eqs. (30)–(33) are given in Appendix B. Appendix B3
shows how to handle Eqs. (32) and (33) when R̂cx and Ĵcx
are close to 0.

3.3 Step 3: likelihood function on the h–v basis

In the previous step, the likelihood function of measurements
represented on the c–x basis was derived. In this subsection
we perform a transformation back from the c–x basis to the
original h–v basis that allows for the comparison of radar
measurements in a common orthogonal reference frame.

Applying the rule of changing variables in a multivariate
PDF (e.g., Walpole et al., 2012, Theorem 7.4), fb(b̂|b,Ns)

can be found from Eq. (29) as follows:

fb(b̂|b,Ns)= |Jbd |fd(d̂|b,Ns). (36)

As shown in Appendix E, the determinant of the Jacobian
Jbd of the transformation from b̂ to d̂ is equal to 1.

3.4 Step 4: likelihood for the conventional
representation of polarimetric measurements

As already mentioned, the polarimetric measurements are
commonly described by means of a set of quantities (ZDR,
ρHV, 8DP) that are non-linear functions of the elements of
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B. It is therefore interesting to derive the likelihood function
of those quantities.

Likelihood fc(ĉ|b,Ns) of a vector

ĉ = (B̂hh, ẐDR, ρ̂HV , 8̂DP) (37)

can be found by multiplying fb(b̂|b,Ns) by |Jcb|, with

Jcb =−B3
hhZ
−3
DRρHV (38)

being the Jacobian of the transformation from ĉ to b̂ (see
Appendix F):

fc(ĉ|b,Ns)= B
3
hhZ
−3
DRρHVfb(b̂|b,Ns). (39)

The final results of this section – Eqs. (36) and (39) –
can be used for the maximum likelihood optimization and
Bayesian inference methods. Ready-to-use MATLAB imple-
mentations of these equations are provided in the Supple-
ment.

4 Error covariance matrices

In the previous section we derived mathematical expres-
sions for the likelihood for polarimetric radar observations.
A number of scientific studies, however, require the numer-
ical computation of the covariance matrix of the measure-
ment errors. For instance, optimal estimation, data assimila-
tion, and sensitivity analysis are often performed using error
covariance matrices. Unfortunately, an analytical integration
of Eqs. (29), (36), and (39) required for the statistical mo-
ment calculation is challenging. In this section we therefore
follow a different and more viable way to calculate elements
of the error covariance matrix. This is done by going back
to the representation of the measurements on the convenient
c–x basis and applying well-known rules for the calculation
of the covariance matrix after a linear transformation.

4.1 Error covariance matrix of b

In this section we start from the representation of measure-
ments on the c–x basis because the measurement errors are
independent in this case. Recall that Eq. (27) relates the co-
variance matrix D̂ and B̂. This equation thus can be used to
find relations between elements of the vector b̂ on the origi-
nal h–v basis and elements of the vector d̂ on the c–x basis.

The covariance matrix B̂ estimated from measurements is
related to the matrix D̂ as follows:

B̂=QD̂Q†. (40)

After expanding Eq. (40) it can be seen that the elements
of the vector b̂ can be found as linear combinations of the

elements of the vector d̂:

B̂hh = q
2
11D̂cc+ |q̇12|

2D̂xx + 2q11

(
R12R̂cx

+J12Ĵcx

)
, (41)

R̂hv = q11R12

(
D̂xx − D̂cc

)
+

(
q2

11−R
2
12+ J

2
12

)
R̂cx

− 2R12J12Ĵcx (42)

Ĵhv = q11J12

(
D̂xx − D̂cc

)
+

(
q2

11+R
2
12− J

2
12

)
Ĵcx

− 2R12J12R̂cx (43)

D̂vv = |q̇12|
2D̂cc+ q

2
11D̂xx − 2q11

(
R12R̂cx

+J12Ĵcx

)
. (44)

Or they can be found in matrix form:

b̂=


q2

11 2q11R12 2q11J12 |q̇12|
2

−q11R12 q2
11−R

2
12+ J

2
12 −2R12J12 q11R12

−q11J12 −2R12J12 q2
11+R

2
12− J

2
12 q11J12

|q̇12|
2

−2q11R12 −2q11J12 q2
11

 d̂
=Md̂.

(45)

In this case, as shown in Wilks (chap. 10.4.3), the error
covariance matrix 6b of b̂ can be calculated from the error
covariance matrix 6d of d̂:

6b =M6dMT, (46)

where

6d =


4σ 4
c /Ns 0 0 0
0 σ 2

c σ
2
x /Ns 0 0

0 0 σ 2
c σ

2
x /Ns 0

0 0 0 4σ 4
x /Ns

 . (47)

Recall that the off-diagonal terms of 6d are set to 0 taking
into account that the elements of d̂ are not correlated. The
derivation of diagonal terms – variances of elements of d̂ –
is given in Appendix C.

The main result of this subsection – Eq. (46) – was imple-
mented as a ready-to-use MATLAB function that is available
in the Supplement.

In the next subsection we also consider the error covari-
ance matrix of the vector ĉ – the conventional representa-
tion of polarimetric measurements. Note however that, as is
shown in Sect. 5, the approximation of the error covariance
matrix of ĉ has issues which may limit its applicability.

4.2 Error covariance matrix of the conventional
measurement vector c

As is shown in Sect. 4.1, the error covariance matrix 6b can
be used to characterize uncertainties in spectral radar obser-
vations. By analogy to what is done in Sect. 3.4, one might
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Table 1. Operational setting of the used W-band radar.

Parameter Chirp type 1 Chirp type 2 Chirp type 3

Covered distance [km] 0.1–1.2 1.2–4.9 4.9–15
Range resolution [m] 29.8 29.8 55
Number of chirps in a sequence 7168 7168 9216
Chirp repetition frequency [kHz] 9.2 7.5 5

think about applying again the rules of linear transformation
to obtain the error covariance of the vector ĉ. In this section
we do that by means of a linearization of the formulas that
define the components of c (Eqs. 10, 11, and 12). It is further
demonstrated in Sect. 5 that such representation of measure-
ment uncertainties for ĉ is deficient.

Recall that the calculation of ĉ includes highly non-linear
functions (see Sect. 2.5). Therefore, the error covariance ma-
trix6c of the vector ĉ is estimated using the first-order Taylor
approximation:

6c = S6bST, (48)

where S is the sensitivity matrix:

S=


∂Bhh
∂Bhh

∂Bhh
∂Rhv

∂Bhh
∂Jhv

∂Bhh
∂Bvv

∂ZDR
∂Bhh

∂ZDR
∂Rhv

∂ZDR
∂Jhv

∂ZDR
∂Bvv

∂ρHV
∂Bhh

∂ρHV
∂Rhv

∂ρHV
∂Jhv

∂ρHV
∂Bvv

∂8DP
∂Bhh

∂8DP
∂Rhv

∂8DP
∂Jhv

∂8DP
∂Bvv

 . (49)

Note that the utilization of the first-order Taylor approxi-
mation for variances of polarimetric variables was proposed
in the classical book of Bringi and Chandrasekar (2001).
Equation (D1) in Appendix D shows the complete matrix S
in terms of Bhh, Bvv, Ḃhv, Rhv, and Jhv.

A ready-to-use MATLAB implementation of Eq. (48) is
provided in the Supplement. As is shown in the next section,
the error covariance matrix 6c does not always reflects the
true statistical properties of polarimetric observations. There-
fore, this approximation is provided only for demonstration
purposes, and it is not recommended.

5 Consistency checks on radar observations

In order to check consistency of Eqs. (36), (39), (46),
and (48) with radar measurements, I/Q data collected with
a W-band cloud radar with the hybrid polarimetric mode
were used (Myagkov and Unal, 2021). The radar is a
part of a dual-frequency system owned and operated by
the Technical University of Delft in Cabauw, the Nether-
lands. Technical specifications of the radar can be found in
Myagkov et al. (2020). The radar uses frequency-modulated

continuous signals. Küchler et al. (2017) explain the opera-
tion principle and show that the radar profiles the atmosphere
using several chirp types. Each chirp type is dedicated to
a certain distance range. During measurements chirp types
are switched consequently. For each chirp type a number of
chirps (chirp sequence hereafter) are processed continuously.
Operational settings used during I/Q measurements are listed
in Table 1.

Measurements were made during a rain event on
21 June 2021 at 7:44 UTC. I/Q measurements provide a high
data rate of about 900 MB min−1. Therefore, about 3 min of
I/Q measurements were collected for the analysis. The radar
was pointed to 45◦ elevation. Since different chirp types have
different properties, in the following only I/Q data collected
with the first chirp type are used. Since the first chirp se-
quence covers the lowest part of the atmosphere, the ana-
lyzed data correspond to rain. As explained in Sect. 2, no
noise subtraction is required to describe the statistics of the
measurements. We therefore use all available spectral lines,
including those containing noise only. A total of 90 % of
spectral noise power was from 0.2–1.3×10−3 a.u (arbitrary
units). Signal-to-noise ratio (defined here as a ratio of signal
power in a spectral line divided by the mean spectral noise
power in the same range bin) specified in linear units was
from 0 (no signal) to 106. We would like to emphasize that
no filtering based on signal-to-noise ratio was applied. Tak-
ing into account that the first chirp type has 37 range bins, in
total 2.2×103 chirp sequences (15.9×106 chirps) are avail-
able in each polarimetric channel.

5.1 Processing

All I/Q measurements within a chirp sequence in every po-
larimetric channel are split into 224 continuous blocks. Each
block contains 32 I/Q pairs. The FFT with the Blackman
weighting window is applied to each block to get complex
Doppler spectra. Then the 224 blocks are split into 28 sub-
blocks with 8 spectra in each sub-block. Within each sub-
block elements of the vector b̂ are calculated according to
Eqs. (15)–(18) with Ns = 8 for every spectral line. For each
b̂ the vector ĉ is obtained. Note that for this, Eqs. (10)–(12)
were applied to elements of b̂ instead of b. Using vectors b̂
and ĉ within a sequence, the error covariance matrices 6̂b
and 6̂c are calculated numerically. The circumflex here in-
dicates that the error covariance matrices are estimated from
measurements.
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Figure 1. Schematic illustration of the error covariance matrix cal-
culation.

Figure 2. Distributions of the ratio of mean power over the power
standard deviation for the horizontal (blue line) and vertical (yel-
low line) channels. The expected distribution is shown with the red
line. The vertical black line indicates the threshold corresponding
to the 5th percentile of the distribution for the randomly generated
complex numbers.

The calculation of the likelihood functions using Eqs. (36)
and (39) requires b. The approximation of covariance matri-
ces using Eqs. (46) and (48) requires the matrix B. In order to
estimate b and B, elements of the vector b̂ are averaged over
28 sub-blocks available within a single chirp sequence. These
averaged values are assumed to be elements of the vector b
from which the matrix B is obtained. Using B and Ns = 8,
6b and 6c are calculated for each chirp sequence as shown
in Fig. 1.

5.2 Filtering

The random error analysis provided in this study is only ap-
plicable to volume-distributed scattering and noise. As dis-
cussed in Sect. 2, in this case R̂h is not correlated with Ĵh,
and R̂v is not correlated with Ĵv. However, radar observa-
tions in general contain scattering from atmospheric plank-
ton, ground clutter, and coherent receiver noise, which do
not fulfill the assumption. In order to filter out spectral lines
with correlated real and imaginary parts, a simple filtering
rule was applied. It is known that for a signal with uncorre-
lated in-phase and quadrature components, its mean power
and power standard deviation are related to each other (Eq.
5.193 in Bringi and Chandrasekar, 2001). Figure 2 shows
distributions of the mean power over the power standard
deviation calculated in the horizontal and vertical polariza-
tion channels shown by blue and yellow lines, respectively.
It can be seen that the mode of the distributions is close to
the theoretical value of

√
Ns = 2.8. The distributions, how-

ever, have a considerable tail on the left side. These small
values of the ratio are expected for correlated in-phase and
quadrature components. Thus, a threshold in the ratio of the
mean power over the standard deviation of power can be used
to filter out unwanted spectral lines. In order to specify the
threshold, the Monte Carlo approach was used. A total of
15.9×106 random complex values with normal distribution,
zero mean, and a standard deviation of 1 were generated. The
same processing as for measured I/Q data was applied to the
generated complex values. The distribution of the ratio of the
mean power over the power standard deviation for the gener-
ated data (denoted as expected distribution) is shown in Fig. 2
by the red line. The expected distribution has a much smaller
tail on the left side relative to the ones of the measured dis-
tributions. The threshold of 2.3 used for filtering is chosen
as the 5th percentile of the expected distribution. Vectors b̂
and ĉ are excluded from the analysis if for the corresponding
spectral component within a chirp sequence the ratio of the
mean power over the power standard deviation is below the
threshold in at least one of the polarimetric channels. Around
18 % of the data are excluded.

5.3 Evaluation of fb(b̂|b,Ns) and fb(ĉ|b,Ns)

Recall that b is estimated from measurements by averaging
all available sub-blocks within a chirp sequence; b, how-
ever, can also be estimated by maximization of the likeli-
hood functions given in Eqs. (36) and (39). In this case, an
optimization algorithm needs to be employed to find a set of
elements of b corresponding to the global maximum in ei-
ther Eq. (36) or Eq. (39). This study uses a derivative-free
optimization method available by default in MATLAB (La-
garias et al., 1998). Since the optimization method minimizes
a function, the likelihood functions were not used directly.
Instead, the following cost functions were used for the mini-
mization:
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Cb =−

28∑
l=1

log10

(
fb

(
b̂|b,Ns

))
, (50)

Cc =−

28∑
l=1

log10
(
fc
(
ĉ|b,Ns

))
. (51)

Here the index l runs over 28 sub-blocks within a chirp
sequence. Equations (50) and (51) take into account that the
consecutive b̂ vectors are not correlated. In this case the to-
tal likelihood of 28 vector b̂’s is a product of likelihood of
each individual b̂. In order to avoid an overflow of double
numbers, the logarithm was used. In this case the logarithm
of the product is replaced by the sum of logarithms. The log-
arithm is a monotonically increasing function, and therefore
it does not change the position of the maximum of the like-
lihood function. Finally, the minus sign was introduced to
have a smaller value of a cost function corresponding to a
higher value of the likelihood. For the evaluation, 1000 chirp
sequences were chosen randomly for the maximum likeli-
hood estimation using fb(b̂|b,Ns). In each chirp sequence
a single spectral line was randomly chosen for the analy-
sis. Thus, there are 28 vector b̂’s available in each of the
1000 chirp sequences. For each sequence, the optimization
algorithm requires an initial guess of b. In order to avoid lo-
cal minima, five different initial guesses were used, which
are a coefficient P multiplied by the first b̂ in the analyzed
chirp sequence. The values of P were 0.5, 0.75, 1, 1.25, and
1.5. The solution giving the lowest cost function out of the
five outcomes was chosen as the result. Similarly the maxi-
mum likelihood estimation using fc(ĉ|b,Ns) was done using
independently chosen 1000 chirp sequences. Figure 3 shows
a comparison of elements of b estimated by averaging over
28 sub-blocks and those estimated by the maximum likeli-
hood approach. All panels show a good agreement indicated
by the close-to-unity slope of the linear regression. Both
fb(b̂|b,Ns) (results in the first row of Fig. 3) and fc(ĉ|b,Ns)

(results in the second row of Fig. 3) show the same level of
agreement and, therefore, can be used with no difference.

5.4 Evaluation of 6c

Diagonal elements of 6c – variances of B̂hh, ẐDR,
ρ̂HV , and 8̂DP – were checked against those calcu-
lated using Eqs. (6.139a), (6.141), (6.144), and (6.143)
in Bringi and Chandrasekar (2001), respectively. Taking into
account that samples for a spectral line are not correlated,
approximations for variances of B̂hh, ẐDR, ρ̂HV , and 8̂DP
based on the equations in Bringi and Chandrasekar (2001)
are

VARbhh =
B2

hh
Ns

, (52)

VARzdr =
2Z2

DR(1− ρ
2
HV)

Ns
, (53)

VARρ =
(1− ρ2

HV)
2

2Nsρ
2
HV

,and (54)

VAR8 =
(1− ρ2

HV)

2Nsρ
2
HV

, (55)

respectively.
Figure 4 shows that VARbhh, VARzdr, and VAR8 match

exactly6c(1,1),6c(2,2), and6c(4,4), respectively. VARρ ,
however, agrees with 6c(3,3) only at values of ρHV > 0.95.
Below this value VARρ overestimates the variance of ρ̂HV .
At values of ρHV close to 0, VARρ has unrealistically high
values, which result from ρHV in the denominator of Eq. (54).

Figure 4d also shows unrealistic values with both approx-
imations of the 8̂DP variance. Taking into account that 8̂DP
can take values within the range of 0 to 2π rad, the vari-
ance of 8̂DP exceeding 103 rad2 is definitely erroneous. The
high variance of 8̂DP corresponds to values of ρHV < 0.3.
This effect results from the first-order Taylor approximation
of Eq. (12), which is a highly non-linear function.

A comparison of the error covariance matrices 6̂c with
the calculated one 6c is shown in Fig. 5. Figure 5f, k, and
p indicate considerable differences caused by the first-order
Taylor approximation in variances of ẐDR, ρ̂HV , and 8̂DP,
respectively. The results also reveal that the first-order Taylor
approximation cannot adequately represent most of the non-
diagonal components of the error covariance matrix.

5.5 Evaluation of 6b

Figure 6 shows a comparison of elements of error covari-
ance matrices 6̂b estimated from the radar measurements
with those calculated using Eq. (46). Estimated and calcu-
lated elements are in a good agreement. Linear regressions
shown in the panels by red lines have slopes close to 1. Pear-
son correlations between estimated and calculated elements
exceed 0.96. These results indicate an agreement of the the-
oretical calculation with measurements and thus confirm the
correctness of Eq. (46). As expected, Figs. 6a and 5a show
equivalent results. This is because the co-polar signal Bhh
is effectively the same in both measurement representations
and highlights the relevance of the present study only for
dual-polarimetric quantities.

It is thus concluded that any application of spectral po-
larimetric measurements which requires the estimate of the
error covariance matrix (e.g., variational retrievals, data as-
similation, and sensitivity analysis) should be performed in
the space of observations b̂ rather than ĉ.
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Figure 3. Comparison of elements of b estimated by averaging over 28 sub-blocks (x axis) with those estimated by the maximum likelihood
approach (y axis); fb(b̂|b,Ns) was used for (a)–(d). fc(ĉ|b,Ns) was used for (e)–(h). Each panel contains 1000 points described in the text.
Linear regressions are shown by solid red lines. Each panel has a text box with the slope of the corresponding linear regression. Uncertainties
in the slopes were estimated using bootstrapping. Note that units are not critical for the evaluation of the correctness of the derived likelihood
functions. Therefore, arbitrary units (a.u.) are used.

Figure 4. Comparison of variances of (a) B̂hh, (b) ẐDR, (c) ρ̂HV , and (d) ˆ8DP. Approximations developed in this study are on the x axis.
Approximations from Bringi and Chandrasekar (2001) are on the y axis; ρHV is color-coded in (c) and (d) to illustrate the values of ρHV at
which approximations lead to erroneous values (see details in text). Note that units are not critical for the evaluation of the derived equations.
Therefore, arbitrary units (a.u.) are used in (a).

6 Summary and outlook

Spectral and polarimetric cloud radar observations have a
great potential in the cloud science (Kollias et al., 2020).
Decades of such measurements have been already collected
by, for example, the ARM (Atmospheric Radiation Mea-
surement) and CLOUDNET communities. An advanced ap-
plication of these vast datasets requires an accurate char-
acterization of measurement uncertainties. Systematic er-
rors in moment radar data and polarimetric variables have
been discussed in many studies. Random measurement er-
rors, in contrast, are rarely considered in the literature.
There are three main problems in existing random-error-
characterization methods in meteorological studies, namely

(1) a lack of joint PDFs for averaged spectral polarimetric
measurements, (2) neglection of non-diagonal components
of the error covariance matrix, and (3) inaccuracy of the first-
order approximation in variances of polarimetric variables.
This study thus aims to provide solutions for these three
problems.

Equations provided in Sect. 3 give an exact mathemati-
cal solution for the joint PDFs of spectral polarimetric obser-
vations. The PDFs are given for two equivalent representa-
tions of the measurements: (1) b = (Bhh,Rhv,Jhv,Bvv)

T and
(2) c = (Bhh,ZDR,ρHV,8DP)

T. The obtained equations take
into account non-coherent averaging of spectra, which is ap-
plied by a majority of cloud radars to improve the sensitiv-
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Figure 5. Comparison of 6̂c estimated from the radar measurements with6c obtained from Eq. (48). Elements of6c are given on the x axes.
Elements of 6̂c are given on the y axes. The first and the second numbers in brackets indicate the row and the column of the corresponding
matrix, respectively. Linear regressions are shown by red lines. Slopes of the linear regressions and Pearson correlations are given in boxes
in each panel. Uncertainties in the slope and the correlation are represented by ±1 standard deviation of the corresponding parameter. The
standard deviations are obtained using bootstrapping. Panels without linear regressions show elements for which Eq. (48) gives only near-
zero values. Note that units are not critical for the evaluation of the derived equations. Therefore, arbitrary units (a.u.) are used. Also note
that only values on the x and y axes in an individual panel should be compared. Values in different panels should not be compared.

ity. Maximum likelihood estimators of b based on Eqs. (36)
and (39) were compared with the estimator based on longer
averaging. The comparison was based on dual-polarimetric
cloud radar observations. The comparison showed a good
agreement. Both PDFs can be equivalently used for methods
based on the maximum likelihood and Bayesian inference.

Section 4 is focused on the error covariance matrix re-
quired for a number of applications such as data assimila-
tion, sensitivity analysis, and variational retrievals. The er-
ror covariance matrices 6b and 6c for b and c, respectively,
are obtained using the characteristic functions of the PDFs
described in Sect. 3. Since the calculation of the c includes
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Figure 6. Comparison of 6̂b estimated from the radar measurements with6b obtained from Eq. (46). Elements of6b are given on the x axes.
Elements of 6̂b are given on the y axes. The first and the second numbers in brackets indicate the row and the column of the corresponding
matrix, respectively. Linear regressions are shown by red lines. Slopes of the linear regressions and Pearson correlations are given in boxes
in each panel. Uncertainties in the slope and the correlation are represented by ±1 standard deviation of the corresponding parameter. The
standard deviations are obtained using bootstrapping. Note that units are not critical for the evaluation of the derived equations. Therefore,
arbitrary units (a.u.) are used.

highly non-linear functions, 6c was derived using the first-
order Taylor approximation. The same approach was used
by Bringi and Chandrasekar (2001) to get equations for vari-
ances of polarimetric observations.

The error covariance matrices were evaluated using I/Q
observations from a polarimetric W-band radar. It is illus-

trated that elements of6c have considerable differences from
those estimated from the measurements. First, we found dif-
ferences in variances of ZDR, ρHV, and 8DP of up to a fac-
tor of 10, 5, and 100, respectively. Second, the calculated
variance of 8DP shows unrealistically high values by far ex-
ceeding the range of possible values. Third, most of the off-
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diagonal terms of 6c are not correlated with corresponding
values estimated from observations. We relate the differences
to the first-order Taylor approximation. The Taylor approxi-
mation assumes linear relations between elements of the vec-
tor b and the elements of the vector c, while the relations in-
clude highly non-linear functions. In contrast,6b agrees well
with the observations. The correlation between calculated el-
ements of 6b with those estimated from the observations ex-
ceeds 0.965.

Thus, based on the results found within this study, it is rec-
ommended to use the vector b to represent polarimetric cloud
radar observations for applications requiring the error covari-
ance matrix. This representation has a better characterization
of random errors in comparison with widely used representa-
tion c. When the signal-to-noise ratio is high (> 35 dB), how-
ever, the variances are quite low, and the Taylor approxima-
tion may give reasonable results. We would like to emphasize
that there is no additional processing required to get the vec-
tor b. Elements of the vector b are an intermediate process-
ing step on the way from I/Q data to conventional spectral
polarimetric variables and thus have been already calculated
by Doppler cloud radars with the hybrid mode.

In order to demonstrate a practical application of
the developed characterization of the measurements er-
rors, a few retrieval techniques are currently being de-
veloped. The first one is an improvement of the ice-
shape retrieval described in Myagkov et al. (2016a). An-
other one is an adoption of the drop size distribu-
tion retrieval from Tridon and Battaglia (2015) for dual-
polarimetric cloud radar observations.

Appendix A: Diagonalization matrix Q

The operator Q, which is used to diagonalize the covariance
matrix B in Eq. (20), is calculated as follows (Kanareykin
et al., 1968, chap. 2.5):

Q=
(
q11 q̇12
−q̇∗12 q11

)
, (A1)

where

q11 =
(

1+
∣∣ḋ∣∣2)−0.5

, (A2)

q̇12 =−ḋ
∗q11, and (A3)

d =
Ḃ∗hv

0.5
[
TrB+

√
TrB2− 4det(B)

]
−Bvv

. (A4)

In Eq. (A4) Tr is the matrix trace.

Appendix B: Derivation of likelihood functions

B1 Change in variables in a PDF

Consider a vector a with n random variables a1...n. Assume
the joint PDF fa(a) of the variables is known. The joint PDF
fy(y) of a vector

y =G(a) (B1)

can be found by changing the variables in fa(a):

fy(y)= |J|fa
[
G−1(y)

]
, (B2)

where G−1 is the reverse transformation from y to a, and
J is the determinant of the Jacobian of the transformation
a =G−1(y).

B2 Likelihood functions for Dcc and Dxx

It is known that the PDF of zs being a sum of squares of
independent standard normal samples (i.e., distributed nor-
mally with a mean of 0 and standard deviation of 1) is the
chi-squared distribution χ2

k (zs), where the degree of freedom
k shows how many samples have been summed. Taking into
account that

D̂cc =N
−1
s σ 2

c

{
σ−2
c

Ns∑
l=1

Re
(
Ṡc
)2
l

+ σ−2
c

Ns∑
l=1

Im
(
Ṡc
)2
l

}
, (B3)

where the first and the second summed terms in the curly
brackets are sums of squares of independent standard nor-
mal samples, the likelihood function f

(
D̂cc|σc,Ns

)
can be

found by changing the variable zs to Nsσ
−2
c D̂c:

f
(
D̂cc|σc,Ns

)
=
Ns

σ 2
c

χ2
2Ns

(
Ns

σ 2
c

D̂cc

)
. (B4)

The factor of 2 in the degree of freedom is because
there are 2Ns summed components in the curly brackets in
Eq. (B3). The equation for D̂xx is derived in a similar man-
ner as for D̂cc, resulting in

f
(
D̂xx |σx,Ns

)
=
Ns

σ 2
x

χ2
2Ns

(
Ns

σ 2
x

D̂xx

)
. (B5)

B3 Likelihood functions for Rcx and Jcx

Nadarajah and Pogány (2016) provide a solution for the PDF
of an averaged multiplication zm of two standard normal vari-
ables. For two uncorrelated variables the PDF is defined as
follows:

fz(zm)=
n(n+1)/22(1−n)/2|zm|

(n−1)/2
√
π0(n/2)

×K(1−n)/2 (n|zm|) , (B6)
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where n is the number of averaged multiplications, 0 is the
gamma function, andKµ is the Bessel function of the second
kind of order µ.
R̂cx is calculated as follows:

R̂cx = 2σcσx

{
1

2Nsσcσx

[
Ns∑
l=1

Re
(
Ṡc
)

Re
(
Ṡx
)

+

Ns∑
l=1

Im
(
Ṡc
)

Im
(
Ṡx
)]}

, (B7)

where the term in the curly brackets is an average over 2Ns
multiplications of independent standard normal samples. In
this case, the likelihood function f

(
R̂cx |σc,σx,Ns

)
can be

found by changing zm by (2σcσx)−1R̂cx :

f
(
R̂cx |σc,σx,Ns

)
=

(2Ns)
a
|R̂cx |

−b

√
π22Ns(σcσx)a0(Ns)

Kb

×

(
Ns|R̂cx |

σcσx

)
, (B8)

where a = (2Ns+ 1)/2, b = (1− 2Ns)/2, 0 is the gamma
function, and Kµ is the Bessel function of the second
kind of order µ. When R̂cx→ 0, the modified Bessel func-
tion Kb

(
Ns|R̂cx |(σcσx)

−1
)
→∞. Therefore, for R̂cx close

to 0, the following approximation based on Eqs. (9.6.6)
and (9.6.8) from Abramowitz and Stegun (1972) should be
used:

f
(
R̂cx |σc,σx,Ns

)
≈

Ns0(−b)

2
√
πσcσx0(Ns)

. (B9)

Formulas for Ĵcx are defined in a similar manner:

f
(
Ĵcx |σc,σx,Ns

)
=

(2Ns)
a
|Ĵcx |

−b

√
π22Ns(σcσx)a0(Ns)

Kb

×

(
Ns|Ĵcx |

σcσx

)
. (B10)

The approximation for Ĵcx is close to 0:

f
(
Ĵcx |σc,σx,Ns

)
≈

Ns0(−b)

2
√
πσcσx0(Ns)

. (B11)

B4 Monte Carlo evaluation of Eqs. (B4), (B5), (B8),
and (B10)

For the equation evaluation a simulated dataset was gener-
ated. In total 1000 sets of distributions were simulated using
the Monte Carlo approach. A single set included distributions
of B̂cc, B̂xx , R̂cx , and Ĵcx . For a single set 105 vector b̂’s were
generated. A single vector b̂ resulted from Ns randomly gen-
erated vector m’s. For a single set of distributions a single
covariance matrix B was taken. The elements of the covari-
ance matrix B and Ns were randomly generated according to
the following rules (values have linear arbitrary units):

1. Bhh is a sum of mean powers of signal Psh and noise
Pnh.

2. Bvv is a sum of mean powers of signal Psv and noise
Pnv.

3. Pnh = Pnv = 1.

4. Psh and Psv were randomly and independently gener-
ated using the uniform distribution from 1 to 5.

5. Ḃhv was calculated as ρHVe
i8DP
√
PshPsv.

6. ρHV was chosen randomly using the uniform distribu-
tion from 0 to 1.

7. 8DP was chosen randomly using the uniform distribu-
tion from 0 to 2π .

8. Ns was chosen as a random integer number in the range
of 2 to 80.

From the covariance matrix B the true covariance matrix
6m was obtained. A total of 105

×Ns vector m’s were gen-
erated according to the PDF given in Eq. (2). Then, 105 ele-
ments of the b̂ were calculated according to Eqs. (15)–(18).
Elements of the vector d̂ were derived from the vector b̂’s
using Eq. (27).

Using the 105 vector d̂’s individual histograms for each
of the variables B̂cc, B̂xx , R̂cx , and Ĵcx are derived. A his-
togram has 10 bins covering the range from the minimum
to maximum values of the corresponding variable. Widths of
bins were adjusted to have 10 000 samples in each bin. For
the same bins the expected number of samples is calculated
using the corresponding PDF. Since integration of Eqs. (B4),
(B5), (B8), and (B10) is challenging, the integration is done
numerically. Then the Pearson’s chi-squared test is applied.
The same procedure is repeated for all 1000 sets of distri-
butions. Thus, for each PDF (Eqs. B4, B5, B8, and B10)
1000 test-statistic values were obtained.

The Pearson’s chi-squared test implies a comparison of the
test-statistic values with critical values for a given level of
significance. A test-statistic value exceeding the critical value
would indicate that there is a chance (equal to the signifi-
cance level) that the data significantly differ from the PDF.
There is, however, a small chance that the conclusion that
the data differ from the PDF is erroneous. Table B1 shows
the percentage of the test-statistic values exceeding critical
values. It can be seen that the number of test-statistic values
exceeding corresponding critical values is very close to the
theoretical values, i.e., 5, 2.5, and 1 % at 0.95, 0.975, and
0.99 significance levels, respectively. This confirms the va-
lidity of the obtained PDFs.

Appendix C: Variances of elements of the vector d̂

To derive solutions for the mean and variances of elements
of d̂ , the distribution of the elements is represented by char-
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Table B1. Percentage of test-statistic values exceeding critical values for different significance levels. Percentages are given in percent.
The names of the four columns on the right side of the table indicate the distribution for which a percentage is given.

Significance level Critical value f
(
D̂cc|σc,Ns

)
f
(
R̂cx |σc,Ns

)
f
(
Ĵcx |σc,Ns

)
f
(
D̂xx |σc,Ns

)
0.95 16.919 6.9 5.2 5.8 5.9
0.975 19.023 3.8 3.4 2.7 2.9
0.99 21.666 1.0 1.3 1.0 1.2

acteristic functions. A γ th raw statistical moment Mγ of a
random variable with a characteristic function φ(t) can be
found as follows:

Mγ = i
−γ d

γφ(t)

dtγ

∣∣∣
t=0
. (C1)

The calculation of derivatives of the characteristic func-
tions is in general easier to obtain than integration of the cor-
responding PDFs.

The characteristic function of the chi-squared distribution
χ2
k (zs) is

φs (t)= (1− 2it)−k/2. (C2)

Therefore, the characteristic function for D̂cc for a given
σc and Ns can be written in the following way:

φcc(t)=

(
1−

2iσ 2
c t

Ns

)−Ns

. (C3)

The mean value and variance of D̂cc are calculated as fol-
lows:

D̂cc =
1
i

dφcc(t)

dt

∣∣∣
t=0
= 2σ 2

c , (C4)

var(D̂cc)=−
d2φcc(t)

dt2

∣∣∣
t=0
− D̂cc

2
=

4σ 4
c

Ns
. (C5)

Similarly,

D̂xx =
1
i

dφxx(t)

dt

∣∣∣
t=0
= 2σ 2

x , and (C6)

var(D̂xx)=
4σ 4
x

Ns
. (C7)

Based on Nadarajah and Pogány (2016) the characteristic
function corresponding to fz(zm) is

φz(t)=

(
1+

t2

n2

)−n/2
. (C8)

Therefore, the characteristic function for R̂cx and Ĵcx for
given σc, σx , and Ns is as follows:

φcx(t)=

(
1+

σ 2
c σ

2
x t

2

N2
s

)−Ns/2

. (C9)

As expected for a multiplication of two uncorrelated vari-
ables, the mean values of R̂cx and Ĵcx are as follows:

R̂cx = Ĵcx =
1
i

dφcx(t)

dt

∣∣∣
t=0
= 0. (C10)

The variance of R̂cx and Ĵcx can be found as follows:

var
(
R̂cx

)
= var

(
Ĵcx

)
=−

d2φcx(t)

dt2

∣∣∣
t=0
=
σ 2
c σ

2
x

2Ns
. (C11)
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Appendix D: Sensitivity S

S=



∂Bhh
∂Bhh

∂Bhh
∂Rhv

∂Bhh
∂Jhv

∂Bhh
∂Bvv

∂ZDR
∂Bhh

∂ZDR
∂Rhv

∂ZDR
∂Jhv

∂ZDR
∂Bvv

∂ρHV
∂Bhh

∂ρHV
∂Rhv

∂ρHV
∂Jhv

∂ρHV
∂Bvv

∂8DP
∂Bhh

∂8DP
∂Rhv

∂8DP
∂Jhv

∂8DP
∂Bvv


=


1 0 0 0
B−1
vv 0 0 −BhhB

−2
vv

−0.5|Ḃhv|B
−0.5
vv B−1.5

hh Rhv|Ḃhv|
−1(BhhBvv)

−0.5 Jhv|Ḃhv|
−1(BhhBvv)

−0.5
−0.5|Ḃhv|B

−0.5
hh B−1.5

vv

0 −Jhv|Ḃhv|
−2 Rhv|Ḃhv|

−2 0

 (D1)

Appendix E: Jacobian Jbd of the transformation from b̂

to d̂

Using Eqs. (21)–(22) Jbd can be written as follows:

Jbd=

∣∣∣∣∣∣∣∣∣∣∣

∂Dcc
∂Bhh

∂Dcc
∂Rhv

∂Dcc
∂Jhv

∂Dcc
∂Bvv

∂Rcx
∂Bhh

∂Rcx
∂Rhv

∂Rcx
∂Jhv

∂Rcx
∂Bvv

∂Jcx
∂Bhh

∂Jcx
∂Rhv

∂Jcx
∂Jhv

∂Jcx
∂Bvv

∂Dxx
∂Bhh

∂Dxx
∂Rhv

∂Dxx
∂Jhv

∂Dxx
∂Bvv

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
q2

11 |q̇12|
2

−2q11R12 −2q11J12
|q̇12|

2 q2
11 2q11R12 2q11J12

q11R12 −q11R12 q2
11−R

2
12+ J

2
12 −2R12J12

q11J12 −q11J12 −2R12J12 q2
11+R

2
12− J

2
12

∣∣∣∣∣∣∣∣
= (q2

11+ |q12|
2)4 (E1)

Taking into account Eqs. (A2) and (A3), Jbd = 1.

Appendix F: Jacobian Jcb of the transformation from ĉ

to b̂

Using Eqs. (10)–(12) Jcb can be written as follows:

Jcb=

∣∣∣∣∣∣∣∣∣∣∣

∂Bhh
∂Bhh

∂Bhh
∂ZDR

∂Bhh
∂ρHV

∂Bhh
∂8DP

∂Rhv
∂Bhh

∂Rhv
∂ZDR

∂Rhv
∂ρHV

∂Rhv
∂8DP

∂Jhv
∂Bhh

∂Jhv
∂ZDR

∂Jhv
∂ρHV

∂Jhv
∂8DP

∂Bvv
∂Bhh

∂Bvv
∂Rhv

∂Bvv
∂Jhv

∂Bvv
∂Bvv

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
1 0 0 0

ρHV cos(8DP)Z
−0.5
DR −0.5BhhρHV cos(8DP)Z

−1.5
DR Bhh cos(8DP)Z

−0.5
DR −BhhρHV sin(8DP)Z

−0.5
DR

ρHV sin(8DP)Z
−0.5
DR −0.5BhhρHV sin(8DP)Z

−1.5
DR Bhh sin(8DP)Z

−0.5
DR −BhhρHV cos(8DP)Z

−0.5
DR

Z−1
DR −BhhZ

−2
DR 0 0

∣∣∣∣∣∣∣∣
=−B3

hhZ
−3
DRρHV (F1)
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Appendix G: Table of symbols

Table G1. Main symbols used throughout the study. The overdot indicates a complex number. Indices h and v indicate the polarization of
the receiver channel. The circumflex indicates a measured quantity.

Symbol Description
0 Gamma function
ρHV and ρ̂HV Correlation coefficient for a spectral line
8DP and 8̂DP Differential phase for a spectral line
σh Standard deviation of R̂h and Ĵh
σv Standard deviation of R̂v and Ĵv
σc Standard deviation of R̂c and Ĵc
σx Standard deviation of R̂x and Ĵx
6m Error covariance matrix of m̂
6d Error covariance matrix of d̂
6b and 6̂b Error covariance matrix of b̂
6c and 6̂c Error covariance matrix of ĉ
φ(t) Characteristic function
φs(t) Characteristic function for zs
φcc(t) Characteristic function for D̂cc
φcx(t) Characteristic function for R̂cx and Ĵcx
φz(t) Characteristic function for zm
χ2
k

Chi-squared distribution with k degrees of freedom
∗ Complex conjugation sign
† Hermitian conjugate sign
b Column vector with elements Bhh, Rhv, Jhv, and Bvv
b̂ Column vector with elements B̂hh, R̂hv, Ĵhv, and B̂vv
B and B̂ 2× 2 covariance matrix describing polarimetric measurements in a single

spectral line on the h–v basis
Bhh, Ḃhv, and Bvv Elements of the covariance matrix B
B̂hh and B̂vv Diagonal elements of the covariance matrix B̂
c Column vector with elements Bhh, ZDR, ρHV, and 8DP
ĉ Column vector with elements B̂hh, ẐDR, ρ̂HV , and 8̂DP
d̂ Column vector with elements D̂cc, R̂cx , Ĵcx , and D̂xx
Dcc and Dxx Diagonal elements of the covariance matrix D
D̂cc, D̂vv, and D̂cx Elements of the covariance matrix D̂
D and D̂ 2× 2 covariance matrix describing polarimetric measurements in a single

spectral line on the c–x basis
e Measurement column vector on the h–v basis
eD Measurement column vector on the c–x basis
f (D̂cc|b,Ns) PDF of D̂cc for a given b and Ns
f (R̂cx |b,Ns) PDF of R̂cx for a given b and Ns
f (Ĵcx |b,Ns) PDF of Ĵcx for a given b and Ns
f (D̂xx |b,Ns) PDF of D̂xx for a given b and Ns
fm(m̂|6m) Joint PDF of m̂ for a given 6m
fd (d̂|b,Ns) Joint PDF of d̂ for a given b and Ns
fb(b̂|b,Ns) Joint PDF of b̂ for a given b and Ns
fc(ĉ|b,Ns) Joint PDF of ĉ for a given b and Ns
i Imaginary unit
Ih,v Measured in-phase component measured by the radar receiver in a range bin
J12 Imaginary part of q̇12
Ĵcx Imaginary part of D̂cx
Ĵh and Ĵv Imaginary parts of Ṡh and Ṡv, respectively
Jhv Imaginary part of Ḃhv
Ĵhv Imaginary part of the covariance between Ṡh and Ṡv
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Symbol Description
Jbd Jacobian of the transformation from b̂ to d̂
Jcb Jacobian of the transformation from ĉ to b̂
Kµ Bessel function of the second kind of order µ
m̂ Measurement vector, the elements of which are real and imaginary parts of Ṡh

and Ṡv
Mγ γ th raw statistical moment of a random variable
Ns Number of spectra used for averaging
Nfft Number of pulses or chirps used to calculate the Doppler spectra
Qh.v Measured quadrature component measured by the radar receiver in a range bin
Q Matrix used to diagonalize the matrix B
q11, q̇12, and q22 Elements of the matrix Q
q Correlation between R̂h and R̂v
s Correlation between R̂h and Ĵv
R12 Real part of q̇12
R̂h and R̂v Real parts of Ṡh and Ṡv, respectively
Rhv Real part of Ḃhv
R̂hv Real part of the covariance between Ṡh and Ṡv
R̂cx Real part of D̂cx
Ṡh,v Measured complex amplitude for a spectral line
S The 4× 4 sensitivity matrix
T The transposition sign
t Argument of a characteristic function
VARbhh Variance of B̂hh approximated from Bringi and Chandrasekar (2001)
VARzdr Variance of ẐDR approximated from Bringi and Chandrasekar (2001)
VARρ Variance of ρ̂HV approximated from Bringi and Chandrasekar (2001)
VAR8 Variance of 8̂DP approximated from Bringi and Chandrasekar (2001)
ZDR and ẐDR Differential reflectivity for a spectral line
zs A sum of squares of independent standard normal samples
zm Averaged multiplication of two standard normal variables
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