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Section S1: Global Model for OC, EC and TC and Bias Investigation 

Global Model for OC, EC and TC 

A simple calibration design relying on a subset of filters from all sites (Figure S1-1) and seasons 
was created using 2015 data. Spatiotemporal variability in composition is approximated by 
retaining every fifth sample to build the model. The Global model, summarized in Table S1-1, 
shows satisfactory agreement between TOR and FT-IR predicted concentrations with R2 equal 
to 0.977, 0.889 and 0.984 for OC, EC, and TC, respectively. Overall, FT-IR OC, EC and TC 
residuals show a near zero bias with relative values not exceeding 2 – 3 % while the relative 
error have a moderate spread ranging from 12% (TC) to 27 % (EC).  Notably, the inclusion of 
additional samples into the calibration did not provide better model performance, which 
indicates that the size of the calibration set is sufficiently large to capture the variability in 
atmospheric composition across the network.  

 

 

Figure S1 – Spatial distribution of the 161 IMPROVE sites from the year 2015. 

 

Table S1-1 – Global FT-IR OC, EC and TC model performance for the years 2015, for 19,608 
PTFE filters collected at all 161 North American sites, compared with the Global models for 
OC and EC proposed by Dillner & Takahama featuring 832 filters sampled at 7 sites in 2011. 
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  Model R2 Bias 
(µg/m3) 

Bias 
(%) 

Error 
(µg/m3) 

Error 
(%) 

MDL 
(µg/m3) 

< MDL 
(%) 

OC 

Global 
(2015) 0.977 0.01 1.6 0.08 13.3 0.07 0.5 

Global 
(2011) 0.98 0 0 0.08 10.7 0.07 1.1 

EC 

Global 
(2015) 0.889 0 2.8 0.02 26.8 0.03 13.6 

Global 
(2011) 0.98 0 0.3 0.02 17.8 0.03 13.6 

TC Global 
(2015) 0.984 0.01 1.2 0.09 12.0 0.07 0.4 

 
A proof of concept analysis was demonstrated using a similar calibration design at seven 
IMPROVE sites in 2011. For the sake of comparison, figures of merit associated with the 2011 
Global model are reported in Table S1-1 for OC and EC (TC not reported in 2011 paper). 
Despite the obvious differences in sample population and site number, both 2011 and 2015 
models present nearly identical performance with the exception of relative bias and error. The 
small drop in model performance observed for the 2015 Global model are ascribed to the 
much broader range of aerosol composition and concentration resulting from expanding the 
calibration from 7 to 161 sites. For instance, the maximum TOR OC concentration in 2015 (44.6 
µg/m3) is about six times larger than in 2011 (7.3 µg/m3). The dramatic expansion in carbon 
content in 2015 is likely connected with biomass burning emissions from wildfires and 
anthropogenic emissions from the additional three urban sites. To further establish the 
equivalence between the two models, residuals and their distributions are compared in Figure 
S1-2, in which FT-IR residuals are compared to the reproducibility of TOR measurements 
obtained from collocated quartz filter sampling. Noticeably, the interquartile range associated 
with FT-IR OC and EC residuals for both Global 2011 and 2015 models is consistent with the 
variability in collocated TOR. More detailed examinations show positive residuals for low 
predicted concentrations and random residuals less than TOR uncertainty for moderate to 
high concentrations (below). The combination of these metrics supports the conclusion that 
generalizing the calibration to the entire network has a negligible impact on prediction 
accuracy, as long as the calibration contains a sufficient collection of samples representative 
of the aerosol composition. 
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Figure S1-2 – Bias (top) and error (bottom) for OC (left) and EC (right) for Global model 
(Dillner et al., 2015 a, b), Global model with all sites in 2015 and collocated TOR. To enhance 

visualization, samples extending outside ± 1.5 times the interquartile range are not 
displayed. TC 2015 residuals for FT-IR and Collocated TOR are similar to OC.  

 

 

  



5 
 

Section S2: TOR EC outlier screening 

 

Figure S2-1 – Establishment of the |BC-EC| threshold for the identification of EC outlier samples from 
the year 2015. 

 

 

 

Figure S2-2 – Comparison of HIPS BC and TOR EC concentrations from 2015 samples. The red markers 
indicate the 33 samples with |BC-EC| > 0.68 µg/m3 significantly deviating from linearity. 
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Figure S2-3 – a) FT-IR EC using the Global model and b) BC predicted concentrations based on the set 
of 33 sample with |BC-EC| > 0.68 µg/m3 for the year 2015. Although the set of spectra c) is the same 

for both models, a calibration based on TOR EC values yield poorly predicted concentrations 
compared to a HIPS BC calibration. FT-IR EC predictions are characterized by an R2 of 0.459 and a 

relative bias and error of 1.6 % and 23.7 %, respectively.  However, FT-IR BC predictions feature a R2 
of nearly one, a relative bias of 0.03 % and a relative error of 0.2 %.     
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Section S3: FT-IR based detection of biomass burning samples  

Prior to quantifying the area under hydroxyl, aliphatic and carbonyl functional groups, all 
characteristic of biomass burning emissions (Popovicheva et al., 2020; Takahama et al., 2011), effects 
of baseline and offset fluctuations from sample to sample were eliminated. For this purpose, spectral 
regions featuring hydroxyl – aliphatic (3545 – 2400 cm-1) and carbonyl (1820 – 1530 cm-1) signatures 
are baselined separately using an adaptive iteratively reweighted penalized least squares procedure 
(Eilers, 2003). The area under each baselined spectrum is then integrated in the 1820 – 1660 cm-1 
and the 3445 – 2400 cm-1 windows. Due to the significant overlap between hydroxyl and aliphatic IR 
bands (Figure S3-1), an additional baselining step is required to differentiate the areas of the two 
functional groups. A linear interpolation between 2990 and 2725 cm-1, corresponding to the edges of 
the aliphatic peaks, is performed before subtracting the fitted line within the same interval and 
compute the area under the resulting curve. The area of the hydroxyl group is adjusted accordingly 
by subtracting the aliphatic area. Finally, the area of each functional group relative to the cumulative 
hydroxyl – aliphatic – carbonyl area is computed. 

 

Figure S3-1 – Integrated areas retained for hydroxyl, aliphatic and carbonyl functional groups. Areas 
are computed following an adaptive iteratively reweighted penalized least squares baselining 

procedure. The sample associated with the above baselined spectrum was collected at the Barrier 
Lake site (Canada) on August 28th 2015. 

Baselined spectra in the hydroxyl – aliphatic and carbonyl regions were subjected to principal 
component analysis (Wold et al., 1987) and their respective set of scores was used to compute the 
squared Mahalanobis distance (𝐷𝐷𝑖𝑖2 ) per sample for both spectral windows. By performing this 
procedure for each site individually, 𝐷𝐷𝑖𝑖2 gives us an indication of how similar or dissimilar spectra are 
compared to the mean spectrum.  
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Figure S3-2 – Top plots show squared Mahalanobis distance vs % CH (left) and % C=O (right) for one 
year of PTFE filters collected at the Fort Peck Indian Reservation (MT) site in 2015. Samples that meet 
both dissimilarity and FG area criteria are circled in red. Using the same color code, the bottom plots 

show the corresponding FT-IR spectrum associated with each sample.  

The figures below (Figure S3-3 through S3-5) provide information about the samples that were 
selected as biomass burning for each sample year.  The high carbon content, OC/EC ratio, location, 
season and spectra all confirm that the selected spectra are likely contain biomass burning aerosol. 
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Figure S3-3 – a) Distribution in carbon concentrations and OC/EC ratios for the 492 samples classified 
as biomass burning in 2015, b) their corresponding spatial and seasonal distribution and c) associated 

baselined spectra in the hydroxyl – aliphatic (left) and carbonyl (right) functional group regions.  
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Figure S3-4 – a) Distribution in carbon concentrations and OC/EC ratios for the 288 samples classified 
as biomass burning in 2016, b) their corresponding spatial and seasonal distribution and c) associated 

baselined spectra in the hydroxyl – aliphatic (left) and carbonyl (right) functional group regions.  

 



11 
 

 

Figure S3-5 – a) Distribution in carbon concentrations and OC/EC ratios for the 817 samples classified 
as biomass burning in 2017, b) their corresponding spatial and seasonal distribution and c) associated 

baselined spectra in the hydroxyl – aliphatic (left) and carbonyl (right) functional group regions.  
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Section S4: Gaussian Mixture Model (GMM) and Cluster Interpretation 

GMM Methodology 

A GMM was developed to cluster FT-IR spectra based on PM2.5 composition. A GMM assumes an FT-IR 
spectrum’s probability density function may be approximated as a weighted sum of multivariate 
normal distributions (Bilmes, J. A., 1998; Hastie, T et al., 2009). Specifically, an individual spectrum (𝒙𝒙𝑖𝑖) 
is assigned to the Gaussian-cluster (𝑗𝑗) that maximizes the following conditional distribution 

𝑝𝑝(𝑗𝑗|𝒙𝒙𝑖𝑖,𝝁𝝁�𝑗𝑗 ,𝛴𝛴�𝑗𝑗) = 𝜋𝜋�𝑗𝑗𝑁𝑁�𝒙𝒙𝑖𝑖|𝝁𝝁�𝑗𝑗,𝛴𝛴�𝑗𝑗�
∑ 𝜋𝜋�𝑘𝑘𝑁𝑁(𝒙𝒙𝑖𝑖|𝝁𝝁�𝑘𝑘,𝛴𝛴�𝑘𝑘)𝐾𝐾
𝑘𝑘=1

               (1) 

where 𝑝𝑝(𝑗𝑗|𝒙𝒙𝑖𝑖 ,𝝁𝝁�𝑗𝑗,𝛴𝛴�𝑗𝑗)  is the conditional probability that spectrum i belongs to cluster j, 𝜋𝜋𝑘𝑘  is the 
mixture component (or weight) associated with the kth Gaussian (∑𝜋𝜋𝑘𝑘 = 1), and 𝑁𝑁(𝒙𝒙|𝝁𝝁𝑘𝑘 ,𝛴𝛴𝑘𝑘) the kth 
Gaussian distribution with mean 𝝁𝝁𝑘𝑘 and variance-covariance matrix 𝛴𝛴𝑘𝑘.  

To minimize the number of parameters estimated during GMM fitting, dimensionality reduction the 
FT-IR spectra was performed. First, raw spectra were transformed to second derivative spectra using 
a 2nd order, 21 point, Savitzky-Golay filter (Savitzky and Golay, 1964) and differenced with filter blank 
spectra. Each blank-corrected spectrum was divided by its Euclidean norm to minimize the effect of 
total aerosol mass concentration and emphasize aerosol composition (Bro and Smilde, 2003).  The 
following ranges in the FT-IR spectra were included as they contain the predominant organic, inorganic, 
and mineral aerosol absorption bands: 3500 – 2650 cm-1, 1800 – 1350 cm-1, and 1050 – 800 cm-1 (Allen 
et al., 1994). Finally, a principal component analysis (PCA) was applied to the spectra with the  optimal 
number of components estimated using five-fold cross validation (Abdi and Williams, 2010). Nine 
principal components were retained for analysis with the principal component scores used as inputs 
to the GMM. 

The number of Gaussians (clusters) 𝐾𝐾 was determined empirically as follows. First, 𝐾𝐾 is set equal to 
one and the Expectation-Maximization (EM) algorithm is initialized with random parameter values 
(Dempster et al., 1977; Fraley and Raftery, 2002). Next, parameters are estimated using the EM 
algorithm and log-likelihoods recorded. GMM fitting is repeated 100 times for distinct randomizations 
to prevent the EM algorithm from converging to local maxima. The preceding steps are repeated for 2 
through 40 Gaussians yielding a total of 4000 models. The optimum GMM model is selected according 
to a minimizing Bayesian Information Criterion (Schwarz, 1978). For the 2015 dataset, the optimal 
number of clusters is met for K = 21. 
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GMM dossiers for cluster interpretation 
 
The prototypical spectra associated with each of the 21 GMM clusters were first evaluated by 
considering the dominant absorption bands in Field Blank Corrected (FBC) spectra. As the 
interpretation of derivative spectra is difficult for the infrared spectra of filter-bound PM, summary 
measures associated with each cluster were calculated from trace elements and ions, geographical 
dispersion plotted and assessed, and seasonal information aggregated to provide a complete picture 
of the aerosol selected by the GMM. This information was collected together into “dossiers” for each 
of the 21 clusters. To only extract the main composition related information required for cluster 
interpretation, a restricted number of tracers is considered (n = 15). Titles were given by the authors 
to reflect their judgment as to overall sources attributable (on average) to a given cluster. The first 
dossier is explained in detail in the figure caption below. Others are considered self-explanatory given 
a perusal of the dossier subplots and title. 
 

 

Figure S4-1a – GMM dossier associated with cluster no1. 

Description: 

• The title, i.e., “Rockies & AK (winter dom.) 1 FBC spectra (N*,NFB,Nall=1550,0,1632)” relays the 
interpretation of the cluster,  any seasonal information, and spectra preprocessing. The title 
also indicates in brackets the number of IMPROVE spectra above the conditional probability 
criterion (N*; p*=0.5), the number of field blanks in the cluster (NFB), and the total number of 
spectra cluster by the GMM (Nall). In this cluster, most spectra (1550/1632) are considered to 
have “prototypical” composition.  

• Panel A shows the median, 5th and 95th percentile FBC spectra.  

• Panel B summarizes the distribution of nitrate, sulfate, OC, and EC in these samples, 
normalized to total PM2.5 (Ck

*). Blue dots connected by dashed lines show median normalized 
concentrations for the entire IMPROVE network. Minimum detection limits (MDLs) for each 
aerosol species were downloaded from the FED database on November 21, 2018. Measured 
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concentrations falling below the MDL were imputed as the MDL/2 in order to generate 
meaningful boxplots and subsequent pie charts. 

• Panel C follows similar scaling rules for trace elements associated with traffic emissions (Cu, 
Zn), biomass burning and soil (K, Al, Si, Ca), marine aerosol (Na, Cl-), shipping (V), and coal 
combustion (Se, S). 

• Panel D shows the geographic distribution of samples per site in cluster no1. The figure is false 
colored according to the concentration of samples in a site. Here, samples are clustered 
primarily in the Rocky Mountains and Alaska. 

• Panel E presents a pie chart ranking each site according to the number of samples that fell into 
this cluster. Samples must have fallen above the p*= 0.5 criterion level implying that they 
should best exemplify (on average) the sources attributable to this cluster. In the interest of 
space and readability, on the sites containing approximately 20% of the data (0.2*1550) were 
plotted. Here, we see that the top 3 sites were all located in Wyoming with 38, 33, and 32 
while the other two are located in Colorado (31) and California (30). 

• Panel F shows that samples in this cluster were typically collected in late fall to early spring 
(~75%). About half of all samples were collected in the winter (Nov, Dec, Jan).  

• Panel G shows the location of the cluster on the first two principal component scores derived 
from normalized FBC spectra (t1

FBC, t2
FBC). Note that this only represents the first (dominant) 

two-dimensional principal subspace as nine components were used for GMM clustering. 

 

Figure S4-1b – Auxiliary GMM dossier associated with cluster no1. Here, baseline corrected absorption 
spectra (A), expanded map (B) and tracer information are plotted (C, D). 

 

 

 

 



15 
 

Cluster no2: 

 

 

Figure S4-2a – GMM dossier associated with cluster no2. 

 

 

 

Figure S4-2b – Auxiliary GMM dossier associated with cluster no2.  
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Cluster no3: 

 

 

Figure S4-3a – GMM dossier associated with cluster no3. 

 

 

 

Figure S4-3b – Auxiliary GMM dossier associated with cluster no3.  
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Cluster no4: 

 

 

Figure S4-4a – GMM dossier associated with cluster no4. 

 

 

 

Figure S4-4b – Auxiliary GMM dossier associated with cluster no4.  
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Cluster no5: 

 

 

Figure S4-5a – GMM dossier associated with cluster no5. 

 

 

 

Figure S4-5b – Auxiliary GMM dossier associated with cluster no5.  
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Cluster no6: 

 

 

Figure S4-6a – GMM dossier associated with cluster no6. 

 

 

 

Figure S4-6b – Auxiliary GMM dossier associated with cluster no6.  
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Cluster no7: 

 

 

Figure S4-7a – GMM dossier associated with cluster no7. 

 

 

 

Figure S4-7b – Auxiliary GMM dossier associated with cluster no7.  
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Cluster no8: 

 

 

Figure S4-8a – GMM dossier associated with cluster no8. 

 

 

 

Figure S4-8b – Auxiliary GMM dossier associated with cluster no8.  
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Cluster no9: 

 

 

Figure S4-9a – GMM dossier associated with cluster no9. 

 

 

 

Figure S4-9b – Auxiliary GMM dossier associated with cluster no9.  
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Cluster no10: 

 

 

Figure S4-10a – GMM dossier associated with cluster no10. 

 

 

 

Figure S4-10b – Auxiliary GMM dossier associated with cluster no10.  
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Cluster no11: 

 

 

Figure S4-11a – GMM dossier associated with cluster no11. 

 

 

 

Figure S4-11b – Auxiliary GMM dossier associated with cluster no11.  
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Cluster no12: 

 

 

Figure S4-12a – GMM dossier associated with cluster no12. 

 

 

 

Figure S4-12b – Auxiliary GMM dossier associated with cluster no12. 
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Cluster no13: 

 

 

Figure S4-13a – GMM dossier associated with cluster no13. 

 

 

 

Figure S4-13b – Auxiliary GMM dossier associated with cluster no13. 
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Cluster no14: 

 

 

Figure S4-14a – GMM dossier associated with cluster no14. 

 

 

 

Figure S4-14b – Auxiliary GMM dossier associated with cluster no14. 
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Cluster no15: 

 

 

Figure S4-15a – GMM dossier associated with cluster no15. 

 

 

 

Figure S4-15b – Auxiliary GMM dossier associated with cluster no15. 

  



29 
 

Cluster no16: 

 

 

Figure S4-16a – GMM dossier associated with cluster no16. 

 

 

 

Figure S4-16b – Auxiliary GMM dossier associated with cluster no16. 
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Cluster no17: 

 

 

Figure S4-17a – GMM dossier associated with cluster no17. 

 

 

 

Figure S4-17b – Auxiliary GMM dossier associated with cluster no17. 
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Cluster no18: 

 

 

Figure S4-18a – GMM dossier associated with cluster no18. 

 

 

 

Figure S4-18b – Auxiliary GMM dossier associated with cluster no18. 
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Cluster no19: 

 

 

Figure S4-19a – GMM dossier associated with cluster no19. 

 

 

 

Figure S4-19b – Auxiliary GMM dossier associated with cluster no19. 
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Cluster no20: 

 

 

Figure S4-20a – GMM dossier associated with cluster no20. 

 

 

 

Figure S4-20b – Auxiliary GMM dossier associated with cluster no20. 
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Cluster no21: 

 

 

Figure S4-21a – GMM dossier associated with cluster no21. 

 

 

 

Figure S4-21b – Auxiliary GMM dossier associated with cluster no21. 
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Section S5: Biomass Burning - Calibration design 

Due to the broad variability in the raw spectral response, the Biomass Burning model is sensitive to 
baseline fluctuations and offsets. In practice, samples whose spectral class is underrepresented in the 
calibration are not well accounted for by the model and tend to yield unsatisfactory predicted 
concentrations. To prevent such an issue and ensure a homogeneous representation of all spectral 
shapes and patterns in the calibration, the following procedure has been implemented. First, biomass 
burning spectra are arranged in a matrix [X] containing on each row the raw spectrum of a given sample 
and on each column the corresponding spectral intensity at each wavenumber. Starting from [X], the 
Hat matrix is computed whose diagonal gives an estimate of sample leverage according to Eq. (1): 

 [H] = [X]([X]T [X])-1[X]T                 (1) 

In addition to sample leverage, providing an indication of extreme or most dissimilar spectra, the 
OC/EC ratio is also considered to ensure a representative distribution of carbonaceous aerosol 
concentrations is taken into account as part of the sample selection procedure. By subjecting both 
quantities to the Kennard-Stone algorithm (Kennard and Stone, 1969), a uniform subset of biomass 
burning samples balancing spectral pattern and aerosol composition can be identified. The sample size 
to be retained for calibration is set to two-third of the total number of biomass burning samples. This 
procedure is repeated for each sampling year. Figure S5-1 shows the data partitioning achieved for the 
year 2015. 

 

Figure S5-1 – Kennard-Stone partitioning for the selection of biomass burning samples to be retained 
for calibration from the year 2015. To enhance visualization, results are shown in logarithmic scale. 

The uniform spread of calibration samples across the Leverage – OC/EC subspace suggests the 
retained samples are suitable for developing a robust Biomass Burning model. 
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Section S6: Gaussian Mixture Model & site selection  

Using the minimum Bayesian Information Criterion (BIC), an optimum GMM solution with 21 clusters 
was retained among all attempted models. Out of the 21 clusters, 20 are characteristic of atmospheric 
aerosols while the remaining cluster (#18) is specific to field blank spectra. With the exception of 
cluster #18, uninformative in term of PM2.5 composition, a single site per cluster was selected to 
represent the variability in major aerosols constituents experienced throughout the year 2015. The 
decision regarding which site to retain is inferred from the sample probability to belong to a particular 
cluster and the number of occurrence of each site within that cluster. In practice, the site with the 
largest number of classified spectra that maximize the probability density function (PDF) is selected by 
default. Additional rules, as described in the paper, are also implemented to prevent situations where 
duplicate sites are selected. To have a better perspective of the spatial distribution of the 20 retained 
sites, all locations have been marked on the map shown in Figure S6-1.  

 

Figure S6-1 – Spatial coverage of the 20 sites representative of PM2.5 composition retained following 
the GMM analysis and the one additional site added to represent cluster #2. Cluster #18 was 

discarded as it contains only field blanks spectra.  

In Figure S6-1, the spatial distribution of the 20 sites presents a reasonable balance between eastern 
and western locations and covers both continental and overseas regions within the network. 
Noticeably, no representative site have been identified in the Midwest where characteristic PM2.5 
sources related with agricultural activities (resuspended road dust, fuel combustion) have been 
previously reported (Kundu and Stone, 2014). Initially, the absence of Midwest sites is considered 
surprising as cluster #2 was found to contain a large collection of sites in this region with high sample 
occurrence and probability (Figure S7-2a). A closer inspection at cluster #2 reveals a broad distribution 
of sites encompassing multiple states, including Alabama where Birmingham was selected as the most 
representative site with 27 classified spectra. Due to the large spread of this cluster, decision was made 
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to extract a second site to enhance the spatial coverage in the Midwest. Based on the GMM dossier 
(Figure S7-2a), the Tallgrass Prairie National Preserve site (KS) with 22 classified spectra is an adequate 
choice. With this new addition, 21 sites will now be considered to develop the Limited model, which 
corresponds to about 13 % of the network capacity. A brief description of the retained sites is available 
in Table S6.   Figure S6-3 shows the seasonal distribution of the each cluster.   Figure S6-4 shows the 
distribution of species in the selected sites compared to the rest of the network indicating that the 
selected sites reasonably approximate the range of concentrations of species in the network. 

Table S6 – Summary of the GMM clusters and their 21 most representative sites retained for Limited 
modeling. The second column indicates the number of classified spectra (p > 0.5) from each selected 
site. No site has been drawn from the uninformative cluster #18 featuring field blank spectra only. 

Cluster # # of 
samples 
in cluster 

Site name Site code State Type 

1 31 Shamrock Mines SHMI1 CO Rural 
2 27 Birmingham BIRM1 AL Urban 
2 22 Tallgrass Prairie TALL1 KS Rural 
3 52 Point Reyes PORE1 CA Rural 
4 29 Wind Cave WICA1 SD Rural 
5 33 Bondville BOND1 IL Rural 
6 30 Kalmiopsis KALM1 OR Rural 
7 26 Meadview MEAD1 AZ Rural 
8 28 Medicine Lake MELA1 MT Rural 
9 58 Virgin Islands VIIS1 VI Rural 

10 41 Fresno FRES1 CA Urban 
11 44 Dolly Sods DOSO1 WV Rural 
12 67 Hawaii Volcanoes HAVO1 HI Rural 
13 33 Egbert (Canada) EGBE1 ON Rural 
14 36 Dome Land DOME1 CA Rural 
15 18 Great Basin GRBA1 NV Rural 
16 23 Voyageurs VOYA2 MN Rural 
17 36 Chassahowitzka CHAS1 FL Rural 
19 27 Three Sisters THSI1 OR Rural 
20 11 Flathead FLAT1 MT Rural 
21 20 Phoenix PHOE1 AZ Urban 
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Figure S6-2 – Seasonal distribution of the classified spectra (p > 0.5) from each representative site and 
for each GMM cluster.   

 

Figure S6-3  Distributions of mass, ions, elements and HIPS BC for the sites used in the limited model 
compared to the rest of the sites. 
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Section S7: Biomass Burning model performance 

Table S7-1 – Inter-model performance comparison between Global and Biomass Burning predicted 
concentrations for the 492 samples classified as biomass burning in 2015. Values confirm Biomass 

Burning modeling is not necessary required for OC and TC but brings substantial improvement for EC. 
In the absence of field blank samples, MDL is not reported.  

  Model R2 Bias 
(µg/m3) 

Bias 
(%) 

Error 
(µg/m3) 

Error 
(%) 

MDL 
(µg/m3) 

< MDL 
(%) 

OC 
Global  0.973 0.05 1.2 0.32 6.1 - - 

Biomass 
Burning 0.984 0.02 0.7 0.33 6.2 - - 

EC 
Global  0.747 0.01 2.6 0.07 15 - - 

Biomass 
Burning 0.902 0.01 2.2 0.07 13 - - 

TC 
Global  0.978 0.10 2.1 0.30 5.6 - - 

Biomass 
Burning 0.984 0.05 0.9 0.35 6.2 - - 
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Section S8: Bias in least-squares regression.  

The factors that influence FT-IR method accuracy are readily assessed by plotting residual-
error against any independent variable of interest (e.g., sampling date). Here we define 
residual-error as the difference between the FT-IR prediction (𝑦𝑦�𝑖𝑖) and reference measure (𝑦𝑦𝑖𝑖) 
or 

 𝑒̂𝑒𝑖𝑖 = 𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖.          [1] 

Takahama et al., 2019 illustrates such a procedure for several sites in the IMPROVE network 
where OC residual-errors are plotted against sampling date (t) following a transformation of 
the errors to standard normal covariates. These figures allow one to ascertain short- and long-
run fluctuations in OC predictions, with the former corresponding to random error and later 
(perhaps) to time-dependent biases. Method error may also be assessed by plotting residual 
errors against prediction (𝑦𝑦�𝑖𝑖) to gain insight into method bias as a function of sample mass 
loading. Residual-error and reference measurements (𝑦𝑦𝑖𝑖 ) are not independent for least-
squares estimators (Besalú et al., 2006; Draper and Smith, 1998, pp. 63-64,173,638). This well-
understood, but often overlooked, aspect of least-squares estimators has the consequence of 
introducing an apparent linear bias into residual plots dependent on the strength of 
correlation (R2) between the predictor variables (i.e., infrared absorption) and dependent 
variable (e.g., TOR OC). In fact, for our definition of residual error in [1] the apparent trend will 
have a negative slope with magnitude of (1 − 𝑅𝑅2) and intercept (1 − 𝑅𝑅2)𝑦𝑦�. Therefore, our 
biases are evaluated against the predicted concentrations below (Figure S8-1 and S8-2) to 
assess biases that are not introduced by the least squares estimation method. 

 

 

Figure S8-1 – Median bias of Global and Multilevel models for FT-IR OC concentrations bins. Each bin 
contains 2.5% of the data. Values on the top x-axis correspond to the bounds of the concentration per 
bin. While the Multilevel model leads to a significant drop in bias at concentrations below 0.35 µg/m3, 
a moderate increase for samples predicted above 1.54 µg/m3 is also observed.  The magnitude of the 
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reported Multilevel bias is comparable with TOR uncertainty boundaries at low levels and above at 
high concentrations except for the highest bin.   TC performs similar to OC. 

 

Figure S8-2 – Median bias of Global and Multilevel models for FT-IR EC concentrations bins. Each bin 
contains 2.5% of the data. Values on the top x-axis correspond to the bounds of the concentration per 
bin. While the Multilevel model leads to a significant drop in bias at concentrations for the lower 40th 

percentile, a moderate increase for samples predicted above 90th percentile. In either cases, the 
magnitude of the reported Multilevel bias is comparable with TOR uncertainty boundaries.  

Section S9: Multilevel models for non-carbonaceous IR active atmospheric species in 2015 samples 

To assess the absorption bands most strongly associated with prediction of each species, the Variable 
Importance in Project (VIP) scores from the PLS models are examined. This metric characterizes the 
direction vector of the PLS model weighted by the explained sum-of-squares, with higher values 
indicating variables (wavenumbers) important for explaining the variation in the target variable 
(analyte) (Wold et al., 1983). In principle, the average value of this metric should be one, so values 
greater than one indicate noteworthy variables. However, the actual threshold varies by the number 
of variables and signal strength (Chong and Jun, 2005). The interpretation must further consider that 
the PLS model does not necessarily need to use all absorbance bands from a substance for 
quantification, and absorption bands of interferents used by the model can also have high VIP scores. 
In our application, the PTFE absorption bands often exhibit high VIP values presumably because 
these bands are required by the model for correction of the absorption and scattering by the filter 
media (Takahama et al., 2016). Examination of VIP scores has the potential to elucidate the major 
forms (including specific polymorphs) of mineral oxides associated with each element by identifying 
the most important absorption bands used for prediction; alternatively, insight into elements that 
are predicted through its correlation with (combination of) other IR-active substances can 
presumably be garnered with this approach. While an exhaustive treatment is beyond the scope of 
this paper and should be the topic of another dedicated study, we include a cursory examination 
below. 
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According to the VIP score analysis, the SO4 model appears to place importance S-O stretch between 
1130-1080 cm-1 and SO4 deformation between 670-580 cm-1 (Mayo, 2004), whereas the NO3 model 
appears to place importance on the N-O stretch at 1410-1340 cm-1 (Mayo, 2004) (Figure S9-1a). N-H 
stretch of ammonia near 3200 cm-1 also appears to be relevant for the SO4 model.  IR spectra of 
oxides of Si and Al have distinct, identifiable features – for instance, silica exhibits peak near 1100 cm-

1 and 500 cm-1 due to Si-O stretching and bending, respectively; aluminum oxide exhibits a broad 
peak near 600 comprised of various Al-O vibrational modes (e.g., (Barker, 1963; Farmer, 1968; 
Kieffer, 1979; Saniger, 1995) (Mayo, 2004).  However, the Si and Al PLS models  appear to be using 
the same features as the VIP scores are nearly identical. The region near 600 cm-1 exhibits a relatively 
high VIP score in both models; the importance of the Si-O stretch is unclear as the PTFE absorbance is 
strong there also, and this band is used by models for other metals. We note however that the 
predictions are not identical as the regression coefficients differ (in part due to the difference in 
number of latent variables used by each PLS model). Spectra of TiO2 (e.g., rutile and anatase) have 
absorption between 900-700 and below 600 cm-1 (with the band near 500 cm-1 providing strongest 
discrimination among polymorphs) (Busani and Devine, 2005)(Mayo, 2004), but the VIP score profile 
of the Ti  model is similar to that of Si and Al. However, its features are weighted differently (based 
on the magnitude of the VIP scores) than Si and Al models and some differences can be observed 
near 500 cm-1 (Figure S9-1b). VIP scores of Si and Fe also differ near 500 cm-1 but also near 829 cm-1; 
yellow ferric oxide (Fe2O3∙H2O) and goethite (FeOOH) (Figure S9-1c) is reported to have absorbances 
in this region due to Fe-O bonds (e.g., (Weckler and Lutz, 1998; Namduri and Nasrazadani, 2008; 
Margenot et al., 2017) (Mayo, 2004). The VIP score profile for the Ca model is strikingly different and 
suggests that C-O (from carbonate) and Ca-O absorption bands near 1450 and 875 cm-1 are used for 
prediction (Figure S9-1d) (e.g., (Tsyganenko and Filimonov, 1973)Ramdas 1953, Gunasekaran et al. 
2006, Galvan-Ruiz et al., 2009). The VIP scores for the Ti, Fe, and Ca models all exhibit a sharp peak 
near 3615 cm-1, which is likely related to surface hydroxyl groups of oxide species (e.g., (Tsyganenko 
and Filimonov, 1973). 

a) 

 
b) 
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c) 

 
d) 

 
Figure S9-1. Variable Importance in Projection (VIP) scores for PLS models from 2015. VIP scores 
for Si model is shown in all plots to establish basis for comparison.  

 

Figure S9-2 shows the cross plot for all predicted species in 2015 and Figure S9-3 shows the residuals 
for FTIR compared to collocated data for most predicted species in 2015.  Unlike any other crustal 
elements, titanium concentrations presents a curious pattern. In addition to the expected sample 
distribution (grey markers), where most samples scatter around the 1:1 line, some data points are 
characterized by a large negative bias (purple markers) but nearly fall on a straight line. Since those 
samples all originate from the Sycamore Canyon (AZ) site, unique sources of titanium are likely the 
reason behind the observed discrepancy. Because the same pattern has been identified in all 
subsequent years (Section S10), the hypothesis of a specific soil and dust composition in the area is 
strongly favored. Likely, the specificities of local crustal composition are not well accounted for in the 
Multilevel model and as such a specific titanium model might be required at this location.  
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Figure S9-2 – Multilevel FT-IR concentrations for all predicted atmospheric species regressed against 
their reference measurement. Each subplot contains 19,608 data points from the year 2015.  
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Figure S9-3 – Comparison between collocated samples (orange)  and Multilevel (green) residuals for 
various atmospheric species evaluated from samples collected in 2015. Residuals are reported in 
µg/m3. For the sake of clarity, samples with residuals exceeding 1.5 times the interquartile range 

away from the top or bottom whiskers are not shown. 
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Section S10: Maps of FT-IR concentrations, Reference Method concentration and prediction 
metrics for 2015 

 

Figure S10-1 Maps of FT-IR OC concentrations, TOR OC concentrations and prediction metrics. 
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Figure S10-2 Maps of FT-IR EC concentrations, TOR EC concentrations and prediction metrics. 
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Figure S10-3 Maps of FT-IR TC concentrations, TOR TC concentrations and prediction metrics. 
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Figure S10-4 Maps of FT-IR BC concentrations, HIPS BC concentrations and prediction metrics.  HIPS 
BC is not a reported value in IMPROVE so there is no reported normalized error or MDL.  Therefore, 

normalized error plot does not indicate the HIPS normalized error and the difference in % below MDL 
is not included. 
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Figure S10-5 Maps of FT-IR Si concentrations, XRF Si concentrations and prediction metrics. 
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Figure S10-6 Maps of FT-IR Al concentrations, XRF Al concentrations and prediction metrics. 
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Figure S10-7 Maps of FT-IR Ca concentrations, XRF Ca concentrations and prediction metrics. 
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Figure S10-8 Maps of FT-IR Ti concentrations, XRF Ti concentrations and prediction metrics. 
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Figure S10-9 Maps of FT-IR Fe concentrations, XRF Fe concentrations and prediction metrics. 
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Figure S10-10 Maps of FT-IR SO4 concentrations, IC SO4 concentrations and prediction metrics. 
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Figure S10-11 Maps of FT-IR NO3 concentrations, IC NO3 concentrations and prediction metrics. 
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Figure S10-12 Maps of FT-IR PM2.5 concentrations, gravimetric PM2.5 concentrations and prediction 
metrics. 
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Section S11: Multilevel models calibrations – Long-term stability assessment (2016 – 2017) 

 

Figure S11-1 – Multilevel FT-IR concentrations for all predicted atmospheric species regressed against 
their reference measurement. Each subplot contains 19,849 data points from the year 2016.  
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Figure S11-2 – Multilevel FT-IR concentrations for all predicted atmospheric species regressed against 
their reference measurement. Each subplot contains 22,005 data points from the year 2017. 
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Table S11-1– Combined set of Multilevel model performance covering the 2016 sampling 
period for several IR-active atmospheric constituents. All 19,849 spectra analyzed by FT-IR 
during that interval, including duplicate and replicate measurements, were considered for 

model evaluation. 

Species R2 Bias 
[μg/m3] 

Bias         
(%) 

Error 
[μg/m3] 

Error         
(%) 

MDL 
[μg/m3] 

< MDL 
(%) 

OC 0.974 0.01 0.7 0.08 14.9 0.05 1 
EC 0.905 0 5.2 0.02 31.4 0.04 22.7 
TC 0.978 0.01 0.7 0.09 14.3 0.06 1.2 
BC 0.906 0 -4.7 0.03 27.1 0.04 23 
Si 0.986 0 0.1 0 9.3 0.01 18.5 
Al 0.983 0 0.6 0 11.8 0 13.3 
Ca 0.975 0 0.5 0 11.5 0 12.2 
Ti 0.901 0 0.7 0 21.5 0 19.7 
Fe 0.814 0 0.5 0 27 0.01 21.8 

SO4 0.984 0 0.8 0.02 5.5 0.03 0.4 

NO3 0.9 0.02 12.8 0.07 53.8 0.07 25.8 

PM2.5  

Mass 0.986 0.03 1.2 0.16 6.4 0.23 0.9 

 

Table S11-2– Combined set of Multilevel model performance covering the 2017 sampling 
period for several IR-active atmospheric constituents. All 22,005 spectra analyzed by FT-IR 
during that interval, including duplicate and replicate measurements, were considered for 

model evaluation. 

Species R2 Bias 
[μg/m3] 

Bias         
(%) 

Error 
[μg/m3] 

Error         
(%) 

MDL 
[μg/m3] 

< MDL 
(%) 

OC 0.987 0.01 1.5 0.08 11.9 0.07 1.3 
EC 0.913 0 1.1 0.02 25.5 0.02 10.8 
TC 0.988 0.02 1.7 0.09 11.5 0.08 1.2 
BC 0.922 0 -0.2 0.02 19.5 0.03 11.5 
Si 0.993 0 0.9 0 9.7 0.01 11.5 
Al 0.982 0 0.7 0 12.6 0 11.2 
Ca 0.974 0 2.6 0 14.3 0 8.7 
Ti 0.879 0 0.4 0 22.5 0 19.1 
Fe 0.905 0 2.6 0 26.8 0 15.4 

SO4 0.979 0 0.3 0.03 6.4 0.03 1 

NO3 0.906 0.02 14.4 0.07 49.1 0.06 17.5 

PM2.5  

Mass 0.989 0 0 0.17 6.1 0.18 0.6 
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