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Abstract. During the Chequamegon Heterogeneous Ecosys-
tem Energy-balance Study Enabled by a High-density Ex-
tensive Array of Detectors 2019 (CHEESEHEAD19) field
campaign, held in the summer of 2019 in northern Wiscon-
sin, USA, active and passive ground-based remote sensing
instruments were deployed to understand the response of
the planetary boundary layer to heterogeneous land surface
forcing. These instruments include radar wind profilers, mi-
crowave radiometers, atmospheric emitted radiance interfer-
ometers, ceilometers, high spectral resolution lidars, Doppler
lidars, and collaborative lower-atmospheric mobile profiling
systems that combine several of these instruments. In this
study, these ground-based remote sensing instruments are
used to estimate the height of the daytime planetary bound-
ary layer, and their performance is compared against inde-
pendent boundary layer depth estimates obtained from ra-
diosondes launched as part of the field campaign. The impact
of clouds (in particular boundary layer clouds) on boundary
layer depth estimations is also investigated.

We found that while all instruments are overall able to
provide reasonable boundary layer depth estimates, each of
them shows strengths and weaknesses under certain condi-
tions. For example, radar wind profilers perform well dur-

ing cloud-free conditions, and microwave radiometers and
atmospheric emitted radiance interferometers have a very
good agreement during all conditions but are limited by the
smoothness of the retrieved thermodynamic profiles. The es-
timates from ceilometers and high spectral resolution lidars
can be hindered by the presence of elevated aerosol layers
or clouds, and the multi-instrument retrieval from the collab-
orative lower atmospheric mobile profiling systems can be
constricted to a limited height range in low-aerosol condi-
tions.

1 Introduction

The Chequamegon Heterogeneous Ecosystem Energy-
balance Study Enabled by a High-density Extensive Array of
Detectors 2019 (CHEESEHEAD19) field campaign, held be-
tween the midsummer and fall of 2019, investigated the sur-
face energy balance and atmospheric response over the het-
erogeneous forest region of northern Wisconsin, USA (But-
terworth et al., 2021). An extensive array of instrumentation
was deployed by the National Science Foundation (NSF), the
National Oceanic and Atmospheric Administration (NOAA),
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other agencies, and universities to examine the impacts of
land surface heterogeneities within the forested region on
planetary boundary layer (PBL) structure and evolution. An
essential component of CHEESEHEAD19 was to adequately
sample and model the spatial variability within the study
region via large-eddy simulation, and thus a correct under-
standing of subgrid-scale processes could be used to improve
the performance of numerical weather and climate prediction
models. The details and the design of the field campaign, in-
cluding the complete list of instruments deployed and a dis-
cussion of preliminary results, are presented in Butterworth
et al. (2021). The complete dataset of observations and model
runs is available for general use through the National Cen-
ter for Atmospheric Research (NCAR) Earth Observatory
Laboratory (EOL) data repository (https://www.eol.ucar.edu/
field_projects/cheesehead, last access: 8 April 2022).

Additional studies using the CHEESEHEAD19 dataset are
available and in progress. These studies include an obser-
vational investigation into the role of boundary layer clouds
on the partitioning of the surface energy budget during day-
time and PBL structure, an evaluation of numerical weather
prediction models and satellite representations of clouds and
surface radiation, and an observational analysis of the forc-
ing mechanisms in the PBL evolution and structure in this
particular geographical area.

The planetary boundary layer height (PBLH) plays an im-
portant role in determining local air quality and turbulent
transport of heat and moisture and is a key parameter in
model parameterizations. Land surface heterogeneities con-
tribute to variability in PBL structure and depth (Desai et al.,
2006; Reen et al., 2014; Gantner et al., 2017; Platis et al.,
2017). Many studies (some of which are listed later in this
paper) have made use of different observational datasets to
derive the PBLH. Other studies compared the PBLH esti-
mated from different platforms. For example, Collaud Coen
et al. (2014) compare PBLH detection methods from several
remote sensing instruments (Raman lidar, radar wind pro-
filer, and microwave radiometer) with several radio sounding
methods. Emeis et al. (2012) evaluates ceilometer data by
comparing to sodar, radio acoustic sounding system (RASS),
and radiosonde data to understand the influencing factors that
have to be observed when using ceilometer data to detect the
PBLH. Caicedo et al. (2017) assess three algorithms for esti-
mating PBLHs from a Vaisala CL31 ceilometer comparing to
40 daytime clear-sky radiosonde profiles. De Arruda Moreira
et al. (2018) compared the PBLH estimated by a microwave
against radiosondes, as well as those estimated by an elastic
lidar and a the Doppler lidar.

In this study, an intercomparison analysis of the strengths
and weaknesses of the many different platforms deployed
for CHEESEHEAD19 at estimating daytime PBLHs com-
pared to radiosonde estimates is presented. The instruments
deployed during CHEESEHEAD19 and used to this pur-
pose include the atmospheric emitted radiance interferome-
ter (AERI), the microwave radiometer (MWR), the Vaisala

CL51 Ceilometer (CL51), the high spectral resolution li-
dar (HSRL), the Collaborative Lower Atmospheric Mo-
bile Profiling System (CLAMPS multi-instrument), and the
915 MHz radar wind profiler (RWP).

Thermodynamic profiles in the PBL can be retrieved from
passive multi-spectral radiance observations from instru-
ments such as the AERI and the MWR (Turner and Blum-
berg, 2019), and therefore instruments such as these can be
used to estimate PBLH using standard methodologies (i.e.,
parcel method, maximum vertical gradient of the potential
temperature, etc.). Cimini et al. (2013) previously made use
of direct observations of MWR brightness temperatures in-
stead of retrieved profiles to estimate PBLH. However, this
approach, which investigates the covariance of geophysical
variables, requires an independent PBLH reference observa-
tion for training, which was not available during CHEESE-
HEAD19.

Ceilometer backscatter is correlated with aerosol concen-
trations at a given height. The transition to the free atmo-
sphere, and therefore the PBLH, can be inferred as the height
above which backscatter intensity strongly decreases with
height (Hicks et al., 2016). This study evaluates ceilometer
PBLH estimates based on proprietary software that leverages
this information to provide PBLH estimates (e.g., Münkel et
al., 2007). Alternative algorithms exist to extract PBLH esti-
mates from ceilometer data, such as using covariance wavelet
transforms to identify the location of the peak negative gradi-
ent (e.g., Brooks, 2003; Morille et al., 2007; Compton et al.,
2013). Some of these methods have been evaluated against
the standard PBLHs provided by the proprietary software
(Knepp et al., 2017), finding improvements at some sites and
in some particular situations (i.e., morning transition) but not
on a consistent basis. Future research will be specifically de-
voted to identifying and testing more refined techniques to
estimate PBLH from ceilometer observations.

The HSRL is an advanced lidar system that measures both
the elastic backscatter (similar to a ceilometer) and the in-
elastic backscatter that is entirely due to molecular (and not
particulate) scattering (e.g., Eloranta, 2005). From these two
observations, an aerosol backscatter coefficient unattenuated
by molecular scattering can be derived. Furthermore, HSRLs
are often designed to have very good solar background sup-
pression, yielding much larger signal-to-noise ratio (SNR)
data from which higher-order moments can be derived (Mc-
Nicholas and Turner, 2014). The often-present sharp gradient
in aerosol backscatter at the top of the PBL during the day-
time can be used to determine the PBLH.

Doppler lidars (instrumented within the CLAMPS) can
also be used to estimate PBLHs. Bonin et al. (2018) used
a fuzzy-logic-based approach to combine the information
derived from Doppler lidar-measured wind and turbulence
profiles (vertical velocity and its variance and signal-to-
noise ratio and its variance) for PBLH characterization. Since
Doppler lidar observations may not always reach the top of
the PBL, thereby limiting their ability to detect the PBLH
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(Tucker et al., 2009; Berg et al., 2017, Bonin et al., 2018), Kr-
ishnamurthy et al. (2021) utilized a machine learning frame-
work for estimating PBLH using parameters derived from
Doppler lidars and surface meteorological measurements that
accounts for this limitation.

RWPs are also used to measure PBLH as the SNR ex-
hibits a local maximum at the height of the inversion, due
to small-scale buoyancy fluctuations associated with the en-
trainment process (White, 1993; Angevine et al., 1994; Coul-
ter and Holdridge, 1998). Other information contained in the
hourly variance and spectral width of the RWP-measured
vertical velocity can be included to strengthen the robustness
of PBLH determination (Bianco et al., 2008). Daytime PBLH
values derived from a 915 MHz RWP have additionally been
shown to agree well with the maximum in the variance of the
water vapor mixing ratio, which provides another measure of
PBLH (Turner et al., 2014).

Radiosondes are often considered the gold standard for
retrieving PBLH due to their high vertical resolution and
the different meteorological variables that can be measured.
However, a limitation of radiosondes is that they normally
do not provide the high-temporal resolution that is possi-
ble from remote sensing systems, such as those deployed for
CHEESEHEAD19. If remote sensing systems are to be used
to provide high temporal resolution estimates of the PBLH,
a comprehensive understanding of how these ground-based
remote-sensing instruments resolve the PBLH is needed in
order to accurately interpret the retrieved PBLHs.

In this study, 170 daytime radiosonde observations col-
lected during the field campaign are used to validate the per-
formance of the aforementioned instruments deployed for
CHEESEHEAD19 in retrieving PBLHs. Since not all instru-
ments were deployed for the entire duration of the campaign
(see Sect. 2 for details), evaluation of these instruments in
their ability to resolve PBLH will be broken down into two
components. First, the RWP, CL51, and MWR PBLH esti-
mates will be compared with the radiosondes over a multi-
month time period. Second, the analysis will focus on two
of the short-term intensive observation periods (IOPs), when
a larger number of instruments are available. The analysis
also includes PBLH comparisons in different types of cloud
conditions using RadSys measurements of incoming and out-
going radiation and cloud properties. Section 2 provides the
CHEESEHEAD19 deployment specifics, including instru-
ment description and the instrument-specific methods used to
derive PBLHs; in Sect. 3 the estimation and characterization
of the PBLHs from RWPs, CL51s, and MWRs is evaluated
against radiosonde estimates for the multi-month time period
analysis, from all available platforms against radiosonde es-
timates for the two IOPs, and in more detail from two single-
day case studies. Section 4 concludes with a summary of the
results and provides concluding remarks.

2 CHEESEHEAD19 field campaign instrumentation
and deployment specifics

Many of the instruments deployed for CHEESEHEAD19
were located within the main 10km× 10 km experiment
domain centered on the existing Park Falls tower Ameri-
Flux/NOAA supersite (447 m in height), WLEF (see Fig. 1 of
Butterworth et al., 2021, for the map and schematic diagram
of the CHEESEHEAD19 domain). In addition to instrumen-
tation deployed at the WLEF site, some instruments were de-
ployed at the Prentice and Lakeland airports, located approx-
imately 45 km south and east of the WLEF site, respectively
(Fig. 1a), to provide information on the spatial variability of
boundary layer structure and cloud and radiation fields.

One AERI and the HSRL (data available from Wagner,
2020) were deployed aboard the Space Science and Engi-
neering Center (SSEC) Portable Atmospheric Research Cen-
ter (SPARC, Wagner et al., 2019). Two MWRs (data avail-
able from Adler et al., 2021), two CLAMPS platforms (Wag-
ner et al., 2019; data available from Klein et al., 2020), two
CL51s (data available from Sedlar et al., 2020a, b), and two
RWPs (data available from Bianco and Duncan, 2020, and
Wilczak and Gottas, 2020) were deployed at the Lakeland
and Prentice sites. The radiosondes were launched from the
Integrated Sounding System (ISS) site, located slightly west
(< 2 km) of the WLEF site. Throughout the campaign, rou-
tine soundings were launched at 13:00 local time (LT; LT
being equal to UTC−5). In addition to these launches, there
were three 7 d IOPs wherein three to four additional launches
were made per day, allowing for a more complete picture of
the PBLH development.

A list of the instruments used in this study, their locations,
and their deployment durations is presented in Table 1.

The methods used by these instruments to discern PBLH
development are described later in the paper and vary from
simple methods, such as the parcel method, to more sophis-
ticated instrument-specific techniques.

2.1 Validation dataset – radiosondes

A total of 170 Vaisala RS41 radiosondes were launched dur-
ing daytime from the ISS location between 20 June and
11 October 2019. The soundings were typically launched
at least once per day at 13:00 LT. In addition to these daily
soundings, three 7 d IOPs occurred between 9–13 July, 19–
24 August, and 23–28 September. Due to the larger in-
strument availability, only the latter two IOPs are used
in this study. During these two IOPs, four radiosondes
were launched per day at around 06:00, 09:00, 13:00, and
17:00 LT. Since sunrise for 19–24 August and 23–28 Septem-
ber is approximately at 05:20 and 06:00 LT, respectively, the
06:00 LT sounding was not included in the analysis as a con-
vective PBL would not yet have been present in the obser-
vations. Sunset for the 19–24 August and 23–28 September
is at around 19:00 and 18:00 LT, respectively. These IOPs al-
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Figure 1. (a) Location of the four measurement sites where instruments were deployed to examine PBL structure and evolution during the
CHEESEHEAD19 field campaign. The background shows aerial imagery. Since the ISS and WLEF sites were located less than 2 km apart,
they are plotted with the same marker. (b) Trajectories of all the radiosondes released from the ISS facility (red up to 17 km a.g.l. and yellow
up to 4 km a.g.l.) are shown.

Table 1. List of instruments used in this study, with site and time of the deployment during CHEESEHEAD19 and information indicating
the analysis time periods.

Instrument system Deployment
locations

Deployment
period

Used in the
multi-month
time period
analysis

Used in the
Summer-IOP
analysis

Used in the
Fall-IOP
analysis

Radiosondes ISS 20 Jun–11 Oct X X X

AERI Lakeland 20 Sep–10 Oct X
WLEF 2 Jul–11 Sep X

Radiometrics MP-3000A MWR Lakeland 1 Aug–29 Oct X X
Prentice 31 Jul–19 Sep X

RPG HATPRO-G4 MWR Lakeland 20 Sep–22 Oct X X

CLAMPS multi-instrument Lakeland 20 Sep–1 Oct X
Prentice 20 Sep–9 Oct X

CL51 Lakeland 27 Jun–22 Oct X X X
Prentice 28 Jun–19 Oct X

RWP Lakeland 27 Jun–29 Oct X X X
Prentice 26 Jun–30 Oct X

HSRL WLEF 24 Jun–6 Jun X X

low for the diurnal development of the PBL to be resolved
(morning transition, midday, and evening transition), while
the more standard launch time of 13:00 LT enabled the ex-
amination of the midday and presumably more maturely de-
veloped (although not necessarily well-mixed) PBL.

The radiosondes were quality controlled and are main-
tained by the NCAR EOL. The Vaisala system performs
a sequence of standard quality control procedures and cor-
rections for all radiosonde data. In addition to the standard

Vaisala procedures, custom quality control was used to miti-
gate any previously unidentified issues. Specific quality con-
trol measures imposed are detailed in the NCAR EOL tech-
nical report (NCAR/EOL, 2019).

Radiosonde trajectories for these launches up to 17 km
above ground level (a.g.l.) are displayed in red in Fig. 1b.
Generally, the radiosondes track to the east. The yellow lines
in Fig. 1b shows the trajectories up to 4 km a.g.l. and demon-
strate that each radiosonde launch was within the investiga-
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tion area and appropriate for the PBLH instrument evaluation
analysis performed later.

We note that limitations in using radiosondes for deter-
mining the PBLH include that they provide nearly instanta-
neous measurements and are only representative of the ex-
act location transited at the interface between the boundary
layer and the free troposphere above. Moreover, if the ra-
diosonde transited a downdraft, the local PBLH estimate may
be biased slightly low compared to the area-averaged PBLH.
Conversely, if an updraft is present, the local PBLH estimate
would be displaced slightly upward compared to the area-
averaged PBLH. However, given the large number of profiles
used in this study, the impacts of updrafts and downdrafts on
PBLH estimates should average out and not lead to a bias,
although this may have contributed to some of the scatter in
the comparison plots presented later on.

Radiosonde profiling capabilities allow for a variety of
methods to be used to estimate the PBLH (Seibert et al.,
2000; Seidel et al., 2010), each of which present different
strengths in resolving the PBLH (Seidel et al., 2010; Li et
al., 2021). These include the following methods.

1. Parcel method. The PBLH is evaluated by compar-
ing the surface value of virtual potential temperature
(2v,surf) to values aloft and identifying the height where
2v is the same as the surface value. This is the height
where a parcel of air, lifted from the surface, is in equi-
librium with its environment at this altitude (Holzworth,
1964). In this study, a slightly different criterion (i.e.,
modified parcel method) is used where the PBLH is de-
fined as the height at which 2v is the same as the 2v,surf
value at the surface+0.5 K (2v =2v,surf+0.5K). This
definition is similar to that used in some operational
numerical weather prediction models (Coniglio et al.,
2013; Olson et al., 2019), whose verification and val-
idation is the goal of a CHEESEHEAD19 study in
progress.

2. Potential temperature gradient method. The PBLH is
evaluated by finding the location of the maximum ver-
tical gradient of potential temperature (2) in the lowest
4 km a.g.l.

3. Specific humidity gradient method. The PBLH is evalu-
ated by locating the height of the minimum vertical gra-
dient of specific humidity (q) in the lowest 4 km a.g.l.

4. Relative humidity gradient method. The PBLH is evalu-
ated by locating the height of the minimum vertical gra-
dient of relative humidity (RH) in the lowest 4 km a.g.l.

5. Elevated inversion method. The PBLH is evaluated by
locating the height of the base of an elevated tempera-
ture (T ) inversion.

Using the methods listed above, Fig. 2 provides a compar-
ison between the distribution of the PBLH estimation tech-

nique over different hours of the diurnal cycle from the ra-
diosondes.

Comparison between these methods demonstrates the par-
cel method’s unique ability (blue and orange bars in Fig. 2a,
using either of the two definitions) to detect the morning de-
velopment of the PBL. Other methods during the morning
transition primarily detect the top of a residual layer aloft.
Because (i) Seibert et al. (2000) suggested that parcel meth-
ods are better suited in convective boundary layer conditions
and (ii) because the parcel method is the only method to rea-
sonably resolve the PBL development, the modified parcel
method (hereafter simply referred to as the “parcel method”)
is employed to derive PBLH from the radiosonde, AERI, and
MWR 2v profiles. This method will be employed in all con-
ditions, i.e., both clear-sky or cloudy conditions, although
cloudy conditions might present 2v profiles that are not al-
ways straightforward to interpret (see case study presented
later in the paper).

2.2 Passive remote sensing instruments

As opposed to active remote sensing instruments, which ac-
tively send out a signal and record the measured backscatter,
passive remote sensing instruments naturally measure exist-
ing atmospheric energy or signals to determine quantities of
interest via some retrieval algorithm (see Maahn et al., 2020,
for a high-level discussion of retrievals and their uncertain-
ties). There were several passive ground-based systems de-
ployed during the field campaign, including the two AERIs
and three MWRs used in this study.

2.2.1 AERI and MWR

The AERI is a ground-based passive spectrometer receiv-
ing downwelling infrared radiation. The spectral resolu-
tion of the AERI is better than 1 cm−1 between the wave-
lengths of 3.3 and 18.2 µm (550–3000 cm−1) (Knuteson et
al., 2004). The AERI observes the spectrally resolved down-
welling radiance approximately every 30 s; however, these
high-temporal resolution data typically have a noise filter
applied (Turner et al., 2006). Thermodynamic retrievals are
processed at 5 or 10 min resolution due to the computa-
tional expense of the employed retrieval algorithm (Turner
and Blumberg, 2019). The data from the AERIs deployed
during CHEESEHEAD19 at the Lakeland and WLEF sites
are used in this study. The AERI at Lakeland was deployed
as part of the CLAMPS during a portion of the field cam-
paign (see more on the CLAMPS platform in the next sec-
tion). The SPARC AERI was deployed at WLEF for the du-
ration of CHEESEHEAD19, but an instrument failure likely
caused by a nearby lightning strike resulted in no data being
available from 12 September 2019 to the end of the experi-
ment. As a result, WLEF AERI observations are only present
for the August IOP analysis and not the September or multi-
month time period analyses.
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Figure 2. (a) Method-specific PBLH estimates derived from the radiosondes launched during CHEESEHEAD19 as a function of the ra-
diosonde launch hour. The boxes show the interquartile range with the median indicated by the horizontal line, and the whiskers extend
to points that lie within 1.5 times the interquartile range of the lower and upper quartiles. (b) Number of available PBLH estimates per
radiosonde launch hour per method.

At both Lakeland and Prentice, Radiometrics MP-3000A
MWRs (Solheim et al., 1998) were deployed. This instru-
ment passively measures brightness temperature approxi-
mately every 2.5 min at 21 frequencies along the 22.2 GHz
water vapor line and 14 frequencies along the 60 GHz oxy-
gen absorption band. These brightness temperature measure-
ments are made at the zenith angle (90◦) and at two oblique
scan angles (19.8 and 160.2◦). The data collected by the RPG
HATPRO-G4 MWR (Rose et al., 2005) deployed at the Lake-
land site in conjunction with the CLAMPS are available for a
shorter time period and will also be included in the analysis.
The HATPRO MWR measures downwelling microwave ra-
diance at seven frequencies along the 22.2 GHz water vapor
line and seven frequencies along the 60 GHz oxygen absorp-
tion band at 1 s temporal resolution. The measurements are
taken at zenith and at eight oblique scan angles around 18,
24, 30, 42, 138, 150, 156, and 162◦.

Despite the technical differences between these instru-
ments, the measurements of each instrument (infrared radi-
ance for the AERI and microwave radiance for the MWR)
can be used in the same physical iterative retrieval algo-
rithm, TROPoe (Tropospheric Remotely Observed Profiling
via Optimal Estimation; formerly AERIoe, Turner and Löh-
nert, 2014; Turner and Blumberg, 2019), to extract thermo-
dynamic profiles. Utilizing a common algorithm for thermo-
dynamic profile retrievals helps simplify analyses of both the
results and their uncertainties.

The retrieved thermodynamic profiles (extracted at 10 min
resolution for both the AERI-based and MWR-based re-

trievals) are averaged together between ±30 min of the hour
to determine an hourly mean thermodynamic profile from
which the PBLH is determined using the same parcel method
technique as for radiosonde thermodynamic profiles (de-
scribed in Sect. 2.1). Hourly PBLH estimates are determined
between sunrise and sunset. The 2v profiles were reviewed
for plausibility before estimating the PBLH; some AERI re-
trieved profiles were manually eliminated based on visual in-
spection. In addition, a glitch in the data acquisition system
resulted in several days of erroneous data from the Radiomet-
rics MWR at Lakeland that were removed from the analysis.

Figure 3 presents an example of time–height cross-
sections of retrieved 2v profiles at the Lakeland site from
the AERI (Fig. 3a) and one of the MWRs (Fig. 3b) on 28
September 2019. The vertical grid spacing and temporal res-
olution are the same for both instruments. Overlaid on both
panels are the corresponding PBLH estimates, obtained by
the application of the parcel method. From Fig. 3a suspi-
cious retrievals can be noted for the AERI before 06:00 LT,
when clouds with a liquid water path larger 75 gm−2 were
observed in the area. To limit these circumstances, a thresh-
old was applied on the indicator for the convergence of the
AERI retrievals, which filtered out most of the suspicious
profiles (albeit not all of them). The presence of these clouds
does not seem to impact the MWR retrievals (Fig. 3).

TROPoe offers the option of incorporating other inputs
to improve the thermodynamic profiles retrieved from the
AERI and MWR observations, among which are the thermo-
dynamic measurements from active systems such as RASS
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Figure 3. Time–height cross section of retrieved virtual potential temperatures for the AERI (a) and the MWR (b) at the Lakeland site for
28 September 2019. Overlaid on both panels are PBLHs (orange dots) estimated by applying the parcel method to the corresponding hourly
averaged profiles between sunrise (around 07:00 LT) and sunset (around 19:00 LT).

(Djalalova et al., 2022) and/or thermodynamic profiles from
numerical weather prediction models (e.g., Cimini et al.,
2011). Other sets of thermodynamic profiles were therefore
retrieved when possible (i.e., depending on instrument avail-
ability) and archived to the NCAR/EOL data repository (i.e.,
thermodynamic profiles constructed using only the passive
instrument, using the passive instrument plus RASS and us-
ing the passive instrument plus the Rapid Refresh model,
RAP; Benjamin et al., 2016). While including RASS mea-
surements in the TROPoe retrievals can be valuable for im-
proving the accuracy of temperature estimates in the lower
part of the atmosphere (where RASS measurements are
available), with enhanced accuracy extending above the max-
imum height of the RASS measurements (Djalalova et al.,
2021), we found its inclusion to not significantly impact the
PBLH estimates (not shown). Similarly, while outputs from
a numerical weather prediction model may outperform tra-
ditional retrieval methods for temperature and humidity pro-
filing (Cimini et al., 2011), we found this inclusion to not
significantly impact the PBLH estimates (not shown). There-
fore, the retrieved profiles including RASS and RAP input
are not used in this study.

2.3 Active remote sensing instruments

Active remote sensing instruments emit a signal and measure
the return to extract physical measurements of interest. Sev-
eral active ground-based systems deployed during the field
campaign were used for this study, including two scanning

Doppler lidars deployed in association with the CLAMPS
platforms, two CL51s, and two RWPs.

2.3.1 CLAMPS multi-instrument

Both CLAMPS multi-instrument platforms deployed for
CHEESEHEAD19 were part of a collaborative effort be-
tween the NOAA National Severe Storms Laboratory
(NSSL) and the University of Oklahoma (OU). The
CLAMPS is made up of three main instruments: a Doppler li-
dar, a MWR, and an AERI. Together, these instruments allow
the CLAMPS to collect high temporal resolution profiles of
temperature, moisture, wind, and turbulence information ev-
ery few minutes or faster depending on the user-configurable
scan strategy. The OU-NSSL CLAMPS and the NOAA-
NSSL CLAMPS were deployed for CHEESEHEAD19 at
Lakeland and Prentice, respectively. Both CLAMPS use
Halo Photonics Doppler lidars, which are coherent scan-
ning lidars operating at 1.5 µm wavelength. The CLAMPS
at Lakeland uses the Streamline model with optional up-
grades to enable a larger Nyquist limit (±38 ms−1) and in-
creased max range (∼ 10 km) and is equipped with an RPG
HATPRO-G4 MWR and an AERI. The CLAMPS at Prentice
uses a Streamline XR+ model that has the same capabilities
as the Streamline but with slightly higher laser power and a
greater max range (∼ 12 km) and is equipped with a Radio-
metrics MP3000-A MWR and an AERI, which was unfortu-
nately not operating during CHESEHEAD19.

Given the CLAMPS structure, this platform provides a
unique opportunity to explore multi-instrument value-added
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products, such as a fuzzy-logic PBLH estimate. In the case
of CLAMPS, these value-added products have the benefit
of high temporal resolution, which can be critical for some
applications. The fuzzy logic algorithm used here was de-
veloped by Smith and Carlin (2021) and uses a two-step
approach wherein actively sensed measures of turbulence
(direct measures of turbulence or mixing activity) are used
in a first-step estimate, which is then refined in a second-
step estimate incorporating different indicators of mixing
(measurements suggesting that mixing or turbulence has oc-
curred). This approach is based on the lidar-only algorithm
first developed by Bonin et al. (2018) but with the addition
of leveraging of multi-instrument inputs (i.e., thermodynam-
ics). Because the first step almost exclusively depends on the
Doppler lidar1 and the second step effectively refines the ini-
tial PBLH estimate, limits on the ability of the Doppler lidar
to penetrate the full depth of the PBL (due to low aerosol
loads, cloud layers, etc.) can limit the ability of the algorithm
to successfully estimate the PBLH.

Observations from the CLAMPS at Prentice are shown in
Fig. 4 from 28 September 2019. From the Doppler lidar, hori-
zontal wind speed and direction are retrieved from a 70◦ plan
position indicator (PPI) scan using a velocity azimuthal dis-
play technique (Fig. 4a; speed color fill, direction arrows).
Vertical velocity observations (positive indicates upward mo-
tion; Fig. 4b) are effectively radial velocity measurements
from a zenith pointing stare (with a range gate of 45 and 30 m
at Lakeland and Prentice, respectively), which is the position
the lidar takes and maintains between each PPI scan. PPIs
occur every 15 min at the Lakeland site, and every 5 min at
Prentice. Thermodynamic profiles (Fig. 4c) of water vapor
mixing ratio (color fill) and potential temperature (contour)
are retrieved from the respective passive remote sensors on-
board. Hourly estimates of PBLH from the CLAMPS fuzzy
logic algorithm are overlaid as orange circles, with 10 min
estimations plotted as a black curve behind them. Given the
high temporal resolution this approach provides, standard de-
viation of all 10 min estimates within a sliding 1 h wide cen-
tered window is also provided alongside each 10 min PBLH
estimate as a quasi-measure of variability. This standard de-
viation is displayed in Fig. 4 as the grey shading along the
PBLH curves.

2.3.2 CL51 ceilometer

The backscatter profiles of the CL51 ceilometer measure
the profile of attenuated aerosol backscatter, which is cor-
related with aerosol concentration and in turn reveals details

1The Smith and Carlin (2021) algorithm does include inversion
height as detected by the thermodynamic retrieval from CLAMPS
as a time-weighted input in the first step. The time weighting is a
function of local sunrise–sunset time and only allows the inversion
height to influence the PBLH estimate during the overnight hours
and with a smoothly reducing (increasing) weight during the morn-
ing (evening) transition periods.

Figure 4. (a) Time–height cross section of horizontal wind speed
and direction (fill and arrows, respectively), (b) vertical velocity
(positive indicates upward motion) as detected by the Doppler li-
dar and TROPoe retrieved water vapor mixing ratio (fill), and (c)
potential temperature (contour; 285–300 K every 2.5 K) from AERI
and MWR observations from the CLAMPS deployed at the Pren-
tice site on 28 September 2019. Overlaid are hourly (orange dots)
and 10 min (black curve) PBLH estimates from the CLAMPS fuzzy
logic algorithm. The grey fill behind the PBLH estimates is a quasi-
measure of variability represented by the standard deviation of all
10 min estimates within a sliding 1 h wide window centered on each
10 min estimate.

about the vertical structure of the atmosphere. For instance,
the concentration of the scattering aerosols within the mixed
layer is expected to be nearly uniform and higher than in
the free troposphere above the mixed layer. Consequently,
a method that can be used to estimate the PBLH with this
instrument is the so-called “gradient” method that looks for
the maximum of the negative gradient of the backscatter pro-
file. Another method, called the “profile fit” method con-
sists of fitting an idealized backscatter profile to the observed
range-corrected ceilometer backscatter profile (Münkel et
al., 2007). Vaisala’s boundary layer view (BL-View) pro-
prietary software provides high temporal resolution (16 s)
estimates of the PBLH (i.e., the top of the lowest aerosol
layer) based on the assumption that within the mixed layer
the aerosol concentration is vertically nearly constant and de-
creases above. Based on the CL51 settings and the configu-
ration of the BL-View software during CHEESEHEAD19,
a software-provided merged gradient and profile fit method
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is used to determine the PBLH. According to the manufac-
turer BL-View User Guide, this merged method combines
the strengths of the two methods, holding the capability to
distinguish multiple layers in the profile of the backscatter.

In addition to the high temporal resolution estimates of
the PBLH, the BL-View software provides hourly mean esti-
mates of the PBLH (shown as the cyan diamonds in Fig. 5).
However, the algorithm used to determine the hourly mean
PBLH from these high temporal resolution estimates is not
publicly available, not allowing for much flexibility on the
time average of the high temporal resolution estimates, which
is important for this study in order to align the hourly mean
CL51 PBLH over the same time periods as the other in-
struments. For this reason, an approach similar to Mues et
al. (2017) is used to determine hourly average estimates of
PBLH. In Mues et al. (2017) a score for every 10 min value
within each hour is calculated, and the 10 min PBLH with
the highest score gets reported as the PBLH of that hour.
In our approach a score for each 16 s PBLH estimate within
the 1 h period (±30 min of the hour) is established, and the
PBLH exhibiting the highest score is defined as the hourly
mean PBLH. The score S(PBLHtx) is calculated for every
16 s PBLH (PBLHtx) within 1 h as follows:

S(PBLHtx)=
∑

(PBLHtx−200)<PBLHi<(PBLHtx+200)

QCi

(
1−
|PBLHi −PBLHtx |

200

)
, (1)

where PBLHi are the high-frequency PBLH values within
the 1 h period that are within a range of 200 m around (i.e.,
±) PBLHtx . This 200 m range restriction avoids unrealistic
results in two-layer situations, as explained in Mues at al.
(2017). Differently from Mues et al. (2017), in our Eq. (1)
each summation factor for the weight score is scaled prior
to summation by the respective quality control index value,
QCi (Christopher Münkel, personal communication, Jan-
uary 2021), provided by the BL-View software. The PBLH
corresponding to the highest score is reported as the PBLH
for the hour.

Close agreement between the hourly estimates derived us-
ing Eq. (1) (“QC-scaled approach”, orange dots) and the
hourly estimates provided by the CL51 BL-View software
(cyan diamonds) is demonstrated in Fig. 5. The BL-View
software has an upper limit for PBLH values of 4 km a.g.l.
Additionally, due to the proprietary QC methods imposed
within the BL-View software, there are some hours when no
PBLH value is provided.

The QC-scaled approach is able to reproduce the hourly
PBLH BL-View output data with a coefficient of determina-
tion (R2) value of 0.87 at Lakeland and an R2 value of 0.95
at Prentice (Fig. 6). Ordinary least-squares regression is used
to derive the linear fit between the two hourly-mean PBLH
estimates. The root-mean-square error (RMSE) is found to
be equal to 0.28 km at Lakeland and 0.17 km at Prentice and

the bias is found to be negligible (i.e., nearly zero) at both
sites. Differences in the statistics between eh Lakeland and
Prentice site cannot be pinpointed to either local or system-
atic effects.

Despite strong similarity between the BL-View and QC-
scaled approach PBLH estimates, some differences do ex-
ist. These slight differences are due to other outlier removal
methods, cloud filters, and quality control procedures that
cannot be replicated in the QC-scaled approach due to the
proprietary nature of the BL-View software. However, when
these (rare) differences occur (approximately 2 % of the 2453
total number of points shown in Fig. 6 for Lakeland, and
1 % of the 2507 total number of points at Prentice), the QC-
scaled approach appears to provide more reasonable PBLH
estimates than the hourly BL-View output. For example, for
hours 06:30, 07:30, 08:30, 16:30 LT at the Lakeland site and
hours 14:30 and 15:30 LT at both the Lakeland and Prentice
sites (Fig. 5). This holds true when all the days are visually
inspected. In addition, because the QC-scaled approach pro-
vides flexibility in defining the averaging time period, and
therefore allows for averaging time periods to align with
other instruments and with the radiosonde launch times, the
QC-scaled approach is used to gauge the CL51 PBLH esti-
mation performance.

2.3.3 RWP

Two 915 MHz RWP were deployed by the NOAA/Physical
Science Laboratory at Lakeland and Prentice. Many studies
have shown success in determining the convective bound-
ary layer depth with RWPs using the information contained
in the vertical profile of the SNR (White, 1993; Angevine
et al., 1994; Coulter and Holdridge, 1998). In this study, a
fuzzy-logic-based method (Bianco et al., 2008) is employed
that improves the estimation of the PBLH over these origi-
nal methods by including (i) profiles of the variance of ver-
tical velocity, (ii) small-scale, radar sub-pulse volume turbu-
lence information from the vertical profiles of the spectral
width of the vertical velocity, and (iii) vertical profiles of the
radar-derived SNR. A reliability threshold value is applied
to the fuzzy logic-derived score to eliminate PBLH data val-
ues with low score values. The automated estimations of the
PBLH with the fuzzy logic approach are additionally visu-
ally inspected to eliminate suspicious estimations. The use of
this last quality control check does not allow for this method
to be considered at an operational-level readiness, but these
estimates have been utilized in studies for model validation
(Bagley et al., 2017; Bianco et al., 2022) and process under-
standing (e.g., Bianco et al., 2011; Jeong et al., 2012a, b).
The three panel plots provided in Fig. 7 detail the physical
quantities measured by the RWP at Lakeland that are used
in the fuzzy logic-based approach to discern the PBLH evo-
lution during the daytime (RWP-measured range-corrected
SNR, the vertical velocity component of the wind, and the
spectral width of the vertical velocity component). Between
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Figure 5. Time–height cross section of backscatter profiles at the Lakeland (a) and Prentice (b) sites for 28 September 2019. In both panels
the magenta dots are the 16 s temporal resolution PBLH estimates by the BL-View software, the cyan diamonds are the corresponding hourly
mean estimates from the BL-View software, and the orange dots are the PBLH estimates obtained using the QC-scaled approach.

Figure 6. Scatterplots of PBLH estimates from the CL51 using the BL-View software output (x axis) and the QC-scaled approach (y axis)
at the Lakeland (a) and Prentice (b) sites over the entire field campaign. Black lines represent the 1-to-1 line, and grey lines represent the
best-fit line.

sunrise and sunset, it is easy to detect the development of
the convective boundary layer, with larger values of range-
corrected SNR present at its top (Fig. 7a), strong updrafts
and downdrafts within the PBL during the convective period
(positive indicates downward motion; Fig. 7b), and larger
values of the spectral width of the vertical velocity compo-
nent (Fig. 7c), an indication of the turbulent nature of the
boundary layer during the convective period. RWPs are not
optimal to derive PBLHs during nighttime, when the PBLH

might be lower than the first available measurement from the
instrument (about 100 m) and the turbulence is weaker.

2.3.4 HSRL

The HSRL deployed at the WLEF site as part of the SPARC
instrumentation suite emits a zenith-pointing beam at 532 nm
and was active for the duration of CHEESEHEAD19. Data
from HSRL were processed into absolutely calibrated pro-
files of aerosol backscatter at a temporal and vertical reso-
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Figure 7. Time–height cross section of the RWP measurements used to determine the PBLH estimates at Lakeland for 28 September 2019:
(a) range-corrected SNR, (b) vertical velocity (positive indicates downward motion), and (c) spectral width of the vertical velocity. Overlaid
on each of these subplots are the fuzzy-logic-based hourly mean PBLH estimates (orange dots) during the daytime.

lution of 30 s and 30 m, respectively. The HSRL backscatter
coefficient data were visually analyzed to subjectively deter-
mine the PBLH. The HSRL dataset was visually evaluated
by different “experts” to detect the sharp gradient in aerosol
backscatter at the top of the PBL. This kind of estimation
will tend to put the PBLH at the base of the cloud if clouds
are present. These independent estimations were then aver-
aged (unless the difference between them exceeded 300 m,
in which case no PBLH estimate was provided) to serve as
an independent “expert” dataset to help provide context dur-
ing two of the IOPs.

Observations from the HSRL are shown in Fig. 8 from 28
September 2019. At the HSRL site a cleaner air mass with
lower backscatter intrudes the PBL after 16:00 LT, in agree-
ment with the CL51 observations at the ISS site (not shown).
This is not visible at Lakeland or Prentice, denoting a spatial
variability in PBLH in the afternoon for this day.

PBLHs are derived using data measured by all the instru-
ments between ±30 min of the hour to extract hourly aver-
aged values. For example, data measured between 12:30 and
13:30 LT are used to determine the 13:00 LT hourly averaged
estimate of the PBLH values over that hour and are com-
pared to the PBLH estimate from the 13:00 LT radiosonde
launches.

2.4 RadSys stations

Two RadSys stations were deployed at Lakeland and Pren-
tice (data available from Riihimaki, et al., 2020a, b) provid-
ing complete surface irradiance measurements, which then
enable RadFlux analysis (Long and Ackerman 2000; Long et
al., 2006) that produces derived cloud variables such as cloud
fraction. This cloud fraction information is used to expand
the PBLH evaluation under different cloud-coverage condi-
tions. The hour window used to determine the cloud fraction
is the same temporal window (±30 min of the hour) used
to determine the PBLH estimates. This neglects any possi-
ble delays in the impact of the clouds on the development of
the convective boundary layer, which is however difficult to
quantify.

3 Evaluation and characterization of PBLHs

Table 2 provides a summary of the instruments and the meth-
ods used to determine PBLH estimates from these instru-
ments. While the MWR and AERI PBLH estimates are based
on the same parcel method as the radiosondes, the other
methods are more related to the identification of gradients
in turbulence or backscatter.
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Figure 8. Time–height cross section of the HSRL aerosol backscatter measurements at the WLEF site that were used to subjectively determine
the PBLH estimates for 28 September 2019. Overlaid are the subjectively determined hourly mean PBLH estimates (orange dots) during the
daytime.

Table 2. Instrument and methods used to discern PBLHs.

Instrument system PBLH estimation technique

Radiosondes Parcel method
AERI Parcel method
MWR Parcel method
CLAMPS multi- Fuzzy logic
instrument
CL51 QC-scaled approach (adapted

from Mues et al., 2017)
RWP Fuzzy Logic
HSRL Visual inspection – expert opinion

As a first step, PBLH estimates from the RWPs, the
CL51s, and the MWRs at the Lakeland and Prentice sites
are evaluated against radiosonde-based PBLH estimates for
the entire campaign period. Comparison was limited to these
three instruments because the RWPs and the CL51s were de-
ployed at these sites for the entire field campaign, providing
a large dataset to analyze, while the MWRs were deployed
34 (Prentice) and 35 d (Lakeland) after the start of CHEESE-
HEAD19 (see Table 1). Some of the other instruments were
moved between sites during the campaign, were deployed for
a much shorter period of time, or experienced failures dur-
ing the experiment. Therefore, these instruments were not
included in the bulk analyses. In a second step, a validation
on a more limited dataset over two of the IOPs is performed
that includes all of the available instruments.

3.1 Multi-month time period analysis of the RWP,
CL51, and MWR PBLH estimates

Figure 9 evaluates the PBLH estimates from the RWPs, the
CL51s, and the MWRs deployed at Lakeland (Fig. 9a–c, re-
spectively), and Prentice (Fig. 9d–f, respectively) against the
radiosonde estimates. Using the cloud and radiation infor-
mation from the RadSys stations deployed at Lakeland and
Prentice, comparisons as a function of the cloud fraction (a

value of zero indicating clear skies) were additionally made.
All available estimations from each instrument are plotted.

Both MWRs deployed at the Lakeland site are used in
this analysis to maximize the number of available estima-
tions from this instrument. However, since the MWRs were
deployed later (compared with the RWP and CL51), fewer
points are available for the MWR statistics. To adequately
compare the statistical results obtained by the different in-
struments, the analysis was also performed only on the con-
current (i.e., time-matched) PBLH estimates and only when
values are present from all instruments at a given site. Results
from both approaches are presented in Table 3.

Comparing the time-matched statistics at the Lakeland
site, the MWR performs better than the RWP, whose method-
ology does not include any thermodynamic information,
while they behave similarly at the Prentice site. The CL51
estimates, also not including any thermodynamic informa-
tion, tend to have a larger spread in general compared with
both the RWP and MWR. A way to improve PBLH estimates
for all instruments, but particularly for the CL51, could be
to check for temporal consistency in the hourly PBLH esti-
mates; filtering out large jumps that can arise for example in
the presence of elevated aerosol layers (see case study 1 in
Sect. 3.3).

In Fig. 10 the error in PBLH estimates between the RWP,
the CL51, the MWR, and the radiosondes is presented as a
function of the time of the day for the two sites, using all
available estimations from each instrument. Larger errors are
shown for the CL51 compared with the other two instruments
for nearly all the time examined, but they are particularly
large during the morning transition period.

The CL51 frequently misidentifies elevated aerosols lay-
ers as the PBLH, particularly when the gradients are not
clearly pronounced, as for instance at 09:00 LT (Fig. 10a, b).
The ceilometer method also struggles with detecting the de-
cay of the planetary boundary layer in the late afternoon, as
the instrument continues to mistake the height of the resid-
ual boundary layer for the PBLH (i.e., at 17:00 LT), lead-
ing to a positive bias at both the Lakeland and Prentice sites

Atmos. Meas. Tech., 15, 2479–2502, 2022 https://doi.org/10.5194/amt-15-2479-2022



J. B. Duncan Jr. et al.: Evaluating convective PBLH estimations from remote sensors 2491

Figure 9. Comparisons of the PBLHs (comparisons at the Lakeland site are provided in a–c, and those at the Prentice site in d–f) from the
parcel method applied to the radiosonde virtual potential temperature profiles (x axis) versus those estimated (y axis) by the RWP fuzzy-logic
method (a, d), the CL51 QC-scaled approach (b, e), and the parcel method applied to the MWR virtual potential temperature profiles (c, f).
Comparisons are categorized by the cloud fraction coverage (color bar). Black lines represent the 1-to-1 line, and grey lines represent the
best-fit line.

(Fig. 10a, b). During the decaying phase of the boundary
layer (17:00 LT), the RWP errors are the smallest and cen-
tered around zero at both sites (likely because the RWP can
detect the decay of turbulence during the evening transition),
while the MWR errors are centered around zero at the Lake-
land site but positive at the Prentice site due to the inability
of the MWR to accurately resolve a sharp inversion at the top
of the convective boundary layer.

To conclude the multi-month time period analysis, evalua-
tion of the PBLH estimates were made relative to the RadSys
cloud fraction information (Fig. 11). Comparisons were di-
vided into clear-sky days (defined by RadSys cloud frac-
tion values less than 0.1, Fig. 11a–c), extremely cloudy days
(defined by RadSys cloud fraction values larger than 0.9,
Fig. 11g–i), and for the cases in between these two cloud
fraction extremes (Fig. 11d–f). For the clear-sky days, the co-
efficient of determination in the CL51 radiosondes compari-
son is lower (R2

= 0.13, Fig. 11b) than both the RWP (R2
=

0.83, Fig. 11a) and the MWR (R2
= 0.81, Fig. 11c). RMSE

and bias are also larger for the CL51. This is likely due to
the above-mentioned limitation of the CL51 when identify-
ing the PBLH where aerosol gradients are not strongly pro-
nounced (Fig. 10a, b).

For the days with cloud fraction between 0.1 and 0.9, the
coefficient of determination between the radiosonde PBLH

and both the RWP (R2
= 0.59, Fig. 11d) and the MWR

(R2
= 0.50, Fig. 11f) PBLH estimates are not as good as for

clear-sky days. Despite this, their performance is still bet-
ter than that of the CL51 (R2

= 0.35, Fig. 11e). The same
is also true for RMSE. In both Fig. 11b and e the CL51 de-
tects several elevated PBLHs when the radiosonde values are
shallower.

Finally, the heights of cloud-topped PBLs are more dif-
ficult to measure and overall more difficult to understand.
For the RWP, an overall positive bias is observed compared
with the radiosonde PBLH estimates, agreeing with Grims-
dell and Angevine (1998) that the peak in the RWP radar
return tends to be slightly higher than the cloud base due to
both the increased turbulence within the cloud and the effect
of sharp moisture gradients at the cloud edges. With the ex-
ception of the few outliers in the upper portion of Fig. 11h,
the CL51 retrieved PBLHs are generally lower than the ra-
diosonde estimates, indicating selection of the PBLH at the
base of the detected cloud. The MWR statistics in cloudy
conditions (Fig. 11h), however, are nearly as good compared
to during more clear conditions (Fig. 11c). This is probably
due to the low opacity of the cloud at microwave wavelengths
and thus the relative insensitivity of the retrieved thermody-
namic profile to cloud liquid water.
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Table 3. Statistical comparison of PBLH estimated by the RWPs, CL51s, and MWRs compared with the radiosonde estimates during the
entire CHEESEHEAD19 campaign for the Lakeland and Prentice sites. Results are presented for all available data points (upper portion of
the section relative to each site) and for the time-matched data points (bottom portion of the section relative to each site).

Instrument No. of RMSE
Site system points R2 Bias (m) (m)

Lakeland All points RWP 123 0.63 −30 340
CL51 138 0.37 110 570
MWR 98 0.81 60 240

Time-matched points RWP 62 0.64 −60 310
CL51 62 0.23 120 620
MWR 62 0.80 80 240

Prentice All points RWP 117 0.62 −100 350
CL51 136 0.35 20 560
MWR 53 0.55 140 450

Time-matched points RWP 42 0.77 −80 260
CL51 42 0.13 70 760
MWR 42 0.75 70 310

Figure 10. Statistical comparison of the PBLHs from the parcel method applied to the radiosonde virtual potential temperature profiles versus
those estimated by the RWP fuzzy-logic method, the CL51 QC-scaled approach, and the parcel method applied to the MWR at the Lakeland
(a) and Prentice (b) sites as a function of the hour of the day. Circles depict individual PBLHs, boxes show the interquartile range with the
median indicated by the horizontal line, and the whiskers extend to points that lie within 1.5 times the interquartile range of the lower and
upper quartiles.

3.2 Multi-instrument validation (Summer-IOP and
Fall-IOP)

The second part of the comparison concentrates on two lim-
ited time periods, the period between 19 and 24 August (re-
ferred to as Summer-IOP) when all the instruments were
available with exception of the CLAMPS (i.e., the RWP, the
CL51, the MWR, the AERI, and the HSRL), and the period
between 19 September and 5 October 2019 (referred to as
Fall-IOP) when the CLAMPSs were also available. Using the
information from the RadSys station, a similar cloud fraction
analysis to that in Sect. 3.1 is performed on these two IOPs.

All instruments for the Summer-IOP are from the Lake-
land site, except for the ISS-based radiosondes, and both the
HSRL and the AERI located at the WLEF site.

For the Fall-IOP analysis, the RWP, CL51, MWR, AERI,
HSRL, and the CLAMPS are all available. All instruments
used in the Fall-IOP are from the Lakeland site, except

for ISS-based radiosondes, the WLEF-based HSRL, and the
CLAMPS located at Prentice. Although a CLAMPS was also
available at the Lakeland site, it had limited height coverage
compared to the one at Prentice, never providing PBLH esti-
mates above 1 km a.g.l. (likely due to low aerosol concentra-
tions and instrument low signal power). For this reason, the
Fall-IOP analysis used the Prentice-based CLAMPS.

Similar to the approach for the multi-month time pe-
riod analysis, PBLH estimates were time-matched to iden-
tify times when height estimates were derived from each
instrument. Statistical analysis with and without this time-
matching procedure are provided in Table 4.

Figures 12 and 13 and the results presented in Table 4
demonstrate that the RWP, MWR, and AERI perform rea-
sonably well in resolving PBLH for both the Summer-IOP
and Fall-IOP analyses.

Figure 14 presents the statistical comparison between the
derived PBLHs and the radiosonde estimates as a function of
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Figure 11. The same as in Fig. 9 at the Lakeland and Prentice sites but divided for the times with RadSys cloud fraction values less than 0.1
(a–c), for the times with RadSys cloud fraction values between 0.1 and 0.9 (d–f), and for the times with RadSys cloud fraction values larger
than 0.9 (g–i). Black lines represent the 1-to-1 line, and grey lines represent the best-fit line.

the hour of the day for the Summer-IOP (Fig. 14a) and for
the Fall-IOP (Fig. 14b).

CL51 results are consistent with those found over the
multi-month time period analysis, having less skill than the
RWP and MWR instruments, and the two IOPs also have
less skill than the AERI (Figs. 12 and 13), especially for the
morning and late afternoon transition periods (Fig. 14). This
indicates that more refined methods are needed to derive ac-
curate PBLH values from ceilometers.

Although based on a limited number of cases, the
CLAMPS does well at resolving PBLH for the Fall-IOP anal-
ysis (Fig. 13f) with the average negative bias mostly due to
the negative bias found at 17:00 LT (Fig. 14b). This nega-
tive bias is probably due to the low aerosol concentrations in
these midday environments, which limits the vertical cover-

age of the CLAMPS scanning Doppler lidar (no PBLH es-
timates above 1.5 km a.g.l. are provided by the CLAMPS,
Fig. 13f). As mentioned before, the vertical coverage of the
CLAMPS located at Lakeland was lower than the one at
Prentice, resulting in worse statistics (not shown).

The RWP exhibits a bias close to zero, consistent between
the two IOPs (Figs. 12 and 13) and independent of the time
of day examined (blue bars in Fig. 14a, b). The RWP PBLH
agreement with the radiosonde estimates indicates that the
mechanism used in the fuzzy-logic approach (determining
the turbulent layer in contact with the surface) for PBLH es-
timation is physically consistent with the parcel method ap-
proach (determining the height of the well-mixed layer).
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Table 4. Statistical comparison of PBLH estimated by the RWP, CL51, MWR, AERI, HSRL, and CLAMPS compared with the radiosonde-
based PBLH estimates for both the Summer-IOP and Fall-IOP analysis. Results are presented for all available data points (upper portion of
the section relative to each IOPs), and for the time-matched data points (bottom portion of the section relative to IOPs).

Instrument Deployment No. of Bias RMSE
IOP system locations points R2 (m) (m)

Summer-IOP All points RWP Lakeland 17 0.87 −100 240
CL51 Lakeland 18 0.16 360 850
MWR Lakeland 14 0.84 60 220
AERI WLEF 18 0.91 −190 260
HSRL WLEF 18 0.80 −190 330

Time-matched RWP Lakeland 13 0.81 −90 260
points CL51 Lakeland 13 0.04 500 990

MWR Lakeland 13 0.84 60 230
AERI WLEF 13 0.96 −170 210
HSRL WLEF 13 0.88 −130 240

Fall-IOP All points RWP Lakeland 23 0.70 30 330
CL51 Lakeland 27 0.44 70 490
MWR Lakeland 23 0.80 30 250
AERI Lakeland 23 0.73 250 420
HSRL WLEF 25 0.42 −370 580
CLAMPS multi- Prentice 25 0.80 −180 360
instrument

Time-matched RWP Lakeland 17 0.69 −20 310
points CL51 Lakeland 17 0.48 50 440

MWR Lakeland 17 0.75 70 280
AERI Lakeland 17 0.70 320 450
HSRL WLEF 17 0.32 −480 680
CLAMPS multi- Prentice 17 0.71 −280 410
instrument

Figure 12. Comparison of the PBLHs by the parcel method applied to the radiosonde virtual potential temperature profiles (x axis) versus
those (y axis) estimated (a) by the RWP fuzzy-logic method, (b) the CL51 QC-scaled approach, the parcel method applied to the (c) MWR
and (d) AERI virtual potential temperature profiles, and (e) the expert opinion to the HSRL observations, for the Summer-IOP period. The
color coding shows the site-respective cloud fraction values. Black lines represent the 1-to-1 line, and grey lines represent the best-fit line.
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Figure 13. The same as in Fig. 12 but for the period of Fall-IOP and with CLAMPS included. Black lines represent the 1-to-1 line, and grey
lines represent the best-fit line.

Figure 14. The same as in Fig. 10 but for all instruments involved in the (a) Summer-IOP and (b) Fall-IOP analysis.

The CL51 errors are less consistent with the time of day
and IOP (orange bars in Fig. 14a, b), but in general the errors
are larger than the RWP and MWR.

The MWR biases (purple bars in Fig. 14a, b) are close to
zero and the error value is small regardless of the time of day,
particularly for the Fall-IOP.

The AERI errors (maroon bars) are also small but show
a slightly negative bias for the midday and evening transi-
tion hours of the Summer-IOP (Fig. 14a) and a positive bias
with larger errors for the Fall-IOP period (Fig. 14b). How-
ever, the AERI is very sensitive to clouds (e.g., Turner 2007),
and the differences between the two IOPs could be related to
the markedly different cloud conditions experienced during
the respective IOP (Sedlar et al., 2022).

Finally, the expert estimation on the HSRL observations
(pink bars) presents very accurate results for the Summer-
IOP (Fig. 14a) analysis but negative biases and larger errors
for the Fall-IOP analysis (Fig. 14b). Similar to the AERI
results, this could be due to the increased amount of strati-

form cloud cover during the Fall-IOP period. This speaks to
the fact that the estimation of the PBLH is a difficult task,
and while it can be easily identifiable on some days, it can
be ambiguous on other days. The Fall-IOP has more cloud
coverage (50 % on average) compared with the Summer-IOP
(36 % on average), making the PBLH estimation more chal-
lenging not only for expert estimation, but also for all other
instruments and the corresponding estimation techniques.
The exception to this is the CL51, which performed better
in the cloudier Fall-IOP compared to its performance during
the Summer-IOP.

3.3 Multi-instrument limitations – case studies

Two case studies are investigated to understand the behavior
of the different instruments in different cloud-covered condi-
tions in more detail. Additional plots demonstrating the in-
dividual instrument measurements for both case studies are
provided in the Supplement.
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The first day under consideration (19 August 2019) is a
nearly clear-sky day with no clouds in the boundary layer.
For this day, the CLAMPS was not available. Figure 15 pro-
vides the daily PBLH estimations from the available instru-
ments (Fig. 15a) and from the radiosondes launched at 09:15,
13:00, and 16:45 LT. The three cloud base heights (CBH1,
CBH2, and CBH3) and the cloud base fraction (CBF – the
fraction of the time within a 1 h window that the ceilometer
measures cloud base below either 3 or 13 km a.g.l.) derived
from the CL51 are presented in Fig. 15b. The vertical profiles
of virtual potential temperature (Fig. 15c–e) measured by the
radiosonde highlight a well-mixed layer topped by a distinct
inversion up to a few hundred meters above ground level at
09:15 LT. The inversion then rises to approximately 1.2 and
1.1 km a.g.l. at 13:00 and 16:45 LT, respectively. The vertical
profiles of virtual potential temperature from the AERI and
MWR are smoother (as expected from passive instruments)
compared to those from the radiosondes; nevertheless, they
both correctly represent the diurnal growth of the PBLH. In
particular, the AERI reproduces the 09:00 LT virtual poten-
tial vertical profile quite well. In general, most of the in-
struments reasonably resolve the diurnal cycle of the PBLH.
The RWP, AERI, and HSRL agree well with the radiosonde
PBLH estimates, while the MWR profile of virtual potential
temperature, with its smoother characteristics due to its rela-
tively coarse vertical resolution (compared to the AERI; see
Blumberg et al., 2015), places the PBLH estimates slightly
higher than the other instruments. Estimates from the CL51
are higher than those from the other instruments because this
instrument detects elevated aerosol layers as the PBLH, per-
haps from smoke advected from wildfires on the west coast
of North America. These elevated layers are also visible in
the HSRL observations, as evident in Figs. S2 (for the CL51)
and S5 (for the HSRL) of the Supplemental Material.

The second day investigated (23 September 2019) exhib-
ited stratiform clouds in the morning with multi-level cu-
mulus clouds developing in the afternoon (Fig. 16b). The
presence of various cloud structures during this day demon-
strates the complexity of PBLH estimation depending upon
the boundary layer conditions. All instruments were avail-
able on this day, although AERI profiles were missing be-
fore noon. PBLH estimates from the available instruments
(Fig. 16a) and from the radiosondes (launched at 09:13,
12:59, and 16:45 LT) on this day are provided in Fig. 16.

The PBLH starts increasing early in the morning in con-
junction with the vertically developing cloud base. During
the morning hours, the remote sensing instruments demon-
strate agreement between themselves and the radiosondes,
placing the PBLH near the base of the stratiform clouds,
but in the afternoon larger differences emerge. After approx-
imately 12:30 LT, the cloud coverage becomes more scat-
tered and cloud base height is more variable. At 13:00 LT,
the PBL is well mixed up to around 1.5 km a.g.l., but another
slightly stable layer is visible between 1.5 and 2.5 km a.g.l.
(Fig. 16d). The radiosonde places the PBLH somewhere in

the cloud layer near 2.1 km a.g.l., but it has to be recognized
that in a case like this, small changes in the surface tem-
perature measurements (due to instantaneous warm or cold
anomalies) can result in significant differences in the parcel-
based PBLH estimate, making the results very uncertain. Af-
ter 13:00 LT, PBLHs detected with the RWP and CL51 are
at almost 2.5 km a.g.l., higher than the estimates from the
other instruments. This high bias is likely caused by the el-
evated cloud base identified around 2.3 km a.g.l. (Fig. 16b).
Since radio soundings are not available between 14:00 and
16:00 LT, when the differences between the instrument esti-
mates are particularly large, it cannot be determined whether
or not these clouds are connected to the well-mixed layer.
Nevertheless, because turbulence remains well developed up
to that height (as visible from the spectral width of the RWP
vertical velocity, Fig. S6c in the Supplement), the RWP de-
fines the PBLH at the radar return peak found slightly higher
than the cloud base at this time. Similarly, the CL51 places
the PBLH higher than the other instruments after 13:00 LT,
where it finds the maximum of the negative gradient of the
backscatter profile (see Fig. S7 in the Supplement). Through-
out the day the HSRL detects a lower PBLH compared to
the other instruments, which is close to the lowest cloud
base height up to 13:00 LT. Note that the HSRL is not at
the Lakeland site but at the WLEF site, where the lowest
cloud base is less scattered (see Fig. S10 in the Supplement).
MWR and AERI estimates agree well with those from the
radiosondes, although the shapes of their virtual temperature
profiles are different and smoother compared to the radioson-
des (Fig. 16c–e). For this single-day case, the CLAMPS ap-
proach resolves the morning development of the PBL quite
well up to 13:00 LT, but it does not identify PBLHs higher
than 1.5 km a.g.l. during the afternoon hours (and in gen-
eral for the entire diurnal period, as noted in Sect. 3.2 and
Fig. 13f.).

4 Summary and concluding remarks

In this study, data collected by both active and passive
ground-based remote sensing instruments deployed during
the CHEESEHEAD19 field campaign (summer of 2019,
northern Wisconsin, USA) are used to estimate the height
of the daytime planetary boundary layer, and their values
are compared against independent PBLH estimates obtained
from radiosondes launched as part of the field campaign. To
retrieve PBLH from the thermodynamic profiles of radioson-
des, MWR, and AERI, the parcel method was used, while
the methods used on RWP, CL51, HSRL, and CLAMPS are
more related to the identification of gradients in turbulence
or backscatter. The impact of boundary layer clouds on the
estimation of the boundary layer depth is also investigated.

For this dataset, the following results can be seen.

– RWPs are suitable to be used in estimating the PBLH
with a small bias during the entire daily period. The

Atmos. Meas. Tech., 15, 2479–2502, 2022 https://doi.org/10.5194/amt-15-2479-2022



J. B. Duncan Jr. et al.: Evaluating convective PBLH estimations from remote sensors 2497

Figure 15. Case study 19 August 2019. (a) Time series of PBLH estimates from the different instruments between sunrise and sunset. (b)
Cloud base height estimates (CBH 1, CBH 2, and CBH 3) and cloud base fraction (CBF) from the CL51 at Lakeland. (c–e) Profiles of virtual
potential temperature at the radiosonde launch times (09:15, 13:00, and 16:45 LT) from the radiosondes, AERI, and MWR, with vertical
dashed colored lines representing application of the parcel method to the respective instrument profile. PBLH estimates at the time of the
radiosondes from the different instruments are also denoted by the colored bars in (e, f).

RWP was able to also correctly detect the decaying
phase of the PBLH but demonstrated decreased perfor-
mance during cloudy conditions when the bias is found
to be positive due to the increased turbulence measured
by the instrument within the cloud.

– CL51 PBLH estimates based on the high temporal res-
olution PBLH estimates provided by the manufacturer
software capture the PBLH better during times of over-
cast cloudiness and can generally capture the convec-
tive PBLH when the PBL is well mixed during mid-
day. However, the CL51 retrieval method used here is
challenged in clear-sky periods when strong upper-level
aerosol gradients are present, particularly in the morn-
ing and evening transition periods when residual layers
exist above the well-mixed layer. This weakness in the
method negatively impacts the CL51 statistical perfor-
mance.

– MWRs are found to reasonably estimate the PBLH
when the parcel method definition is applied to the re-
trieved profiles of virtual potential temperature. The per-

formance of MWR with this definition is good across
the range of cloudy conditions.

– AERIs, although also passive instruments, have higher
vertical resolution in their retrieved thermodynamic
profiles compared to MWR. They perform very well
in conditions with fewer clouds, with their performance
decreasing in cloudy conditions as clouds are opaque to
infrared transmission. In this case, the AERI PBLH es-
timates have a positive bias over the entire daily cycle.

– HSRL observations evaluated by an expert also present
very accurate results for the less cloudy data period,
with larger errors for the period with increased amount
of clouds, which is a reminder of how the PBLH estima-
tion can be easy on some days and ambiguous on others,
even to an expert eye.

– CLAMPS platforms prove to be a valuable possibility
for PBLH estimates. Nevertheless, the limited vertical
coverage of these platforms due to limits on the abil-
ity of the Doppler lidar to penetrate the full depth of
the PBL (for instance because of low aerosol concentra-

https://doi.org/10.5194/amt-15-2479-2022 Atmos. Meas. Tech., 15, 2479–2502, 2022



2498 J. B. Duncan Jr. et al.: Evaluating convective PBLH estimations from remote sensors

Figure 16. The same as in Fig. 15 but for 23 September 2019 and with CLAMPS included.

tions) can be a limiting factor on their PBLH estimation
skill.

Another important result of this study is that although
some of the instruments analyzed in this study might have
the advantage of using the parcel method to estimate the
PBLH (i.e., the same method was applied to the radiosondes
to establish a validation dataset), instruments that do not rely
on thermodynamic information, such as the RWPs and the
HSRL, are in relative agreement with the radiosonde PBLH
estimates.

Finally, the results show that all of the instruments used
in this study are capable of providing reasonable PBLH es-
timates in most circumstances. However, each of them has
weaknesses during certain conditions that should be kept un-
der consideration when using them for the evaluation of nu-
merical weather prediction models.

Data availability. The complete datasets of observations used
in this study (as well as the model runs) are freely available
for general use through the National Center for Atmospheric
Research (NCAR) Earth Observatory Laboratory (EOL) data
repository (https://www.eol.ucar.edu/field_projects/cheesehead,
last access: 8 April 2022; NCAR, 2022). Radiosonde data
are available from NCAR/EOL In-situ Sensing Facil-
ity (2019) at https://doi.org/10.26023/9WA4-KQKZ-9Q12.

AERI and HSRL data are available from Wagner (2020) at
https://doi.org/10.26023/4VQP-V073-0Y06. MWRs data are avail-
able from Adler et al. (2021) at https://doi.org/10.26023/Y0W2-
8BAG-6Y0A. CLAMPS data are available from Klein et
al. (2020) at https://doi.org/10.26023/PRMW-P3ZC-FY05.
CL51s data are available from Sedlar et al. (2020a, b)
at https://doi.org/10.26023/1E5S-8ET0-FJ0C, and
https://doi.org/10.26023/34DH-ZE0BJG0R (last access: 30
June 2021). RWPs data are available from Bianco and Dun-
can (2020) at https://doi.org/10.26023/B4RJ-38H5-C812, and
Wilczak and Gottas (2020) at https://doi.org/10.26023/PQ0Q-
T5TH-KY0Q. RadSys data are available from Riihimaki, et
al. (2020a, b) at https://doi.org/10.26023/R48S-CJDC-JS0D, and
https://doi.org/10.26023/76TC-GYJV-DT06.
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