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Abstract. Small unmanned aerial systems (UASs) are be-
coming a good candidate technology for solving the obser-
vational gap in the planetary boundary layer (PBL). Addi-
tionally, the rapid miniaturization of thermodynamic sensors
over the past years has allowed for more seamless integra-
tion with small UASs and more simple system characteri-
zation procedures. However, given that the UAS alters its
immediate surrounding air to stay aloft by nature, such in-
tegration can introduce several sources of bias and uncer-
tainties to the measurements if not properly accounted for.
If weather forecast models were to use UAS measurements,
then these errors could significantly impact numerical pre-
dictions and hence influence the weather forecasters’ situa-
tional awareness and their ability to issue warnings. There-
fore, some considerations for sensor placement are presented
in this study, as well as flight patterns and strategies to min-
imize the effects of UAS on the weather sensors. Moreover,
advanced modeling techniques and signal processing algo-
rithms are investigated to compensate for slow sensor dy-
namics. For this study, dynamic models were developed to
characterize and assess the transient response of commonly
used temperature and humidity sensors. Consequently, an in-
verse dynamic model processing (IDMP) algorithm that en-
hances signal restoration is presented and demonstrated on
simulated data. This study also provides contributions on
model stability analysis necessary for proper parameter tun-

ing of the sensor measurement correction method. A few real
case studies are discussed where the application and results
of the IDMP through strong thermodynamic gradients of the
PBL are shown. The conclusions of this study provide infor-
mation regarding the effectiveness of the overall process of
mitigating undesired distortions in the data sampled with a
UAS to help increase the data quality and reliability.

1 Introduction

Technological development with respect to instrumentation
systems for weather sampling increasingly demands the
means to provide greater reliability of the data collected. Fur-
thermore, Lorenz (1972) showed that the results from numer-
ical weather models tend to diverge with long periods of time
and differ from reality even with small errors in the initial
conditions estimated from measurements. Researchers have
been looking for ways to increase the reliability and accu-
racy of weather measurements, like Mahesh et al. (1997),
who successfully implemented a simple method to correct
thermal lags from measurements taken with a radiosonde in
strong inversions. Radiosondes have the advantage that their
sensors are exposed to the medium they are sampling without
much disturbances, as opposed to their unmanned aerial sys-
tem (UAS) counterparts which produce an inherent turbulent
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micro-environment around their bodies (Greene et al., 2018).
This issue is particularly more severe for a multi-rotor UAS
compared to a fixed-wing UAS.

Recent technological advancements have enabled the use
of UASs as tools to perform controlled and targeted atmo-
spheric measurements. UASs have paved the way for the
development of new strategies for sampling the atmosphere
in the past few years. The National Academies of Sciences,
Engineering, and Medicine (2018), the National Research
Council (2009), and other studies (Hardesty and Hoff, 2012;
Geerts et al., 2017) have stressed the importance of the con-
tributions that UASs have made in modern meteorological
studies. It is well known that the planetary boundary layer
(PBL) is quite under-sampled and that observational gaps
limit the ability to accurately estimate the state of the atmo-
sphere; hence, UASs are seen as new opportunities to fill the
gap (Bell et al., 2020). In other words, UASs are able to sam-
ple regions of the atmosphere that were either not feasible or
not possible with other conventional meteorological instru-
ments.

Despite presenting attractive and unique features, the UAS
must still undergo several studies and evaluations before its
data can be fully integrated and assimilated into the weather
forecast models. Several recent collaborative field experi-
ments, like those described in Barbieri et al. (2019), Koch
et al. (2018), Kral et al. (2018), and Jacob et al. (2018) just
to cite some of them, have encouraged researchers and en-
gineers to start characterizing and assessing UASs for mea-
suring weather parameters and identify the challenges for
improving weather measurements using UASs. This initia-
tive led to the development of many innovative UAS designs
for weather sampling, such as those shown in Segales et al.
(2020), Wildmann et al. (2014a), and Reuder et al. (2009),
and even envisioning future concepts of operations (Chilson
et al., 2019) and research communities (de Boer et al., 2020).

The acquisition of weather data using a UAS is a newly es-
tablished challenge in modern meteorology research, which
is slowly showing its potential to create new advanced sam-
pling strategies and signal processing capabilities. The mit-
igation of slow sensor dynamics and the removal of sensor
noise using low-cost weather sensors are challenging, but the
impacts can be reduced by using the right tools. The inverse
dynamic model processing (IDMP) techniques have tradi-
tionally been used in control theory for the design of con-
trollers to influence the system’s behavior. This modern tech-
nique makes use of known physical properties of the sensor
to restore the original signal given a sensor reading. To en-
sure a reliable and proper functioning of the weather sensors,
it is important to mitigate sources of error around the UAS by
applying strategies discussed in this study, in particular for
temperature and humidity sensors. Slow transient responses
in sensors are commonly associated with amplitude attenua-
tion and phase delay of the output signal (measured weather
signal) with respect to the input signal (actual weather sig-
nal). While the impact of sensor dynamics can largely be

neglected when considering static scenarios, measurements
should not be considered instantaneous in space and time
when the sensor moves through strong gradients (Houston
and Keeler, 2018). Several studies have proposed ways to re-
duce the impact of the sensor transient response for temper-
ature (Dantzig, 1985; Fatoorehchi et al., 2019) and humidity
(Wildmann et al., 2014b) sensors.

Considering the above context and problem definition, the
following study presents considerations for the sensor char-
acterization and placement on a UAS. It also shows a frame-
work for measurement correction of temperature and humid-
ity sensors with data collected using a multi-rotor UAS. The
goal of this project is to improve the quality of the weather
data by following a framework designed around the IDMP
method. This will result in a more accurate weather param-
eter estimates that could, in a near future, improve data as-
similation into weather forecast models and hence issue ac-
curate weather warnings. It is critical to provide forecasters
with reliable data in a timely manner to support them in their
mission of protecting lives and properties.

2 Preliminary concepts of the planetary boundary
layer

The atmosphere is in a perpetual state of horizontal and ver-
tical motions while constantly evolving day and night. This
constant motion in the atmosphere produces natural weather
signals that usually have a high degree of complexity in time
and space (Petty, 2008; Davidson, 2015). Additionally, UASs
typically fly in regions of the atmosphere that are hardly ac-
cessible to other conventional weather instruments, and col-
located intercomparisons are hard to achieve. Therefore, the
authors have resorted and adopted other ways of validation,
such as the spectrum analysis, which requires particular at-
mospheric conditions and some theoretical background. For
the purpose of the demonstrations in this study, the selection
of PBL conditions were narrowed to two particular cases: a
well-mixed convective boundary layer (CBL) in windy con-
ditions, as well as a PBL with strong temperature and humid-
ity gradients, such as frontal and thermal inversions (FTIs)
caused by displacement of air masses. These two PBL states
are attractive atmospheric conditions to consider when eval-
uating weather sensors on a UAS because of several theoreti-
cal assumptions that can be made when running simulations.

The CBL condition is ideal to study the small-scale tur-
bulence and the high-frequency response of the sensors by
means of power spectrum and structure function analysis.
The energy cascade theory formulated by Kolmogorov is
well proven (Kolmogorov, 1941) that can be used to esti-
mate the turbulence energy distribution over a range of spa-
tial scales under locally isotropic conditions. In one of the
largest experiments conducted by Saddoughi and Veeravalli
(1994), it was shown that in a turbulent atmosphere with a
high Reynolds number the energy cascade decreases with a
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Figure 1. Kolmogorov’s energy cascade illustration.

−5/3 slope in a logarithmic scale and then tails off down-
wards in the viscous dissipation region (Fig. 1). The approx-
imate relation between the turbulence energy 8T of temper-
ature and the spatial wavenumber k of the temperature signal
is given by Tatarskiy and Silverman (1961):

8T(k1)≈ 0.25C2
T k
−5/3, (1)

whereCT is the structure function parameter for temperature.
The humidity also has a similar expression as Eq. (1) but with
a different proportionality constant. Assuming the volume of
air sampled by the UAS is locally isotropic, then the thermo-
hygrometer sensors should observe a pattern similar to the
−5/3 slope line. Assuming that the frequency content of the
atmospheric eddies are larger than the frequency range that
the sensor can capture, then any deviation in the sensor–data
spectrum was assumed to be influenced by undesired sensor
dynamics or noise.

Moreover, the Reynolds number Re of the PBL is typically
on the order of 106, and the ratio between large and small
spatial scales is given by l/η = Re3/4. The large separation
of scales allows for the inertial subrange (ISR) of turbulent
fluctuations to extend for hundreds of meters in length, which
would be quite difficult to cover with a UAS within a reason-
able time. A workaround to this is to consider horizontally
homogeneous CBL conditions. Consequently, the turbulence
can be assumed to be “frozen” as it travels across a station-
ary UAS with mean wind speed relative to the UAS. This
assumption is the so-called Taylor hypothesis of the frozen
field, and it is of great use in calculating structure functions
by converting temporal measurements into spatial measure-
ments.

The definition of the structure function can be found in
a vast amount of the literature (Gibbs et al., 2016; Kaimal
et al., 1976; Kohsiek, 1982). The physical interpretation of
structure function is the distribution of turbulent energy over
different spatial lags, and it is mathematically defined as a
two-point spatial correlation as follows:

D2
T(r)= (T (x)− T (x+ r))

2 = C2
T r

2
3 , (2)

where the overbar represents ensemble averaging, x is the
position vector in meters, and r is the separation distance be-
tween two samples in space, also called distance lag. If the
distance lag r is within the ISR, then the structure function is
reduced to the rightmost expression of Eq. (2). In the ISR re-
gion, the structure function follows a 2/3 slope line in a log-
arithmic scale. The computation of the structure function is
straightforward and has relatively fewer theoretical assump-
tions than the conventional spectral analysis (Gibbs et al.,
2016). Therefore, the structure function was considered as
an extra step in the validation of the thermo-hygrometer ob-
servations and dynamical analysis.

For the case of FTIs, the PBL undergoes a quick evolution
with strong gradients over a short time period in which large-
scale changes in temperature and humidity are dominant over
small scales. This is a good scenario for studying the low-
frequency response of the sensors when flown across the air
mass boundaries. Therefore, for this project, the main focus
was to create artificial weather signals with strong gradients
similar to that of FTIs without much importance on small-
amplitude and high-frequency features. Temperature and hu-
midity changes across a frontal or thermal inversion can be
approximated to a ramp function with rounded corners.

3 Weather sensor principle and modeling

The performance optimization of the sensor starts with the
available manufacturing technologies according to Farahani
et al. (2014). Nowadays, the fabrication of sensors is driven
by low-cost circuits, new sensing materials, advances in
miniaturization techniques, and modern simulations. Despite
the fact that a great part of the performance of the sensor can
be optimized at a hardware level, they still come with lim-
itations. Post-processing algorithms can partially overcome
these limitations in performance, with modeling techniques
and digital signal processing being the most popular. Dantzig
(1985) showed encouraging first results using a simple first-
order differential equation to restore signals from a thermo-
couple and even describing calibration procedures. Fatoore-
hchi et al. (2019) used nonlinear differential equations based
on the Steinhart and Hart (1968) equation for negative tem-
perature coefficient (NTC) thermistors. Their equations were
comprised of a lumped formulation for temperature which
also included other factors like thermal radiation and power
dissipation. Despite its high accuracy, the high complexity
of the model and solution makes it unpractical for real-time
implementation. Moreover, Greene et al. (2019) have shown
us that a good shielding around the sensors and an adequate
sensor placement on the UAS can greatly prevent solar radi-
ation and heat conduction from contaminating the sampled
volume of air. Therefore, for this study, the external sources
of contamination are considered negligible compared to the
errors introduced by the internal sensor dynamics.
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Wildmann et al. (2014b) used a similar approach and
showed an example of the modeling of a capacitive humidity
sensor using the diffusion equation and effectively applying
an inverse model to correct the measurements. We were able
to reproduce their modeling methods and validate the results
with similar simulation experiments. Given the simplicity of
this method, ideas from studies of Wildmann et al. (2014b)
were borrowed to develop the IDMP proposed in this study,
and it also served as a guidance to develop an IDMP variant
for the bead thermistor. We also realized that a stability anal-
ysis with parameter tuning of the models, shown in Sect. 6.2,
would be a great complement to their studies and a necessary
tool for correct application of the IDMP.

3.1 Basics of temperature and humidity sensors

Commonly used temperature and humidity sensors for UASs
are mainly variants of the bead thermistor type and capacitive
type sensors, respectively (Barbieri et al., 2019; Kral et al.,
2018). These type of sensors are considered payload friendly
for small UASs given their compact size and lightweight
characteristics. Both of these temperature and humidity sen-
sors work under very similar principles. Basically, the heat
flux (diffusion) inside the sensor’s material will lead to a
thermal (water vapor concentration) equilibrium with the sur-
rounding medium after a finite time. In fact, the differential
equation that describes most of their behavior has the exact
same form for both sensors which is given by Pletcher et al.
(2013):

∂U

∂t
= k

(
∂2U

∂x2 +
∂2U

∂y2 +
∂2U

∂z2

)
. (3)

This is called the heat equation for the case of temperature
and diffusion equation for the case of water vapor concentra-
tion. Farahani et al. (2014) explain that numerous parameters
have an influence on the response time of a sensor, such as the
geometry of the sensing element, the inherent thermal/water
diffusivity of the sensing element, the thickness of the protec-
tive layers, and even the ambient temperature and humidity
itself. Equation (3) encompasses most of these characteris-
tics and factors and hence can be effectively used as a model
to compensate for errors.

In particular, the selected sensors for this study are the
iMet-XF bead thermistor from InterMet Systems and the
HYT-271 capacitive humidity sensor from Innovative Sen-
sor Technology (IST). This is for the sake of providing an
example case with known sensor characteristics and speci-
fications, and the overall modeling and method description
does not lose its generality. Additionally, it is assumed the
sensors are sufficiently aspirated (airflow of > 5 m s−1) as
per the recommendation of the manufacturers so that self-
heating effects are diminished.

3.2 Sensor dynamic modeling

In control theory, the method of finite difference is a com-
monly used numerical solution for differential equations and
it is the main foundation of the IDMP method. Finite differ-
ence equations are powerful tools that can be used to cre-
ate mathematical models to describe the behavior of physical
systems. The method is an approximation of the derivative
which is represented by the derivative taken over a finite in-
terval around a given point. Additionally, assumptions must
be made to reduce the complexity of the model and work
within a linear regime. The dynamics of the sensor can be
further studied after deriving the mathematical model. It can
be used to trace back and restore the original signal that pro-
duced the sensor measurements as long as the inverse of the
model exists and is stable.

3.2.1 Forward model of temperature sensor

The iMet-XF bead thermistor shape and dimensions are
shown in Fig. 2, and the probe tip can be approximated to
the shape of a sphere with radius R = 0.4 mm. Given that
heat fluxes can propagate anywhere around the sensor, the
problem becomes three-dimensional in space. The spherical
symmetry helps to significantly reduce the degree of com-
plexity of the model to a one-dimensional case along the
radius (Momoh et al., 2013). It was assumed that the heat
propagates radially from the surface of the spherical glass
in contact with the air all the way down to the core where
the sensing element is located. Therefore, the problem can
be seen as a heat transfer problem with spatial temperature
gradients inside the bead thermistor. Accordingly, the differ-
ential equation for the bead thermistor is given by Eq. (3) in
spherical coordinates:

∂T (r, t)

∂t
= α

(
∂2T

∂r2 +
2
r

∂T

∂r

)
, 0≤ r ≤ R, t ≥ 0, (4)

where the internal temperature T is a function of time t and
space r which is the radial distance from the center to a given
point within the sphere, and α is the thermal diffusivity of
the material. The boundary conditions are T (R, t)= Tair and
T (0, t) is mirrored. The sphere was then divided into N lay-
ers with thickness 1r = R/N . A finite difference method
was applied to the spatial derivatives of Eq. (4), and the sin-
gularity at r = 0 was solved by using L’Hôpital’s rule. The
following system of finite difference equations in space was
obtained:

∂T

∂t
= β

(
−2TN +

N − 1
N

TN−1

)
+β

N + 1
N

Tair,

r = R, (5)

∂T

∂t
= β

(
i+ 1
i
Ti+1− 2Ti +

i− 1
i
Ti−1

)
,

0< i1r < R, i = 2, . . .,N − 1, (6)
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Figure 2. Closeup of the iMet-XF bead thermistor with dimensions
and composition. Image provided by International Met (InterMet)
Systems.

∂T

∂t
= 3β (T2− T1) , r = 0, (7)

where β = α/1r2. A more detailed derivation of these equa-
tions can be found in Momoh et al. (2013). As a result, the
system of equations is a linear time invariant (LTI) system
that can be transformed to the state–space representation of
the following form:

∂x

∂t
= Ax+Bu, (8)

y = Cx+Du, (9)

where x values are the state variables, each one representing
the temperature at each layer, u is the surface temperature in-
put signal, and y is the sensor’s output signal (sensor reading
or measurement at the core). The matrices A and B can be
easily obtained by inspection from the finite difference equa-
tions.

The goal is to determine the actual temperature of the
medium based on temperature readings at the core. By com-
puting the inverse model it is possible to trace back the tem-
perature at each layer from the core to the surface of the sen-
sor in a stable manner. In order to do so, the C vector must be
a weighted average skewed towards the core. The D matrix
was chosen in a way so that the DC gain (K) of the system is
equal to one: K = D−CA−1B= 1.

3.2.2 Forward model of humidity sensor

In the case of the HYT-271 capacitive humidity sensor, the
dynamics are mainly produced by the diffusion of water va-
por concentration from the surface in contact with the air into
the polymer. Figure 3 shows the sensing element configura-
tion and the boundary conditions around it. In contrast to the
bead thermistor, the capacitive sensor can be treated as a one-
dimensional problem since the water vapor only exists just
above the sensing element surface, and it propagates along
the normal to the surface.

Horizontal concentration gradients were considered to be
negligible given that the thickness of the polymer is small

Figure 3. Closeup of the IST HYT-271 capacitive sensor with di-
mensions (left) and sensing element configuration (right). Left im-
age taken from datasheet.

enough to prevent horizontal propagation (Wildmann et al.,
2014b). As a result, the differential equation for the capaci-
tive humidity sensor is given by Eq. (3) in one-dimensional
Cartesian coordinates:

∂c(x, t)

∂t
=D

∂2c

∂x2 , 0≤ x ≤ L, t ≥ 0, (10)

where c is the water vapor concentration in parts per million
volume (ppmv), D is the diffusivity coefficient of the wa-
ter vapor in the polymer, and L is the thickness of the poly-
mer. The boundary conditions were defined as c(L, t)= cair,
while c(0, t) is mirrored. The polymer film was then divided
into N layers with thickness 1x = L/N . Following a sim-
ilar reasoning and steps as applied with the bead thermistor
model, the system of finite difference equations is as follows:

∂c

∂t
= λ(−2cN + cN−1)+ λcair, x = L, (11)

∂c

∂t
= λ(ci+1− 2ci + ci−1) ,

0< i1x < L, i = 2, . . .,N − 1, (12)
∂c

∂t
= λ(c2− c1) , x = 0, (13)

where λ=D/1x. A more detailed derivation of the above
equations can be found in Wildmann et al. (2014b). Again,
the resulting system of equations is an LTI system that can be
transformed to the state–space representation. The matrices
A and B can be determined by inspection from the finite dif-
ference equations. The output y of the system is equal to the
average of all the water vapor concentrations in each layer.
This is because the capacitance is measured across the entire
polymer film and not just one particular spot as compared to
the bead thermistor. Therefore, the parameter C is a lengthN
row vector with elements equal to 1/N , and it maps the state
variables to the output resulting in the sensor measurement.

https://doi.org/10.5194/amt-15-2607-2022 Atmos. Meas. Tech., 15, 2607–2621, 2022



2612 A. R. Segales et al.: Considerations for improving data quality of thermo-hygrometer sensors on board UAS

The HYT-271 humidity sensor comes hard-coded to out-
put relative humidity values. The model only works with wa-
ter vapor concentration in parts per million volume (ppmv)
units. Therefore, the relative humidity input must be con-
verted to water vapor concentration and then back to rela-
tive humidity after applying the model. The following equa-
tions for the conversion were taken from McRae (1980), who
states that the error involved in using these equations over a
temperature range of −50 and 50 ◦C is less than 0.5 %:

c = 104H
Ps

Pa
, (14)

Ps = Pa exp
(

13.3185t − 1.9760t2− 0.6445t3

−0.1299t4
)
, (15)

t = 1−
373.15
Ta

, (16)

where H is relative humidity in percentage, Ps is saturation
vapor pressure in millibars, Pa = 1013.25 mb is the standard
atmospheric pressure, and Ta is the ambient temperature in
Kelvin.

4 Experimental design for sensor characterization

The geometry and boundary conditions were defined in the
forward sensor models presented in Sect. 3.2. The sampling
period of the sensor must also be known at this point; both
iMet-XF and HYT-271 have sampling periods equal to1t =
0.1 s. The remaining parameters to be defined in the models
are the thermal (or water) diffusivity α (or D), the width of
the sensing material R (or L), and the thickness of the layers
1r (or 1x). Unfortunately, these parameters are usually not
in the datasheet and even kept as a trade secret by the man-
ufacturer. However, these parameters are associated with the
time response of the model, and they can be adjusted to ap-
proximate the time response of the real sensor (Wildmann
et al., 2014b). Therefore, the remaining parameters can be
obtained empirically in the lab through experimentation. In
addition, please note that the response time is defined as the
time required for the sensor output to change from its ini-
tial state to a final fixed value within a tolerance, typically
defined as 98 % of the final value.

In an effort to establish guidance for the sensor charac-
terization of UASs, Jacob et al. (2018) conducted experi-
ments in which weather UASs were flown across a pseudo-
step change in temperature and humidity from an air con-
ditioned room to the outdoor environment. Although their
goal was to measure the sensor time response with the effects
of the UAS on the sensors altogether, a different approach
was taken for the presented study in which the problem was
divided into two parts. First, the sensors were isolated and
characterized independently of the UAS body through exper-
imentation. Second, the sensor siting on the UAS and sam-

pling techniques were investigated to minimize the external
disturbances on the measurements.

Ideally, the time response is measured by stimulating the
sensor with an ideal step function. However, step functions
of temperature and humidity are not possible in real-world
conditions. Instead, Li et al. (2018) used a ramp function to
model the thermodynamic shock and found that the error of
assuming an ideal step function is less than 10 % if the transi-
tion time from the initial to the final state is less than the time
response of the sensor. According to the iMet-XF bead ther-
mistor datasheet, the sensor response time can be less than
1 s. Therefore, it is a requirement to have a mechanism to
quickly move the sensors from one side of the shock to the
other.

There are several external factors that influence the physi-
cal aspects of the sensor that must be taken into account for
the experiments. In particular, the capacitive humidity sensor
is mainly affected by the ambient temperature as explained
by Farahani et al. (2014). This is because the porosity and
thickness of the sensor’s polymer significantly changes with
temperature. This means that there is no universal water va-
por diffusivity D that can be used for a wide range of am-
bient temperature. Therefore, the shock experiments for the
humidity sensor must be performed at different air temper-
ature conditions to create a lookup table of values. After a
UAS flight, the mean temperature of the profile can be used
to determine the diffusivity value from the lookup table by
interpolation. Conversely, the thermal diffusivity α of the
bead thermistor does not significantly change with humidity
as measured by Tsilingiris (2008). Consequently, only one
shock experiment would be enough to compute a universal
thermal diffusivity α for the bead thermistor.

After conducting the experiments for sensor character-
ization, the collected data are used to adjust the sensor
model parameters by using a model parameter optimization
technique called differential evolution (Das and Suganthan,
2011). Simulated step functions with amplitudes equal to the
real thermodynamic shocks from the experiments are fed to
the digital models with equal sampling rate as the real sen-
sors. The model parameters can be initialized through a rea-
sonable guess, and the subsequent parameters are computed
by iterative point-wise comparisons with the real data. Ba-
sically, this becomes a curve fitting problem by minimizing
the square root of the mean of the squared error (RMSE) cost
function across the dataset:

RMSE=

√∑
(Umod−Uobs)

2

N
< ε, (17)

where Umod is the predicted value of the model, Uobs is the
real observation, N is the number of data points, and ε is the
desired tolerance. The thermal (water vapor) diffusivity are
slightly tweaked on every subsequent iteration until meeting
the tolerance criteria and thus obtaining the final diffusivity
coefficient for the given conditions.
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Figure 4. Step response of the continuous and discrete models of
the bead thermistor.

Finally, the sensor time response can be assessed quanti-
tatively by examining the final RMSE value. If the RMSE
value remains high after several iterations, it means that the
sensor transient response is highly nonlinear compared to the
linear model, and hence, a higher uncertainty in the measure-
ment correction process is expected. Figure 4 shows an ex-
ample of how the step response of the continuous and dis-
crete models of a bead thermistor should look like with a
response time close to 1 s. Notice how important it is to have
a high sampling rate logger in order to accurately capture the
dynamics of the sensor.

5 Considerations for sensor placement on UAS

Acquiring precise measurements of the air temperature and
humidity is particularly challenging due to disturbances aris-
ing from multiple sources around the UAS. Insufficient ra-
diation shielding, exposure to mixed turbulent air from the
propellers, and electronic self-heating are the main factors
in contributing to temperature and humidity data contamina-
tion according to Greene et al. (2018, 2019) and Islam et al.
(2019). A quick logical solution is to make an extension arm
from the main body of the UAS and place the sensor pack-
age outside of the turbulent air created by the UAS. However,
this approach comes with major problems such as increased
resistance to rotation (or inertia) and exposure to strong aero-
dynamic forces that could produce flight instability. There-
fore, the integrated design must be balanced in such a way
that neither of the systems gets compromised.

The multi-rotor UASs are the most vulnerable platforms
since they usually remain stationary in the air or travel at
very low speeds (mainly vertical profiles), allowing for the
turbulent air volume to wrap around the multi-rotor UAS.
Greene et al. (2018) searched for the best-possible location
for the thermodynamic sensors within the turbulent air vol-
ume. They measured variations in temperature right below a
multi-rotor UAS propeller and found that disturbances were
minimum at 1/3 from the tip of the propeller. Despite the en-
couraging results, the study did not take into account the heat

advection coming from the UAS body. Islam et al. (2019)
took it a step further by mounting pipes with air inlets situ-
ated far apart from the main body while still using the multi-
rotor UAS rotors to produce mechanical aspiration. They re-
ported good agreement between ascent and descent profiles
in no wind conditions but also showed limitations with the
flight stability and heat advecting into the pipes downwind
of the UAS. Segales et al. (2020) took an innovative ap-
proach by modifying the autopilot code to compute wind di-
rection estimates and command the multi-rotor UAS to turn
into the wind. In this way, the wind itself compresses the tur-
bulent envelope in front of the multi-rotor UAS making it
shallow enough to place the sensors closer to the multi-rotor
UAS’s body. This was demonstrated using flow simulations
by Segales et al. (2020) and also through observations in the
field by Greene et al. (2019) and Bell et al. (2020).

An important consideration that is common to both a
multi-rotor UAS and a fixed-wing UAS is the material se-
lection for the radiation shield around the weather sensors.
Greene et al. (2019) have shown that the sun radiation greatly
affects the temperature and humidity measurements. They
noticed an unusual pattern in the readings during flights in
a day with scattered clouds despite the multi-rotor UAS hav-
ing a shield around the sensors. Basically, the sun radiation
heats up the surface of the shield and, consequently, increases
the temperature of the surrounding air by heat conduction.
The heated air is then aspirated across the sensors. Waugh
(2021) shows an example of a thorough radiation shield de-
sign, as well as a useful guide for sensor placement and in-
stallation. Moreover, materials with low thermal conductivity
can help reduce heat conduction to the air and hence mitigate
the contamination. For instance, aerogel can be a great candi-
date material that could almost completely isolate the sensors
from the sun radiation. Also, radiant barrier paint can be used
to coat the current shield designs and prevent surfaces from
loading with heat.

6 Implementation of the IDMP

At this point, two models were introduced, one describing
the bead thermistor sensor dynamics and another describing
the capacitive humidity sensor dynamics. An experimental
design for sensor characterization and model validation were
also presented, and some of the limitations were reviewed.
In an effort to reinforce the concepts just introduced and to
demonstrate the actual implementation of the IDMP method,
this section will fully describe the procedures of the IDMP
for correcting sensor measurements.

6.1 General procedures and limitations

In order to detail and formulate the IDMP restoration tech-
nique, it will be beneficial to start by summarizing a basic
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general procedure, part of which is taken from Wildmann
et al. (2014b):

1. Identify the sensor noise floor from the actual measure-
ments by inspecting its power spectral density (PSD)
and suppress the noise using a zero-phase low-pass fil-
ter.

2. Apply the inverse sensor model to the filtered measure-
ments after adjusting the model parameters based on the
weather conditions and sensor characterization.

3. Re-apply the filter from step 1 to the restored signal to
filter out any amplified noise.

4. Quantify the improvement by inspecting the time series
and spectral response of the signal before and after ap-
plying the inverse sensor model.

5. Validate the correction by comparing the structure func-
tion with the theoretical 2/3 slope for locally isotropic
turbulence in the ISR.

Although the general procedure seems to be robust in
the sense that it includes a validation step, the validation
step only works for CBL weather conditions as explained
in Sect. 2. Furthermore, step 5 is feasible only if the atmo-
sphere is assumed to be horizontally homogeneous and lo-
cally isotropic without any rapid atmospheric evolution. Ad-
ditionally, the flight patterns are limited to steady hover in
windy conditions and horizontal transects assuming Taylor’s
hypothesis of frozen field holds true. For the case of flights
across FTIs, only steps 1 to 3 are feasible, and the results can
be trusted based on prior testings and calibrations.

6.2 System description and tuning

The signal conditioning of the raw sensor measurements is
necessary to extract a more accurate representation of the at-
mospheric parameters. The challenge is to remove the un-
wanted distortion and contamination caused by slow sensor
dynamics and sensor noise, respectively. If the considerations
from Sect. 5 are correctly implemented, then the effects of
the UAS and its immediate surroundings on the sensor mea-
surements are considered to be small and can be ignored. The
type of low-pass filter chosen for noise removal was a non-
causal zero-phase finite impulse response (FIR) digital filter.
This kind of filter has the advantage that it does not introduce
phase delay to the output signal with respect to the input sig-
nal, which is only possible in an offline processing.

An adaptive contamination removal algorithm was not de-
veloped for the IDMP method. Instead, the cut-off frequency
of the low-pass filter was manually tuned on a case by case
basis. The PSD of the raw sensor measurement was used to
assess the dynamics of the sensor, identify the noise floor,
and define the cut-off frequency of the low-pass filter. More-
over, the logic used to identify distortion and contamination
in the measurements taken in CBL conditions is as follows:

Figure 5. Bode diagram of the sensor model. Magnitude and phase
are shown in panels (a) and (b), respectively.

– If the slope of the PSD is greater than −5/3 at high
wavenumbers, then the region is considered to be con-
taminated by sensor noise. This is because of the nat-
ural downward trend of the turbulence power spectrum
that eventually encounters the noise floor of the sensor.
Therefore, it must be removed using the low-pass filter
before going through the restoration phase to prevent
the noise from getting amplified.

– Otherwise, the measurement is considered to be atten-
uated and distorted by the slow sensor dynamics which
cannot keep up with the turbulence dynamics. Conse-
quently, the bad trend is corrected in the restoration
phase, and the new PSD approximates the desired−5/3
slope line.

The next step is to run the conditioned signal through the
core of the IDMP method, the inverse sensor model itself.
The transfer function H(z) of the sensor model was com-
puted by taking the z transform of the state–space system
of the sensor model. Figure 5 shows an example of the fre-
quency response of the continuous and discrete transfer func-
tion H of a capacitive humidity sensor with a response time
of about 4 s. The continuous system is the approximation to
the analog behavior of the sensor and can be used to simulate
the “real” sensing element. The discrete system is a “sam-
pled” version of the continuous system with sampling rate
equal to that of the real sensor or the analog-to-digital con-
verter (ADC) to be precise. The truncation effect that comes
with sampling a system is what produces the mismatch in
the frequency response at high frequencies, which is seen in
Fig. 5. The only way to improve the frequency response of
the discrete system is by increasing the sampling rate of the
ADC to better capture the dynamics of the sensing element.

The inverse system of H(z) exists, and it is stable if and
only if H(z) is minimum phase, meaning that all the poles
and zeros are within the unit circle of the z plane. Subse-
quently, the transfer function of the inverse sensor model
is obtained by simply taking the inverse of H(z)=G−1(z).
Even though the process of finding the inverse sounds sim-
ple and straightforward, special attention must be given to
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the poles of G(z). The resulting poles of G(z) might end up
being too close to the unit circle of the z plane which could
cause instability and oscillations with high-frequency input
signals. The stability parameter for the presented models is
defined by Pletcher et al. (2013) as φ = γ1t

1x2 < 0.5, where γ
is an intrinsic parameter of the sensor, such as the thermal
and diffusivity coefficients. The equation shows how fast the
sampling rate must be in order to precisely capture the dy-
namics of the sensor within a small spatial interval. Given
that the sampling rate of the sensors is fixed at 1t = 0.1 s,
then the only way to adjust the poles is by varying 1x. The
model and hence its inverse G(z) are stable with large val-
ues of 1x at the expense of reducing the order of the model
and, consequently, the overall accuracy and resolution of the
method. Moreover, notice that the degree of correction made
on the sensor measurements is limited by the sensor’s sam-
pling rate. If the same sensors are enabled to sample at higher
rates, then the IDMP will become more effective.

After tuning the parameters and creating a stable system,
G(z) was then fed with the filtered sensor measurements to
produce the corrected sensor measurement. Finally, the same
low-pass filter from the beginning was applied to the cor-
rected signal to remove any amplified noise that survived the
process.

7 Performance evaluation of the IDMP

The first step to investigate the potential of applying the
IDMP for temperature and humidity measurements is to de-
velop a time-series weather signal generator that could be
used as a benchmark to evaluate the performance of the pro-
posed framework. From this point, signals made by the gen-
erator will be referred to as “actual” weather signals, whereas
the output signals from the sensor models will be referred to
as the “measured” signal, and the restored signals from the
IDMP will be called “corrected” signals.

7.1 Weather signal generation and sensor simulation

As described in Sect. 2, CBL weather signals from a hori-
zontal transect tend to have a particular PSD with a −5/3
slope in the logarithmic scale. Moreover, assuming horizon-
tal CBL weather signals are produced by a wide-sense sta-
tionary (WSS) random process with Gaussian probability
density function, then it is possible to generate the artificial
weather signals by modifying the PSD of a Gaussian white
noise signal to look like Kolmogorov’s energy cascade power
spectrum. This was achieved by taking the Fourier transform
of a white noise signal and dividing the magnitude by its
frequency to the power of 5/6 while keeping the phase un-
changed. Figure 6 shows an example of an artificially gener-
ated CBL weather signal.

For the case of FTI conditions, the focus is mainly on the
evaluation of the sensor response in strong gradients with less

Figure 6. Spatial temperature signal in CBL conditions after
converting the time-series data given a constant wind speed of
10 m s−1.

Figure 7. (a) Temperature change across a frontal inversion (cold
front). (b) Vertical dry adiabatic lapse rate temperature profile with
a strong thermal inversion.

importance on features with small amplitude and high fre-
quency. Therefore, the FTI weather signals were constructed
in a piece-wise manner using straight lines. The horizon-
tal transect of an FTI was modeled using a ramp function,
whereas the vertical transect follows a dry adiabatic lapse
rate model with a temperature inversion in the middle. Both
weather signals were low-pass filtered to smooth out the cor-
ners so that it looks more realistic. The gradient (or inversion)
strengths, length, and altitude scales of the weather signals
were adjusted using the simulation results shown by Houston
and Keeler (2018) as a reference. Figure 7 shows examples
of generated FTI weather signals.
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To simulate the sensor measurement process, the sensor
model was divided into three parts: the analog sensing ele-
ment, the ADC discrete sampling, and sensor noise genera-
tion. The sensing element was simulated using the forward
models shown in Sect. 3.2 with a much smaller sampling pe-
riod 1t = 0.01 s. This is because analog signals can not be
generated in a computer, and, therefore, the best approxima-
tion is to increase the resolution of the discrete model. The
actual weather signal was run through the high-resolution
sensor model to add the effects of sensor dynamics. This sig-
nal then goes through the ADC which down-samples the sig-
nal to the actual sampling period of the sensor 1t = 0.1 s.
The down-sampling process may add aliasing which makes
it more realistic. Finally, the down-sampled signal gets its
characteristic noise floor by adding additive white Gaussian
noise (AWGN) to it. The noise amplitude from each sensor
was taken from previous steady-state calibrations done in a
controlled environment by the Center for Autonomous Sens-
ing and Sampling (CASS) of the University of Oklahoma.

7.2 Validation of the IDMP method in simulated CBL
conditions

The following measurement validation method for CBL con-
ditions exploits the ISR of turbulent fluctuation theory, de-
scribed in Sect. 2, by using the PSD and structure function
calculations. In real-world CBL conditions, the data are col-
lected by conducting horizontal transects or stationary flights
in windy conditions at a constant altitude with a multi-rotor
UAS. In order to keep this article short and because the cor-
rection results of temperature and humidity are very similar,
results will be shown in an alternated fashion between tem-
perature and humidity.

Following the procedures of the IDMP from start to end,
the PSDs of the signals are computed and compared in Fig. 8.
Notice that the cut-off frequency of the low-pass filter was
selected near the constant and flat power level of the mea-
sured signal, and the sensor noise was effectively removed
as a result. The effect of the slow sensor dynamics is no-
ticeable as a downward trend with respect to the −5/3 slope
line. The IDMP successfully restores the power levels of the
measured signal at high frequencies. Next, Fig. 9 shows a
comparison of the time-series signals, and the RMSE of the
measured and corrected signals were computed with respect
to the actual weather signal using Eq. (17). The time-series
plot clearly shows an improvement in the time response of
the sensor which is confirmed by the lower RMSE value. Fi-
nally, Fig. 10 shows results from the two-point spatial corre-
lation calculation, namely, the structure function. Assuming
locally isotropic turbulence conditions, the deviations of the
computed structure function from the theoretical 2/3 slope
in the ISR region are indications of the effects of sensor dy-
namics and sensor noise on the measurement. Moreover, the
results can be used to slightly tune the IDMP until getting a
best-possible agreement with the theory. Additionally, all the

Figure 8. Power spectral density of the simulated weather signal
in CBL conditions and processed signals using the sensor models.
Results from before and after applying the IDMP are shown.

Figure 9. Time series of the simulated weather signal in CBL con-
ditions and processed signals using the sensor models. Results from
before and after applying the IDMP are shown.

presented results show that the IDMP method is effectively
restoring the signal without any signs of instability and oscil-
lations.

7.3 Simulation of flights across strong gradients in FTI
conditions

Similar to the CBL simulation, flights across FTIs also ex-
hibit the expected lag in the measurement as a consequence
of the sensor time response. Additionally, the lag within this
condition becomes more apparent and sensitive to the rela-
tive wind speed with respect to the UAS. Houston and Keeler
(2018) explain that the number of errors is fewer when fly-
ing at low speeds; however, the observation might not be
representative because the weather phenomena might have
evolved faster than the observation period. Therefore, it is
of significant importance to study the performance of the
IDMP method with different speeds across the thermody-
namic boundary. For the case of frontal inversions, results
from the simulated humidity sensor will be shown since it
has a large time response, and the correction is more notice-
able compared to the faster temperature sensor, whereas for
the thermal inversion, results from the simulation of the tem-
perature sensor will be shown.

Atmos. Meas. Tech., 15, 2607–2621, 2022 https://doi.org/10.5194/amt-15-2607-2022



A. R. Segales et al.: Considerations for improving data quality of thermo-hygrometer sensors on board UAS 2617

Figure 10. Structure function of the simulated weather signal in
CBL conditions and processed signals using the sensor models. Re-
sults from before and after applying the IDMP are illustrated.

Frontal inversions, such as cold fronts, are usually sam-
pled using a fixed-wing UAS. The typical ground speed of a
fixed-wing UAS in flight is around 25 m s−1, while the wind
can reach speeds of 20 m s−1. Assuming that the fixed-wing
UAS is able to fly in very windy conditions, then the relative
wind across the fixed-wing UAS is 45 m s−1 when flying into
headwinds. It has to be mentioned that such an airspeed is ex-
tremely high for a typical fixed-wing UAS. However, testing
the IDMP outside the operating envelope of the UAS is a
good way to show its robustness. Figure 11a shows the com-
parison between the actual, measured, and corrected humid-
ity in a frontal inversion. Notice how far the measured signal
settles with respect to the air mass boundary; this agrees with
the results seen in Houston and Keeler (2018). The corrected
signal shows a much better transient response, but some os-
cillations are present when the weather signal is constant.
This is because of some remaining sensor noise leaking into
the IDMP where it gets slightly amplified. Additionally, the
IDMP can not fully recover the shape of the actual weather
signal because of missing parts in the frequency content due
to noise filtering, low sampling rate, and poor capturing of
the weather dynamics.

Vertical profiles are typically carried out using a multi-
rotor UAS, and it is common to encounter thermal inver-
sions aloft. The vertical speed of the multi-rotor UAS was
assumed to be equal to the radiosonde’s climbing speed of
about 5 m s−1, much slower compared with the horizontal
speed of a fixed-wing UAS. Figure 11b illustrates a com-
parison between signals in the simulated thermal inversion
environment. It can be seen that the IDMP corrects for the
constant offset produced by the sensor dynamics not being
able to keep up with the temperature change rate. Once the
multi-rotor UAS encounters the inversion, the result is almost
identical to the frontal inversion case.

Figure 11. Comparison of weather signals in simulated (a) frontal
inversion conditions with relative wind speed of 45 m s−1 and
(b) thermal inversion conditions with climbing rate set to 5 m s−1.
Results from before and after applying the IDMP are illustrated.

7.4 Case study using real data

The presented simulation results show the feasibility of the
framework and the IDMP technique on measurements taken
with a UAS. However, several assumptions were made to
produce the models and simulations which may not hold
true for real observations in the field. Therefore, to begin ex-
ploring the mitigation of slow sensor dynamics and sensor
noise for realistic UAS flights, the IDMP was applied on real
data collected using the CopterSonde UAS (Segales et al.,
2020) from the University of Oklahoma (OU). Two flights
were picked from the extensive database made in the past
years throughout several field campaigns. Although these
two flights are not available in an open online repository, a
similar dataset can be found in Greene et al. (2020) and de-
scribed in Pillar-Little et al. (2021) which was collected with
the same UAS in this study.

These flights were conducted in CBL and FTI weather
conditions, respectively, at the Kessler Atmospheric and Eco-
logical Field Station (KAEFS) in Purcell, Oklahoma, USA,
located 30 km southwest of the OU Norman campus. The
Certificate of Authorization (COA) with number 2020-CSA-
6030-COA, issued by the Federal Aviation Administration
(FAA), allowed us to fly the CopterSonde above 122 m
(400 ft) with a flight ceiling of 1524 m (5000 ft). It has to be
mentioned that the sensors were not properly characterized as
described in the presented literature; instead the sensor mod-
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Figure 12. (a) Comparison of the measured against corrected rela-
tive humidity signal. (b) Structure function comparison.

els were tuned by trial and error and best guessing the phys-
ical parameters of the sensing elements. Although the sensor
characterization was poor, the implementation still showed
the potential benefits of using the IDMP.

In the CBL conditions, the CopterSonde was flown sta-
tionary at a constant altitude of 10 m for about 15 min with a
mean wind speed of 10.2 m s−1. Figure 12a shows a close-up
of a portion of the measured and corrected relative humidity
time series, while Fig. 12b illustrates the degree of correc-
tion made by the IDMP. This is noticeable by observing the
amount of deviation in the structure function.

In the FTI conditions, the CopterSonde was flown shortly
after a cold front moved through KAEFS, leaving a shallow
cold pool behind. The climbing rate was set to 3.5 m s−1,
whereas the descent rate was set to 5 m s−1. The Copter-
Sonde was sent to 1300 m above ground level, collecting
temperature and humidity data in the ascent and descent legs.
The flight took about 10 min from take-off to landing. Fig-
ure 13a shows a comparison between the measured and cor-
rected vertical profiles of relative humidity. The correction is
not very noticeable due to the large spatial scale and the slow
vertical speed of the UAS. However, Fig. 13b is a zoomed-in
plot of the lower altitude region where the small correction is
visible. Assuming that no other environmental factors influ-
enced the measurements, this may confirm that the separation
shown by the arrow is in fact an atmospheric evolution and
not a result of sensor lag.

Figure 13. (a) Relative humidity vertical profile measured against
corrected values. (b) Close-up of the vertical profile in the lower
altitude region.

8 Conclusions

This article presented an overview of the general procedures
for the mitigation of undesired sensor dynamics on tempera-
ture and humidity measurements collected using a UAS. Im-
portant considerations about the effects of the UAS on the
sensor measurements were shown, in which it is encouraged
to find solutions that benefit both flight stability and weather
sampling accuracy.

Furthermore, sensor models were developed to investigate
the sensor transient response, and a collection of best prac-
tices for sensor characterization and installation was pre-
sented to ensure reduced contamination of the air sample.
This allowed for the design and implementation of signal
restoration techniques under adequate conditions, such as the
IDMP shown in this study. The authors also took it a step
further and studied the stability of the sensor models and
the IDMP method. A system tuning criterion was presented
which helped determine the operating envelope of the IDMP
and its limitations. This same analysis could be used as lever-
age for finding improvements within the sensor model design
and the sensor selection for the desired application.

After a brief review of the PBL theory, ways have been
found to create a correction criterion based on the power
spectrum density calculation. As a result, the sensor mea-
surements were corrected in a way that the resulting power
spectrum was more consistent and aligned to Kolmogorov’s
power spectrum theory under locally isotropic assumptions.
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The structure function was then used as a mean to corrobo-
rate the corrections which gave some degree of validation to
the results. The simulation results served as good evidence
for this criterion in which the mitigation of undesired con-
tamination and signal restoration using the IDMP was found
to be significant in improving the reliability of the weather
UAS deliverables when flying across strong thermodynamic
gradients.

Finally, the case study demonstrated the feasibility of us-
ing the IDMP outside of the ideal and simulated conditions.
The IDMP remained stable throughout both flights while
also making small sensor response corrections in the time
domain, which is more noticeable in the frequency domain
where it follows the 2/3 slope more consistently. Despite
these achievements, the case study does not provide enough
material to fully support the use of the IDMP for sensor mea-
surement correction. However, the case study is considered
to be a good trend towards producing weather signals with
richer frequency content relative to Kolmogorov’s theory that
can lead to a better understanding of the atmosphere’s struc-
ture.
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