
Atmos. Meas. Tech., 15, 205–223, 2022
https://doi.org/10.5194/amt-15-205-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Validation and error estimation of AIRS MUSES CO profiles with
HIPPO, ATom, and NOAA GML aircraft observations
Jennifer D. Hegarty1, Karen E. Cady-Pereira1, Vivienne H. Payne2, Susan S. Kulawik3, John R. Worden2,
Valentin Kantchev2,4, Helen M. Worden5, Kathryn McKain6,7, Jasna V. Pittman8,9, Róisín Commane10,
Bruce C. Daube Jr.8,9, and Eric A. Kort11

1Atmospheric and Environmental Research Inc., Lexington, Massachusetts, USA
2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
3BAER Institute, 625 2nd Street, Suite 209, Petaluma, CA, USA
4Instrument Software and Science Data Systems, Pasadena, CA, USA
5Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric
Research, Boulder, CO, USA
6Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA
7Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, CO, USA
8School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
9Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
10Department of Earth and Environmental Science, Lamont-Doherty Earth Observatory,
Columbia University, New York, NY, USA
11Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI, USA

Correspondence: Jennifer D. Hegarty (jhegarty@aer.com)

Received: 15 July 2021 – Discussion started: 3 August 2021
Revised: 7 October 2021 – Accepted: 6 November 2021 – Published: 17 January 2022

Abstract. Single-footprint retrievals of carbon monoxide
from the Atmospheric Infrared Sounder (AIRS) are evalu-
ated using aircraft in situ observations. The aircraft data are
from the HIAPER Pole-to-Pole Observations (HIPPO, 2009–
2011), the first three Atmospheric Tomography Mission
(ATom, 2016–2017) campaigns, and the National Oceanic
and Atmospheric Administration (NOAA) Global Monitor-
ing Laboratory (GML) Global Greenhouse Gas Reference
Network aircraft program in years 2006–2017. The retrievals
are obtained using an optimal estimation approach within the
MUlti-SpEctra, MUlti-SpEcies, MUlti-SEnsors (MUSES)
algorithm. Retrieval biases and estimated errors are evalu-
ated across a range of latitudes from the subpolar to tropical
regions over both ocean and land points.

AIRS MUSES CO profiles were compared with HIPPO,
ATom, and NOAA GML aircraft observations with a coin-
cidence of 9 h and 50 km to estimate retrieval biases and
standard deviations. Comparisons were done for different
pressure levels and column averages, latitudes, day, night,

land, and ocean observations. We found mean biases of
+6.6±4.6 %,+0.6±3.2 %, and−6.1±3.0 % for three repre-
sentative pressure levels of 750, 510, and 287 hPa, as well as
column average mean biases of 1.4± 3.6 %. The mean stan-
dard deviations for the three representative pressure levels
were 15 %, 11 %, and 12 %, and the column average stan-
dard deviation was 9 %. Observation errors (theoretical er-
rors) from the retrievals were found to be broadly consis-
tent in magnitude with those estimated empirically from en-
sembles of satellite aircraft comparisons, but the low val-
ues for these observation errors require further investigation.
The GML aircraft program comparisons generally had higher
standard deviations and biases than the HIPPO and ATom
comparisons. Since the GML aircraft flights do not go as
high as the HIPPO and ATom flights, results from these GML
comparisons are more sensitive to the choice of method for
extrapolation of the aircraft profile above the uppermost mea-
surement altitude. The AIRS retrieval performance shows lit-
tle sensitivity to surface type (land or ocean) or day or night
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but some sensitivity to latitude. Comparisons to the NOAA
GML set spanning the years 2006–2017 show that the AIRS
retrievals are able to capture the distinct seasonal cycles but
show a high bias of ∼ 20% in the lower troposphere during
the summer when observed CO mixing ratios are at annual
minimum values. The retrieval bias drift was examined over
the same years 2006–2017 and found to be small at < 0.5%.

1 Introduction

Carbon monoxide (CO) is produced by the combustion of
fossil fuels and biofuels, wildfires and agricultural biomass
burning, and hydrocarbon oxidation. It is a precursor to tro-
pospheric ozone and carbon dioxide and thus plays an im-
portant role in both atmospheric pollution and climate. CO
is removed from the atmosphere mainly through reactions
with the hydroxyl radical (OH) and influences the removal
rates of other atmospheric pollutants. CO has a chemical
lifetime greater than a week in the troposphere, which al-
lows it to be transported long distances. At the same time
the lifetime is short enough that concentrations generally re-
main spatially inhomogeneous. It is therefore a good tracer
species whose uneven distribution can be used to analyze
regional-to-global transport processes from pollution sources
(e.g., Edwards et al., 2004, 2006; Hegarty et al., 2009, 2010;
Petetin et al., 2018; Panagi et al., 2020).

The satellite record of nadir CO observations began in
2000 with the Measurement of Pollution in the Troposphere
(MOPITT) instrument on the NASA Terra satellite (Drum-
mond et al., 2010). The nadir satellite CO record now in-
cludes data sets from the Atmospheric Infrared Spectrome-
ter (AIRS) on Aqua launched in 2002, the Scanning Imag-
ing Absorption Spectrometer for Atmospheric Chartogra-
phy (SCIAMACHY) on Envisat launched in 2003, the Tro-
pospheric Emission Spectrometer (TES) on Aura launched
in 2004, the Infrared Atmospheric Sounding Interferom-
eter (IASI) on the MetOp series beginning in 2006, the
Cross-track Infrared Sounder (CrIS) on Suomi NPP launched
in 2011, and most recently the Joint Polar Satellite Sys-
tem series and the TROPOspheric Monitoring Instrument
(TROPOMI) on the Sentinel-5 precursor in 2017. Satel-
lite CO data sets have been used extensively in emission
source attribution studies (e.g., Kopacz et al., 2010; Jiang
et al., 2017) and trend analyses (e.g., Worden et al., 2013a;
Buchholz et al., 2021). Among the satellite instruments cur-
rently observing CO, AIRS and MOPITT have the longest
continuous records, making them the most suitable for trend
analysis. Though the MOPITT data record begins 2 years
earlier, AIRS has the advantage of a swath width approx-
imately twice as large as MOPITT’s, enabling near-global
coverage in about a day as compared to about 3 d for MO-
PITT (Yurganov et al., 2008).

Characterization of uncertainties is key for the effective
use of any measurement in emission source attribution and
trend studies. Ideally, the characterization of uncertainties in
satellite data sets should include both quantification of bi-
ases and the validation of the error estimates associated with
the remotely sensed products (von Clarmann et al., 2020). In
this paper we present an evaluation of these uncertainties for
a new set of CO retrievals from AIRS. These retrievals differ
from previous AIRS products in that they are derived from
single-footprint L1B radiances, rather than from radiances
obtained from applying a cloud-clearing algorithm to sets of
nine footprints. Therefore, the spatial resolution of this new
product is the native spatial resolution of the Level 1B radi-
ances (15 km at nadir). The improved spatial resolution en-
ables better representation of smaller pollution plumes from
local strong anthropogenic sources and small wildfires which
will enable better pollution tracking and more precise trend
analysis. For example, George et al. (2009) found that CO re-
lated to fires was systematically∼ 17% lower for AIRS than
MOPITT and IASI due to the coarser resolution of the 9-
pixel cloud-cleared radiance retrieval used for AIRS (McMil-
lan et al., 2005). Furthermore, Buchholz et al. (2021) using
MOPITT found that recent trends in column CO over north-
eastern China were driven mainly by significant trends in the
75th percentile values, suggesting changes in local emissions
rather than transported CO.

The algorithm utilized here is the MUlti-SpEctra, MUlti-
SpEcies, MUlti-SEnsors (MUSES) algorithm (Worden et
al., 2006, 2013b; Fu et al., 2013, 2016, 2018, 2019) opti-
mal estimation approach (Rodgers, 2000) based on the Aura
Tropospheric Emission Spectrometer (TES) retrieval algo-
rithm (Bowman et al., 2006), with enhancements that enable
the use of radiances from either one or multiple instruments.
MUSES uses a multi-step retrieval process to characterize an
atmospheric profile: temperature, water vapor, surface prop-
erties, trace gases, and cloud optical depth and height, thus
accounting for the radiative impact of clouds. The optimal es-
timation method provides the vertical sensitivity (i.e., the av-
eraging kernel matrix) and estimates of the uncertainties due
to noise and radiative interferences from other geophysical
parameters such as temperature and water vapor as described
in Sect. 2. We use aircraft in situ observations from the HI-
APER Pole-to-Pole Observations (HIPPO) and Atmospheric
Tomography Mission (ATom) campaigns as well as the Na-
tional Oceanic and Atmospheric Administration (NOAA)
Global Monitoring Laboratory (GML) Global Greenhouse
Gas Reference Network aircraft program (hereafter referred
to simply as NOAA GML), taken between 2006 and 2017.
The aircraft measurements, described in Sect. 2, span a wide
range of latitudes and include observations made over both
ocean and land. Our validation methodology is described in
Sects. 3 and 4 and closely follows Oetjen et al. (2014) and
Kulawik et al. (2021) and includes an evaluation of actual er-
rors and a comparison to theoretical errors. The evaluation of
results is presented in Sect. 4.
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Figure 1. Locations of aircraft profiles used for HIPPO and ATom
as colored dots and NOAA GML as black diamonds with a three-
character string identifier. Most NOAA GML site codes represent
the site name (e.g., “cma” stands for offshore Cape May, New Jer-
sey), while some site codes such as “act” and “crv” represent NOAA
GML profiles at various sites near the plotted code collected during
campaigns.

2 Data

2.1 Aircraft data

Data from all five HIPPO aircraft missions (Wofsy et
al., 2017) are used in this study: HIPPO-1 in January 2009,
HIPPO-2 in October–November 2009, HIPPO-3 in March–
April 2010, HIPPO-4 in June–July 2011, and HIPPO-5 in
August–September 2011. During HIPPO, the National Sci-
ence Foundation’s Gulfstream V flew tracks that were pri-
marily over the Pacific Ocean but also crossed over New
Zealand, Australia, and western North America at latitudes
from 67◦ S to 87◦ N. The aircraft made steep ascents and
descents along the flight path to construct vertical profiles
approximately every 220 km or 20 min. The locations of all
the aircraft profiles used in this study are shown in Fig. 1.
The profiles had an average top of approximately 290 hPa.
CO was measured with a quantum cascade laser spectrome-
ter (QCLS) at 1 Hz frequency with accuracy of 3.5 ppbv and
1σ precision of 0.15 ppbv (McManus et al., 2010; Santoni
et al., 2014). The QCLS CO measurements were compared
with NOAA flask measurements over 59 HIPPO profiles and
had a bias of −1.94 ppb, which is within the accuracy esti-
mate of the QCLS instrument (Santoni et al., 2014). HIPPO
QCLS data have also been used to validate MOPITT satel-
lite retrievals of CO (Deeter et al., 2013; Martínez-Alonso et
al., 2014).

Data from ATom aircraft campaigns 1–3 (Wofsy et
al., 2018) are also used in this study: ATom-1, July–
August 2016; ATom-2, January–February 2017; and ATom-
3, September–October 2017. During Atom, the NASA DC-8
aircraft flew tracks with similar latitude coverage as HIPPO

but also flew over both the Atlantic and Pacific oceans
(Fig. 1). During flights, the aircraft continuously profiled the
atmosphere from 0.2 to 12 km altitude with a similar aver-
age top to that of HIPPO. For this study, we use CO mea-
surements on ATom from the QCLS instrument, similar to
HIPPO, that are calibrated to the WMO X2014A scale (Nov-
elli et al., 1991, 1994, 1998).

The NOAA GML observations are taken mainly at fixed
sites in North America (Sweeney et al., 2015). In this study
observations from the years 2006–2017 and from nine sites
(Fig. 1) are used. The air samples are collected using an auto-
mated Programmable Flask Package (PFP) operated on small
aircraft. Air samples are collected at several altitudes during
a single flight, resulting in a vertical profile for each trace gas
measured. The average top of the profiles in the data set used
here was at 440 hPa. The CO mixing ratios are reported rel-
ative to the WMO X2014A CO scale. Uncertainties on the
CO from the flasks are of the order of 1 ppb (Sweeney et
al., 2015).

2.2 AIRS single-footprint CO retrievals

AIRS is a nadir-viewing, scanning thermal infrared (TIR)
spectrometer launched on board the Aqua satellite on 4 May
2002 into a sun-synchronous polar orbit at an altitude of
705 km with 01:30 and 13:30 local Equator crossing times
(Aumann et al., 2003). It measures the thermal radiance be-
tween 3 and 12 µm with a spectral resolution of ∼ 1.8 cm−1

in the 4.6 µm (∼ 2100 cm−1) CO absorption region. A sin-
gle AIRS field of view (FOV) has a circular footprint with
∼ 15 km diameter at nadir, and the AIRS swath width is
∼ 1650 km, which enables near-global coverage twice daily.

Several algorithm evaluations have been published previ-
ously for retrievals of CO from AIRS, using Level 2 cloud-
cleared radiances (Susskind et al., 2003) on the 45 km fields
of regard (FORs), which encompass nine FOVs. These in-
clude the AIRS operational algorithm (first introduced by
McMillan et al., 2005, with revisions through to the current
v7), the NOAA Unique Combined Atmospheric Processing
System (NUCAPS) (Gambacorta et al., 2015), the Commu-
nity Long-term Infrared Microwave Combined Atmospheric
Product System (CLIMCAPS) (Smith and Barnet, 2020),
and the optimal estimation algorithm presented by Warner
et al. (2010).

Here we present results of CO retrievals from AIRS ra-
diances using the MUSES algorithm (Worden et al., 2006,
2013b; Fu et al., 2013, 2016, 2018, 2019; Kulawik et
al., 2021). MUSES uses an optimal estimation approach
(Rodgers, 2000) and leverages the algorithm developed for
the Aura TES (Bowman et al., 2006). We use L1B radi-
ances on single 15 km AIRS FOVs or footprints rather than
cloud-cleared radiances on the 45 km FORs (comprised of
nine FOVs) to preserve the original well-characterized ra-
diance noise characteristics for use in our estimates (Irion
et al., 2018; DeSouza-Machado et al., 2018). The Optimal
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Spectral Sampling (OSS) code was used as the forward
model (Moncet et al., 2008, 2015). CO is retrieved using the
2181–2200 cm−1 spectral range.

3 Validation methodology

3.1 Coincidence criteria and quality control

The AIRS and aircraft profiles were matched using time and
distance coincidence criteria of 9 h and 50 km. The matched
profiles were then subject to several quality control filters
to form the final validation set. The aircraft profiles were
required to have at least 10 pressure levels with valid CO
data, and the difference between the maximum and min-
imum pressure of the valid data levels had to be at least
400 hPa. The AIRS MUSES algorithm provides a diagnos-
tic retrieval quality flag, and this was used to remove poor
or suspect retrievals from the set. While the AIRS MUSES
algorithm uses the original single pixel instrument radiances
rather than cloud-cleared radiances, the algorithm does re-
trieve cloud optical thickness following Kulawik et al. (2006)
and provides both a spectrally varying and average effec-
tive optical depth. The cloud optical depth is retrieved be-
fore CO; thus, the effect of clouds is taken into account in
the CO retrieval. AIRS MUSES profiles with optically thick
clouds were designated as those with an average cloud ef-
fective optical depth over the AIRS spectrum and within
the CO absorption band greater than 0.1 and were removed
from the set. After the quality and cloud screening was ap-
plied, there remained 3734 AIRS–HIPPO matches represent-
ing 405 unique HIPPO aircraft profiles, 1324 AIRS–ATom
matches representing 158 unique ATom aircraft profiles, and
10 044 AIRS–NOAA GML matches representing 747 unique
NOAA GML aircraft profiles. Thus, each aircraft profile was
compared to a set of AIRS profiles. All the aircraft profiles in
the final data sets were interpolated vertically to the 67 AIRS
MUSES forward-model levels.

3.2 Approach for error validation

Details of the retrieval error characterization from the opti-
mal estimation (OE) approach of Rodgers (2000) and its ap-
plication to instruments like AIRS are provided in many pub-
lications (e.g., Boxe et al., 2010; Oetjen et al., 2014; Kulawik
et al., 2021). Here the details relevant to the error validation
in this study are presented.

As described in Oetjen et al. (2014) the OE error covari-
ance can be split up into several terms, as shown in Eq. (1),
that represent the various factors contributing to the overall
uncertainty Sz of a retrieved CO profile. These factors in-
clude smoothing due to limited vertical information content
of the satellite instrument measurement (smoothing), instru-
ment measurement noise (noise), uncertainties from param-
eters not included in the retrieval state vector (systematic),
coupling interference or cross correlation between param-

Figure 2. Mean (solid) sum of rows of the AIRS MUSES CO aver-
aging kernels for each latitude band for the HIPPO retrievals. The
dotted lines are 1 standard deviation from the mean. The peak of the
mean generally corresponds to the vertical level of maximum AIRS
sensitivity to the true state CO mixing ratio.

eters retrieved simultaneously with CO (cross-state), and a
residual term (res) that accounts for uncertainties not consid-
ered or unknown.

Sz = (Azz− I)
smoothing

Ss(Azz− I)T +GSeGT

noise

+

∑
GKbSb

systematic
(GKb)

T
+

∑
AxsSbret

a
cross-state

(Axs)T + res. (1)

In the smoothing term I is the identity matrix, Azz is the co-
variance matrix for CO, and Ss is the smoothing error covari-
ance. In the noise term G is the gain matrix that describes
the sensitivity of the retrieved state to changes in measured
radiances and Se is the instrument noise covariance. In the
systematic term the subscript b represents parameters that are
held constant during the retrieval with respective Jacobians,
Kb, and error covariance matrix Sb. In the cross-state term
the averaging kernels of the other parameters (x) retrieved
simultaneously with CO are Axs and the corresponding error
covariance matrix is Sbret

a .
The averaging kernel matrix describes the vertical sensitiv-

ity of a retrieved parameter to its true state in the atmosphere.
The vertical sensitivity is dependent on the true state vertical
distribution of CO and other trace gases, retrieval constraints,
and on the interference of other geophysical parameters such
as the profiles of temperature and water vapor. The sum of
the rows of the averaging kernel matrix provides informa-
tion on the location of the peak sensitivity of the retrieval.
Figure 2 shows the mean sum of the rows of the averaging
kernel matrices for all the AIRS profiles in the validation set
binned by latitude band: the level of peak sensitivity is gen-
erally between 400 and 500 hPa. The sensitivity peaks at a
higher level in the tropical and sub-tropical latitude band of
30◦ S–30◦ N and at lower vertical levels in the higher latitude
bands of both hemispheres.
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For comparing satellite profiles of trace gases with limited
vertical resolution to profiles measured in situ from aircraft,
the averaging kernel and an a priori profile is applied to the
in situ profiles as in Rodgers and Connor (2003). Through
this procedure a new profile Ẑ, representing what the satel-
lite “sees” assuming no retrieval errors, is generated as shown
in Eq. (2) from the averaging kernel Azz applied to the dif-
ference between the elements of the original aircraft profile
Zaircraft and the a priori profile Zapriori. For AIRS MUSES CO
retrievals, the a priori profiles are obtained from a monthly
climatology, in 30◦ latitude by 60◦ longitude boxes pro-
duced from the MOZART atmosphere chemistry model for
the Aura mission (Brasseur et al., 1998). The a priori con-
straint used for CO is the same constraint used in the MO-
PITT CO algorithm (Deeter et al., 2010).

Ẑ= Zapriori+Azz(Zaircraft−Zapriori). (2)

This procedure is also referred to as convolving the in situ
profiles with the averaging kernel. Since there are no aircraft
observations for the part of the retrieved profile above the
aircraft flight levels, numerical techniques must be applied
to extrapolate aircraft profiles above the flight levels (e.g.,
Kulawik et al., 2021); however, the uncertainty of the extrap-
olated measurements at these levels must be accounted for as
it can propagate to the levels where there are actual aircraft
observations through the application of the averaging kernel
(Tang et al., 2020). For our study we simply fill the true air-
craft profile above the aircraft flight levels with the a priori
value. If the a priori value is representative of the average
true atmosphere, this assumption should be reasonable. We
explore the implications of this assumption using the NOAA
GML set in Sect. 4.3.

The approach for error validation in this paper will start
with a comparison of each AIRS-retrieved profile with the
corresponding matched aircraft profile convolved with the
averaging kernel; the results will be grouped in latitude bands
ranging from the tropics to subpolar regions. Next, theoreti-
cal errors represented by all but the smoothing term of the er-
ror covariance of Eq. (1) will be evaluated for each retrieval,
averaged within the latitude bands, and compared to the re-
trieval error standard deviation (uncertainty) and the a priori
error. Finally, empirical errors calculated from an ensemble
of retrieved profiles collocated with an aircraft profile as in
Boxe et al. (2010) and Oetjen et al. (2014) will be evaluated
for select CO plume and background cases. This approach
will be applied separately to the HIPPO, ATom, and NOAA
data sets, since each presented different characteristics.

4 Results

4.1 AIRS MUSES validation with HIPPO

The percent differences between AIRS MUSES and the
HIPPO aircraft profiles are shown in Fig. 3. The profiles are

plotted only up to 200 hPa, as there were few aircraft obser-
vations above that level, and are shown as the complete set
and binned by latitude bands. For all groupings the mean bi-
ases are positive in the lower troposphere; tend toward zero
in the middle troposphere, where the retrieval has greatest
sensitivity; and become negative in the upper troposphere.
The spread of the error profiles also tends to be narrower in
the middle of the troposphere. Table 1 shows statistics cor-
responding to these plots and for the profiles grouped by
land/ocean and day/night categories for selected pressure lev-
els. The lowest biases are within plus or minus 3.1 % and
occur at the 510 hPa level, while there are larger positive bi-
ases of 2 %–21 % at the 750 hPa level and negative biases up
to ∼ 15 % at the 287 hPa level. There were no substantial or
consistent differences for the error statics grouped by land vs.
ocean and day vs. night, which suggests that these categories
can be combined in the error analysis. Partial column average
mixing ratios (referred to hereafter as column average mixing
ratios) were calculated for each profile between the lowest to
the highest aircraft flight level. The column average CO mix-
ing ratios plotted by latitude (Fig. 4, top panel) show that the
30–90◦ S band was predominantly in a background regime,
with mixing ratios generally < 70 ppbv, and that mixing ra-
tios increased steadily with latitude to ∼ 150 ppbv by 30◦ N.
The average column CO mixing ratio bias (Fig. 4 bottom
panel) also shows a latitude dependence with higher mean
bias of ∼ 10–15 ppbv occurring near the 30◦ N band. In ad-
dition, the error distribution is highly skewed toward positive
numbers particularly in the 30–60◦ N latitude band (skew-
ness= 1.36), indicating that the errors are not normally dis-
tributed.

Beyond examining biases and variability of the retrieved
profiles, evaluating the retrieval error estimates is also impor-
tant, since they provide users with a measure of the reliabil-
ity of the data. Following Oetjen et al. (2014) and Kulawik et
al. (2021) we evaluated the AIRS MUSES retrievals by com-
paring the theoretical error estimates from the MUSES diag-
nostics to the actual retrieval error statistics described above.
Figure 5 shows the profiles of the fractional estimated ob-
servation errors, mean a priori error, AIRS–aircraft standard
deviation, and a priori–aircraft standard deviation. The errors
are binned by latitude band, and the 30–90◦ bands have been
divided into two bands of 30–60 and 60–90◦ in both hemi-
spheres to better capture the dependence of error character-
istics on latitude. The estimated observational error includes
the noise, systematic, and cross-state error terms as shown
in Eq. (1), and the mean a priori error is estimated from the
square root of the diagonal of the a priori covariance matrix.

The estimated observational errors (red lines are individ-
ual errors, and the blue lines are the mean) are lowest around
500 hPa, where AIRS sensitivity is greatest, and this pattern
is similar to the actual error profiles shown in Fig. 3. The
minimum error shifts downwards towards the poles, with the
smallest errors occurring lower at about 650 hPa in the Arctic
region 60–90◦ N; however, in the Antarctic region (60–90◦ S)
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210 J. D. Hegarty et al.: Validation and error estimation of AIRS MUSES CO

Figure 3. The AIRS MUSES–aircraft percent difference profiles for HIPPO. The number of profiles and the latitude bands are indicated in
the upper left of each panel. All HIPPO profiles were convolved with the averaging kernels (Eq. 2) before the differences were calculated.
The red lines indicate the individual profiles, the black solid lines the mean difference or bias, and the dashed lines 1 standard deviation from
the mean.

Table 1. AIRS–aircraft CO statistics for HIPPO campaign.

Bias SD Bias SD Bias SD Bias SD N profs
749.89 hPa 749.89 hPa 510.90 hPa 510.89 hPa 287.30 hPa 287.30 hPa column column

(%) (%) (%) (%) (%) (%) (%) (%)

All 4.56 15.69 0.95 12.19 −4.22 13.86 0.69 9.20 3734

30◦ S–30◦ N 9.09 23.71 0.77 10.00 −4.75 16.40 2.37 10.56 830
30–90◦ N 2.56 12.22 1.94 13.48 −2.35 13.35 0.62 8.99 2260
30–90◦ S 5.72 11.76 −2.29 8.99 −10.10 9.73 −1.21 7.50 644

Land 6.96 15.67 −0.12 12.22 −7.52 12.96 −0.32 8.96 930

30◦ S–30◦ N 21.07 24.69 0.38 8.21 −14.58 14.84 3.34 8.60 37
30–90◦ N 5.30 13.90 −0.88 11.80 −6.96 12.12 −0.42 9.05 799
30–90◦ S 3.90 10.53 −0.59 11.31 −7.55 11.54 −0.92 8.03 94

Ocean 3.76 15.62 1.31 12.16 −3.13 13.98 1.03 9.26 2804

30◦ S–30◦ N 8.53 23.53 0.78 10.08 −4.29 16.34 2.32 10.64 793
30–90◦ N 0.32 9.39 3.05 13.87 0.29 12.82 1.19 8.92 1461
30–90◦ S 6.03 11.95 −2.58 8.51 −10.53 9.33 −1.26 7.41 550

Day 4.70 15.18 0.10 12.01 −5.13 13.98 −0.11 8.73 1785

30◦ S–30◦ N 9.32 23.08 −1.13 10.86 −7.84 17.54 1.03 10.18 256
30–90◦ N 3.62 13.83 0.86 12.76 −3.47 13.87 −0.02 8.63 1210
30–90◦ S 5.08 10.80 −1.80 9.43 −9.28 9.24 −1.37 7.68 319

Night 5.30 16.88 1.16 11.93 −4.29 13.67 1.39 9.80 1723

30◦ S–30◦ N 8.99 24.01 1.61 9.48 −3.38 15.69 2.96 10.68 574
30–90◦ N 2.32 10.64 2.40 14.11 −2.33 12.55 1.26 9.82 824
30–90◦ S 6.34 12.63 −2.78 8.52 −10.90 10.14 −1.06 7.32 325
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Figure 4. The AIRS and HIPPO partial column average CO mixing
ratios (a) and AIRS–HIPPO column average CO mixing ratio dif-
ferences (b) by latitude. The column averages are calculated from
the lowest to the highest flight altitudes for each profile. The black
dots in panel (b) are the average differences within each 10◦ lati-
tude bin. The skewness of the error distribution is also shown. Skew
values greater (less) than 1 indicate significant positive (negative)
skew from a Gaussian distribution.

there were not enough AIRS–aircraft profile matches where
the AIRS profiles passed quality screening to provide a rea-
sonable set of statistics.

The standard deviation for the a priori–aircraft differences
(green) is lower than the standard deviation for the AIRS–
aircraft differences (black); for this data set the a priori pro-
files appear to be a better estimate of the true profiles than
the retrievals; however, the skewness of the column mixing
ratio differences suggests that Gaussian statistics do not pro-
vide an accurate representation of the error characteristics
of this data set; i.e., a simple average of error estimates is
not very meaningful. Note also the average estimated error
(blue) is significantly lower than the AIRS–aircraft differ-
ences (black) except below 600 hPa in the 30◦ S–60◦ N band,
which is also likely due to the skewness of the data differ-
ences.

An alternative approach for evaluating the theoretical error
is to compare it to the variability within the set of AIRS pro-
files collocated with an aircraft profile. If it is assumed that all
satellite footprints in the collocated set are basically seeing
the same scene, then the variability in the retrieved profiles
can be considered an empirical error (Oetjen et al., 2014).
In this analysis the empirical error is referred to simply as
the AIRS profile variability. Using this approach, plume and
background cases were selected for each of the five HIPPO
missions. The case profiles were chosen using the maximum
and minimum CO mixing ratios for each campaign at the
464.16 hPa pressure level of the remapped aircraft profiles. In
addition to the CO mixing ratio criteria a minimum of eight
co-located AIRS profiles that met the quality control stan-
dards had to be available for the case to be selected. A mean
observation error for this set of co-located AIRS profiles is
calculated like that in Fig. 5. The AIRS profile variability
was estimated as the square root of the diagonal of the covari-
ance matrix of all the coincident AIRS MUSES retrievals. In
general, for these cases, the AIRS profile variability was of
the same magnitude as the mean observation error, and the
absolute differences was less than 10 %. For the background
cases the AIRS profile variability is generally comparable to
the mean observation error. For the plume cases, we might
expect to see larger discrepancies between the mean obser-
vation error and the AIRS profile variability due to actual
atmospheric variability in the region of the plume.

Illustrative cases for HIPPO-2 and HIPPO-3 are presented
in Fig. 6. The plume case for HIPPO-2 is in the Arctic;
the aircraft data feature a very high spike (∼ 270 ppbv) near
400 hPa that the mean AIRS profile does not capture (Fig. 6
bottom left panel). The AIRS profile variability has a large
peak > 15 % at about the same level that is much larger
than the mean observation error (Fig. 6 top left panel). For
the HIPPO-3 plume case the observed CO is also high, with
peaks greater than 200 ppb in the middle troposphere. In this
case, the AIRS mean retrieval does capture a peak (Fig. 6
right bottom panel), and the AIRS profile variability and
mean observation error are in reasonable agreement.

4.2 AIRS MUSES validation with ATom

The same steps were followed for the analysis of the ATom
data set. The percent differences between AIRS MUSES and
the ATom aircraft profiles are shown in Fig. 7 for different
latitude bands, and the error statistics corresponding to these
plots are shown in Table 2. As with HIPPO the smallest bi-
ases are in the middle troposphere and cover a similar range
(from∼−4 % to+5 % vs.−3 % to+3 %). Like HIPPO, the
average column mixing ratios (Fig. 8) show the same gen-
eral dependence on latitude, as do the column errors. How-
ever, for HIPPO the aircraft column average CO mixing ra-
tios in the 30◦ S–10◦ N band were all less than 100 ppbv
(Fig. 4 top), whereas for ATom they were much more vari-
able and were as high as ∼ 130 ppbv (Fig. 8 top). For 30–
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Figure 5. Estimated observational error analysis for the HIPPO data set. Estimated observation errors for each AIRS MUSES CO retrieval
(dotted red lines), the mean observation error (solid blue line and triangles), the mean a priori error estimate (green line), and the standard
deviation of the AIRS–HIPPO aircraft profiles differences and the standard deviation of the a priori–aircraft profile differences. The profiles
are binned by latitudes bands 30–60◦ N (a), 60–90◦ N (b), 30◦ S–30◦ N (c), 30–60◦ S (d), and 60–90◦ S (e).

40◦ N the HIPPO column mixing ratios ranged from ∼ 70
to ∼ 140 ppbv, whereas for ATom they were lower, ranging
from ∼ 60 to ∼ 125 ppbv. These differences in air mass CO
were associated with ATom errors that were positive in the
30◦ S–10◦ N band and negative around 30◦ N (Fig. 8 bot-
tom), and the opposite sign errors were in the correspond-
ing latitude bands for HIPPO. The estimated observational
errors for ATom (Fig. 9) were smallest in the middle tropo-
sphere, like HIPPO. However, the standard deviation of the
AIRS–aircraft differences is smaller for the ATom compar-
isons than for the HIPPO comparisons. In the vertical range
where AIRS has good sensitivity to CO (∼ 600–200 hPa), the

standard deviation of the AIRS–ATom differences is gener-
ally less than the standard deviation of the a priori–ATom
differences, except south of 30◦ S, where there are mostly
low levels of CO. The distribution of errors for 30–60◦ N is
less skewed than for HIPPO (0.54 vs. 1.36), suggesting that
a Gaussian distribution of errors is a reasonable assumption
for this data set. The difference between HIPPO and ATom
was most evident in the 30–60◦ N band where for HIPPO the
retrieval error standard deviation was ∼ 4 % larger than the
a priori error standard deviation (Fig. 6), whereas for ATom
the retrieval error standard deviation was ∼ 5 % smaller than
the a priori error standard deviation.
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Figure 6. Mean observation error and AIRS profile variability for selected plume and background cases from the HIPPO campaign (a, b).
Mean observation errors are black (plume profiles) and blue (background profiles), and AIRS profile variabilities are red (plume profiles)
and green (background profiles). In panels (c) and (d) the plume (red) and background (green) HIPPO and average AIRS profiles (plume
black, background blue) corresponding to the mean observation error and AIRS profile variability profiles in panels (a) and (b) are shown.
The HIPPO profiles are shown without (solid) and with (dotted) the application of the AIRS averaging kernel. The average AIRS a priori
profiles are shown for the plume cases only as black dots.

Figure 7. The AIRS MUSES–aircraft percent difference profiles for ATom campaigns 1–3. The number of profiles and the latitude bands are
indicated in the upper left. All ATom profiles were convolved with the averaging kernels (Eq. 2) before the differences were calculated. The
red lines indicate the individual profiles, the black solid lines the mean difference or bias, and the dashed lines 1 standard deviation from the
mean.
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Table 2. AIRS–aircraft CO statistics for ATom campaigns 1–3.

Bias SD Bias SD Bias SD Bias SD N profs
749.89 hPa 749.89 hPa 510.90 hPa 510.89 hPa 287.30 hPa 287.30 hPa column column

(%) (%) (%) (%) (%) (%) (%) (%)

All 5.19 13.40 −1.10 10.58 −6.84 10.91 0.02 8.26 1324

Pacific 4.46 11.80 −2.90 10.35 −7.55 9.32 −1.14 7.33 708

30◦ S–30◦ N 13.46 21.70 4.81 8.62 −3.49 16.93 6.22 8.34 237
30–90◦ N 3.83 10.01 −2.55 11.00 −7.43 9.25 −1.07 7.69 840
30–90◦ S 1.84 9.44 −1.81 8.77 −8.03 7.69 −2.21 7.21 247

Land 1.98 8.69 −2.78 9.55 −6.41 9.58 −1.94 7.16 349

30◦ S–30◦ N – – – – – – – – 0
30–90◦ N 1.94 8.65 −2.82 9.65 −6.40 9.80 −1.98 7.13 326
30–90◦ S 2.46 9.52 −2.06 8.18 −6.58 5.54 −1.44 7.64 23

Ocean 6.33 14.56 −0.50 10.87 −6.99 11.34 0.72 8.51 975

30◦ S–30◦ N 13.46 21.70 4.81 8.62 −3.49 16.93 6.22 8.34 237
30–90◦ N 5.02 10.63 −2.38 11.78 −8.09 8.83 −0.50 7.98 514
30–90◦ S 1.77 9.45 −1.80 8.84 −8.18 7.87 −2.29 7.17 224

Day 4.56 12.17 −0.57 10.35 −5.80 10.86 0.10 7.49 734

30◦ S–30◦ N 10.17 21.07 5.65 10.10 −0.07 19.17 5.39 8.20 99
30–90◦ N 4.15 9.58 −1.68 10.13 −6.77 8.68 −0.52 6.62 512
30–90◦ S 1.78 10.72 −0.95 9.74 −6.39 8.17 −1.56 8.48 123

Night 6.36 15.21 −1.39 10.87 −8.12 10.94 0.24 9.19 546

30◦ S–30◦ N 15.82 21.90 4.20 7.36 −5.95 14.71 6.81 8.42 138
30–90◦ N 3.72 11.23 −3.54 12.47 −8.51 10.27 −1.60 9.27 284
30–90◦ S 1.89 8.01 −2.68 7.62 −9.66 6.83 −2.85 5.63 124

NA: not available.

The reason for the better retrieval performance relative to
the prior for the ATom vs. the HIPPO comparisons is not im-
mediately clear. For the 30–60◦ N latitude band, the mean
and standard deviation of the average column CO amounts
for HIPPO and ATom were similar at 103 and 108 ppbv and
409 and 445 ppb respectively. The data sets have similar sea-
sonal coverage. There was a significant difference in geo-
graphic coverage: the HIPPO flights only covered the Pacific
Ocean and adjacent land, whereas ATom additionally flew
over the Atlantic Ocean (Fig. 1). To determine if this differ-
ence influenced the statistics a subset of the ATom data set
was generated that considers only points west of 75◦W lon-
gitude. The statistics for this case are shown in Table 2 in the
row labeled “Pacific”. While the bias at 510 hPa is slightly
more negative for the Pacific case at −2.98 % compared to
−1.10 % for all cases, the standard deviation of the AIRS–
aircraft differences is similar. Furthermore, for the Pacific
case there was no significant skew in the column average
mixing ratio error distribution (30–60◦ N skewness= 0.29),
and the estimated observation error profiles (not shown) were
similar to those in Fig. 9. Therefore, it does not appear that

the different geographic coverage between HIPPO and ATom
was the cause of the differences in the error statistics.

Figure 10 shows example comparisons of mean observa-
tion error and AIRS profile variability estimates for selected
AIRS–ATom matches (as presented for HIPPO in Fig. 6).
The plume in the ATom-1 example is retrieved at a much
higher altitude than observed, and the AIRS profile variabil-
ity is much greater than the mean observation error (Fig. 10
left panels), while in the ATom-2 example there is a better
agreement between the retrieved and observed profiles, and
the AIRS profile variability and mean observation error are
comparable. Overall, this analysis shows similar features to
the analysis of estimated observation errors by latitude band
in Fig. 9.

4.3 AIRS MUSES validation with NOAA GML

The NOAA GML data set was much larger, spanning a much
longer period (2006–2017), but provided results over only a
limited number of locations in North America (Fig. 1). For
the NOAA GML set the AIRS MUSES retrieval error pro-
files are shown in Fig. 11 and statistics are shown in Table 3.
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Figure 8. The AIRS and ATom partial column average CO mixing
ratios (a, b) and AIRS–ATom column average CO mixing ratio dif-
ferences (c, d) by latitude. The column averages are calculated from
the lowest to the highest flight altitudes for each profile. The black
dots in the bottom figure are the average differences within each 10◦

latitude bin.

Table 3 indicates that there are about a third of the matched
profiles listed as ocean points, which seems to contradict the
map in Fig. 1 that shows all the NOAA GML locations over
land. However, the land/ocean classification is based on the
MUSES land/ocean flag, and several of the NOAA GML
locations are at the coast and one, “cma”, is identified as
offshore Cape May. Therefore, a substantial number of the
AIRS FOVs within the 50 km radius of the NOAA GML pro-
files near the coast and those corresponding to “cma” were
classed as ocean.

The column average mixing ratio errors by latitude are
shown in Fig. 12. Overall, the retrievals have a noticeably
larger positive bias in the lower troposphere compared to the
HIPPO and ATom sets.

At the 510 hPa level the biases over land/ocean and
day/night categories range from 4.9 %–9.6 % for the NOAA
GML set (Table 3) compared to less than plus or minus 4 %
for the HIPPO and ATom sets in the corresponding 30–90◦ N

latitude band (Tables 1 and 2). The column average mix-
ing ratios are also biased much higher, ranging from 7.2 %–
10.7 % for NOAA GML (Table 3) compared to within plus
or minus 2 % for the HIPPO and ATom sets (Tables 1 and
2). The higher biases seem consistent across the latitudinal
range of the NOAA GML observations as shown in Fig. 12.
The theoretical observations errors for the NOAA GML set
(Fig. 13) are similar to those of the HIPPO set (Fig. 5) with
larger AIRS MUSES–aircraft error standard deviations than
the mean observation errors and the a priori error standard
deviations. As with HIPPO the column average mixing ra-
tio errors are highly skewed toward positive values with an
overall skewness of 1.57. This suggests that the assumption
of a Gaussian error distribution upon which the observational
error analysis is based is also not valid for the NOAA GML
set.

We hypothesized that the higher retrieval biases for the
NOAA GML set may be an artifact of larger errors asso-
ciated with extrapolation of the aircraft profiles above the
uppermost measurement altitude. The NOAA GML profiles
have an average highest flight level near 440 hPa compared
to 290 hPa for the HIPPO and ATom sets, and therefore there
are more retrieval levels to fill in the remapped aircraft pro-
file. These extra fill levels can cause greater error uncertainty
in the lower levels when the averaging kernel matrix is ap-
plied. Tang et al. (2020) found that errors in MOPITT aircraft
CO comparisons were very sensitive in the middle and upper
troposphere to the method used to extend the aircraft profile.

To test the sensitivity of the AIRS retrieval statistics to the
mixing ratio values used to fill the aircraft profiles, an addi-
tional set of statistics was generated using a scaled a priori
value to fill the aircraft profiles above the flight levels. The
scaled a priori value used a constant scale ratio between the
mixing ratio at the highest aircraft level and the a priori at that
level. The retrieval statistics for this experiment are shown in
the last row of Table 3. For the scaled a priori fill case the
bias at 510 hPa is only 0.7 % but the column average mixing
ratio bias is still large at 5.8 %. Clearly the choice of fill value
has a large impact on the retrieval error statistics.

The 12 years of NOAA GML CO profiles 2006–2017 pro-
vided the opportunity to investigate the retrieval performance
over time as shown in the AIRS and aircraft time series plot
of Fig. 14. There is a distinct seasonal cycle in the NOAA
GML observations with high values occurring during the
Northern Hemisphere winter and lower values in the sum-
mer, which is also captured by the AIRS retrievals. The bias
drifts over this period (Fig. 15) are small, < 0.5 % yr−1 in
magnitude, for all levels and the column average. They are
also of approximately the same magnitude as those reported
by Deeter et al. (2019) for MOPITT. There is a distinctive
seasonal cycle to the bias errors in middle and lower tropo-
sphere and column averages with biases as high as 20 % in
the summer months and biases approaching zero during the
winter months. We hypothesize that this pattern is a result
of greater photolytic destruction of the CO in the summer
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Figure 9. Estimated observational error analysis for the ATom data set. Estimated observation errors for each AIRS MUSES CO retrieval
(dotted red lines), the mean observation error (solid blue line and triangles), the mean a priori error estimate (green line), and the standard
deviation of the AIRS MUSES–ATom aircraft profiles differences and the standard deviation of the a priori–aircraft profile differences. The
profiles are binned by latitudes bands 30–60◦ N (a), 60–90◦ N (b), 30◦ S–30◦ N (c), 30–60◦ S (d), and 60–90◦ S (e).

Table 3. AIRS–aircraft CO statistics for the NOAA GML observations. By default, the aircraft profiles are filled above the flight levels with
the a priori profile. Additional statistics are generated by filling above the flight level with the a priori scaled by the difference between the a
priori and the aircraft value at the highest flight level (All scale fill).

Bias SD Bias SD Bias SD Bias SD N profs
749.89 hPa 749.89 hPa 510.90 hPa 510.89 hPa 287.30 hPa 287.30 hPa column column

(%) (%) (%) (%) (%) (%) (%) (%)

All 12.85 18.33 6.68 15.49 −4.37 15.76 9.42 13.50 10 044
Land 13.79 20.34 6.99 16.78 −4.40 16.83 10.25 15.07 6534
Ocean 11.11 13.67 6.08 12.74 −4.30 13.53 7.90 9.76 3510
Day 15.41 20.63 4.91 14.24 −6.70 14.37 10.74 14.96 6289
Night 8.57 12.51 9.64 16.99 −0.46 17.14 7.20 10.24 3755
All scale fill 9.82 18.22 0.67 15.09 −10.21 15.45 5.75 13.31 10 044
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Figure 10. Mean observation error and AIRS profile variability for selected plume and background cases from the ATom campaigns (a, b).
Mean observation errors are black (plume profiles) and blue (background profiles), and AIRS profile variabilities are red (plume profiles) and
green (background profiles). In panels (c) and (d) the plume (red) and background (green) ATom and average AIRS profiles (plume black,
background blue) corresponding to the mean observation error and AIRS profile variability in (a) and (b) are shown. The ATom profiles are
shown without (solid) and with (dotted) the application of the AIRS averaging kernel. The average AIRS a priori profiles for the plume cases
only are shown as black dots.

Figure 11. The AIRS MUSES–aircraft percent difference profiles
for NOAA GML aircraft observations. All aircraft profiles were
convolved with the averaging kernels (Eq. 2) before the differences
were calculated. The red lines indicate the individual profiles, the
black solid lines the mean difference or bias, and the dashed lines
1 standard deviation from the mean.

months leading to lower background values not always cap-
tured by the retrieval perhaps due to average a priori profiles
being too high. We also examined the relationship between
retrieval bias and the CO mixing ratio (Fig. 16). The bias
sensitivity is greater in the lower troposphere with average
biases at the 749 hPa pressure level ranging from positive
20 % at low CO mixing ratios to near zero at higher mix-
ing ratios with an average slope of −0.16 % ppbv−1. At the
510 hPa pressure level and for the column averages there is
no marked dependence.

5 Discussion and conclusions

A total of 15 112 quality-controlled AIRS single-footprint
CO retrievals were evaluated with a total of 1310 aircraft
profiles from the HIPPO and ATom aircraft campaigns and
the ongoing NOAA GML measurement program. Single-
footprint retrievals provide better spatial resolution over the
AIRS operational CO product that uses a 3×3 footprint array
of cloud-cleared radiances. The enhanced resolution should
enable plumes from local anthropogenic sources and small
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Figure 12. The AIRS and NOAA GML partial column average CO
mixing ratios (a) and AIRS–NOAA GML aircraft column average
CO mixing ratio differences (b) by latitude. The column averages
are calculated from the lowest to the highest flight altitudes for each
profile. The black dots in the bottom figure are the average differ-
ences within each 10◦ latitude bin.

fires to be better resolved and tracked. This evaluation seeks
to quantify the error uncertainty in this new product to pro-
vide end users a measure of its reliability.

The AIRS CO retrievals were produced using the MUSES
optimal estimation algorithm that utilizes techniques first ap-
plied to the Aura TES instrument. The AIRS profiles were
matched with aircraft profiles with space and time coinci-
dence criteria of 50 km and 9 h. The aircraft profiles of CO
mixing ratio were first convolved with the AIRS averaging
kernel to account for AIRS vertical sensitivity and then com-
pared with the retrieved profiles. In addition, partial column
average CO mixing ratios (referred to as column average
mixing ratios for simplicity) defined as those between the
highest and lowest aircraft flight level for each profile were
estimated and compared to the corresponding AIRS values.

The averaging kernels generated by the MUSES algorithm
indicated that the level of greatest AIRS sensitivity to CO
was in the middle troposphere at or near the 510 hPa retrieval

Figure 13. Estimated observational error analysis for the NOAA
GML data set. Estimated observation errors for each AIRS MUSES
CO retrieval (dotted red lines), the mean observation error (solid
blue line and triangles), the mean a priori error estimate (green line),
and the standard deviation of the AIRS MUSES–NOAA GML air-
craft profiles differences and the standard deviation of the a priori–
aircraft profile differences. The profiles are binned by latitudes
bands 30–60 (a) and 60–90◦ N (b).

level. The estimated observation error also showed the lowest
values at this level. Overall mean biases were +6.6± 4.6 %,
+0.6± 3.2 %, −6.1± 3.0 %, and 1.4± 3.6 % for 750, 510,
287 hPa, and the full column, respectively (Table 4). The
mean standard deviations were 15 %, 11 %, 12 %, and 9 %
at these same pressure levels, respectively. For the HIPPO
and ATom profile sets, the overall biases at the 510 hPa level
were 0.95 % and −1.10 % respectively. For both HIPPO and
ATom, the AIRS CO comparison statistics had little sensitiv-
ity to land/ocean or day/night categorization. Column aver-
age mixing ratios by latitude for both sets exhibited lower
mixing ratios in the 30–90◦ S band of about 50–70 ppbv,
with increasing values toward the north reaching ∼ 125–
150 ppbv at 30◦ N. While the column average errors were
similar in both sets, the errors were highly skewed in the pos-
itive for HIPPO particularly in the 30–60◦ N latitude bands.
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Table 4. Summary AIRS–aircraft CO statistics for all aircraft campaigns and categorizations.

Bias SD Bias SD Bias SD Bias SD
749.89 hPa 749.89 hPa 510.90 hPa 510.90 hPa 287.30 hPa 287.30 hPa column column

(%) (%) (%) (%) (%) (%) (%) (%)

All average 6.6 14.7 0.6 11.0 −6.1 12.4 1.4 8.9
All SD 4.6 5.0 3.2 2.3 3.0 3.3 3.6 1.9
HIPPO 4.56 15.69 0.95 12.19 −4.22 13.86 0.69 9.20
ATom 5.19 13.40 −1.10 10.58 −6.84 10.91 0.02 8.21
NOAA GML 12.85 18.33 6.68 15.49 −4.37 15.76 9.42 13.50

Figure 14. AIRS MUSES CO retrieval (red) and corresponding
NOAA GML observations (blue) for select pressure levels and the
aircraft column averages.

Figure 15. AIRS MUSES CO retrieval relative bias (%) drift for se-
lect pressure levels and the aircraft column averages for the NOAA
GML observations.

Estimated observation errors from the AIRS MUSES algo-
rithm were generally small as expected in the middle tro-
posphere where AIRS has good sensitivity. However, for
HIPPO in the 30–60◦ N band the retrieval error standard de-

Figure 16. AIRS MUSES CO retrieval relative bias (%) versus CO
for select pressure levels and the aircraft column averages for the
NOAA GML observations.

viation was∼ 4 % higher than expected, possibly because the
algorithm assumes a Gaussian error distribution and the er-
rors were highly positively skewed in that region. The AIRS
retrievals were able to distinguish between plume and back-
ground cases in the HIPPO case but were not always able to
capture sharp vertical gradients or pinpoint the vertical loca-
tion of the plume feature.

The retrieval errors for the NOAA GML profiles were
considerably higher than those for the HIPPO and ATom
sets. The 510 hPa and column average biases were 6.7 %
and 9.4 % respectively. Like HIPPO, the column average er-
rors were highly skewed in the positive, suggesting a non-
Gaussian distribution of errors and possibly explaining the
much higher error standard deviation than the estimated the-
oretical observation error. The statistics of AIRS–aircraft dif-
ferences were shown to be very sensitive to the values used to
fill the aircraft profiles above the flight level due to the prop-
agation of error uncertainty to lower retrieval levels through
the averaging kernel convolution procedure. Using a scaled
a priori profile for the fill value resulted in a considerably
smaller bias at the 510 hPa level of 0.7 % and a slightly
smaller column average bias of 5.8 %.

The results of the NOAA GML comparisons were more
strongly affected by the choice of fill value above the flight
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level than the HIPPO or ATom comparisons since the NOAA
GML profiles had a lower top with an average of 440 hPa
compared to HIPPO and ATom with an average top at
290 hPa.

The 12 years of NOAA GML CO profiles 2006–2017
provided the opportunity to evaluate the AIRS MUSES re-
trieval performance over time. The AIRS MUSES retrievals
mostly capture the distinct observed seasonal cycle that fea-
tured higher mixing ratios in the winter and lower mixing
ratios in the summer. However, the AIRS CO mixing ratios
seemed to be biased high by ∼ 20 % in the summer in the
lower troposphere. The bias drift for 2006 to 2017 was also
evaluated using the NOAA GML set and shown to be small
(< 0.5 % yr−1).

Overall, these validation results show no appreciable lat-
itudinal dependence in the bias and that the bias drift over
time is small. This suggests that the retrieval data can be used
reliably to compare regional differences in CO mixing ratios
and to track trends over time. Furthermore, the higher spatial
resolution compared to the operational product should en-
able better detection and tracking of small plumes and more
robust trend analysis of the higher end mixing ratios that are
likely to be muted due to smoothing in the coarser product.
An important finding for future algorithm development was
that the algorithm-diagnosed observation errors were under-
estimating the actual retrieval errors. The cause of this under-
estimation requires further investigation.

Data availability. The original HIPPO data file can be ob-
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house Gases (CCGG) data program. The ATom aircraft data were
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et al., 2018). AIRS MUSES CO products are available via
the GES DISC from the NASA TRopospheric Ozone and its
Precursors from Earth System Sounding (TROPESS) project at
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