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Abstract. Aerosol hygroscopic growth plays an important
role in atmospheric particle chemistry and the effects of
aerosol on radiation and hence climate. The hygroscopic
growth is often characterized by a growth factor probabil-
ity density function (GF-PDF), where the growth factor is
defined as the ratio of the particle size at a specified relative
humidity to its dry size. Parametric, least-squares methods
are the most widely used algorithms for inverting the GF-
PDF from measurements of the humidified tandem differ-
ential mobility analyzer (HTDMA) and have been recently
applied to the GF-PDF inversion from measurements of
the humidity-controlled fast integrated mobility spectrometer
(HFIMS). However, these least-squares methods suffer from
noise amplification due to the lack of regularization in solv-
ing the ill-posed problem, resulting in significant fluctuations
in the retrieved GF-PDF and even occasional failures of con-
vergence. In this study, we introduce nonparametric, regular-
ized methods to invert the aerosol GF-PDF and apply them
to HFIMS measurements. Based on the HFIMS kernel func-
tion, the forward convolution is transformed into a matrix-
based form, which facilitates the application of the non-
parametric inversion methods with regularizations, includ-
ing Tikhonov regularization and Twomey’s iterative regular-
ization. Inversions of the GF-PDF using the nonparameteric
methods with regularization are demonstrated using HFIMS
measurements simulated from representative GF-PDFs of
ambient aerosols. The characteristics of reconstructed GF-
PDFs resulting from different inversion methods, including

previously developed least-squares methods, are quantita-
tively compared. The result shows that Twomey’s method
generally outperforms other inversion methods. The capabil-
ities of Twomey’s method in reconstructing the pre-defined
GF-PDFs and recovering the mode parameters are validated.

1 Introduction

The hygroscopic growth of aerosol particles influences
heterogeneous reactions, light extinction, and visibility,
whereby aerosol water is most relevant for the direct radia-
tive forcing of Earth’s climate (Tang and Munkelwitz, 1994;
Pilinis et al., 1995; Swietlicki et al., 2008). The ability of
aerosols to absorb water depends mainly on their composi-
tions; hence the hygroscopic properties reflect the variability
in the key chemical components (Gysel et al., 2007; Zheng
et al., 2020). Therefore, the variation in aerosol hygroscopic
growth can be used to infer the potential chemical compo-
sition, especially for small aerosols that are beyond the size
range of the aerosol mass spectrometer. Aerosol hygroscopic
growth under atmospheric relative humidity (RH) is com-
monly measured by a humidified tandem differential mobil-
ity analyzer (HTDMA) system (Liu et al., 1978; Rader and
McMurry, 1986; Swietlicki et al., 2008). In an HTDMA sys-
tem, monodisperse particles classified by the first differential
mobility analyzer (DMA) are exposed to an elevated RH in a
humidity conditioner, and the size distribution of humidified
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particles is then measured by a second DMA and a particle
detector using the scanning mobility technique. The particle
hygroscopic growth is then derived from the size distribution
of the humidified particles. Recently, a humidity-controlled
fast integrated mobility spectrometer (HFIMS) was devel-
oped. The HFIMS replaces the second DMA and particle de-
tector within the HTDMA system with a water-based fast in-
tegrated mobility spectrometer (WFIMS), which captures the
size distribution of humidified particles instantly (Pinterich
et al., 2017a). As a result, the HFIMS drastically acceler-
ates aerosol hygroscopic growth measurements (Pinterich et
al., 2017b; Wang et al., 2019; Zhang et al., 2021), making it
feasible to characterize ambient aerosol hygroscopic growth
at a wide range of sizes and RH levels under ∼ 25 min.

The HTDMA measurement, i.e., the mobility–
concentration distribution of humidified particles, is a
convolution of the aerosol hygroscopic growth factor
probability density function (GF-PDF) and the transfer func-
tions of both DMAs. Similarly, the HFIMS measurement
represents a convolution of the aerosol GF-PDF together
with the transfer functions of the DMA and the WFIMS
(Wang et al., 2019). Two inversion algorithms, TDMAfit
(Stolzenburg and McMurry, 1988) and TDMAinv (Gysel et
al., 2009), were developed and widely used to retrieve the
GF-PDF from HTDMA measurements. In both algorithms,
the GF-PDF is represented with a specific functional form,
and the function parameters were derived by least-squares
fitting. For example, the TDMAfit algorithm assumes the
GF-PDF as a superposition of multiple Gaussian distribution
functions (Stolzenburg and McMurry, 1988) or a sum-
mation of multiple lognormal (ML) distribution functions
(Stolzenburg and McMurry, 2008). Likewise, TDMAinv
describes the GF-PDF as a piecewise linear (PL) function
at predefined growth factor values (Gysel et al., 2009).
The function parameters are derived using least-squares
fitting that minimizes the residual between the measured
and reconstructed size distributions of humidified particles.
Similar methods have been applied to invert GF-PDFs from
HFIMS measurements by Wang et al. (2019).

Inversion of the GF-PDF from the HTDMA or HFIMS
measurements is an ill-posed problem (Gysel et al., 2009).
Least-squares methods such as TDMAfit and TDMAinv pro-
vide simple and effective ways to solve this ill-posed prob-
lem by representing the GF-PDF in a specific functional
form (Kandlikar and Ramachandran, 1999). However, the
GF-PDF inverted by the TDMAfit algorithm often relies on
the initial guess of the parameters, resulting in occasional
failures of convergence (Gysel et al., 2009). For example, it
was reported that the TDMAfit algorithm may not be robust
in cases of closely multiply overlapped modes, and the suc-
cessful convergence depends on the initial guess (Swietlicki
et al., 2008). Moreover, it is well known that the unregular-
ized least-squares method amplifies the measurement noise
(Kandlikar and Ramachandran, 1999; Sipkens et al., 2020),
resulting in significant fluctuations in the retrieved GF-PDF.

It has been shown that the derived GF-PDF using the TD-
MAinv algorithm may oscillate strongly when a higher bin
resolution is chosen, while too low of a resolution may not
be adequate to reproduce complex shapes of the true GF-PDF
(Gysel et al., 2009). This may lead to incorrect interpretation
of the aerosol mixing state (Wang et al., 2019). The approach
to overcoming noise amplification is to regularize the prob-
lem by including additional information, such as smoothness
(Kandlikar and Ramachandran, 1999). Tikhonov regulariza-
tion is among the most common regularization methods and
has been applied to inversions of the aerosol size distribution
(Talukdar and Swihart, 2003) and mass-mobility distribution
(Sipkens et al., 2020). Recently, a software package was de-
veloped to invert HTDMA data using Tikhonov regulariza-
tion (Petters, 2021). Twomey’s method (Twomey, 1975), one
of the most common iterative regularization methods, has
been widely used to invert aerosol size distributions (Collins
et al., 2002; Olfert et al., 2008; Wang et al., 2018) and two-
dimensional mass-mobility distributions (Rawat et al., 2016;
Sipkens et al., 2020). However, to the best of our knowledge,
Twomey’s method has not been applied to invert the GF-PDF
from HTDMA or HFIMS measurements.

In this study, we present nonparametric, regularized inver-
sions of the GF-PDF from HFIMS measurements. These in-
version methods can be adapted to HTDMA measurements
straightforwardly. The forward model (i.e., the convolution
of the GF-PDF, the transfer function of DMA, and the trans-
fer function of WFIMS) is derived analytically and cast into a
matrix form such that nonparametric inversion methods can
be conveniently applied. The nonparametric inversions are
demonstrated by retrieving the GF-PDF from HFIMS mea-
surements of ambient aerosols. The dependence of the re-
trieved GF-PDF on GF bin resolutions is investigated, and
an optimal GF bin resolution is identified. Synthetic data are
generated using representative GF-PDFs of ambient aerosols
and are applied to evaluate different inversion methods, in-
cluding (1) parametric, least-squares fittings; (2) nonpara-
metric, unregularized least squares; (3) Twomey’s method;
and (4) Tikhonov regularization. The performances of the
different inversion methods including reconstruction accu-
racy, GF-PDF fidelity, smoothness, and computation time are
presented and discussed.

2 Methods

This section presents the GF-PDF inversion routine from
the HFIMS measurement, which includes the mathematical
derivation of the matrix-based inverse problem, the descrip-
tion of different inversion algorithms, and the generation of
synthetic data for evaluating the inversion algorithms.
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2.1 A matrix form for the forward model

The integrated response of HFIMS is determined by the
aerosol size distribution, the DMA transfer function, the GF-
PDF, and the WFIMS transfer function (Wang et al., 2019).
The number concentration of particles with diameters be-
tween Dp1 and Dp1+ dDp1 downstream of the DMA inside
the HFIMS is given by

dNDMA =
Qa,DMA

Qs,DMA
ηchg

(
Dp1

)
ηp,DMA

(
Dp1

)
×�

(
VDMA, Z̃p1

)
dN , (1)

where Qa,DMA and Qs,DMA are the DMA aerosol and sam-
ple (i.e., monodispersed) flow rates, respectively; ηchg

(
Dp1

)
is the aerosol charging efficiency; ηp,DMA

(
Dp1

)
is the parti-

cle penetration efficiency through the DMA;�
(
VDMA, Z̃p1

)
is the transfer function of the DMA operated with the clas-
sifying voltage of VDMA; Z̃p1 is the particle mobility (Zp1)
normalized by the DMA centroid mobility corresponding
to VDMA; and dN = n

(
Dp1

)
dDp1 represents the number

concentration of particles with diameters between Dp1 and
Dp1+ dDp1. The number concentration of particles with di-
ameters between Dp2 and Dp2+ dDp2 at the outlet of the
conditioner is

dNcond = dDp2

∫ Dp1=∞

Dp1=0
ηp, cond

(
Dp2

)
× ccond

(
Dp2,Dp1

)
dNDMA , (2)

where the integration considers all possible values of Dp1;
ηp, cond

(
Dp2

)
is the penetration efficiency of the conditioned

particles, assuming the particle growth from Dp1 to Dp2
is instantaneous; and ccond

(
Dp2,Dp1

)
is the growth factor

probability density function (GF-PDF) for particles with a
dry diameter of Dp1 growing to a diameter of Dp2 dur-
ing the humidity conditioning process. The GF-PDF satisfies∫ Dp2=∞

Dp2=0 ccond
(
Dp2,Dp1

)
dDp2 = 1.

The WFIMS response to particles with diameters between
Dp2 and Dp2+dDp2 in the ith D∗p bin during any time inter-
val (t) is calculated by

dRi =
Qa,WFIMSNF

ṄF
ηp,WFIMS

(
Dp2

)
ηdet

(
Dp2

)
×�WFIMS, i

(
Zp2

)
dNcond. (3)

Qa,WFIMS is the inlet flow rate through the WFIMS, NF is
the number of frames being used to count dRi , and ṄF is the
frame rate. NF/ṄF represents the time interval (t) of count-
ing, ηp,WFIMS is the penetration efficiency of particles going
through the WFIMS separator, and �WFIMS, i

(
Zp2

)
is the

transfer function of the ith bin of the instrument response
diameter (D∗p) of the WFIMS. Note that the detection effi-
ciency for particles above 8 nm has been shown to be 1 (i.e.,
ηdet

(
Dp2

)
= 1; Pinterich et al., 2017a).

The theoretical response of the ith D∗p bin of the HFIMS,
Ri , can be derived by combining the above equations as de-
tailed in Wang et al. (2019):

Ri = E

∫ ∫
1
Dp1

ccond
(
g,Dp1

)
�
(
VDMA, Z̃p1

)
×�WFIMS, i

(
Zp2

)
dDp2dDp1+ εi , (4)

where E = Rtot
b

bview

Qsh,DMA
Qa,DMA

dZ̃p1
dDp1

∣∣∣∣
D∗p1

. Rtot is the total counts

of particles detected within the WFIMS viewing window, i.e.,
Rtot =

∑
iRi , where Ri is the response of the ith D∗p bin of

the WFIMS; bview and b are the length of the viewing area
of the charge-coupled device (CCD)-captured image and the
length of the WFIMS mobility separator. εi is the error in the
measured response. In Eq. (4), the GF-PDF is written as a
function of growth factor g (i.e., Dp2/Dp1), and it satisfies
ccond, n

(
g,Dp1

)
dg = ccond

(
Dp2, Dp1

)
dDp2. Given the nar-

row particle size range classified by the DMA, we assume the
GF-PDF is the same for all particles classified by the DMA at
a given voltage; i.e., ccond

(
g,Dp1

)
is independent of Dp1 for

the integration in Eq. (4). Rewriting the GF-PDF as ccond(g)

and replacing Dp2 with gDp1 in Eq. (4) gives

Ri =E

+∞∫
0

dgccond(g)

∫
+∞

0
dDp1�

[
VDMA, Z̃p1

(
Dp1

)]
×�WFIMS, i

[
Zp
(
gDp1

)]
+ εi . (5)

The integration can be approximated by a sum over J GF
bins, with the assumption that ccond(g) is a constant value
within each GF bin:

Ri, theo =E
∑J

j=1
ccond

(
gj
)∫ g

j+ 1
2

g
j− 1

2

dg
∫
+∞

0
dDp1�

×

[
VDMA, Z̃p

(
Dp1

)]
�WFIMS, i

[
Zp
(
gDp1

)]
+ εi , (6)

where gj−1/2 and gj+1/2 (j = 1,2,3, . . .,J ) are the lower
and upper bounds of the j th GF bin. Equation (6) can be fur-
ther arranged into a matrix form (neglecting the error term)
as

R=M× c , (7)

where the HFIMS response R is an I × 1 array composed
of Ri (i = 1,2,3, . . ., I ). I is the selected size bins of the
WFIMS that covers the size range of (0.8D∗p1, 2.0D∗p1) ac-
cording to the settings of the DMA centroid diameter D∗p1.
The unknown GF-PDF c, a J × 1 array composed of cj
(j = 1,2,3, . . .,J ), can be found by solving the Fredholm in-
tegral Eq. (7).
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The element of the HFIMS kernel matrix, M, is calculated
by

Mij = Ei

∫ g
j+ 1

2

g
j− 1

2

dg

+∞∫
0

dDp1�
[
VDMA, Z̃p

(
Dp1

)]
×�WFIMS, i

[
Zp
(
gDp1

)]
. (8)

The HFIMS kernel describes the probability of particles with
GF between gj−1/2 and gj+1/2 that is measured between
the channel limits between Z∗p,di−1/2 and Z∗p, i−1/2. As de-
scribed above, the inversion of the GF-PDF (c) becomes an
ill-posed problem due to overlapping of the HFIMS kernel
function, like that of the aerosol size spectrometers (Kand-
likar and Ramachandran, 1999; Collins et al., 2002; Taluk-
dar and Swihart, 2003). It is worth noting that the derivation
of the HFIMS kernel function can be easily applied to HT-
DMA measurement by replacing the WFIMS transfer func-
tion with the transfer function of the second DMA in Eq. (8),
as detailed in the Supplement.

2.2 Inversion methods

A number of techniques have been developed to solve the
Fredholm integration (Kandlikar and Ramachandran, 1999).
With Eqs. (7) and (8), nonparametric algorithms can be
straightforwardly applied to invert the GF-PDF; hence no
prior knowledge of the functional form of the GF-PDF is
needed.

2.2.1 Unregularized least squares

The simplest route is the ordinary least squares (LSQ), which
seeks to minimize the square of the residual:

cLSQ
= argmin

c

{
‖Mc−R‖2

2
}
, (9)

where ‖·‖2 denotes the Euclidean norm. Here, the least-
squares solution is solved by using the lsqnonneg function
from MATLAB. As the uncertainty in measurements can
vary substantially for different D∗p bins, the residual is of-
ten weighted by measurement uncertainty. A weighted LSQ
(WLSQ) seeks to minimize the weighted sum of squares
(Sipkens et al., 2020):

cWLSQ
= argmin

c

{
‖W(Mc−R)‖2

2
}
, (10)

where W denotes a diagonal weight matrix whose ith diag-
onal element is the reciprocal of the standard deviation for
data point i.

2.2.2 Tikhonov regularization

Tikhonov regularization is a common regularization method
that overcomes noise amplification, and it has been used
to invert aerosol size distribution and 2-D aerosol mass-
mobility distributions (Talukdar and Swihart, 2003; Petters,

2021; Stolzenburg et al., 2022). In Tikhonov regularization,
an additional regularization term is included in the least-
squares approach:

cTik
= argmin

c

{
‖Mc−R‖2

2+ λ
2
‖Lc‖2

2

}
, (11)

where λ2 ‖Lc‖2
2 represents the regularization term designed

to minimize the derivative of a specific order, and λ is the
regularization parameter that controls the degree of regu-
larization. The penalization matrix L is often set as the
identity matrix I; the bidiagonal (−1,1) matrix; and the
upper tridiagonal (1,−2,1) matrix for the zeroth-, first-,
and second-order regularization, respectively (Hansen and
O’Leary, 1993; Hansen, 1994). The parametric L-curve of
‖Mcλ−R‖2 vs. ‖Lcλ‖2 is plotted, and the corner of the L-
curve with the maximum curvature is identified using the “L-
curve” routine from the regularization tools package devel-
oped by Hansen (1994). This optimal regularization param-
eter λ corresponds to a good balance between minimization
of the residual and reduction in the noise in the inverted c
(Hansen, 1992; Hansen and O’Leary, 1993).

Similarly, a weighted Tikhonov regularization (WTik) can
be applied by (Sipkens et al., 2020)

cWTik
= argmin

c

{
‖W(Mc−R)‖2

2+ λ
2
‖Lc‖2

2

}
. (12)

The effect of introducing the weight in the LSQ inversion and
Tikhonov regularization is examined in Sect. 3.2.

2.2.3 Twomey’s method

Twomey’s method is commonly used to find solutions for
ill-posed problems and has been proven to be effective in in-
versions of the aerosol size distribution (Collins et al., 2002;
Olfert et al., 2008) and aerosol mass-mobility distribution
(Rawat et al., 2016; Sipkens et al., 2020). It is a nonlinear op-
timization method and provides iterative regularizations. An
initial guess solution is iteratively multiplied by small mul-
tiples of the HFIMS kernel function which are proportional
to the ratio of the measured to calculated measurements as
follows:

ck+1
j =

[
1+

(
Ri

mick
− 1

)
Mij

]
· ckj , (13)

where mi is the ith row of the HFIMS kernel function M,
and Ri

/
mick denotes the relative divergence between ac-

tual and reconstructed HFIMS measurements. The positively
constrained, least-squares solution is set as the initial guess
(Olfert et al., 2008). Then, the initial guess is smoothed using
a three-term moving average (Markowski, 1987) and input
into the iterative Twomey’s routine, which is then repeated
until a Chi-squared criterion is satisfied. It is worth noting
that Twomey’s method may require sufficient counting statis-
tics to ensure converged solutions.
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2.2.4 Parametric LSQ fittings

The parametric fitting methods assume a prior known dis-
tribution of the GF-PDF and calculate the forward model
problem (Eq. 4) to reconstruct the HFIMS measurements. A
nonlinear least-squares fitting with boundary constraints is
performed to search for the least-squares solution within the
bounds. The ML and PL fitting routines for the GF-PDF in-
version from HFIMS measurements have been developed by
Wang et al. (2019). The influence of counting statistics and
GF-PDF parameters (i.e., the number of modes of the ML
GF-PDF and the number of sections of the PL GF-PDF) has
been statistically studied. In this work, the GF-PDFs inverted
using ML and PL fitting routines with the optimized param-
eters are compared with those retrieved using nonparametric
inversion methods described above.

2.3 Generation of synthetic data to evaluate inversion
algorithms

HFIMS measurements are synthesized to evaluate the perfor-
mance of different inversion methods. The synthetic data are
based on three representative GF-PDFs that consist of one,
two, and three lognormal modes, respectively. The mode pa-
rameters of the pre-defined GF-PDFs are listed in Table 1,
similar to those listed in Wang et al. (2019). The parame-
ters of f , G, and σ are the fractional weight, mean diame-
ter growth factor, and geometric standard deviation of each
mode, respectively. The theoretical HFIMS response (i.e.,
Ri) is derived using Eq. (4) based on each of the three GF-
PDFs, and Gaussian and Poisson noise is then added to the
response using the following approach. First, a zero-mean
Gaussian noise component is added to the theoretical HFIMS
response to simulate the system noise such as fluctuation in
the sample flow rate:

Ri,G = Ri

(
1+αnGi

)
, (14)

whereRi is the derived theoretical response of the ithD∗p bin,
and nGi is the ith element of a standard normally distributed
random vector, nG, with zero mean and variance of 1. The
magnitude of the Gaussian noise is controlled by using a fac-
tor, α. The HFIMS measurement is then simulated using the
following Poisson distribution to reflect the discrete nature of
the particle counting process:

P(x)=
Rxi,G

x!
exp

(
−Ri,G

)
, (15)

where P(x) is the probability that x number of particles are
detected by HFIMS in the ith D∗p bin (i.e., actual measure-
ments). The impact of the Gaussian noise on the performance
of the inversion methods is examined for different noise lev-
els in Sect. 3.2. Five hundred sets of HFIMS measurements
are generated using Monte Carlo methods with constant
counting statistics (i.e., Rtot of 100). These synthetic HFIMS

measurements are then used to evaluate the inversion meth-
ods described above. Note that in the forward model for de-
riving the theoretical HFIMS response (i.e., Eq. 4), a higher
resolution of g (i.e., 120 bins over 0.8–2.0) is used than that
of the HFIMS kernel matrix (i.e., 20 bins of g; Eq. 8). The
difference between the forward and inverse models, together
with the inclusion of Gaussian and Poisson noises, minimizes
the effect of inverse crime (Colton and Kress, 1998).

3 Results and discussion

3.1 Optimal numbers of growth factor bins and
HFIMS size bins (D∗

p)

The numbers of GF bins (J ) and D∗p bins (I ) determine the
dimensions of the HFIMS kernel function, which affects the
inversion of the GF-PDF. The optimal number of the D∗p
bin is a trade-off between sizing resolution and counting
statistics. Wang et al. (2019) examined the influence of the
WFIMS D∗p bin number (I ) on the inverted GF-PDF and
found an optimal range of 23–32 for total particle counts
of 100. For representative remote continental and urban
aerosols, the number of particles measured by the HFIMS
often exceed 100 in 20 s (Pinterich et al., 2017b; Zhang et
al., 2021), ensuring sufficient counting statistics for ambient
measurements. The dynamic range of WFIMS is roughly a
factor of 10 in mobility, corresponding to a factor of ∼ 3 in
the size range (Zhang et al., 2021). In this study, 30 size bins
(i.e., I = 30) that are evenly spaced on a logarithmic scale
over the WFIMS size range are used in the inversions.

The influence of growth factor bin number (J ) on the in-
verted GF-PDF is examined using the synthetic HFIMS mea-
surements described above. The GF-PDF was inverted from
each set of the simulated HFIMS measurements using differ-
ent GF bin numbers ranging from 10 to 50 (i.e., correspond-
ing to a GF resolution range of 0.024–0.12). To facilitate
the comparison of GF-PDFs inverted with different GF bin
numbers, we interpolate the inverted GF-PDFs to 120 fixed
growth factors that are evenly distributed from 0.8 to 2.0. The
average error in the inverted GF-PDF γ is defined as

γ 2
=

1
N

∑N

i=1

(
ci, inv− ci, sim

)2
, (16)

where ci, inv and ci, sim are the interpolated GF-PDF and pre-
defined GF-PDF (i.e., true values) at the 120 fixed growth
factors, respectively. N is the number of points of fixed
growth factors (i.e., 120). The smoothness of the inverted
GF-PDF is evaluated using the absolute second-order deriva-
tive:

ξ =
∑N−1

i=2
|2cinv (gi)− cinv (gi+1)− cinv (gi−1)| . (17)

To evaluate how well the inverted GF-PDF reproduces the
HFIMS measurement, we define the residual of the recon-
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Table 1. Mode parameters of representative GF-PDFs for generating synthetic HFIMS measurements.

Predefined GF-PDF Mode 1 Mode 2 Mode 3

f G σ f G σ f G σ

1 1.0 1.40 1.15 n/a n/a
2 0.45 1.10 1.05 0.55 1.30 1.05 n/a
3 0.39 1.05 1.10 0.32 1.40 1.05 0.29 1.70 1.10

n/a: not applicable.

structed HFIMS measurement (i.e., reconstruction error) as

χ2
=

∑L

i=1

(
R̃i, inv− R̃i

)2
, (18)

where R̃i, inv is the normalized HFIMS measurement that is
reconstructed using Eq. (7) (i.e., forward calculation). R̃i is
the normalized synthetic HFIMS measurement (i.e., true val-
ues).

Figure 1 shows the smoothness of the inverted GF-PDF
(ξ) vs. the residual of reconstructed HFIMS measurement
(χ2) for different GF bin numbers (J ). The variation in ξ
with χ2 exhibits an L-shaped curve for all three representa-
tive GF-PDFs. The initial increase in J from 10 to 20 sub-
stantially improves the agreement between the reconstructed
and simulated HFIMS measurements, as indicated by a much
reduced χ2 value. At the same time, ξ remains relatively
small, indicating a high smoothness of the inverted GF-PDF.
In contrast, an increase in J above 20 leads to a minor reduc-
tion in χ2 value but a drastic increase in ξ , suggesting strong
noise in the inverted GF-PDF. The optimal solution lies near
the corner of the L-curve (Hansen and O’Leary, 1993) that
strikes a balance between the smoothness and the fidelity
to the HFIMS measurements. For all three pre-defined GF-
PDFs, the corner of the L-curve corresponds to a J value of
20. The GF-PDF inverted with 20 growth factor bins gen-
erally shows the smallest error (γ 2), indicating best agree-
ments between the inverted and the true GF-PDFs. Note that
the above results are based on inversions using Twomey’s
method. The same type of L-curves for GF-PDFs inverted
using unregularized LSQ and Tikhonov regularizations are
shown in the Supplement (Sect. S2), and they also reveal a
corner that corresponds to a J value of 20. These results sug-
gest an optimal J value of 20 for a range of representative
GF-PDFs and different inversion methods.

3.2 Effect of measurement uncertainties

The uncertainty in HFIMS measurements consists of mainly
normally distributed random instrumental noise (e.g., sample
flow fluctuation) and Poisson noise due to counting statis-
tics. As the uncertainty varies among different HFIMS D∗p
bins, we first compare the performance of weighted and un-
weighted inversion methods, including LSQ and Tikhonov
regularizations. For this comparison, inversion methods are

applied to HFIMS data synthesized with α = 0.05, a typical
value used in previous studies (Gysel et al., 2009). A total of
500 sets of synthetic data are generated for each of the three
pre-defined GF-PDFs. The values of synthesized HFIMS re-
sponse (Ri, s) are integers, which reflect the discrete nature
of particle counting. For weighted LSQ and Tikhonov regu-
larizations, the weight forD∗p bins (i.e., diagonal elements in
W) is derived as 1/

√
Ri, s. However, this approach leads to

a weight of infinity when Ri, s has a value of zero (i.e., no
particle detected within the D∗p bin). To overcome this issue,
we replace zero Ri, s values with a fixed number Ri,min when
deriving the weight. Figure 2 compares the reconstruction
residual, the GF-PDF error, and the smoothness of the GF-
PDF inverted using unweighted LSQ and weighted LSQ with
Ri,min values of 1, 0.1, and 0.01, respectively. Whereas statis-
tically no substantial difference is found among the smooth-
ness of GF-PDFs inverted using unweighted and weighted
LSQ, unweighted LSQ leads to a lower reconstruction resid-
ual and a lower error in the inverted GF-PDF compared to
the weighted LSQ. For the weighted LSQ inversions, both
the reconstruction residual and the error in the inverted GF-
PDF increase with increasing weight for Ri, s of zeros val-
ues (i.e., 1/

√
Ri,min). The measurement uncertainty is larger,

and therefore the weight is lower for channels with higher
Ri, s, which corresponds to higher probability densities (i.e.,
higher c(g) values). As a result, the GF-PDF inverted using
weighted LSQ may have relatively larger errors for high c(g)
values and consequently the average GF-PDF error (γ 2). The
same comparisons are also carried out for weighted and un-
weighted Tikhonov algorithms, and again the weighted algo-
rithms do not provide better performances (i.e., lower error
in inverted GF-PDFs) than the unweighted ones. Therefore,
subsequent analyses of this study are focused on unweighted
algorithms for LSQ and Tikhonov regularizations. It is worth
noting that derivation of the weight as 1/

√
Ri, s implicitly

assumes that the noise in HFIMS measurements is due to
counting statistics only, whereas the synthetic HFIMS data
are generated with 5 % Gaussian noise. As shown next, the
noise in the synthetic HFIMS data is dominated by the count-
ing statistics. In addition, for real measurements, the level of
Gaussian noise (i.e., α) is often not accurately known. We
also repeated the above comparisons by deriving the weight
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Figure 1. L-curve showing the dependence of reconstruction residual, χ2, and the smoothness, ξ , on the number of GF bins of pre-defined
GF-PDFs with (a) one mode, (b) two modes, and (c) three modes, respectively. The symbol size represents the error in the inverted GF-PDF,
γ 2. Whiskers represent standard deviation. The inversion is conducted using Twomey’s method.

as 1
/√(

Ri, s+α2R2
i, s

)
, which accounts for both Poisson

and Gaussian noises. The results are essentially the same.
The effect of the level of Gaussian noise on the inverted

GF-PDF is examined. Synthetic HFIMS measurements are
generated following the approach described above (Eqs. 13
and 14) at four Gaussian noise levels (i.e., α = 0 %, 1 %, 5 %,
and 10 %). At each α level, 500 sets of synthetic data are
generated and inverted using Twomey’s method for each of
the three pre-defined GF-PDFs. All retrieved inversion pa-
rameters, including the reconstruction residual, the GF-PDF
error, and the smoothness, are statistically the same for all
four Gaussian noise levels (Fig. 3), indicating that HFIMS
measurement noise is dominated by counting statistics, and
the inclusion of the Gaussian noise has a negligible impact
on the GF-PDF inverted by Twomey’s method. Similarly,
the impact of Gaussian noise is also negligible for the GF-
PDF inverted using unweighted LSQ and zeroth-, first-, and
second-order Tikhonov regularizations (not shown).

We also challenged the inversion algorithms with differ-
ent forward and inverse models to simulate the scenarios
when DMA or WFIMS is not perfectly calibrated. A dif-
ferent DMA or WFIMS transfer function width is used to
generate the synthetic HFIMS measurements than that used
to calculate the inversion matrix. We found that up to ±20 %
variation in the DMA or WFIMS transfer function width has
negligible impacts on the inverted GF-PDF. The results and
discussion are detailed in Sect. S3.

3.3 Comparisons of different inversion methods

The performances of different inversion methods described
in Sect. 2.2 are systematically compared. A total of 500
sets of synthetic HFIMS data are generated and inverted
for each of the three pre-defined GF-PDFs. For all non-
parametric methods, the inversions were carried out using
the optimal numbers of GF bins (J ) and D∗p bins (I ): 20
and 30, respectively. Figure 4 shows the residual of recon-
structed HFIMS measurements (χ2), the smoothness (ξ ), the

error in the inverted GF-PDF (γ 2), and the computing time
for different inversion methods. Compared with parametric
counterparts (i.e., ML and PL least-squares fitting), the non-
parametric methods generally retrieve more accurate GF-
PDFs. Note that the ML least-squares fitting fails to con-
verge to a valid solution occasionally, resulting in the ab-
normally large error in the inverted GF-PDFs, particularly
for the pre-defined GF-PDFs with two and three modes. It
may be due to the assumed spectral shape of GF-PDFs or
the finite range of the boundary constraints that lead to a
failure of searching for a least-squares solution in the pres-
ence of random noise. Among all nonparametric inversion
methods, the unregularized LSQ provides the solution with
the lowest reconstruction residual but largest noise and er-
ror in the inverted GF-PDFs, consistent with the noise am-
plification in unregularized methods. In comparison, regular-
ized inversion methods generally produce smoother solutions
at the expense of increased reconstruction residuals. Among
different Tikhonov regularization methods, higher-order reg-
ularizations (i.e., first- and second-order) tend to produce
smoother solutions, although the errors in the inverted GF-
PDF are very similar statistically. The ξ value of the GF-
PDF inverted using first- and second-order Tikhonov regu-
larizations increases with the mode number of the GF-PDF,
consistent with the increasingly more complex spectral shape
of the GF-PDF. Overall, Twomey’s method outperforms the
Tikhonov regularization methods regardless of the shapes of
the pre-defined GF-PDFs. On average, the GF-PDF inverted
using Twomey’s method has the smallest error (γ 2) and low-
est ξ value, indicative of the best performance. Note that the
results are based on synthetic data generated with relatively
low counting statistics (i.e., Rtot of 100). We also synthesized
HFIMS data with Rtot of 500 and compared the performance
of different inversion methods for measurements with the im-
proved counting statistics, and the results are consistent with
those shown in Fig. 4 (Fig. S7). We therefore expect the re-
sults to reflect the general performances of different inversion
methods for a typical range of counting statistics of HFIMS
measurements.
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Figure 2. Comparison of reconstruction residual (χ2) (a), the GF-PDF error (γ 2) (b), and the smoothness (ξ ) (c) of GF-PDFs inverted using
the unweighted and weighted LSQ methods with different weighting schemes for zero-value D∗p bins (i.e., replacing zero values by 1, 0.1,
and 0.01, respectively). Colors correspond to the pre-defined GF-PDFs with one mode (blue), two modes (orange), and three modes (yellow).
The results are averages based on inversions of 500 sets of synthetic HFIMS data for each of the three pre-defined GF-PDFs.

Figure 3. Comparison of reconstruction residual, χ2 (a), the GF-PDF error, γ 2 (b), and the degree of smoothing, ξ (c) of GF-PDFs inverted
using Twomey’s methods from synthetic HFIMS data with additional Gaussian noises of different levels (i.e., none, 1 %, 5 %, and 10 %).
Colors correspond to the pre-defined GF-PDFs with one mode (blue), two modes (orange), and three modes (yellow). The results are averages
based on inversions of 500 sets of synthetic HFIMS data for each of the three pre-defined GF-PDFs.

Figure 4d shows that once the matrix is generated, the im-
plementation of the nonparametric methods requires a much
shorter computing time than the parametric fitting methods.
Here, the computing time is recorded on a desktop with In-
tel’s eighth-generation processor Core i7-8700. On average,
a single-time implementation of the unregularized LSQ (i.e.,
the lsqnonneg function in MATLAB) requires ∼ 1 s for all
three pre-defined GF-PDFs, and the computing times for all
other nonparametric methods are similar (with the largest dif-
ference of only∼ 4 %), indicative of equally good computing
efficiencies. In contrast, the computing time required by ei-
ther the ML or PL least-squares fitting routine is more than
one order of magnitude longer.

3.4 Comparison of Tikhonov regularization and
Twomey’s method

In this section, we investigate why Twomey’s method per-
forms better than Tikhonov regularizations. The Tikhonov-
regularized solutions depend on the regularization parame-
ter, λ. The value of λ is often determined by heuristic meth-

ods, including the L-curve approach (Hansen and O’Leary,
1993) and the Hanke–Raus rule (Hanke and Raus, 1996).
The L-curve approach determines λ by seeking a trade-off
between minimizing the residual term and minimizing the
regularization term (i.e., roughness of the solution), and the
Hanke–Raus rule selects a computable λ that minimizes the
λ-dependent residual term 1

λ

∥∥McTik(λ)−R
∥∥

2 (Hanke and
Raus, 1996; Sipkens et al., 2020). As the pre-defined GF-
PDFs are known for the synthetic HFIMS data, the value of
λ can be optimized by comparing the inverted GF-PDF with
the true solution, i.e., minimizing the error in the inverted
GF-PDF (γ 2). Figure 5 shows the comparison of the statis-
tics of inversions using LSQ, Twomey’s method, and first-
order Tikhonov. The results are averages based on inversions
of 500 sets of synthetic HFIMS data for each of the three
pre-defined GF-PDFs. Here, the first-order Tikhonov regular-
ization is chosen as it shows better performance (i.e., lower
GF-PDF error) than zeroth- and second-order Tikhonov reg-
ularizations (Fig. 4). The Tikhonov regularization parameter
is identified by all three methods: (1) the L-curve, (2) the
Hanke–Raus rule, and (3) optimization through minimizing
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Figure 4. Comparison of reconstruction residual (χ2) (a), the smoothness (ξ ) (b), the GF-PDF error (γ 2) (c), and the computing time (d)
of GF-PDFs inverted using different inversion methods. Colors correspond to the pre-defined GF-PDFs with one mode (blue), two modes
(orange), and three modes (yellow). The results are averages based on inversions of 500 sets of synthetic HFIMS data for each of the three
pre-defined GF-PDFs.

the error in inverted GF-PDFs. It is worth noting that the
third method is not feasible for real measurements as the
true GF-PDF is unknown. Figure 5b shows that the Tikhonov
regularization with the optimized λ (i.e., the third method)
provides the most accurate solution (i.e., lowest GF-PDF er-
ror) and outperforms Twomey’s method. However, when λ
derived using the L-curve approach or Hanke–Raus rule is
used, the GF-PDF inverted using first-order Tikhonov regu-
larization generally has a larger error (i.e., γ 2) than that in-
verted using Twomey’s method. The above comparisons in-
dicate that while the Tikhonov regularization can outperform
Twomey’s method in theory, the optimal regularization pa-
rameter λ cannot be obtained reliably using existing meth-
ods in practice, leading to inferior performance compared
to Twomey’s method. For example, the L-curve approach
does not work well if the curvature of the L-curve is nega-
tive everywhere, and in such a scenario, the leftmost point
(i.e., with smaller λ) on the L-curve is taken as the corner
(Hansen, 1994), leading to insufficient regularizations of the
solution (Naseri et al., 2021). On the other hand, the Hanke–
Raus rule often chooses a much larger λ compared with the
optimal value, which results in over-smoothed solutions with
even larger errors. We also carried out similar comparisons of
Twomey’s method with zeroth- and second-order Tikhonov
regularizations using λ values derived from the three differ-

ent methods, and the results are consistent with those shown
in Fig. 5.

The nonparametric inversion methods are also applied to
HFIMS measurements of ambient particles with a dry diam-
eter of 35 nm (Zhang et al., 2021), as detailed in the Supple-
ment (Sect. S5). As the true GF-PDF of ambient aerosols
is unavailable, the performance of the inversion methods
cannot be directly compared. Nevertheless, the comparison
of the reconstruction residual and the smoothness of the
inverted GF-PDF paints a similar picture that Twomey’s
method strikes a good balance between the smoothness of the
inverted GF-PDF and the fidelity in reproducing the HFIMS
measurements, and it likely outperforms Tikhonov regular-
izations in practice.

3.5 Inversion by Twomey’s method

As Twomey’s method is shown to be the best among all in-
version methods examined, we characterize the accuracy of
the GF-PDFs inverted using Twomey’s method and the re-
covered mode parameters. Figure 6 compares the GF-PDFs
inverted with the optimized GF andD∗p bin numbers and with
the pre-defined GF-PDFs. The reconstructed and the sim-
ulated HFIMS measurements are also presented in the top
panel. Both the inverted GF-PDF and reconstructed HFIMS
measurements are averaged over the inversions of 500 sets of
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Figure 5. The reconstruction residual (χ2) (a), the GF-PDF error (γ 2) (b), and the smoothness (ξ ) (c) of the GF-PDF inverted using LSQ,
first-order Tikhonov regularization with the regularization parameter derived from three different approaches (L-curve, Hanke–Raus rule,
and optimized λ), and Twomey’s method. The colors correspond to the pre-defined GF-PDFs with one mode (blue), two modes (orange),
and three modes (yellow).

Figure 6. (a–c) Comparisons between the averaged reconstructed HFIMS measurements and the simulated HFIMS measurements corrupted
with Poisson noises for pre-defined GF-PDFs of one mode (a), two modes (b), and three modes (c), respectively. (d–f) Comparisons between
the pre-defined GF-PDFs and the GF-PDFs inverted using Twomey’s method with the optimized value of GF bins. The shaded area represents
GF-PDF solution spaces within 1 standard deviation.

synthetic data. The results demonstrate excellent agreement
of the reconstructed HFIMS measurements with the synthetic
data (i.e., simulated HFIMS measurements) for all three pre-
defined GF-PDFs. Both the spectral shapes and peak loca-
tions of the inverted GF-PDFs agreed well with that of the
pre-defined GF-PDFs. In addition, the inverted GF-PDFs are
also in better agreement as compared with those inverted
from parametric least-squares approaches (i.e., ML and PL
GF-PDFs; Wang et al., 2019).

To quantify the accuracy of the inverted GF-PDFs, we fit-
ted the inverted GF-PDFs to recover the mode parameters
as shown in Table 2. The pre-set mode parameters of the pre-
defined GF-PDFs are shown in Table 1. The results show that
both the mode geometric means and the multimodal number
fractions can be recovered accurately with minor uncertain-
ties.

4 Conclusion

In this study, we develop and evaluate nonparametric reg-
ularized methods for inverting the GF-PDF from HFIMS
measurements. The integrated response of HFIMS, which
is a convolution of the aerosol hygroscopic GF-PDF, the
transfer function of the DMA, and the transfer function of
the WFIMS, is first cast into a matrix form. With the ma-
trix form, nonparametric regularized methods can be applied
straightforwardly to invert the GF-PDF. Synthetic HFIMS
measurements are generated using Monte Carlo simulations
for representative aerosol GF-PDFs, and the synthetic data
are used to investigate the dependence of the inverted GF-
PDF on the number of GF bins (i.e., GF resolutions) and
the performances of different inversion methods. We show an
optimal GF bin number of 20 for all nonparametric methods
and representative GF-PDFs. The performances of unregu-
larized least squares, Twomey’s algorithm, Tikhonov regu-
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Table 2. Recovered mode parameters of pre-defined GF-PDFs from inverted GF-PDFs.

Predefined Mode 1 Mode 2 Mode 3
GF-PDF

f G σ f G σ f G σ

1 1.00± 0 1.39± 0.03 1.09± 0.01 n/a n/a
2 0.46± 0.10 1.10± 0.02 1.02± 0.01 0.54± 0.10 1.30± 0.02 1.03± 0.01 n/a
3 0.37± 0.09 1.05± 0.03 1.05± 0.02 0.34± 0.13 1.40± 0.03 1.03± 0.02 0.28± 0.12 1.69± 0.08 1.06± 0.03

n/a: not applicable.

larizations, and commonly used parametric inversion meth-
ods (i.e., ML and PL least-squares fitting) are compared.
Nonparametric methods based on the matrix form have sub-
stantial advantages in the inversion of the GF-PDF over the
parametric fitting methods as (1) no prior assumption of
GF-PDF distributions is required; (2) the matrix-based form
facilitates the application of different regularizations (e.g.,
Tikhonov regularization and Twomey’s iterative regulariza-
tion), which reduce the error in the inverted GF-PDF by
eliminating noise amplification; and (3) they are much more
computationally efficient once the matrix is generated. The
Tikhonov-regularized solutions depend on the regularization
parameter, λ. While the Tikhonov regularization can outper-
form Twomey’s method in theory, the optimal λ value cannot
be obtained reliably using existing methods in practice, lead-
ing to inferior performances compared to Twomey’s method.
On average, the GF-PDF inverted using Twomey’s method
has the smallest error compared to solutions using the other
inversion methods regardless of the shapes of the pre-defined
GF-PDFs, and it accurately reproduces the true GF-PDF, in-
cluding the mode parameters and other key statistics.
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