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Abstract. High-resolution model data are used to estimate
the statistically typical mixing ratio variabilities of trace
species as a function of distance and time separation. These
estimates can be used to explain the fact that some of the
differences between observations made with different ob-
serving systems are due to the less-than-perfect co-location
of the measurements. The variability function is approxi-
mated by a two-parameter regression function, and lookup
tables of the natural variability values as a function of dis-
tance separation and time separation are provided. In addi-
tion, a reparametrization of the variability values as a func-
tion of latitudinal gradients is proposed, and the seasonal in-
dependence of the linear approximation of such a function is
demonstrated.

1 Introduction

This paper tackles a problem that typically arises when re-
motely sensed data from different instruments are compared
within the framework of validation studies. In quantitative
validation, the common approach is to calculate differences
between pairs of measurements of the same air mass from the
two instruments under comparison. With the aid of χ2 statis-
tics, it is tested if the observed differences can be explained
by the estimated error of the differences (Rodgers and Con-
nor, 2003). The estimated error of the differences includes
measurement noise as well as parameter and model errors, as
far as those coming from different instruments are uncorre-
lated (von Clarmann, 2006). Furthermore, the different im-

pact of prior information on the result has to be considered.
However, the differences will often be too large to be ex-
plained by the combined error budget of the measurements
under comparison. The reason for this is that the instruments
typically do not sound exactly the same air mass. Spatial and
temporal mismatch of the measurements as well as natural
variability of the measured state variable contribute to the ob-
served differences. This source of differences is only quan-
tified in validation papers in a few exceptional cases (see,
e.g., Sheese et al., 2021, for an example where models were
used to quantify the related effect of ozone variability). In-
stead, natural variability is often used as a universal excuse
to defend measurements if validation studies suggest that the
related retrieval errors are underestimated.

In this study, we present a user-friendly tool to provide
quantitative estimates of the component of the observation
differences that can be attributed to the spatial and tempo-
ral mismatch and natural variability. The underlying method
is based on highly resolved model fields of temperature and
mixing ratios of trace species, as described in Sect. 2. These
model fields were smoothed according to the horizontal reso-
lution of the instruments whose precision was to be validated;
in this study, we have chosen the Michelson Interferometer
for Passive Atmospheric Sounding (MIPAS; Fischer et al.,
2008) as an example. From these smoothed fields, the typical
variabilities are evaluated as a function of spatial and tempo-
ral mismatch (Sect. 3). In order to avoid unnecessarily high
data traffic and to reduce the impact of model imperfections
on the calculated fields as much as possible, parametrizations
of these dependencies (for different trace gases, altitudes and
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latitude bins) are developed by prescribing a particular shape
to the natural variability function, which arises from the gen-
eral theory of random functions with stationary increments
(Sect. 4) and is confirmed by calculations using model data.
A reparametrization is developed to improve the validity of
the inductive generalization towards other gases and seasons
(Sect. 5). Instructions on how to use this reparametrization
are given in Sect. 6. The adequacy of our suggested method
is critically discussed in Sect. 7, and final recommendations
are given in Sect. 8.

2 Model data

The model fields used in this study came from two models.

2.1 BASCOE (Belgian Assimilation System for
Chemical ObsErvations)

The main set of model fields has been produced by the Bel-
gian Assimilation System for Chemical ObsErvations (BAS-
COE; Errera et al., 2008). While generally used in the context
of stratospheric chemical data assimilation (e.g., Errera et al.,
2019), the chemistry transport model (CTM) of the system
has also been used to study the evolution of the stratospheric
composition (Chabrillat et al., 2018; Prignon et al., 2019;
Minganti et al., 2020). Here, BASCOE was run for the period
from 25 September to 1 October 2008, and wind and temper-
ature were taken from the ERA-Interim reanalysis (Dee et
al., 2011). The model was run on a 1◦× 1◦ horizontal grid
using the native 60 vertical levels of ERA-Interim (from the
surface to 0.1 hPa) and a time step of 30 min. Hourly global
fields of 28 relevant trace gases1 were used for this study.

2.2 WACCM6 (Whole Atmosphere Community
Climate Model 6)

The auxiliary set of model fields used came from the Whole
Atmosphere Community Climate Model 6 (WACCM6),
which is the atmospheric component of the Community Earth
System Model, version 2 (CESM2; Danabasoglu et al., 2019;
Emmons et al., 2019; Gettelman et al., 2019; Tilmes et al.,
2019), run at the Atmospheric Chemistry Observations and
Modelling Laboratory of the National Center of Atmospheric
Research (UCAR/NCAR/ACOM). The model has a horizon-
tal resolution of 0.9◦× 1.25◦ with 88 vertical hybrid sigma-
pressure levels and is run using specified dynamics, with
nudging of temperature, and U/V winds from the NASA
Goddard Earth Observing System, version 5 (GEOS-5), fore-
cast model. The model simulations contain the fields of three
species (O3, H2O and NO) for 4 weeks in the year 2020, one

1BrNO, BrO, CCl4, CFC11, CFC12, CFC113, CH3Cl, CH4,
ClO, ClONO2, CO, CO2, H2O, HBr, HCl, HF, HNO3, HNO4, HO2,
HOBr, HOCl, N2O, N2O5, NO, NO2, NO3, O3, OH and tempera-
ture

in each season. The data were regridded on the same fixed
height grid with a 1 km step using the fields of geopotential
height and temperature provided with the data.

3 Variabilities

3.1 Structure functions

Let X be a random variable defined by the amount of the tar-
get trace gas in a given infinitely small air parcel, centered
around a point in the atmosphere at a given moment in time
and reported as a volume mixing ratio (VMR). The amount
of the trace gas at any point in the atmosphere at a fixed time
(or at any moment in time at a fixed point in the atmosphere)
can be viewed as a state of a one-dimensional random pro-
cess X(t), where t parameterizes the distance from an ini-
tial point (or the time elapsed from an initial moment). This
random process is nonstationary, as its statistical character-
istics can change with t . The increments X(t + τ)−X(t) of
the process X(t) represent the change in the amount of the
trace gas with distance (or over time). Based on the litera-
ture, we assume that, in a given sufficiently narrow latitude
band, at a fixed altitude and in a given season, the distribu-
tion of the differences X(t + τ)−X(t) does not depend on
t , which means that X(t) is a process with stationary incre-
ments. The basic characteristics of real-valued random pro-
cess with stationary increments are the mean value of the in-
crement E [X(t + τ)−X(t)] and the correlation function of
the increment

D(τ)= E|X(t + τ)−X(t)|2, (1)

also called the “structure function” of the process X(t) (Ya-
glom, 1986, chap. 23). In our case, as E [X(t + τ)−X(t)]=
0,

D(τ)= E|X(t + τ)−X(t)|2

= σ 2(|X(t + τ)−X(t)|)+ (E|X(t + τ)−X(t)|)2

= σ 2(|X(t + τ)−X(t)|). (2)

The natural variability of a trace gas is the square root of the
structure function of the process X(t):√
D(τ)= σ(|X(t + τ)−X(t)|). (3)

This provides the formal link between the intuitive defini-
tion of the natural variability, as the variability of differences,
and the mathematical machinery of random processes with
stationary increments, which is widely used in studying the
processes at smaller spatiotemporal scales, for example, in
the theory of atmospheric turbulence. This link will allow
us to draw conclusions about the nature of the process X(t)
based on the shape of the obtained statistics and will justify
the choice of the form of the regression function for the nat-
ural variability of trace gases. The next section explains how
the estimation of

√
D is done out of model fields.
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3.2 Estimation of variabilities

In order to obtain a statistic of the variability of differences,
the model fields were first transformed from their native hy-
brid sigma-pressure vertical grid to a fixed 1 km step geomet-
rical height grid. For this, the geopotential height for each
model knot was restored and transformed into geometrical
height using the temperature values from the model, which
allowed the interpolation of the profiles on a fixed altitude
grid. Second, the model fields were smoothed according to
the horizontal resolution of the instruments whose precision
was to be validated. We have chosen the MIPAS instrument
as an example. Its cross-track resolution roughly corresponds
to an east–west resolution and is defined by the width of
the instantaneous field of view at the tangent point, which
is 30 km. The along-track smearing, which roughly corre-
sponds to a north–south horizontal resolution, is roughly
200 km on average (von Clarmann et al., 2009). This smooth-
ing operation does not influence the shape of the obtained
curves, but it does reduce the obtained variability values by
around 0.05 %. No vertical smoothing is applied, as vertical
smoothing is typically considered in an explicit manner in
validation via the averaging kernels. These smoothed fields
are the basis for the statistics of the horizontal and temporal
variability of the atmospheric state.

3.2.1 Horizontal variability

We take the model data within a fixed 10◦ latitude bin and
at a fixed height; as each of the five model data sets used
(one from BASCOE and four from WACCM6) covers only
1 week, there is no need to fix a season. For all possible pairs
of points in the obtained subset, the normalized differences
of the VMR of the target trace species within a predefined
radius of 1500 km are calculated:
VMR(location1, t)−VMR(location2, t)

VMRmean
, (4)

with VMRmean being the mean VMR values of the target
trace gas in the chosen latitude band at the chosen height. The
constant time index t indicates that only differences where
the subtractor and the subtrahend refer to the same time are
considered. These differences are binned according to their
horizontal separation distance. The following bins were used:
0–100 km between the two points, 100–200 km between the
two points, etc. We calculate the standard deviation of the
sample of these normalized differences, which provides us
with an estimator of the natural variability of the target trace
gas as a function of distance separation. The obtained esti-
mation of the natural variability of ozone at 35 km altitude as
a function of distance is shown in Fig. 1a. The fast growth of
the variability for separation distances over 1000 km at high
northern latitudes reflects that, in many pairs of correspond-
ing samples, one point lies inside the polar vortex whereas
the other lies outside. Note also that the calculated variabil-
ity values for the distances from 0 to 100 km are zero for the

tropical latitudes (yellow curves in Fig. 1) and present a peak
at subtropical latitudes (clear orange and clear green curves
in Fig. 1). This is due to the models’ resolutions: the samples
for 100 km distance separation are empty or very small at low
latitudes. Therefore, the 100 km point will not be taken into
account in the calculation of regression coefficients at these
latitudes.

3.2.2 Temporal variability

In a similar fashion to that described above, for all possible
pairs of data points for the entire data set, the differences of
the VMR of the target trace gas within a predefined time pe-
riod of 72 h are calculated for each latitude band and height:

VMR(location, t1)−VMR(location, t2)
VMRmean

. (5)

The constant location index “location” indicates that differ-
ences are only considered when the subtractor and the subtra-
hend refer to the same location. These differences are sorted
according to their time lag. Similar to the horizontal variabil-
ity, for each time lag, the differences are normalized by the
mean VMR within given latitude band at given altitude, and
the standard deviation of the sample of normalized differ-
ences is then calculated. This quantity is the estimator of the
natural variability of the target species as a function of time
separation, and we note it as σrel,time; its values for ozone
at 35 km altitude are shown in Fig. 1b. As for most satellite
validation exercises, time separation within co-location cri-
teria stays within 5 h, and we made the choice to restrain our
analysis to a maximum time separation lag of 5 h.

3.3 Combination of horizontal and temporal variability

Despite the fact that advection can admittedly cause corre-
lations between horizontal and temporal components of the
variability, at the scales considered here, we assume that hor-
izontal and temporal variations of the atmospheric state are
uncorrelated. Tests using a statistic of combined horizontal
and temporal differences of the type

VMR(location1, t1)−VMR(location2, t2) (6)

have shown that, at the scales considered here, the error due
to the neglect of correlations is below 0.1 % and, thus, not
usually worth an additional effort. In our analysis, we of-
fer independent parametrizations for each of them, which are
recommended to be combined with their quadratic sum; we
also provide a software that performs this summation for a
reparametrization of these quantities on latitudinal gradients,
and this software is described in the Sect. 6.

We do not consider the vertical variability in the present
work, and the fields are calculated independently for each al-
titude level. Note that atmospheric variability as a function of
distance and time separation could be approximately repre-
sented by a two-dimensional random process; however, this
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Figure 1. (a) Natural variability of O3 at 35 km altitude as a function of horizontal distance in the BASCOE model. (b) Natural variability
of O3 at 35 km altitude as a function of time separation in the BASCOE model.

is outside the scope of this paper: our choice is to treat the
distance and time mismatch dependences separately, as this
is what a typical validation exercise does.

4 Parametrization

4.1 Motivation

The goal of the present work is to provide the community
with information on the natural variability of trace gas mix-
ing ratios as a function of distance and time separation. This
information is meant to be used in the context of validation
studies. Instead of providing the entire variability data set,
we consider the use of a simple and easy-to-use parametriza-
tion as more adequate. The reasons for this are as follows: (1)
the use of parametrizations avoids a considerable amount of
data traffic, (2) the fine structure of the fields reflects the ac-
tual conditions of the days actually covered by the model run
rather than the general behavior of the atmosphere, and (3)
our parametrization using continuous regression functions al-
lows for easy interpolation.

4.2 The regression function

In view of the shape of the curves produced from model data
(Sect. 3.2.2 and 3.2.1), the natural variability function can be
parameterized in the form D(τ)= Aτ γ , where A> 0, and
0< γ < 1. An interesting side conclusion that can be made
from the obtained shape of the structure function of X(t) is
that the process of the atmospheric variability (horizontal and
temporal variability) of mixing ratios is self-similar: the form
of its structure function D(τ)= Aτ γ is invariant under a

group of similarity transformations, t→ ht and X→ a(h)X

(Kolmogorov, 1940; Yaglom, 1986); in other words, no char-
acteristic scale can be associated with their structure func-
tion.

As pointed out in the Sect. 3.2.1, variability grows very
rapidly at high latitudes and distances over 1000 km. More-
over, at low latitudes, the values of variability as a function
of the distance mismatch is meaningless at 100 km: it is cal-
culated on the samples from too small to empty, due to the
model horizontal resolution. The choice of a 5 h upper limit
for the time-dependent variability is driven by the typical
values of the time mismatch occurring in satellite validation
studies and on the shape of the obtained curves. We calcu-
late the regression coefficients A and γ by minimizing the
quantity

10∑
i=2

(
yi −Aτi

γ
)2 (7)

via the Sequential Least SQuares Programming (SLSQP) op-
timizer (Kraft, 1988) and by giving the value at 100 km as a
first constraint for A and 0.5 as a first constraint for γ . The
obtained regression curves and the initially calculated model
curves for some species are shown in Fig. 2 for distance sepa-
ration and in Fig. 3 for time separation. Note that the assumed
parameterization does not apply for a high-latitude case at
large distances. The initial and smoothed (regressed) natural
variability surfaces as a function of latitude and time sepa-
ration are shown in Fig. 4 for ozone at 35 km altitude. In a
range between 100 and 1000 km, the parametrizations fit the
data very well.
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Figure 2. Natural variability as a function of horizontal distance for (a) temperature, (b) O3, (c) H2O and (d) CH4 in the BASCOE model
(solid lines) and the proposed parametrization (dashed lines) in different latitude bins.

5 Reparametrization on latitudinal gradients

An obvious deficiency of our approach is that the variability
fields are calculated from only 1 week of data. Operational
constraints did not allow us to generate a better coverage for
that many species at the required resolution. The variabil-
ity, which we have calculated as a function of latitude and
distance (time) mismatch, is also dependent on season, as
different seasons correspond to different inclinations of the
Earth’s axis and, intuitively, should all be shifted in latitude
as the season changes. There is, however, a way to tackle
the problem: if the user is willing to calculate one additional
quantity from this data, namely the latitudinal gradients of
the gas under validation, then the workaround consists of the

reparametrization of the variability of the latitudinal gradi-
ents of the species. Latitudinal gradients of a gas are defined
as follows:∣∣∣∣VMRl1 −VMRl2

l1− l2

∣∣∣∣ , (8)

where VMRl1 is the mean VMR of the gas in a latitude band,
VMRl2 is the mean VMR in the northward neighboring lat-
itude band, and l1− l2 is the width of the latitude band (in
our case, this is 10◦). In the relative version of the latitudinal
gradient, this quantity is normalized with respect to the mean
VMR in both bands and is multiplied by 100. For a fixed dis-
tance (or time) mismatch, as a first approximation, because
the variability is calculated as the square root of the variance
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Figure 3. Natural variability as a function of time separation for (a) temperature, (b) O3, (c) H2O and (d) CH4 in the BASCOE model (solid
lines) and the proposed parametrization (dashed lines) in different latitude bins.

Figure 4. Natural variability of O3 at 35 km altitude as a function of horizontal distance separation in the BASCOE model for the (a) model
fields and (b) regressed fields.
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Figure 5. Distribution of O3 in 1 week of each season in the
WACCM model.

of differences, and the latitudinal gradients are calculated as
differences, we expect a linear dependence of the variability
from the latitudinal gradients.

To test the abovementioned theoretical considerations in
practice, especially to see if the linear dependence of the nat-
ural variability from the latitudinal gradients is the same in
different seasons, the link between the natural variability and
the latitudinal gradients was tested on the data of a worse re-
solved model with less species, although using a model for
which the data from different seasons were available, namely
data from WACCM6.

Figure 5 shows the ozone distributions in each season of
WACCM data. The distributions are as expected, and the lat-
itudinal shift in different season is visible; therefore, the data
are suitable for our test.

Figures 6, 7 and 8 show the natural variability as a func-
tion of latitudinal gradients for a particular distance separa-
tion of 400 km in four seasons of WACCM for H2O at 30 km,
O3 at 35 km and NO at 40 km. Each point in these figures
corresponds to one 10◦ latitude band; for the sake of com-
pleteness, we include the points from all of the latitudes. One
can observe that the regression lines are similar in all cases,
with some deviation in summer and winter that stems from
the points corresponding to high (> 70◦) latitudes, which is
expected. Similar linear dependencies, which are compara-
ble for different seasons, are observed when changing the
400 km separation distance. This hints at a seasonally inde-
pendent linear approximation of the natural variability as a
function of latitudinal gradients. Hence, the natural variabil-
ity calculated in just one season and reparameterized on lat-
itudinal gradients of the species provides all of the informa-
tion needed for the validation exercise in any season. Finally,
we would like to remark that the variability fields of well-

Figure 6. Natural variability of H2O as a function of latitudinal
gradients for a 400 km distance separation at 30 km altitude in four
seasons in the WACCM model. The horizontal axis corresponds to
latitudinal gradients, and the dashed line is the linear regression of
plotted points.

Figure 7. Natural variability of NO as a function of latitudinal gra-
dients for a 400 km distance separation at 40 km altitude in four
seasons in the WACCM model.

correlated tracers are close, which provides additional confi-
dence in the method.
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Figure 8. Natural variability of O3 as a function of latitudinal gra-
dients for a 400 km distance separation at 35 km altitude in four
seasons in the WACCM model.

6 What to do in practice: the software

The variabilities as functions of time and distance mismatch
are added quadratically, and this provides the final variability
value for the chosen co-location criteria. In practice, the users
will have to calculate just one additional quantity from the
data under validation, namely the latitudinal gradients of the
species under validation. This quantity should be calculated
on the whole sample in order to increase the significance of
the statistics. In addition to the regression coefficient values,
we provide a software that uses the species’ name (among the
30 available), the distance and time mismatch chosen, the lat-
itude band, the value of the latitudinal gradients of these data
and the height as input and then outputs the value of the natu-
ral variability of the gas at a given altitude, latitude band and
mismatch. If the validation study is performed in a latitude
domain larger then 10◦, the values in the corresponding 10◦

bands should be added quadratically.

7 Discussion

In the sense of playing devil’s advocate, we try to raise pos-
sible objections to our method and rebut them. As we do not
use model data directly, instead using only differences be-
tween model data, the additive model biases cancel out. Crit-
ical minds might plead that there could still be multiplicative
biases in the model data that would affect our statistics of
differences. However, these are not harmful if the gradient-
related parametrization is used instead of the latitude–month-
related parametrization. The rough reason for this is as fol-

lows: a model bias affects the horizontal gradients in the
same way as the differences used for our statistics. Thus, the
effect of a multiplicative model bias also cancels out.

An obvious objection to our method is that the model
data used cover only a short time period and might not
be inductively generalizable towards other time periods. We
agree that, due to the annual cycle, the typical meteorological
regimes are shifted in latitude over the year. However, once
again, when the gradient-related parametrization is used, it is
likely that the statistics of the correct meteorological regime
is chosen, even if it is found at different latitudes to that of the
validation experiment. The explanation for this is that the nat-
ural variability of mixing ratios of most trace species is pre-
dominantly driven by the latitudinal gradients. It goes with-
out saying that this does not hold for fast-reacting species,
particularly those that are in photochemical equilibrium.

These parametrizations should not be used where polar
vortex dynamics may play a role or for spatial mismatches
beyond 1000 km and temporal mismatches beyond 5 h; how-
ever, these situations are not the preferred validation scenar-
ios anyway.

8 Conclusions

In validation exercises, a universal excuse used to explain the
residual discrepancy between the data is the natural atmo-
spheric variability due to imperfect co-locations. This work
is the first attempt to quantify this atmospheric variability for
a large sample of atmospheric constituents and to provide the
user with a tool to subtract the natural atmospheric variability
portion from the residual variability. The fields of natural at-
mospheric variability as a function of distance and time mis-
match were calculated from highly resolved BASCOE model
data. The variability data were described with an easy-to-use
regression function, and the regression coefficients as well as
the software that calculates the value of the corresponding
natural variability for given gas, latitudinal gradient, height,
and co-location criteria are provided to the community. The
independence of the linear approximation of the natural vari-
ability as a function of latitudinal gradients from season was
demonstrated on WACCM model data. An application of the
method to ozone and temperature fields will be provided in
upcoming validation papers of version 8 of the MIPAS data.

Code and data availability. The regression coefficients of the
parametrization on latitudes for autumn and the software for calcu-
lating the variability as a function of latitudinal gradients are avail-
able from https://doi.org/10.5445/IR/1000137514 (Laeng, 2021).

Whole Atmosphere Community Climate Model (WACCM) data
can be downloaded from the ACOM website: https://www2.
acom.ucar.edu/gcm/waccm (Atmospheric Chemistry Observations
& Modeling/National Center for Atmospheric Research/Univer-
sity Corporation for Atmospheric Research, 2020c). WACCM fore-
cast maps are available from https://www.acom.ucar.edu/waccm/

Atmos. Meas. Tech., 15, 2407–2416, 2022 https://doi.org/10.5194/amt-15-2407-2022

https://doi.org/10.5445/IR/1000137514
https://www2.acom.ucar.edu/gcm/waccm
https://www2.acom.ucar.edu/gcm/waccm
https://www.acom.ucar.edu/waccm/forecast/


A. Laeng et al.: Parametrization of the natural variability of atmospheric mixing ratios 2415

forecast/ (Atmospheric Chemistry Observations & Modeling/Na-
tional Center for Atmospheric Research/University Corporation for
Atmospheric Research, 2020a).

The WACCM model can be downloaded from the NCAR/UCAR
Research Data Archive: https://rda.ucar.edu/datasets/ds313.6/ (At-
mospheric Chemistry Observations & Modeling/National Center
for Atmospheric Research/University Corporation for Atmospheric
Research, 2020b).
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