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Abstract. Tropical cyclones (TCs) are one of the most de-
structive natural disasters. For the prevention and mitigation
of TC-induced disasters, real-time monitoring and prediction
of TCs is essential. At present, satellite cloud images (SCIs)
are utilized widely as a basic data source for such studies.
Although great achievements have been made in this field,
there is a lack of concern about on the identification of TC
fingerprints from SCIs, which is usually involved as a pre-
requisite step for follow-up analyses. This paper presents a
methodology which identifies TC fingerprints via deep con-
volutional neural network (DCNN) techniques based on SCIs
of more than 200 TCs over the northwestern Pacific basin. In
total, two DCNN models have been proposed and validated,
which are able to identify the TCs from not only single TC-
featured SCIs but also multiple TC-featured SCIs. Results
show that both models can reach 96 % of identification accu-
racy. As the TC intensity strengthens, the accuracy becomes
better. To explore how these models work, heat maps are fur-
ther extracted and analyzed. Results show that all the finger-
print features are focused on clouds during the testing pro-
cess. For the majority of the TC images, the cloud features
in TC’s main parts, i.e., eye, eyewall, and primary rainbands,
are most emphasized, reflecting a consistent pattern with the
subjective method.

1 Introduction

As one of the most destructive natural disasters, tropical cy-
clones (TCs) can cause severe casualties and economic losses

in TC-prone areas. The southeastern coast of China is ad-
jacent to the most active TC ocean basin. Statistics show
that an average of 30 TCs develop over the northwestern
Pacific Ocean every year, about one-third of which make
landfall in China, resulting in an annual economic loss of
USD 5.6 billion. With the rapid development of urbanization
in the coastal region of China, TC-induced disasters are ex-
pected to become even more severe.

To mitigate TC-induced disasters, real-time monitoring
and forecasting of TCs activity are essential. To this end, var-
ious kinds of devices and techniques have been developed
and utilized, such as radiosonde balloons, weather radar,
wind profilers, airborne GPS dropsonde, aircraft-based re-
mote sensing equipment, and ever-updating numerical mod-
els for weather prediction. Since the 20th century, satellites
have been used in meteorology. Since then, satellite cloud
images (SCIs), which contain rich atmospheric information
for investigating synoptic scale systems, have been more and
more utilized as a basic data source for TC studies. An over-
whelming advantage of SCIs against their counterparts is that
they can be obtained effectively over each ocean basin in al-
most every desired period, making it possible to persistently
and synchronously observe TCs from a global perspective.

With the assistance of SCIs, fruitful achievements have
been gained. As one of the representatives, the Dvorak tech-
nique is proposed for the systematic analysis of TCs, espe-
cially for identifying TC intensity (Dvorak, 1984). The Dvo-
rak technique is still under development (see Velden et al.,
1998, 2006; Olander and Velden, 2019). To date, most mete-
orological bureaus use the Dvorak technique to identify TC
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intensity. Another representative achievement is the Auto-
mated Tropical Cyclone Forecasting System (ATCF), which
is developed to predict track and intensity of TCs based on
a comprehensive usage of SCIs, detecting results from ra-
diosonde, aircraft reconnaissance and other devices, as well
as numerical weather forecasting models (Miller et al., 1990;
Sampson and Schrader, 2000; Goerss, 2000).

For SCI-aided studies on TCs, it is a prerequisite to iden-
tify the TC fingerprint from the SCIs. Generally, the complex
morphological characteristics of TCs and the coexistence of
many interference factors, such as multiple cumulus clouds
and continental background in the SCIs, make the task ex-
tremely challenging.

The most widely adopted method for TC identification
from a SCI is the manual method. A series of fingerprint pat-
terns are stratified in the Dvorak technique (Dvorak, 1984),
which can be used empirically for TC identification. These
patterns are summarized solely based on experiences of TC
cloud shapes and their evolutionary characteristics. Appar-
ently, the application of the Dvorak technique relies greatly
on the users’ experience, and it also involves many manual
manipulations, which makes it nonobjective and less effi-
cient.

In this regard, increased efforts have been made to identify
TCs objectively, and several such methods have been devel-
oped, including the mathematical morphology method which
exploits geometric transformations to extract morphological
features on satellite images (Liao et al., 2011; Lopez-Ornelas
et al., 2004; Han et al., 2009; Hayatbini et al., 2019; Wang
et al., 2014), the threshold method in which threshold filter-
ing or segmentation processing is implemented (Di Vittorio
and Emery, 2002; Wang, 2002; Sun et al., 2016; Lu et al.,
2010), and the rotation coefficient method, which applies
vector moments to represent the morphological characteris-
tics of TC clouds (Geng et al., 2014). Despite the merit of
objectivity, as these methods usually contain complex oper-
ations, they tend to be less user-friendly and more computa-
tionally expensive, especially for issues with a huge number
of SCIs.

In recent years, deep learning (LeCun et al., 2015; Schmid-
huber, 2015; Zou et al., 2019) techniques, such as the gen-
erative adversarial network (GAN), recurrent neural network
(RNN), and convolutional neural network (CNN; Chen et al.,
2020; Lee et al., 2020; Sun et al., 2021; Pang et al., 2021),
have developed fast. These techniques show overwhelming
superiority against traditional approaches when dealing with
data-intense prediction, recursive, and/or classification prob-
lems. Thus, they provide a new way to study TCs objectively
and efficiently, based on SCIs.

This paper presents a study on the identification of TC
fingerprint via deep convolutional neural network (DCNN)
techniques. As an abstract–feature–extraction-oriented tech-
nique (Krizhevsky et al., 2019; Simonyan and Zisserman,
2015; Liu et al., 2019), DCNN is able to identify and clas-
sify various complex features involved in images in a highly

Figure 1. Flowchart of the methodology.

generalized manner. Therefore, it turns out to be more ob-
jective and convenient to identify TCs using this technique
than using traditional methods. The reminder of this article
is organized as follows. Section 2 states the methodology,
where both the details of two specific DCNN models and the
datasets are introduced. Section 3 presents typical results for
the identification of the TC fingerprint. The main results and
conclusions are summarized in Sect. 4.

2 Methodology statement

A flowchart of the methodology adopted in this study is
shown in Fig. 1. There are two types of SCIs are available
from open-source databases. For the first type, which is most
readily available, each SCI covers the entire northwestern Pa-
cific Ocean basin (hereafter called the NWPO image). Thus,
it is not unusual that multiple TCs coexist in an NWPO im-
age. In contrast, for the other type, each SCI covers a much
smaller region over the northwestern Pacific Ocean, where
there exists, at most, one TC (hereafter called L image).
Although the NWPO images are more basic and more fre-
quently utilized in practice, the L images are still employed
in this study. The reason is twofold. First, it is necessary to
preliminarily judge whether the DCNN technique is able to
identify a specific TC effectively. For such feasibility testing,
the L images are more appropriate. Second, it is much more
difficult to identify TCs from an NWPO image than from an
L image. Thus, the identification results associated with the
L images can provide a useful reference to deal with the is-
sues on the NWPO images.

In accordance to the features of the two types of SCIs, two
DCNN models are proposed, respectively. To improve model
performance, all SCIs are pre-processed initially (i.e., data
augmentation and stratification of datasets). Then, the mod-
els are trained and validated via SCI data. Visualization tech-
niques (i.e., heat map) are further utilized to explore how the
models work. Each link involved in the flowchart is detailed
below.
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2.1 Data source

The L images refer to the high-resolution infrared SCIs that
are captured by Himawari-8, MSSAT-1R, and other Japanese
satellites over the northwestern Pacific Ocean. Each image
contains 512 pixel× 512 pixel in a plane which covers a geo-
graphic area of about 20◦× 20◦. These images corresponded
to the snapshots at 1 h intervals during the periods from 1–
2 d ahead of the formation of a TC to a couple of days after
its dissipation in 2010–2019. In total, 252 TCs were sam-
pled during their whole life cycle. Both the image data and
corresponding label information, i.e., TC track and inten-
sity, are available from the website of the National Insti-
tute of Informatics (NII) of Japan (http://agora.ex.nii.ac.jp/
digital-typhoon/, last access: 29 November 2021). Note that
the intensity information of a TC is provided in a form of an
integral multiple of 5 kn for this data source, and all intensity
records are labeled as zero if they are below 35 kn. Owing
to the poor quality of some SCIs and the absence of some
TC label information, a limited number of the L images are
discarded in this study, leaving about 47 000 valid images
(the proportion between TC images and non-TC images is
about 7 : 3) for the following analysis.

The NWPO images refer to the high-resolution infrared
SCIs that were captured over the northwestern Pacific Ocean
basin by geostationary satellites. Most of the images con-
tain 1080 pixel× 680 pixel in a plane which covers a geo-
graphic area of 91–188◦ E and 3–55◦ N. These images cor-
responded to the snapshots at 3 h intervals throughout the
TC seasons in 2014–2019. In total, about 160 TCs were
sampled during their life cycle. Each of the NWPO images
has two formats, namely one with a colorful background of
the Earth’s surface and the other without it. The image data
are available from the website of the Meteorological Satel-
lite Research Cooperation Institute/University of Wisconsin–
Madison (CIMSS; http://tropic.ssec.wisc.edu/, last access:
29 November 2021). As no corresponding label information
is provided on the website, the one archived in the typhoon
yearbooks, as issued by the China Meteorological Admin-
istration (CMA), is adopted (https://tcdata.typhoon.org.cn/,
last access: 29 November 2021). In this study,∼ 15 000 valid
images of this type are used, and the proportion between TC
images and non-TC images is about 3 : 7.

2.2 Data preprocessing

2.2.1 Data augmentation

Although this study aims to identify a TC image from non-
TC images, the identification performance of the proposed
DCNN models potentially depends upon the TC intensity for
TC images and the way a TC is defined. Meteorologically,
the intensity of a TC can be classified into several levels ac-
cording to the maximum sustained wind speed at the near-
ground level in the TC’s inner region, i.e., tropical depres-

sion (22–33 kn), tropical storm (34–47 kn), severe tropical
storm (48–63 kn), typhoon (64–80 kn), severe typhoon (81–
99 kn), and super typhoon (≥ 100 kn). Because the intensity
of a tropical depression is labeled as 0 kn for the L images in
the data source, a SCI is regarded as a TC image throughout
this study if it contains a TC storm whose intensity is labeled
to reach or exceed the tropical storm level; otherwise, it is
regarded as a non-TC condition.

To improve the model performance, it is expected that
(i) there are sufficient samples for each of the typical cat-
egories (e.g., TC image or non-TC image) involved in the
classification problem and that (ii) the numbers of samples
are evenly distributed among different categories. However,
both the L image and NWPO image datasets suffer from
an imbalanced distribution. Meanwhile, there are insufficient
samples to cover each of the typical categories of TC im-
ages (e.g., with different TC intensity or TC numbers). For
the L images, there are much fewer images for TCs with a
higher intensity level, while for the NWPO images, there are
many more non-TC images than those for TCs. To solve the
above problems, two pre-processing techniques are adopted
herein, i.e., down-sampling, which is exploited when there
are relatively more images involved in a data type, and im-
age transformation, which is exploited for a data type with
insufficient SCIs. As shown in Fig. 2, five image transfor-
mation modes are utilized, i.e., rotating 90, 180, and 270◦

counterclockwise and flipping horizontally and vertically, re-
spectively. Through such a transformation, the original image
is able to generate six variations. On the one hand, down-
sampling can be achieved by randomly selecting a certain
portion of SCIs for a data type (i.e., TC images for L dataset
and non-TC images for NWPO dataset). It is worth noting
that using the image transformation technique is also bene-
ficial for improving the generalization ability of the DCNN
models. However, owing to the rotating/flipping manipula-
tions, some information involved in the image tends to be
lost, e.g., rainbands spiraling counterclockwise in the North-
ern Hemisphere.

2.2.2 Stratification and standardization

After data augmentation processing, about 32 000 L images
and 45 000 NWPO images are obtained. The datasets are di-
vided into three sets, i.e., training set, validation set, and test
set. While the training set and validation set are, respectively,
used to train and validate the DCNN models, the test set is
used for overall model performance. In this study, both the
L image and NWPO image datasets are stratified in such a
way that the ratio of SCI numbers among training set, vali-
dation set, and test set is about 8 : 1 : 1.

All SCIs are then standardized in terms of pixel size
and pixel value to meet the requirements of the mod-
els for input information and to promote convergence dur-
ing the training process. Each SCI is compressed to con-
tain 100 pixel× 100 pixel in a plane for L images and
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Figure 2. Image transformation showing the (a) original image followed by images that are (b) rotating 90◦ counterclockwise, (c) rotating
180◦ counterclockwise, (d) rotating 270◦ counterclockwise, and have a (e) horizontal flip and (f) vertical flip.

300 pt× 300 pt in a plane for NWPO images. Meanwhile, all
pixel values are normalized so that they are changed to be in
a range of [−1,1].

2.3 DCNN model

A convolutional neural network (CNN) is essentially a multi-
layer perceptron. It can be used for classification and regres-
sion of images, as well as the automatic extraction of graphic
features. In recent years, with the development of deep learn-
ing theory, DCNN has been further proposed based on the
CNN techniques, which is usually regarded to possess a bet-
ter performance than the CNN in terms of universality and
accuracy.

Structurally, a DCNN model consists of several functional
modules which can be combined in certain ways accord-
ing to both internal logic and external requirements. Typi-
cal modules include the convolutional layer, pooling layer,
dropout layer, and dense layer. The convolutional layer con-
tains a number of digital scanners, i.e., the convolutional
kernels, whose sizes (called the kernel size) are fixed uni-
formly within the layer. This layer is used to read the input
information of the model and obtain various potential fea-
tures of the targets through convolution computation (filter-
ing). Many convolutional layers may be involved in a DCNN
model. In principle, using more convolutional layers is bene-
ficial for the model to generate more potential features of the
targets. However, if there are too many convolutional layers,
the model tends to suffer from gradient vanishing or explo-
sion problems. Typically, a DCNN model consists of more
convolutional layers than a CNN model. The pooling layer

is mainly used to reduce the matrix information through a
number of pooling operations, such as maximum pooling and
average pooling. It is apparent that the appropriate usage of
the pooling layers can improve the computational efficiency
of the model effectively. The dropout layer (Srivastava et al.,
2014) is used to maximize the efficiency of the neural nodes
through eliminating unimportant features. During training,
the dropout layer can randomly drop neural units from the
neural network. Meanwhile, it also plays a role in avoiding
over-fitting problems. Note that there are no dropout layers
in a CNN model. At the end of the DCNN model is the dense
layer (Jégou et al., 2017), which is used to flatten the in-
formation from previous layers and to estimate classification
similarities through calculating a nonlinear function.

Figure 3 depicts the internal structure of the DCNN
model for the NWPO images. The one for the L images is
similar but somewhat simplified. Both models adopt a su-
pervised learning strategy. The model for L images con-
sists of five convolutional layers, three max-pooling lay-
ers, two dropout layers, and two dense layers, while the
one for NWPO images consists of 12 convolutional layers,
four dropout layers, two max-pooling layers, and two dense
layers. For both models, the first convolutional layer serves
as the input layer of the model, and the last dense layer serves
as the output layer.

Functionally, the input layer and the hidden layers cooper-
ate to extract any potential features from SCIs for TC iden-
tification, while the output layer plays a role in judging and
making decisions based on the extracted results. It is clear
that judging whether a SCI contains a TC essentially belongs
to a binary classification problem. In this regard, the out-
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Figure 3. Detailed structure of the proposed DCNN model.

put layer herein utilizes the binary cross-entropy loss func-
tion L to quantify the inconsistence of the judgment (or train-
ing/prediction results) against the truth (i.e., data records) as
follows:

L= −
1
N

N∑
i=1

M∑
c=1

yc
i · ln

[
p
(
yc
i

)]
, (1)

where yc
i is the label of the c classification (1 for positive

judgments and 0 for negative judgments) for the ith SCI,
N is the number of SCI samples, M is the number of cat-
egories, and p(yc

i ) denotes the probability of the prediction
associated with yc

i , which can be expressed via the softmax
function as follows:

p
(
yc
i

)
=

exp
(
fyc

i

)
∑C

c=1 exp
(
fyc

i

) , (2)

where fyc
i

is the original score of the model for prediction yc
i ,

which is calculated by the output layer on the basis of the
output vector x (or the characteristic vector) from previous
layers as follows:

fyc
i
=Wx+ b, (3)

in which W represents the coefficient matrix which quantifies
the weight for each element in x during the judging/predic-
tion process, and b is the bias vector.

Both W and b should be determined through training. In
this study, the stochastic gradient descent (SGD) method
is utilized to provide an efficient estimation of the model
parameters. Besides W and b, there are also some hyper-
parameters in the DCNN model, including the number of
neural network nodes, the learning rate and epoch, etc. These
parameters are usually preset and adjusted empirically, based
on training results. Based on previous tests, the model for
L images in this study uses a learning rate of 0.01, with a
batch size of 64 and a training epoch number of 80. The
settings of the model for NWPO images are similar, but the
batch size is changed to eight, and the number of the training
epoch becomes 100.

The model finally outputs a prediction value for each SCI,
which is in the range of 0 %–100 %. If the value exceeds
50 %, it is judged that the SCI belongs to a TC image; other-
wise, the SCI is classified as a non-TC image.

2.4 Model performance

The parameters of accuracy, precision rate, recall rate, and
F measure are conventionally adopted to indicate the perfor-
mance of a DCNN model. In this study, a SCI is classified as
a positive sample if it contains a TC; otherwise, it is marked
as negative. Accordingly, the accuracy is defined to repre-
sent the percentage of correctly classified (both positive and
negative) samples in the dataset; the precision rate indicates
the proportion of correctly identified positive samples in all
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positive predictions, while the recall rate represents the per-
centage of correctly identified positive samples in all positive
samples. The latter two parameters differ with each other in
that the precision rate highlights the performance in terms of
not making misjudgments, while recall rate focuses on the
ability to avoid the omission of positive predictions. During
the training and validating processes, the training accuracy
and validation accuracy are usually compared in real time to
determine whether an over-fitting problem occurs.

Accuracy=
NTP+NTN

NTP+NTN+NFP+NFN
(4)

Precision=
NTP

NTP+NFP
(5)

Recall=
NTP

NTP+NFN
, (6)

where NTP represents the number of true positive predic-
tions, NTN is the number of true negative predictions, NFP
is the number of false positive predictions, and NFN is the
number of false negative predictions.

F1 score is another indicator for the performance of mod-
els associated with classification problems. For binary classi-
fication problems, F1 can be expressed as the harmonic mean
of precision and recall as follows:

F1= 2
Recall × Precision
Recall + Precision

=
2NTP

2NTP+NFN+NFP
. (7)

In reference to classification problems, it is not unusual that
the numbers of samples associated with different categories
vary significantly. Under such conditions, it becomes inap-
propriate to evaluate the model performance via a single
value of the above parameters. For binary classification prob-
lems, the so-called receiver operating characteristic (ROC)
curve and precision–recall curve (PRC) are often adopted
to provide more intuitive evaluation results (Powers, 2011;
Hanley and McNeil, 2006; Molodianovitch et al., 2006; Saito
and Rehmsmeier, 2015).

A ROC curve compares the true positive rate (TPR; =
NTP/(NTP+NFN)) against the false positive rate (FPR; =
NFP/(NFP+NTN)), usually with FPR as the abscissa and TPR
as the vertical coordinate. As the classification results depend
upon how the prediction criterion (i.e., probability threshold
of positive predictions) is defined, one can obtain a series
of TPR and FPR values by selecting different threshold lev-
els during the prediction process. In general, the smoother
the ROC curve is, the better the classifier becomes. One can
further use the so-called area under curve (AUC), which ex-
presses the area demarcated by the ROC curve in the coordi-
nate system, to quantify the accuracy of prediction results.

PRC is similar to the ROC curve in form, but it compares
the recall rate (as the abscissa) and precision (vertical coor-
dinate). A preferred classifier should correspond to a smooth
PRC located toward the top right corner of the coordinate

system. Usually, PRC works better than ROC for the cases
with severe imbalance of samples between the positive and
negative categories.

On the other hand, to improve the robustness of the model
performance, the cross-validation strategy (Ron, 1995) is of-
ten exploited. As introduced previously, the original data in
this study are stratified into 10 parts, with nine parts used as
the training/validation set and one part as the test set. By us-
ing the cross-validation strategy, the data can be trained and
tested at most 10 times.

2.5 Model visualization

Basically, a DCNN model can be regarded as a black box,
since it is very difficult to explore the working mechanism
of the model in a way that can be understood by human be-
ings. In recent years, great efforts have been made to better
understand how a DCNN model works internally.

As introduced previously, convolutional layers are able to
extract various features from SCIs, which actually can be vi-
sualized by the so-called feature maps. As an example, Fig. 4
shows the visualization results of the outputs from all convo-
lution kernels involved in the first four convolutional layers
(i.e., Conv1, Conv2, Conv3, and Conv4) of a DCNN model.
There are 256 convolution kernels in the Conv1 layer. Ac-
cordingly, they correspond to 256 feature maps. It is seen
that some of the feature maps (e.g., feature map 3) are very
similar to the input image, except that many marginal de-
tails in the input image are filtered in the feature map. For
deeper convolutional layers, the feature maps become more
abstract (e.g., feature map 34), and some convolution ker-
nels may fail to generate valid feature maps (e.g., the black
squares in Conv2 and Conv3).

To clarify how the extracted features from convolutional
layers influence the prediction results of a DCNN model, the
class activation map (CAM) technique is proposed (Zeiler
and Fergus, 2014; Selvaraju et al., 2020; Chattopadhay et al.,
2018), which essentially aims to generate a heat map through
computing the weighted sum of all the activation maps asso-
ciated with the convolution kernels in a convolutional layer.
Since a heat map expresses the extracted fingerprint features
in a colorful form in the original image, one can then dis-
tinguish the emphasized features by the model from others.
Then, the CAM technique has been developed into more ad-
vanced versions, e.g., Grad CAM and Grad CAM++. Be-
cause the Grad CAM++ technique is able to focus on fin-
gerprint patches more accurately and, simultaneously, cover
multiple targets, this study adopts this technique in the fol-
lowing analysis.

2.6 Computational platform

The DCNN models and supervised learning algorithms were
coded using Python 3.7 in conjunction with the Keras 2.2.4
and TensorFlow 1.11.0/2.0.0 packages. The training process
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Figure 4. Visualization of outputs from the convolution kernels involved in the first four convolutional layers of a DCNN model.

was executed by a combined usage of NVIDIA GeForce
RTX 2080Ti× 4 GPU, with parallel computing management
software CUDA (v10.0) and acceleration library cuDNN
(v7.3.1.20 and v7.6.0.64).

3 Results

3.1 Results for L images

3.1.1 Overall performance

The 10-fold cross-validation strategy is employed to examine
the robustness of the model performance. Figure 5 depicts
the 10 evolutional curves of prediction accuracy during both
training (TG) and validation (VG) processes for L images. As
demonstrated, the training accuracy increased rapidly within
the first 40 epochs (from 61 % to 97 %), and then leveled off
at a considerably high level (∼ 100 %), which demonstrates
the good convergence of the model during the training pro-
cess. Results for the validation process were similar. Most of
the 10 accuracy curves varied insignificantly and were stabi-
lized at a high accuracy (> 90 % after 40 epochs). These re-
sults reflect the robustness of the model performance among
different groups of samples. The high accuracy during both
training and validation processes also reveals that the pro-
posed model does not suffer from over-fitting problems. This
should be partially attributed to the usage of dropout layers
in DCNN models. Note that using dropout layers tends to
slow down the convergence rate of the model slightly at the
beginning of the training process, as reflected by the results
within the first several epochs in Fig. 5 (dropout layers do
not participate in work during the validation process). How-

Table 1. Prediction performance of TG-1 model during the testing
process.

Parameter Accuracy Precision Recall F1 score AUC
ratio

Value 96.43 % 96.72 % 94.49 % 95.59 % 99.10 %

ever, it does not influence the overall convergence rate (and,
therefore, the training efficiency) of the model noticeably.

Results from the training and validation processes show
that the prediction performance of the model driven by
dataset TG-1 (hereafter referred to as the TG-1 model)
agreed best with the average performance obtained via the
10-fold cross-validation strategy. As a result, this specific
model is expected to be able to generate more representa-
tive predictions than others. Therefore, it was adopted for the
analysis during the testing process.

Table 1 summarizes the prediction performance of the TG-
1 model during the testing process. The values of prediction
accuracy, precision, recall ratio, and F1 are 96.43 %, 96.72 %,
94.49 %, and 95.59 %, respectively. Figure 6 depicts the as-
sociated ROC curve and PRC. Based on the ROC curve, the
AUC is calculated to be 99.10 %. The high values of these pa-
rameters, especially the one of AUC, and the favorable fea-
tures of the ROC curve (smooth) and PRC (located toward
the upper right) suggest the overall good performance of the
proposed model for L images during the testing process.

To examine the potential influence of TC intensity on the
prediction performance of the proposed model, Fig. 7 ex-
hibits the predicted probability for each of the TC images
with varied intensity levels in the testing dataset. As demon-
strated, although there were a limited number of misjudged
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Figure 5. Evolutional curves of the prediction accuracy of the proposed DCNN model for L images, with the (a) training process and
(b) validation process.

Figure 6. ROC curve and PRC of the TG-1 model for L images during the testing process.

Figure 7. Predicted probability for each of TC images with varied intensity levels in the testing L image dataset via the TG-1 model.
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samples for the cases with low intensity levels, very few
(only two) samples were misjudged for the cases with higher
intensity levels (i.e., > 70 kn), which reflects that the pro-
posed model has a much better ability to identify stronger
TCs from SCIs. This is understandable, since more intense
TCs tend to possess more typical fingerprint features that can
be better detected and recognized by the classifier.

Figure 8 depicts some typical SCIs of TCs with varied
intensity levels that were misjudged as non-TC images via
the TG-1 model during the testing process. Main TC struc-
tures are demarcated by the red dashed squares in the fig-
ure. By contrast, Fig. 9 depicts some non-TC images but is
misjudged as TC images. Noted that some information (e.g.,
rainbands spiraling counterclockwise in the Northern Hemi-
sphere) for these images has been lost due to the rotating/flip-
ping manipulations involved in the data pre-processing stage.

It is a bit strange that the SCI with a super typhoon (Fig. 8f)
was misjudged as a non-TC image. Scrutinizing the TC im-
ages shows that the number of SCIs for super typhoons is
very limited, and almost all the super typhoons contain a
calm eye at the center of the storm. However, there is no such
distinct TC eye in Fig. 8f. Instead, the image looks much sim-
ilar to some of the non-TC cases, e.g., Fig. 9a and c. It is most
likely that the model failed to identify this case due to the
lack of appropriate training samples. Figure 8c corresponds
to another kind of misjudged TC image. Although this TC
was labeled as a severe tropical storm (55 kn), it stayed at a
rapidly decaying stage around and after landfall. The other
cases in Fig. 8 may be regarded as the third kind. For these
TCs, the morphological structures of TC cloud become too
multifarious (thus, the training samples turn out to be insuf-
ficient) and irregular to be distinguished accurately by the
model from those for non-TC cases, as shown in Fig. 9.

In reference to the results shown in Fig. 9, the failure of the
model may be attributed to two main reasons. First, as trop-
ical depression storms are not regarded as TCs in this study
(refer to Sect. 2.2.1), some misjudged non-TC images actu-
ally contain a tropical depression. As one can imagine, there
should be no evident differences between tropical depres-
sions and TCs with a slightly higher intensity level (e.g., trop-
ical storm). Second, for some true non-TC images, the mor-
phological characteristics of clouds are so similar to those for
TCs that it is difficult to distinguish them effectively. What-
ever the reason, more training samples that cover each type
of the misjudged SCIs are needed so that the model can be
trained to perform more accurately.

3.2 Model visualization

Figure 10 depicts the heat maps (color pictures) of the TG-
1 model for some successfully identified TC images. Corre-
sponding SCIs (gray pictures) are also depicted for reference.
In principle, during the identification process, the DCNN
model would pay more attention to the graphic features that
correspond to the areas depicted in a warmer color in the

heat map. Thus, one can find out what the model most con-
cerns with in a SCI intuitively. Results in the figure suggest
that all the highlighted features are focused on clouds, es-
pecially on large masses of clouds, which is consistent with
the way adopted by humankind. However, compared to the
conditions for other identification issues (e.g., with a cat or
dog), where usually only a few detailed features (e.g., mouth,
nose/whiskers, or ears) within a small portion of the picture
are emphasized, there were many more highlighted features
that were scattered throughout the image in this study. The
above difference reflects the complexity of identifying TCs
from SCIs.

Basically, the heat maps can be categorized into two types,
i.e., Type I and Type II, as shown in Fig. 10. For Type I,
which accounts for over 80 % of the total results, the main
body of TC cloud (corresponding to TC eye, eyewall, and
primary rainbands) was identified as the most typical fea-
tures. Within the TC body, the inner portions (i.e., eye and
eyewall) received even more concerns than the outer region.
These findings are consistent with the traditional knowledge
about the inner structures of a TC and their storm-relative
distributions. By contrast, the results in Type II demonstrate
a different pattern. The main body of the TC cloud was no
longer highlighted most significantly, although it was still re-
garded as being one of the main fingerprint features. For this
type, it is still unclear whether the model is able to identify
the TC successfully with an unknown but correct method or
if it only happened to make a right prediction but in a wrong
way. Thus, more advanced visualization techniques are re-
quired to further explore how a DCNN model works inter-
nally.

Figure 11 examines the heat maps for some non-TC im-
ages but which are misjudged as TC images (i.e., false posi-
tive predictions). Basically, these results show a high degree
of similarity to those for TCs with a weak intensity level in
Fig. 10. In fact, a large number of such false positive predic-
tions correspond to the dissipative process of a TC during or
after landfall, when the intensity of the storm was decreased
to a level below 35 kn and the formerly huge TC cloud was
fragmented. It is possible that the DCNN model is able to
correlate the patches of clouds with a decaying TC.

3.3 Results for NWPO images

3.3.1 Method improvement via image pyramid
technique

The NWPO images can be analyzed in a similar way to
the one for L images. However, results from previous at-
tempts show that the fingerprint features highlighted in the
heat maps of the DCNN model (Fig. 3) could not be focused
on TC clouds, although the prediction accuracy of the model
was pretty high. This should be attributed to the fact that the
TC structure is too small compared to many other graphic
features involved in an NWPO image (e.g., coastal lines and
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Figure 8. L images of TCs with varied intensity misjudged as non-TC images during testing process (main TC structures are demarcated by
red dash squares).

Figure 9. L images of non-TCs misjudged as TC images during testing process.

continent/peninsulas), and the model is able to correlate the
label of the image with such unexpected features rather than
the TC clouds.

To impel the model to focus on cloud features during the
identification process, the model was trained by the NWPO
images in conjunction with the L images. However, the ob-
tained results of heat maps were still abnormal. What is
worse is that the problem of decreased prediction accuracy
occurs. Attempts were also made to train the model by

NWPO images in conjunction with the magnified views of
TCs that were extracted from the NWPO images, but the re-
sults were similar to those in the former case. The unaccept-
able performance of the model may be explained as follows.
As mentioned previously, the NWPO image covers a much
larger region (97◦× 52◦) than the L image (20◦× 20◦). As a
result, the scale of TC structures in NWPO images turns to be
considerably smaller than that in L images, which makes it
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Figure 10. Heat maps (color pictures; TC is demarcated by a red rectangle hereafter) of some successfully identified TC images compared
with the associated L images (gray pictures hereafter).

difficult for the model to correlate the TC features in NWPO
images with those in L images effectively.

Finally, the image pyramid (IP) technique was adopted,
and the results turned to be satisfactory. The IP technique
was firstly proposed to solve classification problems for tar-
gets with varied scales in the classifier, such as face detection
and recognition (Zhang et al., 2016). With the development

of feature pyramid networks (FPNs), it was then used to deal
with problems with small targets (Lin et al., 2017). Due to the
great convenience in operation and high efficiency in perfor-
mance, this technique has been increasingly exploited in the
field of computer vision.

Table 2 and Fig. 12 summarize the changes before and af-
ter using IP technology. It can be clearly seen from Table 2
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Figure 11. Heat maps of some non-TC images misjudged as TC images compared with associated L images.

Table 2. Comparison of indicators before and after using IP tech-
nology.

Parameter Accuracy Precision Recall F1 score

Without IP 95.30 % 93.88 % 96.57 % 95.21 %
With IP 96.62 % 94.73 % 98.65 % 96.65 %

that all parameters are only slightly improved after IP tech-
nology is used. However, it can be obvious from Fig. 12b
and c that the weight range of the model after using IP tech-
nology basically covers TC clouds or TC-like clouds, while
heat maps without IP technology show relatively strange at-
tention.

The image pyramid is actually a cascade structure for
multi-scale representations of an image. It consists of a se-
ries of pictures that are derived from the same original im-
age but with varied characteristic scales for highlighted tar-
gets. As an example, Fig. 13 illustrates the realization pro-
cess for the image pyramid of a TC image. The original im-
age (herein called the large picture) consists of 1080pixel×
1080pixel× 3pixel. One can extract a portion (containing
512pixel×512pixel×3pixel, 420pixel×420pixel×3pixel,
etc.) of the image to generate a magnified view of the TC
(herein called medium picture). In this study, a random
extraction stratify was adopted. Similarly, a second stage
magnified view (containing 256pixel× 256pixel× 3pixel,
200pixel× 200pixel× 3pixel, etc.) can be derived from the
original picture (herein called the small picture). The large,
medium, and small pictures are then normalized in terms of
size (i.e., to have same the number of pixels). A combination
of the several normalized pictures forms a multi-level image
pyramid of the original picture. As can be seen, the TC in
these pictures is expressed in varied scales and resolutions.

Using the IP technique, the input samples of NWPO im-
ages for the DCNN model turned to be ∼ 135 000, and the
proportion among the numbers of small, medium, and large
images approached 1 : 1 : 1. The model was then trained and
validated based on the samples following the method intro-
duced previously. Note that only the large images (∼ 4600
samples) were tested and analyzed during the testing process.

3.3.2 Overall performance

Because there are many more NWPO images than L im-
ages, the prediction performance of the proposed model for
NWPO images tends to be more robust. Thus, when using
the 10-fold cross-validation strategy to train and validate the
model, it was only conducted three times. Figure 14 shows
the evolutional curves of the prediction accuracy during both
the training and validation processes. Following the analyt-
ical method adopted for related results of L images, it is
found that the performance of the model for NWPO images
is satisfactory in terms of convergence, robustness, and anti-
overfitting. The training accuracy within 100 epochs reached
99.99 %, compared to 95.37 % for the validation accuracy.
These results demonstrate the effectiveness of using the IP
technique to deal with identification problems with small tar-
gets. Although the performances for the three training/vali-
dation processes were similar, the one associated with TG-1
dataset was comparatively more consistent with the ensemble
mean performance. Thus, the model trained by this dataset,
i.e., TG-1 model, was adopted during the testing process.

The prediction performance of the TG-1 model during the
testing process is detailed in Table 3 and Fig. 15. The results
for all studied indexes, except for precision and AUC, are
found to be better than their counterparts for L images (refer
to Table 1 and Fig. 6), although there exist many unfavorable
factors in NWPO images for the performance of the model.
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Figure 12. Heat map before and after using IP.

Figure 13. Flowchart for the realization of image pyramid of a TC image.

Table 3. Prediction performance of the TG-1 model during testing
process.

Parameter Accuracy Precision Recall F1 score AUC
ratio

Value 96.62 % 94.73 % 98.65 % 96.65 % 98.90 %

The reason is twofold. First, using the IP technique makes
it effective to train the model with NWPO images. Second,
training the DCNN model with more samples helps to pro-
mote prediction accuracy.

Given the better performance of the model for NWPO im-
ages in terms of accuracy and recall ratio than that for L im-
ages, the relatively lower precision herein reveals that there
were relatively more false positive predictions than those for
L images. To better understand this issue, Fig. 16 depicts
some selected non-TC images that were misjudged as TC im-
ages and associated heat maps. It is found that the majority of
such false positive predictions corresponded to images whose
cloud characteristics were similar to those of SCIs with a TC
at a low intensity level (refer to Figs. 8 and 9). As discussed

previously, there are two possibilities. First, the image indeed
involves a TC, but the storm stayed at the ending or begin-
ning stage of the life cycle, and its intensity was too low to be
classified as a TC level. Second, there are no TCs involved in
the image, but the cloud features are too similar to those for
TC images that the model failed to distinguish the two types
correctly. Because the NWPO image covers a much larger
area than the L image, an NWPO image tends to contain
more such TC-like features than an L image, which results
in relatively more false positive predictions for the NWPO
images.

3.3.3 Dependence on TC intensity for SCIs with a
single TC

To examine the dependence of prediction performance of the
model on TC intensity, the testing samples of NWPO images
involving a single TC were stratified into different groups
according to the TC intensity. Figure 17 shows the predic-
tion probability for each of the intensity groups. Overall, the
false positive predictions (or the recall ratio) become fewer
(larger) as the TC intensity increases. Comparing the results
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Figure 14. Evolutional curves of the prediction accuracy of the proposed DCNN model for NWPO images, with the (a) training process and
(b) validation process.

to those shown in Fig. 7, it is further found that there are
fewer false negative predictions for NWPO images with TCs
at low-to-moderate intensity levels (< 70–80 kn), despite the
fact that the number of testing samples for NWPO images is
much larger than that for L images. The above findings sug-
gest the proposed model herein has a good performance in
terms of avoiding the omission of identifying TCs.

Figure 18 exhibits two types of successfully identified TC
images and associated heat maps. As can be seen, the finger-
print features from both types can be reasonably focused on
clouds. It seems that the model is able to distinguish clouds
from other background factors, such as coastal lines, con-
tinent/peninsulas, ocean surface, and deserts, which are de-
picted in varied colors in the image. The difference between
the two types of results lies in the fact that the main body
of the TC cloud in Type I is identified as the primary fin-
gerprint feature, while there are multiple fingerprint features
highlighted in the heat maps from Type II. The above differ-
ence may be explained by the varied characteristics of color
gradation of the clouds between the two types of images. Re-
sults suggest that all fingerprint features with more concerns
in the heat maps correspond to brighter clouds in the image.
In Type I, the TC clouds are brightest among various kinds
of clouds. By contrast, there are several cloud clusters in an
image from Type II whose color gradations are comparable
to that of the TC cloud.

Figure 19 depicts some typical TC images that were mis-
judged as non-TC images. In reference to the images with
a weak to moderately strong TC, the reasons to account for
such false negative predictions are similar to those discussed
in Fig. 8. For images with a strong TC (≥ 80 kn), the TC
clouds are found to be distinctly smaller than their counter-
parts in Fig. 18. It is expected that the IP structure of this
paper fails to connect such tiny features with those on a nor-
mal scale. Thus, an IP structure with a few more levels may
be more appropriate for such cases.

3.3.4 Dependence on the number of TCs within a TC
image

One of the largest differences between L images and NWPO
images is that there may be multiple TCs involved in an
NWPO image, while there is no more than one TC in an
L image. To examine the dependence of the prediction per-
formance of the model on the number of TCs within a TC
image, the testing samples of NWPO images involving mul-
tiple TCs were stratified into different groups according to
the TC number. Figure 20 shows the prediction probability
for each of the groups. The recall ratios for the groups with
an image involving one TC, two TC, and three or more TCs
are 98.38 %, 99.75 %, and 100 %, respectively. It is clear that,
as the increase in TC numbers for associated NWPO images
occurs, it becomes more and more unlikely for the model
to misjudge a TC image as a non-TC image. The above ob-
servation is consistent with one’s expectation, as an image
involving more TCs usually contains more distinguishable
fingerprint features that facilitate the model to predict more
correctly.

Figure 21 examines the heap maps of some successfully
identified images with multiple TCs. As demonstrated, all the
TCs involved in the images are highlighted in the heat maps
from the two categorized types. For the results in Type I,
the TCs are recognized exclusively as the primary finger-
print features. However, for the results in Type II, there may
be some additional false targets identified; meanwhile, some
of the TCs may receive even fewer concerns than the high-
lighted false targets in the heat maps. From the perspective of
TC identification, an NWPO image involving multi-TCs may
be regarded as a composite of multiple NWPO images, with
each of them containing only a single TC. Consequently, the
findings in Fig. 21 can be comprehended in a similar way to
the one for Fig. 18.
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Figure 15. ROC and PRC curves of the TG-1 model for NWPO images during testing process.

Figure 16. Non-TC images misjudged as TC images and associated heat maps.

Figure 17. Prediction probability for NWPO images involving a single TC stratified by TC intensity.
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Figure 18. Heat maps of some successfully identified TC images compared with associated NWPO images that contain a single TC.

Figure 19. TC (demarcated by a red rectangle) images misjudged as non-TC images.
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Figure 20. Prediction probability for NWPO images involving multiple TCs.

Figure 21. Heat maps of some successfully identified TC images compared with associated NWPO images that involve multiple TCs.

4 Concluding remarks

This article presents a study on the identification of TC
images from SCIs via DCNN techniques. There were two
DCNN models proposed to, respectively deal with the issues
associated with L images and NWPO images which covered
different geographical areas and varied numbers of TCs. Re-
sults suggested that the performances of the two models were
satisfactory, with both of the prediction accuracies exceed-
ing 96 %. Through analysis via heat map techniques, it was
demonstrated that the DCNN models are able to focus on
TC fingerprint features successfully during the testing pro-
cess. Thus, it provides an automatic and objective method
to distinguish TC images from non-TC images by using
deep learning techniques. This is pretty useful for many SCI-
based studies, e.g., SCI-aided identification of TC intensity,
in which it is prerequisite to select TC images usually out
from hundreds of thousands of SCI samples that correspond
to both TC and non-TC conditions.

The two proposed models differ from each other by both
the internal structures and the realization of training and val-
idation processes. The NWPO model consisted of more con-
volutional layers and dropout layers, so it would be more ef-
ficient to extract useful information from a more complex
image. More importantly, the IP techniques were specially
adopted for the NWPO model to generate more appropriate

training and validation datasets. Results show that the NWPO
model failed to focus on correct targets if they were trained
by conventionally pre-processed image samples in which the
TC structures became considerably small with respect to the
coverage area of the image. By contrast, when training the
model with image samples pre-processed via the IP tech-
niques, all TC fingerprint features could be identified cor-
rectly, which reflects the effectiveness of using the IP tech-
nique to deal with identification problems with small targets.

Despite the overall good performance, the DCNN models
failed to provide correct predictions for some cases. Basi-
cally, there are three reasons to account for the failures. First,
there are essentially no differences between an image involv-
ing a TC at a low intensity level and the one that should be
regarded as a non-TC image but actually contains a tropi-
cal depression. Second, the morphological characteristics of
TC clouds involved in some TC images, especially those cor-
responded to TCs staying at the very beginning and ending
stages of their life cycle, are too similar to those associated
with non-TC conditions, which makes it to be challenge to
identify such TC images correctly. Third, there were insuffi-
cient training samples for some special types of TC images
(e.g., Fig. 8f). Whatever the reason, more training samples
that cover each type of the misjudged SCIs are needed so
that the model can be trained to perform more accurately.
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This study has only considered the identification problem,
i.e., to judge whether a SCI belongs to a TC image or a non-
TC image, but has no concerns with the problem where the
TC is located in a TC image. Although all the main potential
TC fingerprint features have been identified in the heap maps,
further efforts are needed to distinguish the true targets from
the false.
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