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Abstract. Mapping trace gas emission plumes using in situ
measurements from unmanned aerial vehicles (UAVs) is an
emerging and attractive possibility to quantify emissions
from localized sources. Here, we present the results of an ex-
tensive controlled-release experiment in Dübendorf, Switzer-
land, which was conducted to develop an optimal quantifica-
tion method and to determine the related uncertainties un-
der various environmental and sampling conditions. Atmo-
spheric methane mole fractions were simultaneously mea-
sured using a miniaturized fast-response quantum cascade
laser absorption spectrometer (QCLAS) and an active Air-
Core system mounted on a commercial UAV. Emission fluxes
were estimated using a mass-balance method by flying the
UAV-based system through a vertical cross-section down-
wind of the point source perpendicular to the main wind di-
rection at multiple altitudes. A refined kriging framework,
called cluster-based kriging, was developed to spatially map
individual methane measurement points into the whole mea-
surement plane, while taking into account the different spa-
tial scales between background and enhanced methane val-
ues in the plume. We found that the new kriging framework
resulted in better quantification compared to ordinary krig-
ing. The average bias of the estimated emissions was −1 %,
and the average residual of individual errors was 54 %. A

Direct comparison of QCLAS and AirCore measurements
shows that AirCore measurements are smoothed by 20 s and
had an average time lag of 7 s. AirCore measurements also
stretch linearly with time at an average rate of 0.06 s for ev-
ery second of QCLAS measurement. Applying these correc-
tions to the AirCore measurements and successively calcu-
lating an emission estimate shows an enhancement of the ac-
curacy by 3 % as compared to its uncorrected counterpart.
Optimal plume sampling, including the downwind measure-
ment distance, depends on wind and turbulence conditions,
and it is furthermore limited by numerous parameters such
as the maximum flight time and the measurement accuracy.
Under favourable measurement conditions, emissions could
be quantified with an uncertainty of 30 %. Uncertainties in-
crease when wind speeds are below 2.3 m s−1 and direc-
tional variability is above 33◦, and when the downwind dis-
tance is above 75 m. In addition, the flux estimates were also
compared to estimates from the well-established OTM-33A
method involving stationary measurements. A good agree-
ment was found, both approaches being close to the true re-
lease and uncertainties of both methods usually capturing the
true release.
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1 Introduction

Methane emissions from localized sources such as oil- and
gas-production facilities are often caused by leakage giving
rise to highly uncertain emission fluxes with high spatial and
temporal variability (Kemp et al., 2016; Fox et al., 2019).
A significant disparity was observed, for example, between
facility-observed bottom-up emission inventories and a more
traditional component-based emission inventory (Brandt et
al., 2014; Alvarez et al., 2018). Observation-based estimates
from the United States indicate that emissions from oil and
gas are underestimated in official emission inventories (Al-
varez et al., 2018; Omara et al., 2018; Zhang et al., 2020).
Further measurements of leakage rates from oil- and gas-
production facilities in other regions of the world, such as
those conducted during the ROmanian Methane Emissions
from Oil and gas (ROMEO) measurement campaign in Ro-
mania (Röckmann and the ROMEO team, 2020), are there-
fore essential to validate and improve current estimates.

A broad range of methods of methane emission quantifica-
tion for facility-scale sources has been developed, which in-
cludes ground-based thermal imaging (Gålfalk et al., 2016),
aircraft remote sensing (Frankenberg et al., 2016; Kuai et al.,
2016; Thorpe et al., 2016), chamber sampling (Kang et al.,
2014; Yver Kwok et al., 2015), ground-based tracer-release
correlation (Lamb et al., 2015, 2016; Omara et al., 2016;
Roscioli et al., 2015; Feitz et al., 2018; Fjelsted et al., 2020)
and Gaussian plume matching (Ars et al., 2017; Bakkaloglu
et al., 2021). Some of these methods, for example, tracer-
release correlation, are quite accurate but expensive, intru-
sive, and time-consuming, while other methods suffer from
large, poorly quantifiable uncertainties.

An emerging and attractive approach to quantify emissions
from point sources, or more generally from spatially local-
ized sources, involves deploying integrated unmanned aerial
vehicle (UAV) systems capable of measuring atmospheric
trace gas concentrations. The most common ways of mea-
suring methane from UAVs include (1) collection of ambient
air samples using onboard storage equipment and subsequent
analysis of the samples with instrumentation on the ground
(Chang et al., 2016; Greatwood et al., 2017; Andersen et al.,
2018), (2) live analysis of air samples pumping air into a
long tube connected to a ground-based analyser (Brosy et
al., 2017; Shah et al., 2019), and (3) in situ reporting of mea-
surements using an analyser mounted on the UAV (Berman
et al., 2012; Nathan et al., 2015; Golston et al., 2017; Mar-
tinez et al., 2020; Tuzson et al., 2020). Small UAVs with pay-
loads of a few kilograms are affordable, versatile, and much
more easy to deploy compared to larger UAVs or aircraft.
UAVs allow the plume to be transected over its entire verti-
cal and horizontal extent, which reduces the dependence on
assumptions on horizontal and vertical dispersion compared
to ground-based mobile or stationary measurements that only
capture a small portion of the plume.

Although UAV-based methane measurements are gain-
ing popularity, systematic studies on testing and comparing
different quantification methods and analysing the different
sources of uncertainty are still sparse (Golston et al., 2018;
Yang et al., 2018; Shah et al., 2019; Hollenbeck et al., 2021;
Shaw et al., 2021). The main goal of this study is to de-
velop an improved strategy to quantify local methane sources
using UAV measurements and to test this strategy on UAV
measurements obtained downwind from sources with known
fluxes. It is crucial to test a new quantification technique
with a set of sources with a known release before applying
the technique to sources with unknown emissions (Feitz et
al., 2018; Shah et al., 2020). To this end, we designed the
MethAne Release Experiment (MATRIX), where a series of
controlled and partly blind methane releases were performed
from 9 February to 14 March 2020 in Dübendorf, Switzer-
land. Methane mole fractions were measured using a UAV-
based sensor (Tuzson et al., 2020) and an active AirCore sys-
tem (Andersen et al., 2018). Adopting the mass-balance ap-
proach, the UAV was flown downwind of the source perpen-
dicular to the main wind direction at different vertical levels
to derive emission fluxes. In this study, we describe a novel
quantification approach and report on its capability to repro-
duce known emissions. Furthermore, we investigate this ap-
proach and its sensitivity to different measurement configura-
tions and provide recommendations for an optimal sampling.

The new UAV-based quantification approach presented
here was developed to support the ROMEO campaign
that took place in September and October 2019. With
415.60 kt CH4 yr−1, Romania has one of the highest per-
capita methane emissions from the energy sector in the Eu-
ropean Union, according to the latest UNFCCC 2018 report.
This emission estimate was mainly derived using prescribed
Tier 1 emission factors following the IPCC guidelines for
national reporting, which are both non-country-specific and
quite uncertain. The ROMEO campaign was, thus, put into
action to investigate the accuracy of this estimate. Eight
ground measurement teams, including our UAV system, were
deployed to quantify methane emissions from over 1000 oil-
and gas-production facilities (Röckmann and the ROMEO
team, 2020). Reported emissions from UAV-based measure-
ments collected in the western region of Wallachia, Roma-
nia, during the ROMEO campaign were generated using the
quantification approach developed in this study.

In this paper, we give first an overview of the instruments
used in the controlled-release experiment (Sect. 2), followed
by the details regarding the setup of the experiments and the
mass-balance approach in Sect. 3. The data treatment and
interpolation schemes applied to the measurements of both
methane and wind are discussed in Sect. 4. Quantification
results from the controlled-release experiments are presented
in Sect. 5.

Atmos. Meas. Tech., 15, 2177–2198, 2022 https://doi.org/10.5194/amt-15-2177-2022



R. Morales et al.: Uncertainties in drone-based methane emission quantification 2179

Figure 1. The embedded UAV system used for CH4 detection:
the QCLAS analyser and the active AirCore sampling system are
mounted below a Matrice 600 DJI hexacopter equipped with an
RTK-GPS system.

2 Instruments

The in situ measurements of atmospheric CH4 mole frac-
tions were performed using two different techniques: (i) a
lightweight laser absorption spectrometer and (ii) an ac-
tive AirCore system. These devices were mounted beneath
a commercial hexacopter (Matrice 600, DJI), equipped with
an RTK-GPS receiver (NEO-M8P-2, SparkFun) for accurate
positioning of the UAV in all three dimensions. The inte-
grated system, illustrated in Fig. 1, weighs about 13 kg, of
which the payload is around 3 kg and can have a maximum
flight time of 20 min.

2.1 Quantum cascade laser spectrometer (QCLAS)

The in situ airborne analyser, developed at Empa, is a com-
pact and lightweight mid-IR laser absorption spectrometer
(Graf et al., 2018; Tuzson et al., 2020) capable of measuring
atmospheric methane mole fractions at 1 s time resolution.
The instrument achieves a precision (1σ) of 1.1 ppb at 1 s
and 0.1 ppb at 100 s averaging time. This performance is also
mainly preserved under flight conditions. The analyser has a
compact footprint (15×45×25 cm3) and weighs only 2.1 kg,
including batteries.

The analyser uses a distributed feedback (DFB) quantum
cascade laser (QCL) emitting in the mid-infrared at 7.83 µm.
During the flight, air flows passively through an open cir-
cular absorption cell of 77 mm radius. Multiple reflections

of the laser beam on the segmented inner surface result in
an effective optical path of about 10 m. The compact design
of the multipass cell combines the advantage of a long opti-
cal path with mechanical stability, allowing for efficient and
interference-free beam folding (Graf et al., 2018).

The energy consumption of the spectrometer has been
minimized using a customized system-on-chip (SoC) FPGA-
based hardware control and data acquisition as well as a
custom-made laser driving electronics (Liu et al., 2018). The
instrument’s precision, linearity, and calibration were char-
acterized and consequently validated under field conditions
(Tuzson et al., 2020). Briefly, the instrument was calibrated
by inserting it into a custom-built small-volume (60 L) cli-
mate chamber. This chamber was then hermetically sealed
and continuously purged with a certified calibration gas with
high CH4 concentration (200ppm± 1%; PanGas, Switzer-
land). Furthermore, the gas was dynamically diluted with dry
nitrogen (N2) in a stepwise fashion using calibrated mass
flow controllers. The overall uncertainty was estimated to
be ±2 %. Repeated experiments showed that the instrument
preserves its linearity, and only a marginal drift may appear
in the offset. This, however, is fully accounted for when ap-
plying the background CH4 subtraction step (see Sect. 4.4).
Real-time data synchronization between the instrument and a
computer on the ground is made possible by a wireless bidi-
rectional data link (SkyHopper PRO). This allows for real-
time access to the raw spectra and all hardware parameters
during the flights, which enables the operator to do real-time
spectral fitting and logging. Thus, the operator is provided
with full control of the hardware, continuous monitoring of
the instrument’s status, and in situ monitoring of the ambient
CH4 values during the flights.

2.2 Active AirCore

The active AirCore, designed for atmospheric sampling on
a UAV, consists of 50 m thin-wall stainless-steel tubing, a
dryer, a micro-pump, and a data logger (Andersen et al.,
2018). The whole system is enclosed in a carbon fibre box
with a compact footprint (1.1 kg, 34×19.5×12.0 cm3) mak-
ing it suitable for UAV-based measurements.

Prior to each quantification flight, the active AirCore is
flushed with a calibrated fill gas and spiked with about
10 ppm CO, in order to identify the starting point of ambi-
ent air sampling. Shortly before the integrated UAV system
takes off, the micro-pump is turned on to sample ambient air,
and immediately after the quantification flight, it is turned off
to stop sampling ambient air. The active AirCore samples are
then consequently analysed on site with a trace gas analyser
(cavity ring-down spectroscopy (CRDS) G2401-m, Picarro,
Inc., CA, USA). The precision (1σ , 0.25 Hz) of the CRDS
analyser was determined to be better than 0.7 ppb. A single-
point calibration was used to correct the potential drift of the
CRDS measurements. Measured methane mole fraction ob-
tained using the AirCore system was linked to a known cali-
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bration standard that is traceable to the WMO X2004A CH4
scale (Vinkovic et al., 2022)

2.3 RTK-GPS system

Readily available commercial UAVs, including the Matrice
600 DJI, rely on a simple global positioning system (GPS),
similar to systems found in other utilities such as mobile
phones and smart watches. GPS readings combined with am-
bient pressure measurements are used to obtain the spatial
coordinates, specifically the altitude, of the UAV at the time
of flight. Manufacturer specification reports vertical accuracy
of this type of UAVs to be ±0.50 m. However, this level of
accuracy is not sufficient for our purpose that requires a pre-
cise spatial mapping of the plumes, especially with respect to
height.

Alternatively, real-time kinematic (RTK) positioning can
be employed to enhance positioning accuracy. Nowadays, ac-
curacy at the level of centimetres is possible, even with low-
cost receivers (such as the NEO-M8P), by capturing mea-
surements of carrier phase signals from the GPS satellites
and then post-processing the logs with open-source programs
(e.g. RTKLIB). For our purpose, we deployed two RTK-GPS
boards from SparkFun. The rover was integrated with the
data acquisition of the UAV-based QCLAS system, while
the second board was deployed as a stand-alone, battery-
powered base station. Post-processing of raw data was done
using RTKLIB, which returns corrected coordinates.

A direct comparison of an altitude time series between the
UAV-GPS and the RTK-GPS data in one of our flights is pre-
sented in Fig. 2. Quantified average drift of the UAV-GPS for
the entire duration of the controlled-release experiment was
found to be 0.1 cm s−1, equivalent to 0.6 m of altitude drift
for a 10 min duration measurement flight. Details on how this
altitude drift affects our quantification estimate are discussed
in Sect. 5.1.1

3 Controlled-release experiment

The release experiment was performed over a managed agri-
cultural field (Agrar Hauser) near the city of Dübendorf,
Switzerland. The field is a seasonal cropland with an ac-
cess road mainly used by pedestrians and bikers. The loca-
tion is relatively flat but is shielded by a forested hill about
250 m in the south. The release experiment was performed
from 23 February to 14 March 2020 with a total of 9 d of
active measurements. There is no livestock or other signif-
icant methane source in the vicinity of the field, making it
an ideal location for the experiment. The selection of active
days was mainly based on favourable weather conditions, i.e.
days with no precipitation and a sufficiently large wind speed
but smaller than 8 m s−1, which is the maximum value given
by the UAV flight specifications. Local wind speeds during
the selected days ranged from 1–7 m s−1. A total of 35 mea-

Figure 2. Recorded altitude during the flight with code 314_03.
Colour-coded lines represent the altitude measured using three dif-
ferent systems. The dashed black line and blue line correspond to
the altitude recorded by RTK and UAV-GPS, respectively. The or-
ange line refers to the altitude derived using the pressure sensor.
Dashed blue and orange lines are fits representing a linear regres-
sion, with the subscript m referring to the slope of the line.

surement flights were performed during the whole campaign,
out of which 18 are suitable for quantification. The rest had
to be discarded mainly due to technical problems with either
the UAV, the analysers, the controlled release, or the GPS
device. A sample measurement flight is presented in Fig. 3,
which also provides an aerial view of the site.

Alongside the UAV flights, a second quantification method
based on stationary measurements with an independent
methane analyser was applied on the first 3 d of the campaign
for comparison. The method, called OTM-33A (Thoma et
al., 2012), is presented in more detail in Sect. 4.2. In order
to avoid any possible bias in the data processing towards the
real controlled release, two of the releases were conduced
as blind experiments, where a third-party person released
methane at a rate not known to the team.

An artificial methane source, in the form of natural gas
of which 92.2 % is CH4, was released from a 50 L high-
pressure cylinder. The gas was directed through a 100 m long
1.2 cm inner diameter tubing to the release point. The end of
the tubing was placed at about 1.5 m above surface. A mass
flow controller (MFC; red-y series, Vögtlin Instruments) cal-
ibrated for methane up to 100 L min−1 at normal conditions
was used to regulate the gas release. A summary of the re-
lease rates during the experiment is given in Table 1. The
release rates used in this study are a good representation

Atmos. Meas. Tech., 15, 2177–2198, 2022 https://doi.org/10.5194/amt-15-2177-2022



R. Morales et al.: Uncertainties in drone-based methane emission quantification 2181

Figure 3. Measured methane mole fraction above background during MATRIX with flight code 312_03 and its corresponding wind rose.
The red cross indicates the location of the artificial source. The source transect distance, shown as the orange line, is computed as the
perpendicular distance between the source and the measurement plane. The flight trajectories are illustrated as coloured dots, indicating the
measured local CH4 concentrations. Wind and turbulence conditions are measured with a 3D sonic anemometer located next to the source.

of emissions from normal operating (i.e. excluding super-
emitters) natural gas production sites in the United States
which produce 0.13–0.58 g s−1 (Omara et al., 2018). At the
start of each measurement day, a suitable location of the re-
lease was determined based on prevailing winds. Meteoro-
logical conditions were measured using 3D (uSonic-3 Sci-
entific, METEK) and/or 2.5D (TriSonica Mini, Anemoment)
anemometers, which were usually placed next to the release
point of the source. Stability classes listed in Table 1 were
determined by calculating a dimensionless height, ζ = z/L,
where z is the height of wind measurement, and L is the
Obukhov length. The dimensionless height is used as a sta-
bility parameter, where ζ < 0 indicates unstable, ζ > 0 un-
stable, and ζ = 0 for neutral conditions.

4 Method

4.1 Mass balance

Mass-balance methods have been applied extensively to
aircraft-based measurements for quantifying emissions from
facility scale (e.g. Ryerson et al., 2001; Karion et al., 2013;
Gordon et al., 2015; Lavoie et al., 2015; Tadić et al., 2017)
up to urban and regional scale (e.g. Cambaliza et al., 2015;
Pitt et al., 2019; Fiehn et al., 2020; Klausner et al., 2020).
The quantification involves flying downwind and/or around
a region of interest at a single vertical height or multiple
heights. Emission rates are quantified by taking the net dif-
ference between fluxes into and out of a volume contain-
ing the source. Subtracting a large-scale background, the in-
flow is usually assumed to be zero, and the outflow is deter-
mined from the enhancements above background inside the
plume downwind of the source, together with measurements
or model assumptions of wind speed. With the advent of
UAVs, estimating emissions using the cross-sectional mass-

balance method originally used for aircraft may be adapted
to smaller scale and more localized sources. Emission quan-
tification is best performed by flying the UAV downwind of
a given source perpendicular to the main wind direction at
multiple altitudes above ground up to an altitude, zmax, where
no discernible change in methane mixing ratio is observed.
Background mole fractions can be determined from measure-
ments outside of the plume or from measurements upwind of
the source.

Applying mass conservation for a chemically non-reactive
gas within a control volume, the emission flux downwind of
a given source can be quantified as

Qc =

ymax∫
ymin

zmax∫
0

c(y,z)u(y,z) · n̂dzdy , (1)

where Qc is the sum of methane emission fluxes within the
area of interest. The y axis is aligned with the vertical cross-
section in which the UAV is flown. The integral over this
two-dimensional plane is approximated in the observations
as a discrete summation of the product of the mass concen-
tration of methane above background c(y,z) and the compo-
nent of the horizontal wind vector u(y,z) normal to the ver-
tical cross-section, i.e. parallel to the unit vector n̂. In doing
so, it is assumed that there are no other significant sources of
methane emissions upwind besides the controlled release.

4.2 OTM-33A

The other test method (OTM) 33A was introduced by Thoma
et al. (2012) to quantify emissions from natural oil and gas
sites emitting at near-ground level without having the need to
access the site. This approach heavily relies on the assump-
tion that plume dispersion is governed by the point source
Gaussian (PSG) model and thus requires certain conditions
to be met for effective quantification. In particular, the tar-
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Table 1. Overview of MethAne Release Experiment (MATRIX).

Date Flight Time Release rate Downwind Wind speed Wind direction Stab. Instruments
code [UTC] [g s−1] dist. [m s−1] [deg. from N] present

[m]

23 February 223_01 13:26:03–13:43:05 0.48± 0.04 42 4.98± 1.41 277± 18 N O, Q

24 February 224_01 15:40:50–15:48:01 0.29± 0.03 94 5.21± 1.61 283± 15 N O, Q

25 February 225_01 10:30:00–10:40:41 0.29± 0.03 50 4.53± 1.25 304± 11 N A, O, Q
225_02 10:50:17–11:01:45 0.29± 0.03 48 5.68± 1.18 304± 14 N A, O, Q
225_03 11:16:50–11:24:23 0.29± 0.03 45 6.08± 1.49 304± 12 N A, O, Q

8 March 308_02 13:17:37–13:28:26 0.26± 0.02 40 1.69± 0.76 271± 19 U A, Q, R

9 March 309_01 09:19:02–09:28:54 0.29± 0.03 18 2.61± 1.31 284± 28 N A, Q
309_02 09:52:08–10:03:28 0.29± 0.03 31 2.65± 1.06 284± 28 N A, Q, R

12 March 312_01 14:11:00–14:21:07 0.31± 0.03 46 3.49± 0.83 312± 11 N A, Q, R
312_03 14:58:47–15:09:39 0.39± 0.03 77 3.55± 0.71 306± 13 N A, Q, R

13 March 313_01 11:36:05–11:44:02 blind 51 3.29± 0.97 284± 18 U A, Q, R
313_02 11:57:58–12:07:15 blind 50 2.88± 1.03 282± 16 U A, Q, R
313_03 13:33:14–13:40:44 0.46± 0.04 129 2.34± 1.07 257± 32 U A, Q, R
313_04 13:51:32–14:02:45 0.48± 0.04 136 2.63± 0.82 282± 46 U A, Q, R
313_05 14:16:07–14:27:06 0.52± 0.05 102 2.15± 0.71 280± 46 U Q, R

14 March 314_01 12:40:41–12:49:17 0.26± 0.02 40 0.72± 0.33 111± 39 U A, Q, R
314_02 13:01:25–13:13:49 0.44± 0.04 40 0.51± 0.22 180± 44 U A, Q, R
314_03 14:06:00–14:13:49 0.68± 0.03 44 0.63± 0.27 154± 37 U A, Q, R

Instruments – A: AirCore, Q: QCLAS, O: OTM-33A, R: RTK. Meteorological stability – N: Neutral, U: Unstable, S: Stable.

get source must come from a single point, and no nearby
sources should contribute to the measurement. Furthermore,
no obstacle should be present between the source and the
measurement point. Lastly, measurements of methane and
meteorological parameters should be collected at 1–2 Hz and
should be taken under rather steady wind conditions with a
wind speed of at least 1 m s−1 blowing consistently from the
source to the measurement point over a period of at least 15–
20 min.

The emission rate, Qc, of the point source is then esti-
mated using the following equation that is based on spatial
integration over a Gaussian shaped plume of horizontal width
σy and vertical width σz:

Qc = 2 ·π · σy · σz ·U ·Cpeak. (2)

The horizontal and vertical dispersion coefficients σy and σz
are parameterized as a function of distance from the source
using a lookup table developed by Thoma et al. (2012) based
on Pasquill stability classes. The average wind speed during
the measurements is U , and the Cpeak is obtained by taking
the peak of a Gaussian fit of methane enhancements with re-
spect to wind directions, binned into 10◦.

The method was characterized using controlled-release ex-
periments (Brantley et al., 2014; Robertson et al., 2017; Edie
et al., 2020), which suggested that the method has a 2σ error
of ±70 % with a slight negative bias of about 5 % (Heltzel et

al., 2020). It was eventually used to quantify emissions from
oil and gas plants in the United States (Brantley et al., 2014;
Robertson et al., 2017), and results were compared to direct
measurements simultaneously performed on site (Bell et al.,
2017). Quantification estimates from Robertson et al. (2017)
were slightly lower as compared to direct measurements,
but most emissions were captured within the 2σ uncertainty.
A further analysis of controlled-release data by Edie et al.
(2020) suggested that the error caused by variations in wind
speed, number of sources, and release height is small com-
pared to the method’s uncertainty and has no significant ef-
fect on the accuracy of the emission estimates. This implies
that the method is also applicable under conditions outside
of the strict bounds of the original formulation by Thoma et
al. (2012).

The OTM-33A method was applied alongside measure-
ment flights on the first 3 d of the MATRIX campaign.
Prior to quantification, the dominant wind direction was cho-
sen following screening recommendations of Thoma et al.
(2012). Once determined, a portable CH4 analyser (LI-7810,
LI-COR, Inc.) and a 3D sonic anemometer (uSonic-3 Scien-
tific, METEK) were placed in a stationary position, 35–70 m
downwind of the source, to measure continuous methane
mole fractions and meteorological parameters at 1 Hz, with
an inlet height set at 2.5 m above ground. The CH4 analyser
has a portable footprint (12 kg, 51× 33× 18 cm3) and can
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measure methane mole fractions up to 50.0 ppm. It operates
between −25 and 45 ◦C and can reach a precision (1σ ) of
0.6 ppb at 1 s and 0.25 ppb at 5 s averaging time. The anal-
yser was calibrated before and after each measurement on
the field and can be linked to at least two certified standards:
the atmospheric CH4 value (2ppm± 5 %), 5 ppm standard
(5.05ppm± 5 %), and a 25 ppm tank (24.98ppm± 5 %).

4.3 Estimation of wind speeds along the UAV flight

Local meteorological conditions were measured using the 3D
sonic anemometer placed next to the artificial point source
sampling at an altitude of 2 m above ground. The anemome-
ter has a sampling rate of 20 Hz, and measurements were av-
eraged every second. Wind speeds were then decomposed
into components normal and parallel to the measurement
plane. Turbulence parameters such as friction velocity u∗
and Obukhov length L were computed for each measure-
ment flight. In this study, three different ways of computing
the normal wind component along the UAV transects were
tested. The first and most simple approach, referred to as
scalar wind (SW), was to apply the mean normal component
of the wind vector u measured during the whole flight uni-
formly to all points in the vertical cross-section. Equation (1)
can then be simplified to

Qc = U

ymax∫
ymin

zmax∫
0

c(y,z)dzdy , (3)

where U is the mean of the normal component of the wind.
A second approach involved the construction of a theoret-

ical logarithmic wind (LW) profile to vertically extrapolate
the measurements at 2 m to the whole altitude range covered
by the UAV. The stability condition of the atmospheric sur-
face layer was determined using the Obukhov length. De-
pending on whether the surface layer was neutral, stable, or
unstable, the roughness length, z0, was derived using the log-
arithmic profile

uz =
u∗

κ

[
ln
(
z

z0

)
−9m

( z
L

)]
, (4)

where uz is the normal component of the wind vector at the
height of the actual measurement z, and9m is a profile func-
tion depending on the stability of the atmosphere. Following
Högström (1988), we applied the following structure func-
tions:

9m =


0 neutral

−6
z

L
stable

2 ln
(

1+ x
2

)
+ ln

(
1+ x2

2

)
− 2arctanx+

π

2
unstable,

with x = (1−15z/L)0.25. Instead of using a constant wind at
all levels as in the first approach, the wind speed thus varied
with altitude.

The third approach, referred to as projected wind (PW),
involved taking the 1 s average normal wind component and
projecting it onto the measurement plane by matching the
timestamp of the anemometer to the GPS location of the UAV
during the time of measurement. This allows changes in wind
conditions over the period of a UAV flight to be accounted
for. The measurement plane is assumed to be sufficiently
close to the anemometer that the wind measurements are rep-
resentative for the conditions encountered by the UAV. With a
typical downwind distance of about 40 m and a wind speed of
4 m s−1 (see Table 1), a wind gust measured at the anemome-
ter would arrive at the measurement plane after only 10 s. Af-
ter projecting each normal wind component to the location of
the UAV, a wind field is constructed by ordinary kriging us-
ing the projected wind data.

4.4 Post-processing of UAV measurements

Timestamps of the CH4 data reported by the QCLAS and
positional coordinates from the RTK-GPS system were syn-
chronized by performing a cross-correlation between the lon-
gitude and latitude reading of the built-in GPS of the QCLAS
and the RTK-GPS system. After determining the delay be-
tween clocks, timestamps from the QCLAS were shifted to
match the RTK-GPS system, which is considered to be the
real time that all other clocks in the system follow.

Background CH4 mole fractions were determined from
measurements outside of the emission plume. Each sampled
vertical height was extended to pass both sides of the plume
to ensure sampling of local background values. Local vari-
ation of measured background values was corrected using
the robust extraction baseline signal (REBS) algorithm de-
veloped by Ruckstuhl et al. (2012). The average CH4 back-
ground mole fraction during the whole release experiment
was determined at 2.09± 0.19 ppm. Take-off and landing
times of the UAV were noted, and all data before and after
the flight were removed.

Processing of active AirCore measurements

In contrast to the CH4 mole fractions measured by the fast-
response QCLAS analyser, characterized by sharp and in-
stantaneous elevations, the measurements by the AirCore re-
sulted in a rather smooth signal, as presented in Fig. 4. In-
stantaneous methane plumes usually did not have a Gaus-
sian shape but rather showed complex structures with small
patches of elevated concentrations due to the chaotic nature
of turbulence. These sharp concentration gradients were fully
captured by the fast-response QCLAS but were smeared out
by the AirCore system, which has a much slower response
due to mixing in the sampling tube and later in the CRDS
analyser.

To determine the magnitude of smoothing present in
the AirCore measurements, we flew the two instruments
simultaneously with the UAV, while measuring the same
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Figure 4. Methane mole fraction time series obtained by simultaneously flying the active AirCore system (orange line) and the in situ QCLAS
analyser (blue line). The dashed black line represents the corrected AirCore measurements using the shifting and stretching parameters
obtained from the 3S algorithm.

point source downwind, as shown in Fig. 1. We then trans-
formed the fast-response QCLAS measurements to mimic
the smooth and smeared out AirCore data for each quantifi-
cation flight where both instruments were present. Using the
in-flight spectral calibration algorithm of imaging spectrom-
eters developed by Kuhlmann et al. (2016), we obtained the
smoothing, shifting, and stretching (3S) parameters needed
in transforming the QCLAS measurements to match the mea-
surements from the AirCore.

The smoothing of the AirCore measurements is dominated
by the response of the CRDS analyser, i.e. air mixing in the
analyser cavity (Andersen et al., 2022; Vinkovic et al., 2022),
but is also influenced by molecular diffusion during sample
storage as well as Taylor diffusion during sampling and anal-
ysis (Karion et al., 2010). We approximate the active AirCore
measurement as y, defined as

y = f (x,b)+ e , (5)

where f is a model function that fits the high-resolution
QCLAS and projects it onto the low-resolution AirCore mea-
surement. The model function consists of x, which is the
independent variable where the QCLAS is measured (i.e.
timescale), and the fit parameters b containing three elements
describing the shift, stretch, and smoothing (i.e. 3S) of the
AirCore. The error e represents the instrument’s error as well
as the error from the model function. We used a first-order
Lagrange polynomial interpolation and applied a Gaussian
filter with an initial width (1σ ) of 10 s to parametrize the
shift, stretch, and smoothing of the AirCore. Starting with
an arbitrary initial guess, the optimal parameter b̂ was deter-
mined using a non-linear least-squares fit solved iteratively
using the Gauss–Newton method.

4.5 Cluster-based kriging

In order to compute the flux through the vertical cross-
section, the spatially discrete samples were interpolated to

fill all gaps in the plane. Kriging is a popular method of
stochastic interpolation in which the produced interpolated
surface is modelled by a Gaussian process governed by prior
covariance kernels, which is a realization of many possible
outcomes that could have produced the known data points.

Kriging models have been widely used in atmospheric sci-
ence and air quality as a tool for data analysis and prediction
(e.g. Wong et al., 2004; Tadić et al., 2015, 2017; Michael
et al., 2019). However, applying kriging to airborne mea-
surements is faced with several challenges. Standard ordi-
nary kriging assumes spatial stationarity of the geophysical
field (Tadić et al., 2015), and all data points are assumed
to be taken from a unimodal single probability distribution.
Both assumptions are not necessarily true when a tempo-
rally varying plume is sampled sequentially over the duration
of a flight. Furthermore, the scales of spatial variability of
methane inside the plume and in the background are largely
different, which violates the assumption of a unimodal dis-
tribution.

In order to overcome these issues, a cluster-based kriging
(van Stein et al., 2020) was adapted. The process may be
summarized into three main steps: (i) partitioning the dataset
into smaller clusters, (ii) training an adequate kriging model
for each cluster, and (iii) combining all kriging models to
predict values (i.e. methane mole fractions) at unknown lo-
cations.

4.5.1 Data clustering

Cluster analysis or clustering is a process of grouping data
into subsets according to a degree of similarity found inher-
ently within the data. Clustering can be performed in many
ways and can generally be divided into two basic types, hard
and soft clustering.

Hard clustering is achieved when the data are split into
smaller disjoint datasets, and the resulting label of a data
point belongs to one and only one cluster. The most com-
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mon example of an algorithm that implements hard cluster-
ing is k-means clustering. On the other hand, soft clustering
splits the data into smaller datasets with small overlaps and
returns a probability of how much a data point is associated
with a specific cluster. A soft clustering approach is favoured
in this study as this approach increases the final model accu-
racy (van Stein et al., 2020). One of the widely used mod-
els to perform soft clustering is a Gaussian mixture model
(GMM) (Reynolds, 2015). A GMM is the type of model that
will be used here.

Given a set X =
{
(x1,y1), . . ., (xn,yn)

}
of methane mole

fractions yi acquired at locations xi for i = {1, . . .,n}, where
n is the number of data points collected, the goal is to split
the input data X into a set S, composed of several Gaussian
components k, such that

S = {X1, . . .,Xk}, where
k⋃
j=1

Xj = X . (6)

Each cluster Xj in the set S is assumed to have a Gaussian
shape in three dimensions, namely the 2D spatial location x

and methane mole fraction y. The shape of each Xj being
determined by a set of parameters θj =

{
πj ,µj ,6j

}
, where

πj is the mixing probability, µj is the mean, and 6j is the
covariance (i.e. spread) of the Gaussian. Each cluster Xj is
acting together to model the overall density of X . The proba-
bility distribution of X given a global mixture model param-
eter θ = {θ1, . . .,θk} is defined as

p(X | θ)=
k∑
j=1

πjN (Xj | µj ,6j ), where
k∑
j=1

πj = 1, (7)

where N is the normal distribution with mean µj and
width 6j . The global mixture model parameter θ that best
describes the data must be learned. The most established
method to learn this parameter is through the use of an
expectation–maximization (EM) algorithm. Given an initial
parameter θ , the EM algorithm aims to estimate a new θ ,
such that p(X | θ)≥ p(X | θ). The new parameter then be-
comes the old parameter for the next iteration, and this pro-
cess is repeated until a convergence threshold is satisfied. The
a posteriori probability of a data point (xi,yi) belonging to
cluster Xj with parameters θj is then given by

Pr((xi,yi) ∈ Xj | θj )=
πjN (Xj | µj ,6j )∑k
j=1πjN (Xj | µj ,6j )

for j = 1, . . .,k. (8)

Once the model parameter θ and the membership proba-
bility of a data point belonging to a cluster is learned, the
clustered data points are expanded to the whole domain, and
the membership probability of an unobserved location point
xtj belonging to cluster Xj is computed as well.

For typical trace gas distribution modelling, Stachniss et
al. (2009) suggested the use of a mixture of only two clus-
ters. The first cluster corresponds to measured background

mole fractions, whereas the second cluster corresponds to el-
evated measurements. This choice is motivated by the fact
that the spatial scales of variability are largely different be-
tween the two clusters. Tests with larger mixtures applied to
our dataset showed that a two-cluster mixture is indeed suf-
ficient to achieve good results.

4.5.2 Kriging estimate

Once the dataset has been clustered and the membership
probability of each data point belonging to a cluster has
been computed, ordinary kriging models are trained for each
cluster separately to spatially interpolate the field of inter-
est. Since data points for ordinary kriging can only belong
to one of the two clusters, the kriging model for each clus-
ter is learned using hard clustered data points, either belong-
ing to the background or the elevated cluster. Hard clustered
data points are obtained by rounding the probability obtained
from the GMM to either belong to the background or the ele-
vated cluster. Interpolation of a geophysical field from a spa-
tially sparse dataset is highly dependent on a chosen covari-
ance kernel K , which statistically describes the relationship
between two spatial points using a set of hyper-parameters
λ= {l,σ }, where l refers to the length-scale, and σ 2 is the
overall variance (i.e. noise) coming from the data. There are
several ways to define the covariance kernel. In this study, the
Matèrn 5/2 covariance kernel is chosen as it performs better
compared to other frequently used kernels, such as a squared
exponential function as shown by Stachniss et al. (2009). In
their study, they established that the Matèrn covariance ker-
nel has a lesser degree of smoothing compared to other ker-
nels, which resembles more closely the nature of gas distri-
butions in the vicinity of a localized source. Optimizing the
hyper-parameters of the covariance kernelK for each cluster
is done by evaluating a log-marginal-likelihood (LML) using
a set of initial parameters, which are increased or decreased
incrementally until a maximum value is obtained. The whole
process of clustering the dataset into two clusters followed
by optimizing the hyper-parameters of each cluster was im-
plemented using the scikit-learn package of Python.

Optimized hyper-parameters λj = {lj ,σj } for each clus-
ter Xj are used to perform ordinary kriging to predict a data
point (xtj ,y

t
j ) of unmeasured methane mole fraction ytj at an

unobserved location xtj . The resulting interpolated field from
kriging is a Gaussian distribution N expressed as

ytj | Xj ∼N
(
mj (x

t ),s2
j (x

t )
)
, (9)

with mean mj and variance s2
j .

The final predicted value (xt ,yt ) of methane mole frac-
tions yt at each point (xt ,yt ) is obtained by combining the
results of all the kriging models together (xtj ,y

t
j ) with the

respective membership probability of each spatial point xt

used as weights wj , denoted as

wj = Pr
(
C = j | X ,xt

)
, for j = 1, . . .,k, (10)
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where C is the cluster indicator ranging from 1 to k.
Thus, the expected value of methane mole fraction yt at

each spatial point xt is

E
[
yt | X ,y,xt

]
=

k∑
j=1

wjmj (x
t ), (11)

and the variance of the expected value is (van Stein et al.,
2020)

Var
[
yt | X ,y,xt

]
=

k∑
j=1

wj

(
s2
j

(
xt
)
+m2

j

(
xt
))

−

(
k∑
j=1

wjmj (x
t )

)2

. (12)

Although other kriging option modules are available such
as a moving neighbourhood approach where only data points
within a certain radius are considered in the kriging process
(Mays et al., 2009; O’Shea et al., 2014; Pitt et al., 2019),
the cluster-based kriging approach offers the advantage of re-
moving many arbitrary subjective parameters present in other
approaches.

4.6 Example of quantification procedure

An illustration of the clustering and kriging approach used
to map a discrete set of data points onto the whole measure-
ment plane is presented in Figs. 5 and 6 for flight 312_03
on 12 March 2020. The time series presented in the up-
per left panel of Fig. 5 was first mapped onto the 2D mea-
surement plane composed of horizontal distance and verti-
cal altitude. The time series, composed of a set of ordered
spatial and methane concentration points (x,y), was then
fed into a GMM to partition the dataset into two clusters,
namely, the background and the elevated cluster. The GMM
returns the membership probability of a data point belong-
ing to one cluster or the other. The membership probabil-
ity of each data point was then expanded to the whole do-
main to unobserved locations as shown in Fig. 6a. In a next
step, ordinary kriging was applied to each cluster separately
to produce a background and an elevated CH4 distribution
(Fig. 6a left panels). Finally, the kriging results for each clus-
ter were combined with their respective membership prob-
ability. The resulting kriging field is illustrated in Fig. 6b,
with the expected value computed according to Eq. (11) and
prediction uncertainty, i.e. the square root of variance ac-
cording to Eq. (12). A reconstructed time series of predicted
methane mole fraction was compared to the original time se-
ries of measured methane and is shown in Fig. S1 in the Sup-
plement. The peaks of predicted methane mole fraction are
lower but broader compared to the original methane time se-
ries as expected as kriging applies smoothing in the data.

The measured average ambient air temperature T [K] and
pressure p [Pa] during the flight was used to convert the ob-
tained kriging field of methane mole fraction χCH4 [ppm]

into concentrations ρCH4 [g m−3]:

ρCH4 = χCH4

pMCH4

RT
, (13)

where R is the gas constant (8.3144 J K−1 mol−1), andMCH4

is the molar mass of methane (16.04 g mol−1). The influence
of humidity, which introduces an error of no more than 1 %,
was ignored in this equation. As we are only interested in
methane elevations above the background, this uncertainty is
considered small.

The concentration field was combined with wind fields us-
ing three different wind treatments as discussed in Sect. 4.
Finally, an emission rate Qc was estimated as a scalar (dot)
product of the concentration field C and the wind field U

written as vectors:

Qc =
(
C> ·U

)
1y1z, (14)

where 1y and 1z are the regularly spaced intervals in the
horizontal and vertical direction.

The emission rateQc (C,U) is a function of two variables
C and U , and the overall error propagation of the function is

1Q2
c =

(
∂Qc

∂C
1U

)2

+

(
∂Qc

∂U
1C

)2

1y21z2. (15)

The concentration field C and wind field U come with their
respective covariance matrix KC and KU provided by krig-
ing, and the above equation becomes

1Q2
c =

(
U> ·KC ·U +C> ·KU ·C

)
1y21z2. (16)

In cases where U is a scalar constant or logarithmic profile,
the uncertainty of the wind is estimated by computing the
standard deviation (1σ ) of the mean wind speed normal to
the measurement plane during the flight.

Cluster-based kriging produces the concentration field C

as a linear combination of two distinct concentration fields
Celev and Cbg with weights welev and wbg:

C = welevCelev+wbgCbg , (17)

where welev and wbg are vectors of the same length as
Celev and Cbg. Both concentration fields come with a covari-
ance matrix KCelev and KCbg as determined by kriging. The
weights welev and wbg are constants without uncertainties.

The concentration field C
(
Celev,Cbg

)
is a function of two

variables Celev and Cbg, and the error propagation of the
function is

1C2
=

(
∂C

∂Celev
1Celev

)2

+

(
∂C

∂Cbg
1Cbg

)2

, (18)

written in matrix notation as

KC =1C2
= welev ·w

>

elev ·KCelev+wbg ·w
>

bg ·KCbg. (19)
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Figure 5. Clustering result for flight 312_03 on 12 March 2020 obtained from the in situ QCLAS after applying a GMM with two mixture
components. The background and elevated cluster complement each other; the total probability of each data point shared between the two
clusters is equal to 1a.

5 Results and discussion

5.1 Emission estimates

Measurements from 18 flights were analysed to character-
ize the accuracy of the quantification method. A total of six
quantification approaches were applied to all flights and eval-
uated for their ability to reproduce the true releases. These
approaches arise from the combination of two different treat-
ments of methane measurements and three different treat-
ments of wind measurements. The treatments involved in
mapping the discrete methane points into the measurement
plane are the standard ordinary kriging (OK) and the cluster-
based kriging (CK) interpolation schemes. The three differ-
ent ways of estimating wind speeds during each quantifica-
tion flight involve the scalar wind (SW), logarithmic wind
(LW), and projected wind (PW), as discussed in Sect. 4.

The overall performance of each quantification approach
is presented in Table 2 and estimated emission rates together
with the true release rates for every individual flight are pre-
sented in Table S1 in the Supplement. Estimates are pre-
sented for six different quantification methods, which cor-
respond to three different wind treatments applied to two dif-
ferent kriging methods, standard ordinary kriging and cluster
kriging, as described above. Among all the methods, the best-
performing approach, characterized by the lowest RMSE,

was obtained by applying cluster kriging with projected wind
(CKPW), where methane measurements were clustered be-
fore kriging and where the normal components of the instan-
taneous wind measurements were projected onto the posi-
tions of the UAV.

A residual plot showing the accuracy of each quantifi-
cation approach relative to the true release is presented in
Fig. 7. The plot illustrates the amount by which we underes-
timated (negative numbers) or overestimated (positive num-
bers) the known release for each measurement flight.

In general, a good agreement between computed estimates
using the CKPW approach and true releases was observed
as the uncertainty range managed to capture the known re-
lease for most measurement flights. A slight overestimation
was observed for most of the earlier flights, but release rates
were captured well within the uncertainty range provided by
the CKPW approach. We have observed a systemic underes-
timation for the last six flights on 13 and 14 March, where
we did not manage to capture the true release for four flights
(i.e. 313_03, 313_04, 314_01, and 314_02). In order to in-
vestigate the reasons for this underestimation, we compared
the predicted kriging fields with a theoretical Gaussian plume
dispersion model (see Figs. S2 and S3) to test whether the
vertical and horizontal distance flown by the UAV was suffi-
cient to capture the whole plume. The Gaussian plume model
using a Pasquill–Gifford stability class dispersion parameter-
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Figure 6. (a) Kriging prediction and membership probabilities of each spatial point within the domain of interest for background and elevated
clusters. (b) Expected value and variance of methane mole fractions after combining kriging prediction of the two clusters and their respective
membership probabilities. (c) Expected value and variance of methane mole fractions using ordinary kriging.

ization scheme provides an analytical solution for the hor-
izontal and vertical width as a function of downwind dis-
tance depending on wind speed and atmospheric stability.
The comparison with the size of the theoretical Gaussian
plume suggests that although we managed to detect methane
elevations, we were most likely not able to capture the whole
extent of the plume during these flights. The reason is that
some of these flights were conducted at a rather large dis-
tance from the source and under low wind conditions, during
which the plume spreads more quickly with downwind dis-
tance. For flights 313_03–05, for example, the horizontal and

vertical width of the Gaussian plume computed for the me-
teorological conditions and downwind distance of the flight
was on average 75 and 20 m, respectively. However, the typ-
ical cross-sectional plane covered by the UAV was of the or-
der of 100m× 12m, which is insufficient to fully capture a
spread of the calculated plume, especially with respect to the
vertical extent.

The average horizontal and vertical spread of the plume
with respect to wind speed and downwind distance com-
puted with the Gaussian plume model is illustrated in Fig. 8.
The spread does not vary smoothly with wind speed but
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Table 2. Summary of performance of each quantification approach.

Cluster kriging Ordinary kriging

Proj. wind Sca. wind Log. wind Proj. wind Sca. wind Log. wind
(CKPW) (CKSW) (CKLW) (OKPW) (OKSW) (OKLW)

NMAE∗ [%] 53.86 57.16 58.20 64.59 68.29 71.48
Bias [%] −1.06 3.68 5.63 17.56 21.69 23.27
RMSE [%] 68.60 73.07 75.71 81.14 86.48 89.35

Optimal NMAE [%] 28.56 30.41 29.63 53.68 55.26 51.73
measurement Bias [%] 11.44 12.05 11.90 48.34 47.53 44.35
conditions RMSE [%] 38.66 38.40 37.88 79.55 77.95 70.48

Non-optimal NMAE [%] 74.11 78.55 81.05 73.31 78.70 87.27
measurement Bias [%] −11.06 −3.02 0.61 −7.06 1.02 6.41
conditions RMSE [%] 85.29 91.83 95.76 82.40 92.74 101.97

∗ Normalized mean absolute error. Optimal and non-optimal measurement conditions are defined in Sect. 5.1.2.

shows step-wise changes because the model uses different
(but fixed) dispersion parameters for different wind speed
and stability classes. Overlaid on top are dots coloured from
white to red representing the performance of each measure-
ment flight with lighter colours showing smaller relative er-
rors. It can be seen that flights with the highest accuracy
are the ones that fall within the blueish region characterized
by wind speeds greater than 2 m s−1 and a sampling down-
wind distance ranging from 10 to 75 m. Measurement flights
within this region had a higher accuracy mainly because the
vertical spread of the plume was below 10 m, which is a re-
alistic range for the UAV to completely map the plume. For
optimal measurement conditions, we found a slight positive
bias of 11 % using the CKPW method and an RMSE of 39 %.
Measurements under suboptimal conditions had a smaller av-
erage bias (about−11 %) but a much larger spread with a sig-
nificant overestimation and underestimation with an RMSE
of 85 %.

All measurement flights were also analysed using an ordi-
nary kriging (OK) algorithm, where methane measurements
were not clustered before kriging. By doing so, each mea-
surement flight was fed directly into a GMM to determine
the hyper-parameters for kriging. Likewise, the Matèrn 5/2
covariance kernel was used to quantify the correlation be-
tween the measured data. Ordinary kriging produces a single
methane field with expected value and variance because a
single correlation length scale is assumed for both the back-
ground and the plume data. The assumption of a single cor-
relation length leads to a strong smoothing of the plume
(Stachniss et al., 2009), as illustrated in Fig. 6c. Obtained
methane fields were combined with the same three different
wind treatments to compute the release rates. A summary of
emission rates computed using ordinary kriging is presented
in Table 2, and the range of the residuals for each quantifi-
cation approach is illustrated in Fig. 9. It shows that cluster-
based kriging, in general, outperforms ordinary kriging, as

evidenced by lower RMSE and lower relative absolute errors.
On average, all data treatments tend to overestimate the true
release, but the lowest overestimation was obtained using the
CKPW approach. Generally, a larger variability of residuals
(wider interquartile band) was obtained for the approaches
using OK as compared to the respective CK counterpart. A
concrete example to see the difference between the recon-
structed methane plume using cluster kriging and ordinary
kriging is presented for flight 312_03 in Fig. 6b and c. CK
proves to better preserve the shape of the plumes, which re-
sults in a better accuracy of the estimates.

5.1.1 Impact of altitude uncertainties on emission
estimates

Initially, the altitude measurements of the UAV-based sys-
tem were relying exclusively on the onboard internal GPS,
but later it became evident that this has some impact on our
capability of emission estimates. The RTK-GPS system was
implemented a few days after the start of the MATRIX cam-
paign, and 11 out of 18 measurement flights contain both
UAV altitude and RTK altitude. We observed an average drift
of the UAV-GPS of 0.10 cm s−1, which translates to an alti-
tude error of about 0.6 m for a 10 min flight duration. This
drift is consistent with the uncertainty reported by the UAV
manufacturer, though sometimes errors were larger, up to
0.20 cm s−1 (see Table S2). An erroneous altitude retrieval
on certain flight levels may lead to a distortion of the emis-
sion plume, which ultimately affects the estimated emissions
(see Fig. S4). A summary of the percentage difference be-
tween the emission estimates derived using two different al-
titudes is presented in Fig. 10. Differences are in the range
of−8 % to 18 %, with an absolute average difference of 4 %,
suggesting that the errors introduced by inaccurate vertical
positioning are relatively small compared to the overall un-
certainty of the CKPW quantification method. The highest
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Figure 7. Residual plot. Colour-coded solid bars represent the
range of residuals using different quantification approaches, with
the mean values represented as black dots. Values to the right of the
red line correspond to overestimations, and values to the left cor-
respond to underestimations. CK and OK stand for cluster kriging
and ordinary kriging, respectively. PW (projected wind), SW (scalar
wind), and LW (logarithmic wind) refer to the different wind data
treatments.

differences occurred on flights 313_02 and 313_05, during
which the drift of the UAV-GPS was particularly large (about
0.17 cm s−1; see Table S2). These findings are also impor-
tant aspects in the context of the ROMEO campaign, during
which the high-accuracy RTK-GPS system was not yet im-
plemented. Now, it can be stated that the emissions reported
for the ROMEO campaign should have a similar accuracy as

presented here, at least for those cases where meteorological
conditions were favourable.

5.1.2 Impact of wind speed and direction on emission
estimates

Similar to our study, Yang et al. (2018) performed a ras-
terized mass-balance approach to quantify emissions from
individual gas wells in Texas, United States, using UAVs.
Based on their results, they proposed a minimum threshold
of wind speed of 2.3 m s−1 and wind direction variability not
greater than 33.1◦ in order to quantify emissions with an ac-
curacy of better than 50 %. Applying the same threshold cri-
teria and additionally restricting the measurements to a max-
imum downwind distance of 75 m, we have identified 8 out
of 18 flights from our campaign that satisfy these criteria (see
Fig. S5). As illustrated in Fig. 9, these flights indeed exhibit
a lower RMSE and absolute mean error. RMSE and absolute
error were reduced to 39 % and 29 % respectively as com-
pared to 69 % RMSE and 54 % absolute error for all flights.
Computed emission rates were on average slightly overesti-
mated by 11 %. In contrast, a lower average accuracy was ob-
served when measurement flights were performed under less
favourable wind conditions. Computed emission rates un-
der these conditions were generally underestimated by 11 %,
with a higher corresponding RMSE and absolute mean error
of 85 % and 74 %. Underestimation of true releases during
highly variable weather conditions may be attributed to in-
complete sampling of methane plumes, as discussed above.
Variability of residuals (width of interquartile band) among
all approaches is significantly lower for measurement flights
under optimal conditions as compared to measurements per-
formed in suboptimal conditions.

5.2 Comparison of AirCore and QCLAS emission
estimates

Having simultaneous samples of methane plumes using the
QCLAS and AirCore systems, we have found that the Air-
Core measurements were smoothed by an average of 20 s
(1σ ) using a Gaussian smoothing function when compared
with measurements using the QCLAS. We also observed that
AirCore measurements are temporally shifted by an aver-
age of 7 s and are stretched linearly with time at an average
rate of 0.06 s for every second of QCLAS measurement. The
smoothing, stretching, and shifting parameters obtained for
each individual flight are presented in Table 3. Corrected and
original AirCore methane measurement flights were subject
to the CKPW quantification approach to compare how the
stretched and shifted AirCore measurements affect the quan-
tifications. Emissions are compared to emission estimates us-
ing QCLAS measurements to see the degree of agreement
between the two systems. A summary comparing the dif-
ferences in emission estimates is presented in Table 3. We
have observed that the emission estimate computed using the
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Figure 8. Theoretical horizontal and vertical spread of a plume with respect to wind speed and downwind distance. White to red dots refers
to the individual error of each quantification flight, lighter being more accurate than darker dots.

Figure 9. Colour-coded box plots represent the range of residuals in flux estimates of measurement flights grouped according to meteoro-
logical and threshold conditions. Solid white lines represent the mean bias and the × marks represent the RMSE for each quantification
approach. Definitions of optimal and suboptimal measurement flights are defined in Sect. 5.1.2.

corrected time series is 3 % more accurate compared to its
original counterpart. Nevertheless, the uncertainty bounds of
most quantification flights manage to capture the true release.
In extreme cases, where the time shift and stretching are not
sufficiently well known, the size and location of the plume
might not be captured accurately. As an example, a com-
parison of reconstructed plume with and without applying
proper correction for flight 312_03 is illustrated in Fig. S6.
The figure shows that the uncorrected reconstructed plume
tends to be cut on the left side of the mapping plane. After
applying the proper correction, the plume shifted to the right,
putting the methane plume closer to the centre of the map-
ping plane. This resulted in a 23 % increase in the emission
estimate, bringing it much closer to the actual release. Thus,
even though uncertainty bounds manage to capture most of

the releases, accounting for the proper time shift and stretch-
ing of the AirCore data is important when performing a mass-
balance quantification approach, especially in extreme cases.

5.3 Comparison with other methodologies

A direct comparison with another method was performed for
the OTM-33A method. Quantified releases using OTM-33A
and our mass-balance approach are summarized in Table 4.
Although the number of simultaneous quantifications is lim-
ited, the results show that both approaches are close to the
true release and that the uncertainty bounds of both meth-
ods usually capture the true release. This showcases that our
UAV-based quantification technique has a great potential and
is on a par with measuring CH4 emissions from oil and gas
wells when compared with the OTM-33A method. Emission
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Table 3. Correction parameters and calculated emission rates for AirCore measurements.

Flight Correction parameters Release rates CKPW estimates
code [g s−1]

Shift Stretch Smooth QCLAS Corr. Orig.
[s] [AirCore(s)/QCLAS(s)] [s] [g s−1] AirCore AirCore

[g s−1] [g s−1]

312_01 1.79 0.03 20.77 0.31± 0.03 0.32± 0.34 0.31± 0.40 0.30± 0.42
312_03 6.32 0.04 27.29 0.39± 0.03 0.32± 0.53 0.25± 0.26 0.20± 0.60
313_02 10.27 0.10 19.03 0.41± 0.04 0.74± 0.63 0.58± 0.85 0.65± 0.92
313_04 7.22 0.05 19.61 0.48± 0.04 0.13± 0.12 0.15± 0.25 0.17± 0.31
314_01 12.81 0.06 17.90 0.26± 0.03 0.09± 0.08 0.12± 0.18 0.13± 0.20
314_02 2.01 0.05 18.11 0.45± 0.05 0.02± 0.03 0.02± 0.04 0.04± 0.04

6.73± 4.41 0.06± 0.02 20.45± 3.51 NMAE [%] 55.92 49.75 52.45
Bias [%] −28.02 −35.34 −32.77
RMSE [%] 65.24 57.54 58.61

Figure 10. Difference in emission estimates using two different
GPS altitudes. The dashed green line represents the absolute av-
erage difference between the two estimates.

estimates using OTM-33A for flight 225_01–03 were identi-
cal because OTM-33A estimates are more robust if the input
data last longer than 20 min. Since the release rate during that
day was constant and continuous, one emission estimate was
used for the three UAV-flight emission estimates for that day.

Table 5 compares the uncertainty of our UAV-based quan-
tification method with other methods as previously summa-
rized by Caulton et al. (2018). With an accuracy ranging from
28 % to 75 %, our method is on a par with existing quantifi-
cation techniques, specifically with mass-balance approaches

Table 4. Emission rates from QCL-CKPW and OTM-33A in g s−1.

Fl. code Release CKPW OTM-33A

223_01 0.48± 0.04 0.64± 0.56 0.53± 0.17
224_01 0.29± 0.02 0.79± 0.66 0.26± 0.09
225_01 0.29± 0.03 0.28± 0.48 0.47± 0.17
225_02 0.29± 0.03 0.41± 0.46 0.47± 0.17
225_03 0.29± 0.03 0.30± 0.50 0.47± 0.17

NMAE [%] 50.80 41.39
Bias [%] 49.43 37.26
RMSE [%] 65.15 23.55

using aircraft/UAVs. A major advantage of our UAV-based
method is that it can be applied to sources that are not eas-
ily accessible and where no road is present in a suitable dis-
tance perpendicular to wind direction for ground-based mo-
bile measurements. Another advantage is that it can be ap-
plied to quantify the total emissions of a cluster of sources,
provided that the UAV can map the full extent of all individ-
ual source plumes. Ideally, the emission from an individual
source should be quantified multiple times. The individual
estimates provide an invaluable measure of uncertainty in ad-
dition to the method uncertainty estimated here for individ-
ual flights. This is even more important under highly unstable
and turbulent conditions, since an individual flight can only
capture a snapshot of a turbulent plume.

6 Conclusions

A novel strategy of methane flux quantification with the
use of unmanned aerial vehicles (UAVs) equipped with a
methane sensor has been developed and applied to an exten-
sive controlled-release experiment. Real-time atmospheric
methane mole fractions were measured in situ using a quan-
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Table 5. Uncertainty of different CH4 emission quantification techniques.

Approach Uncertainty estimate Literature

Ground-based thermal imaging 3 %–15 % Gålfalk et al. (2016)

Chamber sampling 5 %–60 % Allen et al. (2013, 2015), Kang et al. (2014),
Yver Kwok et al. (2015)

Tracer ratio technique 20 %–50 % Lamb et al. (2015, 2016), Roscioli et al. (2015),
Subramanian et al. (2015), Zimmerle et al. (2015),
Omara et al. (2016), Feitz et al. (2018),
Fjelsted et al. (2020)

Airborne mass balance 20 %–75 % Karion et al. (2013, 2015), Nathan et al. (2015),
Caulton et al. (2018), Golston et al. (2018),
Yang et al. (2018), Shah et al. (2020)

Airborne CKPW mass balance (this study) 30 %–77 %

Ground-based stationary dispersion 25 %–66 % Brantley et al. (2014), Robertson et al. (2017), Edie et al. (2020)

Ground-based mobile dispersion 50 %–350 % Ars et al. (2017), Weller et al. (2018), Bakkaloglu et al. (2021),
Defratyka et al. (2021)

tum cascade laser spectrometer (QCLAS) and an active Air-
Core system. Both instruments are lightweight and have a
compact footprint, allowing them to be mounted on com-
mercially available UAVs. Emissions were quantified by ap-
plying a cross-sectional mass-balance approach. An exten-
sive controlled-release experiment was conducted in Düben-
dorf, Switzerland, from 23 February to 14 March 2020 to
develop, optimize, and evaluate the method. In addition,
source quantification from the UAV was compared for se-
lected cases with results from stationary measurements ap-
plying the OTM-33A method.

The mass-balance approach was performed by flying the
UAV-integrated system at a cross-section downwind of the
source at multiple vertical levels. Methane mole fraction
measurements were subject to two different data treatments,
while the wind measurements were treated in three different
ways, thus giving us in total six methane-quantification ap-
proaches. Each of these were applied to all flights and evalu-
ated for their ability to reproduce the true releases.

During the campaign, 18 flights suitable for emission
quantification could be performed. Among the six quantifi-
cation approaches, the best results were obtained using the
CKPW (cluster kriging with projected wind) approach. The
true release could be estimated with a normalized mean ab-
solute percentage error of 54 %. The highest absolute per-
centage error of 71 % was obtained using the OKLW (or-
dinary kriging with logarithmic wind profile) approach. A
consistent underestimation of methane fluxes occurred in our
quantification approach when the mass-balance method was
performed at a downwind distance of more than 75 m. Sim-
ulations with a simple Gaussian plume model suggest that
we were most likely not able to capture the whole extent
of the plume during these flights, especially with respect

to its vertical extent. Comparison of QCLAS-CKPW emis-
sion estimates with quantified emission rates using an inde-
pendent ground-based quantification technique, OTM-33A,
shows that both methods captured the true release almost ev-
ery time.

As a general guideline, performing UAV-based emission
quantification of emission sources requires favourable wind
conditions with a minimum wind speed of 2.3 m s−1 and a
maximum wind direction variability of 33.1◦. Under these
conditions, measuring at a downwind distance of less than
75 m ensures the true emission to be fully mapped, both hor-
izontally and vertically. In cases where an RTK-GPS is not
present, a vertical spacing of at least 0.5 m is recommended
to properly account for the average drift of a commercial
UAV-GPS of about 0.11 cm s−1.

Having a high-precision and fast CH4 analyser, such as the
QCLAS, offers the benefit of correctly mapping the methane
plume both spatially and temporally as compared to other
methods, such as collecting air samples with subsequent
analysis on the ground. In extreme cases, poor mapping of
the emission may ultimately lead to over- or underestimation
of its value. This is evidenced in one of the measurement
flights, i.e. 312_03, where a reconstructed methane plume
using the uncorrected AirCore measurement resulted in a
significant underestimation (about 48 %) of the true release.
Nevertheless, the uncertainty bounds of the CKPW quantifi-
cation approach usually manage to capture the true release.

In conclusion, UAV-based emission quantification using
the CKPW approach proved its capability to quantify emis-
sion fluxes from methane point sources. This approach can
be easily scaled up to confidently quantify total emissions
for a cluster of sources given that the UAV system can map
the full extent of all individual plumes. The use of UAVs in
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quantifying localized methane sources offers an advantage of
allowing for additional freedom of sampling locations where
stationary monitors and ground-based mobile sensors cannot
be deployed. It also allows for rapid adjustment to changing
wind conditions, which proved to be particularly beneficial
during the ROMEO measurement campaign, where a large
number of oil and gas wells had to be quantified in a short
amount of time.
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