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Abstract. Wildfires have increased in frequency and inten-
sity in the western United States (US) over the past decades,
with negative consequences for air quality. Wildfires emit
large quantities of particles and gases that serve as air pol-
lutants and their precursors, and can lead to severe air quality
conditions over large spatial and long temporal scales. There-
fore, characterization of the chemical constituents in smoke
as a function of combustion conditions, fuel type and fuel
component is an important step towards improving the pre-
diction of air quality effects from fires and evaluating mitiga-
tion strategies. Building on the comprehensive characteriza-
tion of gaseous non-methane organic compounds (NMOCs)
identified in laboratory and field studies, a supervised pat-
tern recognition algorithm was developed that successfully
identified unique chemical speciation profiles among simi-
lar fuel types common in western coniferous forests. The
algorithm was developed using laboratory data from single
fuel species and tested on simplified synthetic fuel mixtures.
The fuel types in the synthetic mixtures were differentiated,
but as the relative mixing proportions became more similar,
the differentiation became poorer. Using the results from the
pattern recognition algorithm, a classification model based
on linear discriminant analysis was trained to differentiate
smoke samples based on the contribution(s) of dominant fuel
type(s). The classification model was applied to field data
and, despite the complexity of the contributing fuels and the
presence of fuels “unknown” to the classifier, the dominant
sources/fuel types were identified. The pattern recognition
and classification algorithms are a promising approach for
identifying the types of fuels contributing to smoke samples
and facilitating the selection of appropriate chemical spe-
ciation profiles for predictive air quality modeling using a

highly reduced suite of measured NMOCs. The utility and
performance of the pattern recognition and classification al-
gorithms can be improved by expanding the training and test
sets to include data from a broader range of single and mixed
fuel types.

1 Introduction

Research has showed that the western United States (US)
has seen an increase in the frequency and intensity of wild-
fires over the last three decades (Jaffe et al., 2020; Miller
et al., 2009; Dennison et al., 2014), which is projected to
continue (Westerling et al., 2006; Miller et al., 2009; Den-
nison et al., 2014). One of the consequences of wildfires is
extremely poor air quality (McMeeking et al., 2005; McKen-
zie et al., 2006; Park et al., 2006; Hu et al., 2018). Emis-
sions from wildfires include carbon monoxide (CO), car-
bon dioxide (CO2), and methane (CH4); several hundreds of
gas-phase non-methane organic compounds (NMOCs); and
particulate matter (PM). While CO2 and CH4 are important
greenhouse gases, NMOCs are of particular importance in
the context of air quality because they serve as precursors
to secondary air pollutants, including photochemical ozone
(O3) and secondary organic aerosol (SOA) (Andreae et al.,
1988; Ward and Hardy, 1991; Alvarado and Prinn, 2009).
The latter (SOA) is a major constituent of atmospheric PM
(Zhang et al., 2007). In order to predict the air quality im-
pacts of wildfires, differences in emissions and their effects
on chemistry and pollutant formation must be represented
in models (Kochanski et al., 2015; Pavlovic et al., 2016;
Chen et al., 2019; Prichard et al., 2019; Jaffe et al., 2020).
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Wildfire emissions are dependent on a number of factors,
such as combustion conditions (e.g., flaming vs. smolder-
ing), fuel conditions (e.g., moisture content) and fuel type
(e.g., species and component) (Goode et al., 2000; Urban-
ski, 2013; Liu et al., 2017; Stockwell et al., 2014, 2015;
Koss et al., 2018; Sekimoto et al., 2018; Hatch et al., 2019;
Prichard et al., 2020). Differences in these factors can affect
the total amount of emissions as well as the profile of emis-
sions, i.e., the identities and quantities of individual chemical
species. Permar et al. (2021) recently reported that combus-
tion conditions, specifically modified combustion efficiency
(MCE), explained approximately 70 % of the variability in
observed trace gas emissions from wildfires. Consistent with
some existing modeling approaches, they suggested that to-
tal NMOCs could be predicted using MCE and that the con-
tributions of individual compounds could be determined us-
ing speciation profiles. For this approach to be successful,
knowledge of the relevant speciation profiles, and therefore
the contributing fuel types, is required.

NMOC speciation profiles have been developed from both
field and laboratory studies (Urbanski et al., 2008; Urbanski,
2014; Simpson et al., 2011; Holder et al., 2017; Andreae,
2019; Prichard et al., 2020). Laboratory studies offer some
advantages over field studies in the context of controlling fuel
species and fuel components; other variables, such as com-
bustion conditions and fuel moisture, can be harder to control
and can lead to differences in the identities and quantities of
NMOCs emitted between laboratory and field studies (Yokel-
son et al., 2013; Stockwell et al., 2014; Liu et al., 2017; Seki-
moto et al., 2018). Yokelson et al. (2013) presented an inter-
comparison of laboratory- and field-based emission factors
(EFs) as well as approaches that combine the use of labora-
tory data to enhance the fundamental understanding of fire
emissions with the use of field data to evaluate the represen-
tativeness of laboratory-based measurements. At that time,
they noted that up to 70 % of NMOCs remained unidentified
for certain fuel types. More recently, due to the application
of advanced instrumental techniques, there have been signifi-
cant improvements in the identification and quantification of
NMOCs emitted from fires, particularly in laboratory stud-
ies (Stockwell et al., 2014, 2015; Hatch et al., 2017; Koss
et al., 2018). For example, Stockwell et al. (2015) detected
approximately 80–96 % of the total emitted NMOC mass in
experiments during the fourth Fire Lab at Missoula Exper-
iment (FLAME-4) in 2012, and Hatch et al. (2019) iden-
tified more than 500 individual NMOCs during FLAME-4.
The relatively rapid expansion in available NMOC data pro-
vides opportunities for developing more detailed speciation
profiles (in which a higher fraction of the detected mass is
assigned to unique compounds or formulas) and for applying
statistical data analysis methods, facilitating the identifica-
tion of unique sets of compounds that allow the differentia-
tion of fuel type(s) and the estimation of their contributions
to smoke samples.

Existing approaches for identifying the contribution of
fuel types to smoke include land cover databases or fuel
loading models coupled with fuel consumption models (e.g.,
FOFEM, Keane and Lutes, 2018; and CONSUME, Ottmar,
2009), and the use of marker compounds. One of the lim-
itations of land cover databases or fuel loading models is
that they are difficult to update frequently enough to reflect
changes in ecosystems (Reeves et al., 2009; Vogelmann et al.,
2011; Nelson et al., 2013; Lindaas et al., 2021). Marker com-
pounds are emitted in relatively high abundances and can
be used to differentiate fuels by component or fuel layer
and, in some cases, by species. For example, Wan et al.
(2019) showed that p-hydroxybenzoic acid was emitted from
the combustion of herbaceous plants, while vanillic acid
was emitted from the combustion of softwoods and hard-
woods. It has also been shown that syringic acid is associ-
ated with hardwood combustion (Simoneit, 2002; Zangrando
et al., 2013), and dehydroabietic acid with conifers (Fu et al.,
2009). Zhang et al. (2021) found that the benzene-to-toluene
ratio in smoke from sugarcane leaves was different than the
ratio in smoke from sesame stalk, demonstrating differences
among agricultural fuels. In measurements of western forests
and shrublands, Jen et al. (2018) showed that hydroquinone
was a good marker for manzanita combustion. One of the
limitations of using marker compounds to identify fuel types
is the lack of specificity, i.e., marker compounds have not
been identified that enable the identification of a large num-
ber of fuel species or closely related fuel species.

In this work, a method is presented for identifying fuel
types from measured NMOCs in smoke samples. To over-
come some of the existing limitations in identifying the con-
tributions of specific fuel types to smoke, pattern recognition
(PR) and classification algorithms were developed using data
obtained during two laboratory campaigns in 2012 and 2016,
and these algorithms were applied to data obtained during a
field study in 2017. Machine learning techniques have been
applied for source identification in other disciplines. For ex-
ample, Welke et al. (2013) and Ziółkowska et al. (2016) used
principal component analysis (PCA) and linear discriminant
analysis (LDA) to differentiate and classify wine varietals
based on specific compounds present in wine samples. John-
son and Synovec (2002) used PCA and analysis of variance
to select marker compounds in gasoline fuel blends and PR to
differentiate the blends. In this work, the large data sets gen-
erated during FLAME-4 and the Fire Influence on Regional
to Global Environments Experiment (FIREX) Fire Lab 2016
campaigns were leveraged to develop a source identification
method using fuel-specific NMOC profiles. The PR algo-
rithm performs an automated selection of compounds that
differentiate sources (in this case fuels) based on measured
NMOCs. The classification algorithm then uses the source
profiles to identify source contributions to specific samples.
The data used to train and test the algorithm are introduced
in Sect. 2. The algorithm development, implementation and
testing are presented in Sects. 2 and 3. The application to
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field data is presented in Sect. 3, and general conclusions and
implications are presented in Sect. 4.

2 Data and methods

2.1 Data

The NMOC data used in this study were acquired from a
variety of fuel types burned in laboratory and field settings
during three campaigns: (1) the FLAME-4 laboratory cam-
paign in 2012 (FLAME-4 FL12), (2) the FIREX laboratory
campaign in 2016 (FIREX FL16), and (3) Blodgett Forest
Research Station (BFRS) prescribed burns in 2017. Both lab-
oratory campaigns took place at the US Forest Service Fire
Science Laboratory (FSL). Details of the facilities, sample
collection and data analysis have been discussed in previous
publications (Stockwell et al., 2014; Hatch et al., 2015, 2019;
Selimovic et al., 2018). Briefly, during FLAME-4 FL12 and
FIREX FL16, a broad variety of biomass fuels were burned
(Stockwell et al., 2014; Selimovic et al., 2018), including
conifers and shrubs (Table 1); 80 samples were collected
from both room and stack burns, as described in Stockwell
et al. (2014) and Selimovic et al. (2018). During the BFRS
study, a total of 28 samples (Hatch et al., 2019) were col-
lected from a utility task vehicle parked downwind from
three separate prescribed burn plots that had different fuel
distributions (see Table 1 and Supplement Figs. S2–S4 in
Hatch et al., 2019). All NMOC samples were collected us-
ing dual-bed stainless steel sorbent tubes and were analyzed
using an automated thermal desorption unit coupled to a two-
dimensional gas chromatograph with a time-of-flight mass
spectrometer (GC×GC-TOFMS). The raw chromatograms
were processed using the commercially available software
Chromatof (Leco Corp., St. Joseph, MI, USA). The mea-
sured mixing ratios were used to calculate normalized ex-
cess mixing ratios (NEMRs) versus CO, 1X/1CO (Yokel-
son et al., 1999), in which 1 represents excess over back-
ground. The calculated NEMRs of monoterpenoids (C10H16
and C10H16O) were used as the starting point for this analysis
based on Hatch et al. (2018, 2019), and the emission profile
analysis is presented in Sect. S1 in the Supplement. Hatch
et al. (2019) demonstrated that the variability in NMOC com-
position could not be attributed entirely to the MCE, and that
chemical speciation was highly correlated among some fuel
types across a range of MCE values, particularly for conifers,
where clear differences in monoterpenoid emissions were
observed as a function of fuel species.

2.2 Pattern recognition algorithm

A four-step PR algorithm (Fig. 1) was developed to se-
lect a subset of compounds that captured the variance be-
tween fuel types and then use the selected compounds to
differentiate fuel types based on NMOC speciation profiles.
The algorithm steps are (1) data preprocessing, (2) analy-

Figure 1. Pattern recognition algorithm flowchart.

sis of variance (ANOVA), (3) principal component analysis
(PCA) and (4) k-means clustering. The algorithm was im-
plemented using the Python package scikit-learn (Pedregosa
et al., 2011). The algorithm components are explained in
Sect. 2.2.1–2.2.4. Implementation of the algorithm is ex-
plained in Sect. 2.3.

2.2.1 Preprocessing and analysis of variance (ANOVA)

Data preprocessing (step 1) is performed to handle any miss-
ing values in the samples. Approaches for handling missing
values are specific to the type(s) of data and the reason(s)
for missing values (Dong and Peng, 2013; McNeish, 2017).
In this data set, missing values largely were a result of com-
pounds being below the detection limit or having negative
values after background correction. During preprocessing,
for every feature (i.e., compound), the percentage by num-
ber of missing values across all samples was calculated. For
any given compound, if the percentage of missing values was
less than 30 %, then the missing values were replaced with
zeros. If the percentage was more than 30 %, then the com-
pound was removed from the data set. The 30 % threshold
is supported by published statistical method guides, includ-
ing Dong and Peng (2013) and Jakobsen et al. (2017), which
suggest a threshold range of 10–40 % prior to replacement.

Samples were also evaluated and filtered for missingness,
using two criteria. For criterion one, only fuel types that had
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Table 1. Fuels burned and smoke analyzed from FLAME-4 2012 laboratory fires, FIREX 2016 laboratory fires and Blodgett Forest Research
Station prescribed burns.

Fuel Fuel FLAME-4 FIREX
family type FL12 (lab) FL16 (lab) BFRS

Ponderosa pine x x x
Lodgepole pine x
Engelmann spruce x
Black spruce x
Douglas fir x

Conifers Subalpine fir x x
White fir x
Juniper x
Loblolly pine x
Sugar pine x
Jeffrey pine x
Incense cedar x

Chamise x
Shrubs Manzanita x

Sagebrush x
Snowbrush ceanothus x

California black oak x
Tanoak x
Excelsior x

Miscellaneous Yak dung x
Peat x x
Rice straw x x
Bear grass x
Untreated lumber x

more than 30 % (by number) of the 93 monoterpenoids above
background levels were selected. Since the PR algorithm was
based on monoterpenoids, samples with few to no detected
monoterpenoids would reduce the ability of the algorithm
to differentiate between fuel types and therefore reduce the
overall efficiency. For criterion two, only fuel types that had
three or more samples were retained. For fuels with too few
samples, the necessary statistical properties cannot be calcu-
lated. In addition, the second criterion ensured that the re-
maining fuel types had an approximately equal number of
samples in the analysis.

Feature selection (step 2) reduces the number of variables
by selecting only those that are informative. In this work,
an analysis of variance (ANOVA)-based feature selection
method similar to those used in Johnson and Synovec (2002)
and Welke et al. (2013) was used to further filter the com-
pounds retained in step 1. In this application, each detected
compound was treated as an ANOVA-type problem with N
samples in k classes (fuel types) to determine whether or not
a compound could separate the different fuel types. For each
compound, the ratio of class-to-class variance to within-class
variance, also known as the Fisher ratio (F-ratio), was calcu-

lated using

Fratio =
Vb

Vw
, (1)

where the nominator (Vb) corresponds to the between-class
sum of squares and the denominator (Vw) to the within-class
sum of squares. The magnitude of the F-ratio is an indica-
tion of class separation. Following the F-ratio calculation, the
compounds were ranked in ascending order based on their F-
ratios. Further details regarding the F-ratio calculation can be
found in Sect. S2 in the Supplement.

2.2.2 Principal component analysis (PCA)

Principal component analysis (PCA; step 3), as described
in Abdi and Williams (2010), is a dimensionality reduction
technique that is used to project high-dimensional data into a
lower-dimensional space along the direction(s) of maximum
variance in the data. In PCA, the original variables are trans-
formed into a new coordinate system. The new coordinate
system is formed using the calculated principal components
(PCs), which serve as the new directions/axes. Each PC is a
linear combination of the original variables and weights (also
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called loadings), as shown in

PCi =
m∑
ij=1

wijxj , (2)

where i and j are indices corresponding to the number of
PCs and number of original variables, respectively. Each PC
accounts for a specific amount of variance of the observed
data, with the first accounting for the greatest amount and
each succeeding component an amount less than the previ-
ous. The PCs can be calculated either by eigenvalue decom-
position (EVD) on the covariance matrix of the original data
or by singular value decomposition (SVD) on the data ma-
trix. In this study, SVD was used; the implementation of SVD
is further described in Sect. S3 in the Supplement. Regard-
less of the method being used to calculate the PCs, because
PCA is trying to find new axes along the direction(s) of max-
imum variance, if the variables are not on the same scale or
if there is a large difference in the magnitudes, the results
can be biased in favor of the variable(s) that vary on a larger
scale (Gewers et al., 2021; Lever et al., 2017). For this rea-
son, standardization of the data might be necessary prior to
PCA. In standardization, the data are mean centered and each
variable is divided by the standard deviation of that variable.
While standardization can help alleviate the scaling problem,
it should not be a default practice, as it can magnify the effect
of outliers in the data (Gewers et al., 2021). If the variability
of a feature is a consequence of intrinsic variability in the an-
alytical method (e.g., experimental error or noise in the data),
then standardization may erroneously emphasize that in the
PCA results. In such cases, either the noise should be reduced
by some means or standardization should be avoided. In this
study, the selection of PCA for dimensionality reduction was
based on three previous studies that included PCA in pattern
recognition analysis of chromatographic data (Welke et al.,
2013; Johnson and Synovec, 2002; Ziółkowska et al., 2016).

2.2.3 k-means clustering

k-means (step 4) is a popular clustering algorithm that
finds clusters in an n-dimensional space (Jolliffe, 2002).
Given a set of observations (x1, x2, x3, ..., xn), where
each observation is a d-dimensional real vector, k-means
tries to partition the n observations into k≤ n sets S= {S1,
S2, S3, ..., Sk}. Mathematically, k-means clustering mini-
mizes within-cluster variances, or squared Euclidean dis-
tances (Jain, 2010), as shown in

argmin
S

k∑
i=1

∑
x∈S

||x−µi ||
2 , (3)

whereµi is the mean of the points in Si . In this study, Elkan’s
algorithm (Elkan, 2003) was used to solve Eq. (3). k-means
clustering was used to find clusters formed after the appli-
cation of PCA. The inputs for the clustering analysis were

the retained PCs. k-means was chosen over other cluster-
ing algorithms because of its simplicity and the absence of
highly anisotropically distributed clusters (irregular shapes);
unequal variance among the clusters and unevenly sized clus-
ters can cause problems with k-means (Jain, 2010).

2.2.4 Determining the number of principal components
and clusters

Three metrics for determining the number of components
retained after PCA were considered: (1) explained variance
based on the number of retained components, (2) the Kaiser
criterion, and (3) the scree test. The explained variance %
(Eq. S8 in the Supplement) evaluates how much of the origi-
nal variance in the data is explained by each additional com-
ponent retained. For this metric, there is no strict threshold;
80 % was chosen for this study. The Kaiser criterion suggests
rejecting all factors that have eigenvalues less than 1. The
scree test requires plotting the eigenvalues as a function of
component number; an inflection point indicates the max-
imum number of usable components. The default method
used in this study was the explained variance, but all three
approaches were evaluated and provided similar results.

k-means requires that the target number of clusters is pro-
vided in advance. This is challenging when the number of
clusters is not known. In this study, the elbow plot method
was used to determine the number of clusters (Fig. 5). The el-
bow plot method requires running the k-means multiple times
using a different number of clusters each time. For each run,
the total within-sum of squares (TWSS) was calculated ac-
cording to

d =

kmax∑
k=1

n∑
j=1

√
(qj − ck)2 , (4)

where q and c are multidimensional vectors with the coor-
dinates for each centroid and sample, respectively; n is the
total number of samples and kmax is the total number of pre-
selected clusters. TWSS is a measure of variability for the
observations within a cluster. The smaller the TWSS for a
number of clusters, the better the clustering. TWSS is plot-
ted against the number of clusters. As with the scree test, the
inflection point in the plot signifies the optimum number of
clusters.

2.3 Running the pattern recognition algorithm

Implementation of the PR algorithm proceeds through five
steps. In step 1, the compounds in the data set are prepro-
cessed to replace missing values and discard samples that
might be problematic (Sect. 2.2.1). In step 2, for each re-
tained compound, the F-ratio is calculated. In step 3, in an
iterative fashion, PCA and k-means clustering are performed
on the m highest-ranked compounds, and the separation of
the classes in the samples (fuel types) is evaluated as a func-
tion of the number of compounds and the minimum number
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of PCs that achieve the 80 % variance threshold. In step 4,
if the separation is not adequate, then the number of com-
pounds is increased or decreased and the run is repeated.
In step 5, once the class separation no longer improves or
starts degrading with the addition or removal of compounds
(step 4), more PCs are retained and different combinations
of PCs are tested. While increasing the number of compo-
nents will lead to better separation of the fuel types, it can
also lead to overfitting. In this study, the algorithm was opti-
mized for sample separation as a function of the compounds
selected and the pairing of the PCs. The effects of overfitting
were not considered in the optimization due to limitations on
the sample size that prevented the use of known evaluation
methods.

2.4 Classification

To test the applicability of the PR algorithm results for
field samples, a classification algorithm, LDA (Hastie et al.,
2009), was applied (see Sect. S5 in the Supplement for im-
plementation details). LDA is a supervised learning method
that is similar to PCA. Both LDA and PCA are linear trans-
formation techniques; LDA is supervised, whereas PCA is
unsupervised and ignores class labels. While PCA tries to
find a subspace of features in order to maximize variance
among samples, LDA attempts to find a feature subspace that
maximizes class separability. The inputs for the LDA train-
ing were the selected PCs from the PR analysis (indepen-
dent variables) and the fuel types (response variable/class)
(see Sect. S4 in the Supplement). The output of LDA is a
probability score for every sample that is being tested for its
likelihood to belong to a particular fuel type, calculated as
follows:

logP(y = k|x)=−
1
2
(x−µk)

t6−1(x−µk)

+ logP(y = k)+Cst , (5)

where k is the class of sample x, µ is the vector of the means
for each class based on the selected features, 6 is the com-
mon covariance matrix for the three classes in the training set
and Cst is a term that contains a constant from the multivari-
ate Gaussian distribution. LDA was chosen as the classifi-
cation method in this study because its closed-form solution
does not require any hyperparameter tuning. Methods that
require hyperparameter tuning (e.g., k-nearest neighbors) are
not appropriate for this application because (1) the training
data set included laboratory data only while the test set in-
cluded field data and (2) the field data were not labeled.

Table 2. Data sets used for developing the pattern recognition algo-
rithm and the testing and training classification algorithm.

Data Pattern Training Testing
set recognition set set

FLAME-4 FL12 x
BFRS x
FIREX FL16 x x
Synthetic data x x

3 Results and discussion

3.1 Sample and fuel type selection for pattern
recognition and classification

The PR algorithm was applied to the FIREX FL16 data set
to identify a group of marker compounds that could be used
to differentiate fuel types. Classification was then performed
using the FIREX FL16 data as the training set and BFRS
data as the testing set. The selection of the training and test-
ing sets was based on the size of each data set; the FIREX
FL16 data set had 74 samples and the BFRS data set had
29 samples. A larger training set ensured more statistically
robust parameters for the LDA model. Because BFRS sam-
ples were generated from combustion of complex fuels, a
synthetic data set was generated to test the performance of
the PR and classification algorithms on mixed fuel samples
prior to application on the BFRS data. The synthetic sam-
ples were created by taking the average value of each se-
lected NMOC from each fuel type and linearly combining
them using specific percentages for two fuels (e.g., 60/40
and 90/10). The five synthetic mixtures had the following
compositions: 60 % pine/40 % spruce, 60 % fir/40 % spruce,
60 % pine/40 % fir, 90 % pine/10 % spruce and 90 % fir/10 %
spruce. The FLAME-4 FL12 data were used as an indepen-
dent data set to test the response of the classification algo-
rithm to fuel types that were not included in the training set.
The use of each data set in the PR and classification algo-
rithms is summarized in Table 2.

Before applying the PR algorithm, the data were processed
as described in Sect. 2.2.1. Application of the preprocessing
criteria reduced the number of samples from a total of 74
to 39 and the number of fuel species from 18 to five: pines
(ponderosa pine and lodgepole pine), firs (Douglas fir and
subalpine fir) and spruce (Engelmann spruce). During the
FIREX FL16 study, different fuel components were burned,
such as canopy, rotten log, composite, litter and duff. While
differences in component emissions may be important for
differentiating prescribed burn and wildfire smoke samples,
for this application, 32 composite and canopy samples and
seven litter and duff samples were retained based on the se-
lection criteria (Sect. 2.2.1).
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3.2 Pattern recognition

3.2.1 Feature selection

Feature selection was performed and evaluated using two ap-
proaches: (1) manual selection, where the compounds were
filtered based on a single criterion – whether a compound
was present in more than three fuel species; and (2) auto-
mated selection using the PR algorithm (Sect. 2.3). The se-
lection approaches were compared using the metrics intro-
duced in Sect. 2.2.4 and by visualizing the emission pro-
files of the selected compounds. The manual approach re-
sulted in the selection of the following nine (out of 93)
compounds: α-pinene, limonene, 3-carene, β-myrcene, cam-
phene, p-cymene, bornyl acetate, β-phellandrene and tricyc-
lene. The automated approach resulted in the selection of the
following five compounds: tricyclene, camphene, β-pinene,
3-carene and bornyl acetate. The PR algorithm was run again
such that the number of selected compounds (nine) was the
same for the manual and automated selection methods. The
cumulative explained variance plots for the manual and au-
tomated selection of compounds are shown in Fig. 2. Given
the 80 % threshold, three components were required with the
manual and automated selection of nine compounds, and two
components with the automated selection of five compounds.
Using the Kaiser criterion, three components were necessary
for an effective separation with the manual (Fig. S2 in the
Supplement) and automated (Fig. S3 in the Supplement) se-
lection of nine compounds, and only one component with the
automated selection of five compounds (Fig. S4 in the Sup-
plement). Using the scree test, five components were needed
with the manual selection of nine compounds (Fig. S2) and
two components with the automated selection of five com-
pounds (Fig. S4). Regardless of the metric used to evaluate
the quality of the feature selection, the automated selection
of five compounds always resulted in the lowest number of
PCs, one or two, to meet the criteria specific to that metric.
A comparison of the number of PCs required relative to the
number of original dimensions is presented in Sect. S6 in the
Supplement, which is another measure of the effectiveness of
the feature selection.

To make the feature selection results more intuitive, the
normalized emission ratio profiles (ratio of the compound ER
to the sum of ERs for the selected compounds) as a function
of fuel species are shown for manual selection (Fig. 3) and
the automated selection of five (Fig. 4) and nine (Fig. S5 in
the Supplement) compounds. Emerging patterns can be seen
in the resulting profiles between and within the fuel types.
The emission profiles from the automated selection, for both
five and nine compounds, provide more distinct profiles be-
tween fuel types, and more consistent profiles within types,
than the profiles from manual selection. For example, with
manual selection (Fig. 3), the normalized emission ratio pro-
files show that the relative abundances of α-pinene (black)
and D-limonene (dark brown) are more similar between pon-

Figure 2. Cumulative explained variance for automated (blue and
green) and manual (orange) compound selection.

derosa pine and Engelmann spruce than they are between the
two pines, and the two pine species have dissimilar relative
abundances of 3-carene (yellow) and β-phellandrene (tan).
However, these differences within pines and similarities be-
tween ponderosa pine and spruce disappear with the auto-
mated selection, particularly with five compounds. The con-
sistency of profiles within the fuel types is important because
it allows for fuel separation and classification when new sam-
ples are provided. Given the more effective dimensionality
reduction of the automated feature selection, as well as the
more consistent emission profiles, the manual feature selec-
tion will be not be further discussed here.

3.2.2 PCA and k-means clustering

Following data preprocessing and feature selection, PCA was
performed on the reduced data set (five compounds), fol-
lowed by k-means clustering on two retained components
(based on the explained variance metric, see Fig. 2). For
k-means, the number of clusters was determined using the
elbow plot method (Sect. 2.2.4). In Fig. 5, the TWSS is
shown as a function of the number of clusters; the last in-
flection point occurs around four clusters (dark blue marker).
The coupled PCA and k-means results are shown in Fig. 6.
The clusters identified by the algorithm are differentiated by
marker color while the fuel types are differentiated by marker
shape. Cluster 1 included 15 out of 16 pine samples and one
overlapping fir sample. Cluster 2 included 11 out of 13 fir
samples and four overlapping spruce samples. Clusters 3 and
4 included the remaining six spruce samples, one overlap-
ping pine sample and one overlapping fir sample. Generally,
the algorithm resulted in adequate separation between firs
and pines but poorer separation for spruce, for which four of
10 samples overlapped with another fuel family. Adding four
more compounds reduced the variance explained by PC1 and
PC2 from 92 % to less than 70 % and resulted in only a mi-
nor improvement in cluster separation (Fig. S6 in the Sup-
plement). The difficulty that the algorithm encounters sep-
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Figure 3. Normalized emission ratio profiles for Douglas fir, subalpine fir, lodgepole pine, ponderosa pine and Engelmann spruce based on
manual compound selection.

Figure 4. Normalized emission ratio profiles for Douglas fir, subalpine fir, lodgepole pine, ponderosa pine and Engelmann spruce based on
automated compound selection.

arating spruce effectively can be explained using the elbow
plot (Fig. 5). The k-means algorithm identified four clusters
as the optimum number, but the steep decrease in the total
TWSS actually occurs between one and two total clusters.
The TWSS decreases further between two and four, but to a
lesser extent (shallower slope). The lesser decrease between
two and four clusters indicates that the clustering algorithm
had difficulty identifying clusters in the PCA space, which is
then apparent in Fig. 6. From the normalized emission ratio
profiles (Fig. 4), it can be seen that the spruce and fir samples
have similar normalized emission ratios for tricyclene, cam-
phene and β-pinene. This limits the ability to fully separate
spruce and firs in the PCA space.

3.2.3 Beyond principal components one and two

Thus far, only the first two PCs (from a total of five) had been
used in the analysis, since they explained 92 % of the vari-
ance in the data set. Another 8 % was shared between PC3
and PC4, which could potentially provide better separation
for the spruce samples. After testing PC1 with PC3 and PC1
with PC4, the combination of PC1 and PC4 was found to re-
sult in better performance of the PR algorithm. Though the
optimal number of clusters for the PC1 and PC4 pair (Fig. 7)
was the same as with the PC1 and PC2 pair, it was found at
a lower TWSS, which is indicative of more dense clustering.
Figure 8 shows the results for the PC1 and PC4 pair. Cluster
1 included 13 out of 16 pine samples and one overlapping fir
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Figure 5. Elbow plot for k-means clustering with automated com-
pound selection for the PC1 and PC2 pair. The dark blue marker
indicates the optimum number of clusters.

Figure 6. PCA coupled with k-means clustering results for the PC1
and PC2 pair.

sample. Cluster 2 included 11 out of 13 fir samples and only
one overlapping spruce sample. Clusters 3 and 4 included
9 out of 10 spruce samples, one overlapping fir sample and
three overlapping pine samples. With the PC1 and PC4 pair,
spruce samples had 30 % less overlap with firs (Fig. 9), with
only moderate losses in the separation between spruce and
pines. These results demonstrate the ability of the PR algo-
rithm to separate firs, pines and spruce in the smoke samples,
with only two PCs accounting for most of the variance in the
data set (PC1 and PC4 accounted for about 82 %).

3.2.4 Mixed samples

The PR algorithm selected compounds that separated single-
fuel smoke samples by the contribution of fuels categorized
into three types (firs, pines and spruce). Before testing the
algorithm on complex smoke samples, it was tested on the
synthetic fuel mixtures described in Sect. 3.1. From the three
60/40 samples, only the fir/spruce synthetic mixture was
clustered with the dominant fuel family (fir). The pine/spruce
and pine/fir synthetic mixtures were clustered with spruce
clusters 1 and 3, respectively (Fig. 10). The clustering of the
pine/spruce synthetic mixture with spruce was marginal in

Figure 7. Elbow plot for k-means clustering with automated com-
pound selection for the PC1 and PC4 pair. The dark blue marker
indicates the optimum number of clusters.

Figure 8. PCA coupled with k-means clustering results for the PC1
and PC4 pair.

the PCA space and was due to the scatter of the spruce sam-
ples rather than the similarity of the synthetic mixture with
spruce. The clustering of the pine/fir mixture with spruce is
more intuitive after comparing the normalized ER profiles
(Fig. S7 in the Supplement), which show the similarities in
the ER profiles for the pine/fir mixture and spruce. Figure 11
shows the PR results, including the 90/10 synthetic mixtures.
Both samples were correctly clustered with their respective
dominant fuel family. The synthetic mixture results suggest
that the algorithm can select marker compounds that can dif-
ferentiate fuel types, even when they are mixed in relatively
even proportions (i.e., 60/40 pine/spruce and fir/spruce mix-
tures), but for some mixtures the differentiation might be
poor (i.e., 60/40 pine/fir). Including more mixed fuel sam-
ples in the training and test sets would likely improve the
separation of complex mixtures achieved using the PR algo-
rithm.

3.3 Classification

3.3.1 Synthetic mixtures and FLAME-4 FL12 samples

After the pattern recognition, all 39 samples from the FIREX
FL16 data set and the selected compounds in the form of
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Figure 9. Spruce overlap with firs based on the PC combination
used.

Figure 10. PCA coupled with k-means clustering results for the PC1
and PC4 pair, including the 60 %/40 % synthetic mixtures.

the retained components (PC1 and PC4) were provided to
the LDA algorithm for training. As described in Sect. 2.4,
LDA provides class membership probability (Eq. 5). In this
application, the probability score is related to the proximity
of a sample to a class of samples (cluster) in the PCA space
(Figs. 10 and 11), which is linked to its similarity with the
emission profiles for the three fuel types (Fig. 4). The assign-
ment of a sample to a class is based on the class with the high-
est probability, even when the probability is only marginally
higher. For example, a sample with a pine probability score
of 70 % or more will most likely be inside the pine cluster.
Generally, samples with probability scores 60 % and higher
are most likely in the cluster space of a fuel family. Samples
with a probability score of 60 % or lower are more likely to
be adjacent to one or more fuel families in the PCA space.

The classification algorithm was tested using the syn-
thetic mixtures and FLAME-4 FL12 samples before test-
ing using the BFRS field data. The classification results
for the synthetic mixtures are shown in Fig. 12. Two of
three 60/40 synthetic mixtures were classified correctly:
pine/spruce and fir/spruce, with classification probabilities
of 70 % and higher for the dominant fuel family. The 60/40
pine/fir synthetic mixture was classified as spruce. Its clas-
sification is a result of its clustering in the PCA space with

Figure 11. PCA coupled with k-means clustering results for the PC1
and PC4 pair, including the 90 %/10 % synthetic mixtures.

Figure 12. Classification results for synthetic mixtures and
FLAME-4 samples.

spruce (Fig. 10), which is directly connected to its similar-
ity with the spruce emission profile (Fig. S7). The two 90/10
synthetic mixtures, pine/spruce and fir/spruce, were correctly
classified with classification probabilities of over 80 % for
the dominant fuel family. Application of the classifier to the
synthetic mixtures demonstrated that the mixtures can be cor-
rectly classified based on the dominant fuel family in mixed
fuel samples (four of five mixtures); however, incorrect clas-
sification can occur when the mixed fuel emission profiles
are similar to individual fuel emission profiles, resulting in
poorer separation with PCA. The results of the classification
algorithm for mixed samples can be improved in future work
through expanded testing and training on a broader range of
fuel types and relevant mixtures.

The classification results for the FLAME-4 FL12 samples
are shown in Fig. 12. This data set included six fuel species
(ponderosa pine, black spruce, Indonesian peat, rice straw,
wiregrass and sawgrass), only one of which, ponderosa pine,
was in the training set. Both the ponderosa pine and black
spruce samples were classified correctly (Fig. 12), with clas-
sification probabilities of over 90 %. The Indonesian peat,
rice straw, wiregrass and sawgrass samples were classified
as firs or pines (Fig. 12), with classification probabilities of
over 70 %. The classification algorithm evaluated partial sim-
ilarity to only three options (pine, firs or spruce), none of
which represent the fuel types of the four fuel species. Fig-
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Figure 13. Normalized emission ratio profiles for FIREX FL16 samples (pines and firs) and FLAME-4 FL12 samples (sawgrass, wiregrass,
rice straw and Indonesian peat). The relative abundances of camphene and β-pinene in sawgrass, Indonesian peat and rice straw were ≥ 0.6,
but, for figure clarity, the axis limits were not changed.

ure 13 shows the average normalized emission ratio profiles
for pines and firs as well as Indonesian peat, rice straw, wire-
grass and sawgrass. It can be seen that camphene is the only
one of the five compounds that is present in the sawgrass and
Indonesian peat samples, and thus these fuels were classified
as firs, which also have a high relative abundance of cam-
phene. Wiregrass and rice straw samples also include cam-
phene, but have higher relative abundances of β-pinene and
3-carene, and thus were classified as pines, which also have
higher relative abundances of these two compounds (Fig. 13).
As illustrated by the application to the synthetic fuel mix-
tures, the performance of the classification algorithm can be
improved in future work by expanding the range of fuel types
and mixtures included in the training and test sets.

3.3.2 Blodgett samples

Figures 14–16 show the results of the classification algorithm
applied to the BFRS samples from three different prescribed
burn plots: 60, 340 and 400, the compositions of which are
shown in Hatch et al. (2019) (Figs. S2–S4). Seven different
fuel species were identified in the three burned plots: white
fir, incense cedar, tanoak, sugar pine, ponderosa pine, Dou-
glas fir and California black oak. Due to the heterogeneity of
the fuels, and the influences of meteorology and sampling lo-
cation, it was not possible to determine the relative contribu-
tion of each fuel species to each sample. Instead, the average
overstory composition (Figs. S8–S11 in the Supplement) was
used to determine likely influences from dominant sources
close to each sampling location. For plot 60, sites 1 and 2
(Fig. S8), the main influence was from firs (47 %), followed
by similar amounts of pines and incense cedar (25 % and

27 %), with no contribution from tanoak or California black
oak. For plot 60, site 3 (Fig. S9), the main influence was from
incense cedar (43 %), followed by firs (34 %), pines (26 %)
and California black oak (10 %). For plot 340 (Fig. S10),
the main influence was from firs (63 %), followed by pines
(21 %), incense cedar (12 %) and tanoak and California black
oak (2 %). Finally, for plot 400 (Fig. S11), the main influence
was from firs (55 %), followed by pines (26 %) and incense
cedar (18 %). The classification algorithm classified all sam-
ples from plots 60 (Fig. 14) and 340 (Fig. 15) as fir dominant.
Nine out of 10 samples from plot 400 (Fig. 16) were classi-
fied as fir dominant, and one as pine dominant. While spruce
was absent in the burned plots, all samples (with the excep-
tion of the pine-dominant sample in plot 400) had a higher
classification probability for spruce than pines.

For plot 60, a total of 11 samples were collected: five sam-
ples in sites 1 and 2, which were fir dominant (Fig. S8),
and six samples in site 3, which was incense cedar domi-
nant (Fig. S9). For sites 1 and 2, the classifier results were
reasonable based on the overstory composition, but for site
3, the classification results were inconclusive since no emis-
sion profiles were available for cedars. It is likely that incense
cedar or the mixture of incense cedar with firs most closely
resembles the fir emission profiles of the selected compounds
and thus was classified as firs. For plots 340 and 400, the clas-
sification results – probabilities of 63 % for 340 and 55 % for
400 – are reasonable, given that 16 out of 17 samples are fir
dominant (Figs. 15–16). The one sample that was classified
as pines in plot 400 was most likely affected by ponderosa
pine emissions during sampling. The composition plots in
Hatch et al. (2019) show that one of the inventoried plots
next to plot 400 (sites 1 and 2) had an average fractional
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Figure 14. Classification probability by fuel class for plot 60.

Figure 15. Classification probability by fuel class for plot 340.

overstory composition of more than 50 % ponderosa pine.
The elevated probability of spruce despite its absence from
all burned plots was likely an artifact of mixed smoke be-
tween pines and firs, which was also shown in the synthetic
mixed sample PR and classification results. Among the three
plots, pines and firs together account for more than 70 % of
the overstory composition on average. Thus, the contribu-
tions from both firs and pines could lead to smoke mixtures
that resemble the spruce emission profiles. Tanoak and Cal-
ifornia black oak (Figs. S8–S11) account for 2–10 % of the
total contributions among the three plots. Due to insufficient
emission data, their contributions to the smoke samples could
not be evaluated, but given their low overstory contribution,
it is likely that they did not influence the collected samples
substantially. The results for the BFRS data showed that the
laboratory-based emission profiles selected by the PR algo-
rithm can be applied to smoke samples collected in the field,
and can be used to identify dominant fuel sources, even in
mixed smoke samples. While the algorithm has been tested
and trained on only three fuel types, widespread application
can be achieved with further training and testing using a more
diverse set of compounds and a broader range of fuel types.

Figure 16. Classification probability by fuel class for plot 400.

4 Conclusions

A supervised pattern recognition (PR) algorithm was devel-
oped and applied in this study to (1) differentiate sources/fuel
types using NMOCs measured in smoke samples and se-
lected with an ANOVA-based feature selection method and
(2) train a classification algorithm to identify dominant
sources/fuel types in smoke samples based on the unique
speciation profiles identified by the PR algorithm. The PR
algorithm was able to group five fuel species (Douglas and
subalpine fir, ponderosa and loblolly pine, and Engelmann
spruce) into three fuel types (pines, firs and spruce) with
minimal overlap; only five of all 39 samples were grouped
with types that were not representative of the fuel species.
The separation was achieved using five monoterpenoids that
the algorithm selected out of a pool of 93. Future work
should include exploring how normality and heteroskedastic-
ity, which are underlying assumptions for ANOVA, may be
affecting separation. This can be achieved by using nonpara-
metric tests that do not make assumptions about the underly-
ing data distribution and are more robust than ANOVA in the
presence of heteroskedasticity. The PR algorithm was tested
with five synthetic mixtures, for which three of five (60/40
fir/spruce, 90/10 pine/spruce, and 90/10 fir/spruce) were suc-
cessfully separated and clustered with their dominant family.
The same synthetic mixtures were also tested using the clas-
sification algorithm, where four of five were classified cor-
rectly (60/40 pine/spruce, 60/40 fir/spruce, 90/10 pine/spruce
and 90/10 fir/spruce). The application of the classification al-
gorithm to the synthetic mixtures demonstrated that domi-
nant source contributions could be identified in fuel mixtures.
For the FLAME-4 FL12 samples, the classification algorithm
correctly classified two of six samples (ponderosa pine and
black spruce); these two samples were the only fuels repre-
sented by the three fuel types. For the BFRS field samples,
based on the fractional overstory composition, the classifica-
tion results were reasonable, with 27 out of 28 samples being
classified as fir dominant and one sample as pine dominant.
The incorrect classifications that occurred with the synthetic
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fuel mixture (60/40 pine/fir) and the FLAME-4 FL12 sam-
ples (Indonesian peat, rice straw, wiregrass and sawgrass)
were due to the similarity or partial similarity of their emis-
sion profiles with the fuels used to train the classification
model. This can be resolved in future applications by includ-
ing more compounds and a broader range of fuel types, in-
cluding in mixtures. This will also facilitate the use of this
approach for identifying contributing fuels outside of west-
ern coniferous forests. The application of the PR algorithm
is not confined to the analysis of biomass-burning emissions.
In addition to linking NMOC speciation with fuel type, the
PR algorithm can be used to link NMOC speciation with ob-
servational data relevant to air quality and climate, such as
O3 and SOA levels.
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