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Abstract. To enable chemical speciation, monitoring net-
works collect particulate matter (PM) on different filter me-
dia, each subjected to one or more analytical techniques
to quantify PM composition present in the atmosphere. In
this work, we propose an alternate approach that uses one
filter type (teflon or polytetrafluoroethylene, PTFE, com-
monly used for aerosol sampling) and one analytical method,
Fourier transform infrared (FT-IR) spectroscopy to measure
almost all of the major constituents in the aerosol. In the pro-
posed method, measurements using the typical multi-filter,
multi-analytical techniques are retained at a limited number
of sites and used as calibration standards. At all remaining
sites, only sampling on PTFE and analysis by FT-IR is per-
formed. This method takes advantage of the sensitivity of
the mid-IR domain to various organic and inorganic func-
tional groups and offers a fast and inexpensive way of ex-
ploring sample composition. As a proof of concept, multiple
years of samples collected within the Interagency Monitor-
ing of PROtected Visual Environment network (IMPROVE)
are explored with the aim of retaining high quality predic-
tions for a broad range of atmospheric compounds including
mass, organic (OC), elemental (EC), and total (TC) carbon,

sulfate, nitrate, and crustal elements. Findings suggest that
models based on only 21 sites, covering spatial and seasonal
trends in atmospheric composition, are stable over a 3 year
period within the IMPROVE network with acceptable pre-
diction accuracy (R2> 0.9, median bias less than 3 %) for
most constituents. The major limitation is measuring nitrate
as it is known to volatilize off of PTFE filters. Incorporating
additional sites at low cost, partially replacing existing, more
time- and cost-intensive techniques, or using the FT-IR data
for quality control or substitute for missing data, are among
the potential benefits of the one-filter, one-method approach.

1 Introduction

In the United States, filter-based chemical speciation of am-
bient aerosols has been in operation for decades to quan-
tify trends, assess transport and atmospheric transforma-
tion, identify sources of air pollution, evaluate impacts of
pollution regulations, assess impacts on visibility, radiative
forcing, human and ecosystem health, and evaluate atmo-
spheric and climatological models. The two federally funded
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speciation networks, the Interagency Monitoring of PRO-
tected Visual Environments (IMPROVE) and the Chemical
Speciation Network (CSN) collect 24 h filter samples us-
ing three filter media: polytetrafluoroethylene (PTFE) for
analysis by gravimetry, X-ray fluorescence (XRF) and hy-
brid integrating plate and sphere (HIPS), quartz for thermal
optical reflectance (TOR), and nylon for ion chromatogra-
phy. Over the decades of operation, the analytical methods
have evolved with efforts to maintain consistency in trends
while also adopting improved methodology and retiring ob-
solete equipment. Impacts of many of these changes have
been addressed in the literature (Hyslop et al., 2015, 2012;
White et al., 2016; Zhang et al., 2021; Chow et al., 2007,
2015) and in data advisories posted on the IMPROVE web-
site (http://vista.cira.colostate.edu/Improve/data-advisories/,
last access: 31 July 2021).

In this paper, we explore the use of Fourier transform-
infrared spectroscopy (FT-IR) to reproduce most of the exist-
ing speciation data based on the optical activity of the com-
ponents in the mid-IR. The number and bands of organic
compounds are numerous, but generally group frequencies
can be found above 1500 cm−1 and compound-specific spec-
tral patterns (“fingerprint region”) below this frequency;
down to approximately 700 cm−1 (for example, Weakley et
al., 2016; Mayo et al., 2004). Graphitic carbon displays peaks
near 1600 cm−1 due to lattice defects (Tuinstra and Koenig,
1970; Friedel and Carlson, 1971), displacement vibrations
near 868 cm−1 (Nemanich et al., 1977), and a broad, slop-
ing absorbance between 4000 and 1500 cm−1 due to the
tail of the electronic transition more strongly observed in
the UV (Parks et al., 2021). Inorganic substances contain-
ing polyatomic ions such as sulfate, nitrate, and ammonium
have strong vibrational modes above 600 cm−1 (Mayo et al.,
2004). Crystalline and amorphous geological minerals in the
form of oxides (which include hydroxides and oxyhydrox-
ides) have distinct internal vibrational modes influenced by
the electronegativity of the metal to which the oxygen is
bonded (Busca and Resini, 2006; Chukanov and Chervonnyi,
2016; Margenot et al., 2017).

FT-IR spectra with partial least squares (PLS) calibrations
have been shown to reproduce OC and EC concentrations
using organic and graphitic carbon absorption bands, respec-
tively, at a limited number of sites in the IMPROVE network
(Dillner and Takahama, 2015a, b; Reggente et al., 2016),
CSN (Weakley et al., 2016, 2018a) and FRM network (Weak-
ley et al., 2018b). Takahama et al. (2019) reviewed these
findings and the overall framework to be used for the two
phases of such statistical calibrations: model building (sam-
ple selection, spectral preparation, model generation, model
selection, model evaluation, and model understanding) and
operation (error anticipation and model updating). Inorganic
ions and geological mineral absorption bands have been used
for chemical speciation of these substances using FT-IR in
prior studies (e.g., Cunningham et al., 1974; McClenny et

al., 1985; Pollard et al., 1990; Bogard et al., 1982; Foster and
Walker, 1984).

Organic absorption bands are useful for measuring OC
but also provide spectral information needed to add detailed
knowledge of composition not currently measured in air
quality monitoring networks – such as organic matter (OM)
and organic functional group composition – which is the sub-
ject of other work (Reggente et al., 2019; Boris et al., 2019,
2021; Bürki et al., 2020). Such calibrations, also combined
with factor analytic approaches, can provide source charac-
terization on par with more costly mass spectrometric tech-
niques (Boris et al., 2021; Yazdani et al., 2021a; Hawkins et
al., 2010; Takahama et al., 2011; Liu et al., 2012; Corrigan et
al., 2013).

Although FT-IR shows promise for measuring many con-
stituents in aerosol, it is not without its challenges. One lim-
itation is that not all PM constituents can be measured, or
measured with high sensitivity, from the FT-IR spectrum.
For instance, NaCl and MgCl2 do not have IR-active sub-
stituents. While a multitude of spectral signatures associ-
ated with mineral dust arise from their constituent bonds,
for example, the metal–oxygen bonds in oxides (the oxide
form is explicitly assumed in estimating dust mass concen-
trations from elemental composition for the IMPROVE net-
work), some must be predicted from correlation with other
constituents (e.g., some forms of iron) if IR-activity is lack-
ing. Other substances are IR-active but have weak responses,
such as graphitic carbon (Niyogi et al., 2006; Parks et al.,
2021). The absorption and scattering by the PTFE filter also
pose challenges for quantitative analysis. The PTFE-based
material changes over time due to change in manufacturer
or manufacturing process, and is difficult to fully character-
ize a priori or treat with simple blank subtraction techniques.
PTFE absorption limits full access to the range of spectro-
scopic information in the mid-IR, for instance in the region
of carbon–oxygen bonds that can lead to less than full recov-
ery of OM mass. Additionally, scattering leads to broadly
varying slope in the group frequency region. This scatter-
ing artifact is minimized by baselining (Kuzmiakova et al.,
2016) and using many standards that have a range of scat-
tering and absorption observed in the network (Debus et al.,
2019), yet these techniques can still lead to errors in quantifi-
cation. Weakley et al. (2018b) demonstrated that calibrations
built using one brand of filter can be accurately extended to
another brand of PTFE filter with numerically marginal but
statistically significant increase in method error (e.g., +2 %
error for α = 0.05). However, these studies are insufficient to
generalize findings to all types of sampling filters.

The goal of this work is to assess the capability of using
FT-IR to measure the aerosol chemical composition at all IM-
PROVE sites. FT-IR quickly and non-destructively collects
information-rich spectra from routinely collected PTFE filter
samples. Ambient samples from strategically selected IM-
PROVE sites are used for calibration and reasonably mimic
the composition, matrix effects and substrates of the un-
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knowns, all of which theoretically lead to accurate estima-
tions of concentrations. Using all samples from selected sites
reduces maintenance, shipping, processing, and coordinating
required to maintain intermittent quartz and nylon filter sam-
pling at every site. Sites are selected using data from 2015
and are used for calibrating samples from 2015–2017. Sam-
ples from all other (non-calibration) IMPROVE sites are pre-
dicted and compared to routine IMPROVE data to assess the
quality of prediction. Aerosol components to be measured in-
clude TC, OC, EC, inorganic ions, soil elements, particulate
mass, and light absorption.

2 Methods

2.1 Network data

IMPROVE samples collected every third day at all North
American sites (Sect. S1 in the Supplement) from January
2015 through December 2017 are included in this study. Fine
particulate matter (aerodynamic diameter less than 2.5 µm) is
deposited on 25 mm diameter filters polytetrafluoroethylene
(PTFE, Teflo, Pall Gelman) and quartz filters by sampling air
at a nominal flow rate of 22.8 L min−1 from midnight to mid-
night local time. Parallel 37 mm nylon filters are collected at
the same flow flow rate. PTFE filters are analyzed by multi-
ple instruments and archived for future analysis. Nylon filters
and a portion of each quartz filter undergoes destructive anal-
ysis and the remaining part of the quartz filters are retained
for archive.

Over the period covered in this study, two different TOR
instruments were employed to measure OC, EC, and TC.
Quartz filters sampled prior to 2016 were analyzed on a DRI
Model 2001 thermal optical carbon analyzers (Chow et al.,
1993) while filters collected beginning in January of 2016
were analyzed on a DRI Model 2015 multi-wavelength ther-
mal optical carbon instrument (Magee Scientific, Berkley,
USA) (Chow et al., 2015). Both instruments use the IM-
PROVE_A protocol (Chow et al., 2007), which outlines the
temperature step, gaseous environment in the instrument and
that reflectance is used to define the split point between OC
and EC. To correct for gas phase adsorption onto the quartz
filter, the monthly median field blank OC concentration is
subtracted from each OC measurement during that sample
month. Carbon concentrations are reported in µg m−3.

An in-house Hybrid Integrating Plate and Sphere (HIPS)
system evaluates light absorption from the PTFE filters in
the IMPROVE network (White et al., 2016). In this work,
the measured absorption coefficient (Fabs) is converted into
a TOR EC equivalent concentration assuming a Fabs /EC
ratio of 10 m2 g−1 (Malm et al., 1994). The resulting value,
referred to as HIPS Black Carbon (HIPS BC), is used as part
of a quality control procedure to evaluate potential outliers in
TOR EC measurements.

Data from gravimetry and X-ray fluorescence (XRF) anal-
ysis obtained from PTFE filters and ion chromatography
from the nylon filters are also used in this study. Addi-
tional information on routine IMPROVE methods can be
found on the IMPROVE website (http://vista.cira.colostate.
edu/Improve/, last access: 31 July 2021). IMPROVE data are
available online at (http://views.cira.colostate.edu/fed, last
access: 31 July 2021).

2.2 Outlier removal

Data were screened for outliers to eliminate their influence
on the results. Out of the ∼ 61 500 total number of samples
in the 3-year period, fewer than 800 were excluded from the
analysis due sampling issues or missing TOR, XRF, or IC
data. In addition, 65 samples collected at the Wheeler Peak
Wilderness (New Mexico) site between November 2015
and April 2016 were excluded due to an EC contamination
caused by a diesel-powered ski lift.

Potential outliers in TOR measurements were investigated
by regressing TOR EC against HIPS BC concentrations.
Samples with differences exceeding a predefined thresh-
old value (0.68 µg m−3) were flagged as potential outliers
(Sect. S2). The status of these samples was confirmed by
building separate TOR EC and HIPS BC calibrations. The
poor agreement between TOR EC and FT-IR EC concentra-
tions contrasts with the nearly 1 : 1 relationship HIPS BC and
FT-IR BC predicted values indicating that TOR EC concen-
trations were likely compromised (Sect. S2). For the period
considered in this study, 112 samples with faulty TOR EC
values were identified and excluded from further analysis.
The number of valid sample spectra retained in this study is
61 462.

2.3 Fourier-transform infrared (FT-IR) analyses

Since 2015, all PTFE in the IMPROVE network have been
analyzed by infrared spectroscopy for research and evalua-
tion purposes. FT-IR measurement occurs after gravimetric
analysis and prior to XRF and HIPS to prevent possible loss
of volatile species under the mild vacuum in XRF. Three FT-
IR spectrometers including one Tensor 27 and two Tensor 2
instruments (Bruker Optics, Billerica, MA) equipped with
a pre-aligned mid-IR source and a liquid nitrogen-cooled
wide-band mercury cadmium telluride (MCT) detector were
used for spectra acquisition in the range 4000–420 cm−1 by
averaging 512 scans at a nominal resolution of 4 cm−1. The
single beam signal associated with each PTFE filter was con-
verted to an absorbance spectrum using the most recent zero
reference signal, updated hourly.

Previously, it was determined that calibration transfer be-
tween multiple FT-IR instruments is not required as long
as their spectral response is carefully matched by control-
ling a set of key environmental and instrumental parame-
ters (Debus et al., 2019). Briefly, each MCT detector is con-
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nected to an automatic liquid nitrogen micro-dosing sys-
tem (NORHOF, Ede, Netherlands) designed to improve sig-
nal stability and maintain a high signal to noise ratio. The
repeatability and reproducibility of the filter position rel-
ative to the IR beam is controlled via a house-built sam-
ple chamber (4.0× 5.1× 4.5 cm) mounted inside the instru-
ment sample compartment. Details regarding the chamber
design have been published elsewhere (Debus et al., 2019).
Finally, the contribution of water vapor and carbon dioxide
to the signal was minimized by continuously purging both
the sample chamber and the optical bench with a VCD Se-
ries CO2 adsorber/dryer system (PureGas LLC, Broomfield,
CO). For each sample, the acquisition procedure involves a
4 min purge followed by spectrum collection lasting about
1 min. An in-house macro interfaced to the OPUS software
(Bruker Optics, Billerica, MA) controls each step. PTFE fil-
ters were measured in transmission mode without sample
preparation. No interpolated data (from zero-filling) are in-
cluded in the final raw spectra. Collected spectra are sub-
jected to weekly quality control procedures detailed in De-
bus et al. (2019). Duplicate and replicate measurements were
also performed to evaluate instrument stability and found to
be within ±10 %.

2.4 Multivariate calibration model – partial least
squares regression

While the presence of certain categories of atmospheric com-
pounds can be identified qualitatively from an FT-IR spec-
trum, an accurate quantification of their concentration re-
quires calibration. PLS is a commonly used algorithm to
relate a multi-wavenumber measurement to any particular
sample properties such as concentration (Wold et al., 2001).
In brief, PLS maximizes the co-variance between a set of
response variables (species measurements) and a reference
measurement (FT-IR spectra) from which equivalent pre-
dicted values are desired. In so doing, the optimal combina-
tion of response variables best describing the reference mea-
surement is identified and the selected features are used to
build a multivariate calibration. With all least-squares cal-
ibration methodologies, concentration-dependent biases in
residuals that are determined by the quality of fit (R2), and
dynamic range of the data are expected due to the nature
of least-squares estimation (Besalú et al., 2006; Draper and
Smith, 1998). For further discussion of these biases, see
Sect. S1.

The applicability of PLS to quantify carbonaceous aerosol
species (Reggente et al., 2016; Weakley et al., 2016, 2018a)
or functional groups (Boris et al., 2019; Ruthenburg et al.,
2014) collected on PTFE filters in various monitoring net-
works and field campaigns has been successfully demon-
strated. A complete review of the implementation of PLSR
calibration in the framework of atmospheric particulate mat-
ter characterization has been recently published (Takahama
et al., 2019).

To evaluate model performance, FT-IR predicted concen-
trations were regressed against their reference measurement
to quantify residuals and a series of metrics. Reported figures
of merit include the coefficient of determination (R2), bias,
error, and the method detection limit (MDL). Residuals are
defined as the difference between predicted and reference
concentrations, bias corresponds to the median residual,
while error is the median absolute residual. To facilitate
inter-model comparison, relative performance metrics were
calculated by normalizing the values by their reference
value. FT-IR PLSR calibration MDL was estimated from
field blank predicted concentrations as the 95th percentile
minus the median residuals, as is done for other species in the
IMPROVE network (http://vista.cira.colostate.edu/improve/
wp-content/uploads/2021/07/IMPROVE-SOP-351_
Data-Processing-and-Validation_2021_final.pdf, last
access: 15 March 2020). Performance is reported for all
samples together regardless if the samples were included in
the calibration. This enables comparison between models
with different samples used for calibration. Maps of an-
nual median values of the reference method concentration
and performance metric are generated for each aerosol
component. Isopleths on the maps are calculated using an
ordinary Kriging algorithm and are intended to guide the
eye to capture the regional nature of the concentrations
and performance quality. For the MDL map, the difference
between the percentage of samples below MDL for the
reference method is subtracted from the percentage below
MDL for FT-IR to indicate if the reference method or FT-IR
have more samples below MDL.

For further insight into model prediction accuracy, the dis-
tribution in FT-IR residuals is qualitatively compared with
residuals from collocated measurements. Collocated quartz
filters are collected at the Everglades (FL), Hercules-Glades
(MO), Medicine Lake (MT), and Phoenix (AZ) sites. Sim-
ilarly, collocated Teflon filters are sampled at Mesa Verde
(CO), Proctor Maple Research Facility (VT), Saint Marks
National Wildlife Refuge (FL), Yosemite (CA), and Phoenix
(AZ) sites, while collocated nylon filters are featured at the
Phoenix (AZ), Frostburg Reservoir (MD), Mammoth Cave
(KY), and San Gabriel (CA) sites.

Data handling and analysis was performed in Matlab
R2018a (The MatWorks, Inc, Natick, MA, United States) us-
ing the statistics and signal processing toolboxes. PLS was
computed via the libPLS Matlab package (v1.9) (Li et al.,
2018).

2.5 FT-IR calibrations for predicting PM composition

This section presents the design of calibrations for quantify-
ing the concentration of major atmospheric species by tak-
ing advantage of the composition-based information embed-
ded within an FT-IR spectrum. In practice, spectra are cali-
brated against reference measurements from TOR, XRF, IC,
HIPS, and gravimetric analysis with the aim of predicting
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concentrations of atmospheric constituents using only spec-
tra of PTFE filters as input.

A multilevel model (Snijders and Bosker, 2011; Takahama
et al., 2019) is proposed in which dedicated calibration mod-
els for subgroups of samples are constructed, and applied ac-
cording to a predetermined selection criterion for each sam-
ple. This model considers two subgroups: (i) samples deter-
mined to be dominated by biomass burning, which are cali-
brated with similar samples, and (ii) the remaining samples,
which are calibrated with samples from a limited number of
sites.

To establish baseline performance metrics for compari-
son, a “Global model” in which a single calibration (for each
species) is constructed from all samples considered together
is described in Sect. S1 (Supplement).

The first step in the development of the multilevel model
consists of screening for biomass burning samples. These
samples are removed from consideration during the site se-
lection process. A simple detection method combining esti-
mates of key functional group spectral peak areas and spec-
tral dissimilarity metrics were used to segregate biomass
burning samples from all other samples. Next, a Gaussian
mixture model (GMM) was applied to the spectra of all non-
biomass burning samples. The GMM exploits the specificity
of the infrared signal for organic and inorganic species. The
GMM was implemented with the aim of clustering the non-
biomass burning FT-IR spectra into groups sharing similar
spectral features (Sect. 2.5.2). Those groups were later used
as part of the methodology for selecting sites with represen-
tative atmospheric composition. Spectra from the year 2015
were used as a benchmark to validate the biomass burning de-
tection strategy, build the GMM, and establish the list of rep-
resentative sites where multi-filter collection/multi-analyses
should be retained (Sect. 2.5.2). The identified biomass burn-
ing samples are used to build a calibration for biomass burn-
ing samples (Sect. 2.5.1).

2.5.1 Biomass burning model

FT-IR spectra were used to estimate functional group ar-
eas and calculate spectral dissimilarities metrics to segre-
gate biomass burning samples from all other samples. Al-
though this paper focuses on using FT-IR to measure the ma-
jor aerosol components in routine speciated aerosol moni-
toring networks, FT-IR is more frequently used to measure
organic functional groups (e.g., Russell et al., 2011; Ruthen-
burg et al., 2014; Boris et al., 2019). Specific regions in the
IR spectra correspond to specific functional groups. Peak ar-
eas, calculated from baseline corrected spectra (see Sect. S3
for baseline procedure), for carbonyl, OH and CH were used
rather than functional group calibrations for simplicity. Be-
cause the relative functional group peak area tends to in-
crease significantly as the cumulative peak area decreases,
especially for low mass deposition samples, an estimate of
spectral dissimilarities, the squared Mahalanobis distance

(D2
i ), for each site is also considered to minimize false de-

tection. The Mahalanobis distance (Mahalanobis, 1936; Cios
et al., 1998) is a measure of the spectral dissimilarity be-
tween a given spectrum at a site and the mean spectrum
at the site. Taking advantage of D2

i and relative functional
group areas, a set of criteria were established from observa-
tions at known wildfire sites during wildfire season (O’Dell
et al., 2019). First, samples collected under heavy smoke con-
ditions whose spectra fulfill C–H≥ 2 %, C=O≥ 15 % and
D2
i ≥ 3D2 were detected (Sect. S3). This group of spec-

tra tend to have large D2
i values and, consequently, the

3D2 threshold often excludes samples with low to moderate
biomass burning contributions. For a more inclusive detec-
tion, spectra from the first group were removed from consid-
eration, the D2

i values are updated for each sample and the
plots were regenerated. The cut-off value for the relative car-
bonyl functional group area was lowered to 8 % while other
parameters were not changed. Spectra identified by the first
and second rounds are considered biomass burning samples.
This procedure is performed for each site and for each year
of sample collection (Sect. S3)

Recent work has shown that smoke samples may be iden-
tified using techniques such as cluster analysis (Bürki et al.,
2020) similar to the GMM used here and through detection
of molecular markers – levoglucosan and lignin – or peak
profiles in FT-IR spectra (Yazdani et al., 2021a, b). For the
large data set in this work (∼ 20 000 samples in 2015), clus-
ter analysis resulted in multiple clusters that could be asso-
ciated with smoke-impacted samples likely due to the vari-
ations in fuel, oxidation conditions, and contributions from
other sources. Therefore, for this work, we selected a single
group of smoke-impacted samples based on specific organic
features known to be present in FT-IR spectra. While the cri-
teria for selecting smoke-impacted samples can be defined
differently according to each intended purpose, the method
presented here is demonstrated to sufficiently partition the
samples for building accurate submodels to predict concen-
trations of PM constituents.

While ions and crustal species are not necessary correlated
with wildfire emissions, the biomass burning sub-model ac-
counts for interferences that are used to maintain high pre-
diction accuracy for samples collected on smoky days.

2.5.2 Limited sites model

To assess major PM2.5 composition regimes in the network
and to identify representative sites to use as calibration stan-
dards in the limited sites model, screening of all FT-IR spec-
tra (except samples identified as biomass burning samples)
across all locations and seasons was performed by building
a GMM (Bilmes, 1998; Hastie et al., 2009). The basic idea
behind GMM is to group FT-IR spectra into clusters of sim-
ilar spectral shape using a probabilistic approach describing
the likelihood that any given spectrum belongs to a particular
class. To minimize the concentration dependence and em-
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phasize composition, raw spectra were transformed to sec-
ond derivative spectra using a 2nd order, 21 point, Savitzky–
Golay filter (Savitzky and Golay, 1964), differenced with fil-
ter blank spectra and divided by their respective Euclidean
norm (Bro and Smilde, 2003). Additional details about the
GMM pre-processing and implementation as well as cluster
interpretation are provided in Sect. S4.

After classification, a single site per cluster was selected to
represent the atmospheric composition captured in that clus-
ter. For any given cluster, the retained location was defined as
the site with the largest number of classified spectra with the
highest probabilities of belonging to that cluster. To prevent
misleading site selection and enhance spatial coverage, the
following set of decision rules were used: (i) if the same site
is representative of two clusters, it is ascribed to the cluster
with the largest number of classified spectra from that site,
(ii) if none of the retained sites accounts for a given spatial
region or known source type in the network, an additional
site with the highest number of classified spectra is selected
from a nearby cluster, and (iii) only sites under continuous
operation between 2015 and 2017 are eligible for selection.
Criterion (ii) was invoked once to add a site in the midwest
to improve spatial coverage in that region and to capture pre-
scribed fire emissions in Kansas. All non-biomass burning
samples from selected sites were used as FT-IR calibration
standards for all species and all non-biomass burning sam-
ples are predicted with these models. Once established, the
selected sites are not re-evaluated but instead are used in all
subsequent years as would occur in practice.

2.5.3 Application of multilevel model

The multilevel model is the combination of the FT-IR pre-
dicted concentrations from the limited sites and biomass
burning models. Multilevel modeling will be discussed in
the context of carbonaceous aerosols before extending the
modeling to other atmospheric constituents with detectable
infrared signatures. In addition to OC and EC, species evalu-
ated for FT-IR prediction include PM2.5 mass, soil elements
(silicon, aluminum, calcium, titanium, iron), anions (sulfate,
nitrate) and HIPS BC. As mentioned previously, NaCl is not
IR active and so there is no direct measure of sea salt from
FT-IR. Next, the years 2016 and 2017 will be examined to as-
sess the long-term stability of the proposed multilevel strat-
egy by screening for smoke samples and re-calibrating each
year using the sites selected using 2015 data.

3 Results and discussion

In the following sections, the quality of FT-IR based calibra-
tions for quantifying aerosol composition across continental
US and their long-term applicability to large speciation mon-
itoring networks will be assessed. Sect. 3.1 describes the se-
lected calibration samples for the biomass burning and lim-

ited sites models. In Sect. 3.2, biomass burning and limited
model performance will be briefly reviewed before exploring
the Multilevel FT-IR predictions for all samples. Initially fo-
cused on carbonaceous species on PTFE samples collected
in 2015, FT-IR predictions will be extended to other atmo-
spheric constituents and years. Data reported here is available
at Dillner et al. (2021).

3.1 Multilevel modeling – calibration sample selection

3.1.1 Biomass burning sample selection

Using the methods described above, 492 samples impacted
by biomass burning emissions were identified in 2015 (2.5 %
of the network), 288 samples in 2016 (1.5 %), and 817 sam-
ples in 2017 (3.7 %). The mean OC concentration of the
biomass burning samples range was 5.6–8.3 µg m−3 with
maximum concentrations extending from 44 to 97 µg m−3

over the three year period. Similarly, per year, the mean
EC concentration varies between 0.6–0.9 µg m−3 with maxi-
mums up to 2.9–3.9 µg m−3. Mean OC /EC ratios are larger
than 7, in agreement with past literature (Schichtel et al.,
2008; Sorooshian et al., 2011). Analysis of the detected sam-
ples shows reliable spatial and seasonal distributions, consis-
tent with biomass burning emissions predominantly in sum-
mer and fall across the Pacific north west and northwestern
US (Sect. S3). Two-thirds of the identified samples were se-
lected (Sect. S5) as calibration standards for the calibration
and resulting model was applied to the remaining third of the
smoke impacted samples.

3.1.2 Limited sites model – clusters and retained sites

Figure 1 shows the spatial distribution and annual average
composition (from routine IMPROVE data) of the 21 sites se-
lected for the limited sites model calibration. From a spatial
standpoint, retained sites appear reasonably scattered across
the network including Hawaii and the Virgin Islands. Clus-
ters are represented by a distribution of urban and rural sites.
One urban cluster is represented by Fresno and contains
mostly urban samples from Fresno and Phoenix. All other
clusters contain mostly rural and pristine sites. However, two
other urban sites were retained, Phoenix and Birmingham.
The Phoenix cluster contains samples from the southwest in
the spring. The Birmingham site along with the Tallgrass site
represent a non-western cluster in the spring and summer.

The clusters are also seasonally distributed (Sect. S6):
five clusters are dominated by fall–winter samples, 10 clus-
ters containing summer samples (along with varying number
of spring and fall samples), two clusters are predominately
spring and one is spring–fall. Three clusters have little sea-
sonality.

Because FT-IR spectra are clustered based on composi-
tion, the first step in assessing the representativeness of the 21
sites is to compare the concentration ranges. For this purpose,
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Figure 1. Spatial distribution, median PM2.5 concentration and composition of the 21 representative sites. The composition is obtained from
routine IMPROVE (non-FT-IR) measurements and the IMPROVE reconstructed fine mass equation (http://vista.cira.colostate.edu/Improve/
reconstructed-fine-mass/, last access: 15 March 2020) to calculate soil and sea salt. Sites are identified by the four letter site code which is
the first four letters of a single word site name (Fresno = FRES) or the first two letters of the first and second word for two word site names
(Dome Land = DOLA). The top left pie chart shows the median PM2.5 composition across all sites and samples for comparison.

distributions in TOR OC and EC concentrations excluding
biomass burning samples are compared for the 21 sites used
for calibration and the 140 remaining sites. In Fig. 2, the
two probability density functions are very similar for both
OC and EC despite large differences in sample populations
(2572 and 16 543, respectively). In addition to matching the
range of carbonaceous concentrations observed in the rest of
the network, the presence of species interfering with organic
functional groups should also be accounted for by the cal-
ibration. Because ammonium absorptions overlap with car-
bonaceous absorptions, situations where ammonium to OC
and ammonium to EC ratios are different between calibration
samples and samples to be predicted were associated with
additional sources of bias and error (Dillner and Takahama,
2015a, b). Although not measured in IMPROVE, ammonium
concentration is approximated from nitrate and sulfate as-

suming both species are fully neutralized. The corresponding
probability distribution in Fig. 2 confirms the equivalence be-
tween the ranges of ammonium/OC and ammonium/EC con-
centrations spanned by the limited sites samples and the over-
all network. In Sect. S6, Fig. S6-3 shows reasonable agree-
ment between the selected sites and the rest of the network
for PM2.5 mass, ions, elements and HIPS BC. Together, these
results suggest the list of 21 sites is a suitable representation
of network variations in OC and EC and their relative propor-
tion to ammonium, and for all other predicted constituents.

The spatial and seasonal as well as the urban and rural di-
versity supports the compositional diversity of the selected
sites as shown in Fig. 1. The three urban sites have distinct
characteristics. At the Fresno (CA) site, the composition is
dominated by nitrate (35 %) and organic matter (42 %). A
large number of autumn–winter samples were included in the
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Figure 2. Comparison of probability density function for OC and EC concentrations and ammonium relative to OC and EC in 2015 between
the 21 sites retained for limited calibration and the rest of the network.

cluster which is consistent with agriculture and residential
wood burning activities (Ngo et al., 2010) as well as with the
formation of secondary aerosols during stagnation events and
a low inversion layer (Watson and Chow, 2002). Phoenix, AZ
site features a strong soil component (33 %) associated with
spring dust storms and windblown dust and equal propor-
tions of ammonium sulfate (25 %) and OM (24 %) occurring
mostly in spring and summer. The ammonium sulfate and
organic matter has been attributed to regional power produc-
tion and traffic (Brown et al., 2007). In contrast, Birmingham
samples show little seasonal trend with elevated OM (52 %)
and EC (10 %) fractions originating from various combus-
tion processes including vehicle exhaust, biomass burning
and biogenic secondary organic aerosols (Blanchard et al.,
2016). The other dominant species at this site is ammonium
sulfate (26 %), characteristic of coal burning and industrial
activities in the eastern US (Watson et al., 2015).

Among rural sites, four noticeable patterns in PM2.5 com-
position are distinguishable. The first corresponds to OM
fractions accounting for more than two-thirds of the filter
mass. High OM samples are encountered at four locations in
northwestern US, namely the Kalmiopsis (OR), Three Sis-
ters (OR), Flathead (MT) and Voyageurs (MT) sites. Sam-
ples from Voyageurs (MN) and Flathead (MT) sites are from
summer–fall and present elevated median PM2.5 concentra-
tions (4.20 and 6.32 µg m−3, respectively) and very large
percentage of OM consistent with biomass burning emis-
sions. Kalmiopsis (OR) and Three Sisters (OR) samples have
a lower and nearly identical median PM2.5 concentration
(≈ 2 µg m−3) but differ in their monthly distribution with the
former displaying more winter samples than any other season
whereas the later shows little seasonality.

The second type of sites have high OM and sulfate concen-
trations. Both Shamrock Mines (CO) and Tallgrass Prairie
(KS) sites have larger OM than sulfate content. However,
the Colorado site has more autumn–winter samples, repre-

sents samples in the Rockies and Alaska and an overall small
median PM2.5 concentration (< 1 µg m−3). The Kansas site
has a majority of spring samples, representing non-western
samples and has a significantly larger PM2.5 concentration
(≈ 6 µg m−3) that is attributed to prescribed burning near the
Tallgrass site (Whitehill et al., 2019). Other sites have higher
median sulfate concentrations (∼ 50 %) than OM concen-
trations (∼ 40 %) such as Dolly Sods (WV) and Bondville
(IL). The monthly sample distribution indicates seasonal in-
fluences: Bondville (IL) samples are mostly from the summer
and the concentrations are relatively high while the Dolly
Sods (WV) site samples are mostly not in the summer with
lower concentrations. Because the spectra were normalized
to minimize influence of concentration, these two clusters
likely have different organic composition even though the
relative amount of OM is the same. Finally, sites where sul-
fate and OM are present in equal proportions (≈ 36 %) are
reported at the Dome Land (CA) and Chassahowitzka (FL)
pristine sites mainly featuring spring–summer and winter
samples, respectively.

A third group of rural sites contains a large fraction of
soil (> 20 % of the total mass). The Virgin Islands (VI) site
presents the highest soil fraction across the network with
52 % of the total PM2.5 mass from soil, mostly originat-
ing from long-range Sahara soil dust transport (Holmes and
Miller, 2004). In addition to sulfate and OM, elevated soil
contributions are observed for the Wind Cave (SD), Mead-
view (AZ), Medicine Lake (MT), and Great Basin (NV) sites
with soil content between 20 % and 40 %. Although the sea-
sonality is somewhat different between these sites, they all
have many samples from the spring suggesting the dust is
due at least in part to spring dust storms and may also con-
tain resuspended road dust and more localized dust sources.

A fourth and final distinct category of PM2.5 composi-
tion includes a collection of sites with unique local atmo-
spheric pollution sources, specific to those locations. The
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Hawaii Volcanoes (HI) site where sulfur is emitted as part
of the volcanic activity, contains 51 % sulfate along with sea
salt (23 %). Another location with unique composition is the
Point Reyes (CA) site where the sea salt contribution reaches
55 % of the median filter mass for the clustered samples,
larger than any other marine site in the network. Finally, the
Egbert (ON) Canadian site, representing the upper midwest
in winter is dominated by nitrate (46 %), sulfate (27 %), and
OM (20 %).

As described above, the 21 sites retained for the limited
sites sub-calibration present seasonal, regional and compo-
sitional features consistent with known or expected trends
in PM2.5 across the network. The median PM2.5 mass at
those locations covers a broad range of concentrations rang-
ing from 0.93 to 13.75 µg m−3 and includes both urban and
rural sites. Capturing the large variability in PM2.5 compo-
sition and concentration is essential to ensure the proposed
site list is a representative subset of the parent network. How-
ever, it should be mentioned that the proposed site list is not
unique but is one of the many feasible solutions since sites
whose samples clustered together in the GMM are likely in-
terchangeable.

3.2 Evaluation of biomass burning model

Prior to describing the overall results from the multilevel
model, the biomass burning model is evaluated to deter-
mine if the biomass burning model improves predictions for
those samples. To evaluate the quality of the biomass burn-
ing model, the predictions are compared to a global model
(Sect. S1) which contains a few samples from all 160 sites.
Due to the selection method of calibration standards for the
global modal, most of the samples are non-smoke samples
but a few smoke samples are included. Visual inspection
of Fig. 3 suggests the equivalence of the biomass burning
models to the global model at the lower end of the concen-
tration range. However, improvement in prediction accuracy
can be claimed at high concentrations for the biomass burn-
ing model. The gain in model performance is subtle for OC
and TC; however, for EC, predictions benefit from having a
dedicated calibration for samples impacted by wildfire emis-
sions, with an increase in R2 from 0.747 to 0.902 (Sect. S7).

Therefore, we retain the biomass burning model as part of
the multilevel model and present the results for the multilevel
model below.

3.3 Multilevel modeling – performance evaluation

3.3.1 Carbonaceous aerosol predictions

Figure 4 shows the correspondence between FT-IR multilevel
concentrations for OC and EC and TOR OC and EC mea-
surements for 2015 (plot for TC can be found in Sect. S9)
and Table 1 lists the prediction metrics for all three carbona-
ceous components. The visual agreement between FT-IR and

the reference measurements of TOR OC and EC is high but
EC shows higher scatter than the other measurements. Ta-
ble 1 indicates that FT-IR OC and TC has higher prediction
quality than EC but both perform satisfactorily. FT-IR OC
and TC error is on par with TOR precisions (Table 1) indi-
cating that on average FT-IR does not add significant addi-
tional error to the measurement. FT-IR EC predictions, how-
ever, have higher error than TOR precision. With respect to
reference (TOR) measurements, concentration-dependent bi-
ases in residuals that are determined by the quality of fit (R2)
and dynamic range of the data are expected due to the na-
ture of least-squares estimation (Besalú et al., 2006; Draper
and Smith, 1998). For bias defined as FT-IR predictions mi-
nus the reference (TOR) measurement, least-squares estima-
tor causes an apparent linear bias which is positive at the low
end of the concentration range and negative at the high end
of the concentration range (see Sect. S8 for further discus-
sion). The satisfactory agreement between FT-IR and TOR
concentrations as well as the equivalence agreements using
the global model (Sect. S1) support the validity of the pro-
posed Multilevel modeling in the context of carbonaceous
aerosols prediction from PTFE filters in large speciation net-
works.

In addition to OC, EC, and TC, light absorption which is
predominantly due to black carbon, is also a measure of one
fraction of the carbonaceous aerosol. FT-IR calibrations are
found to be adequate for replicating HIPS BC measurements
(Sect. S9). As expected, the corresponding model is similar
in performance to EC with R2 and relative error of 0.920
and 23.3 %, respectively (Table 1). FT-IR BC residuals have
a broader interquartile range than in the HIPS BC collocated
data (Sect. S9). We attribute this effect to a difference in sig-
nal to noise ratio and sensitivity to chemical interferents be-
tween the two analytical techniques. While HIPS exploits the
strong absorption properties of refractory carbon in the visi-
ble domain, the weak absorptivity of EC in the mid-infrared
domain (Niyogi et al., 2006) and the presence of overlapping
species makes the quantification less accurate.

Further exploration of the regional and site by site quality
of data is made via contiguous United States (CONUS) maps
of annual median reference method concentrations (left),
difference in % below MDL between FTIR and reference
method (middle) and relative error (right) are shown in Fig. 5
for OC and EC. TC is very similar to OC and BC is very sim-
ilar to EC.

Maps for all constituents with annual median FTIR and
reference method concentrations, as well as annual median
prediction metrics are shown in Sect. S10.

Annual median maps of FT-IR OC and TOR OC as well as
maps of FT-IR EC and TOR EC (Supplement Sect. S10) are
nearly identical. As shown in Fig. 5, annual median OC and
EC concentrations are highest at the four urban IMPROVE
sites of Seattle (WA), Fresno (CA), Phoenix (AZ), and Birm-
ingham (AL) than the rural sites and are higher in the east
than in the west. For OC, the relative error is lower than
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Figure 3. Inter-model OC (a), EC (b), TC (c) comparison between global (Sect. S1) and biomass burning predicted concentrations for the
492 samples classified as biomass burning in 2015. EC prediction, in particular, benefit from having a dedicated biomass burning calibration
model.

Table 1. Summary of Multilevel model performance for IR-active atmospheric constituents for 19 608 spectra analyzed by FT-IR in the year
2015.

Species R2 Bias Bias Error Error Reference data MDL <MDL
(µg m−3) (%) (µg m−3) (%) error∗ (%) (µg m−3) (%)

OC 0.983 0.01 1.6 0.08 12 10 0.06 0.9
EC 0.912 0 1.7 0.02 30 15 0.04 20.7
TC 0.984 0.01 1.2 0.08 12 11 0.07 1.3
BC 0.92 0 −0.3 0.03 23 – 0.04 19.3
Si 0.983 0 2.2 0.01 11 13 0.01 9.7
Al 0.985 0 2.2 0 12 10 0 4.7
Ca 0.979 0 1.1 0 13 9 0 6.9
Ti 0.941 0 2.7 0 21 16 0 14.9
Fe 0.95 0 1.1 0 25 8 0.01 19
SO4 0.983 0 0.1 0.03 6 2 0.03 0.9
NO3 0.927 0.02 15.3 0.07 54 8 0.07 21.8
PM2.5 Mass 0.985 0.03 1 0.18 6 6 0.25 1.1

∗ Median relative error for TOR, XRF, IC, and gravimetric analysis. OC, EC, and TC median relative error estimated from collocated
sampling as measurement error/uncertainty is not reported by IMPROVE for this components. For all other components, the normalized
error was calculated as the uncertainty divided by the concentration prior to selecting the median. BC is not reported by IMPROVE so
measurement error is not estimated.

the TOR relative error in the east (where concentrations are
higher) and higher than TOR relative error in the west. FT-IR
OC has an equal or lower number of samples below MDL
than TOR at all sites. For EC, FTIR relative error is higher
than TOR relative error at almost all sites. The percentage of
samples of EC that are below MDL for FTIR is similar to or
are slightly higher than TOR in the eastern US where EC con-
centrations are higher and are significantly higher than TOR
in the western US where concentrations are lower. These
patterns indicate that FTIR does not add error to OC mea-
surements when concentrations are above∼ 0.75 µg m−3 but
does add some error at lower OC concentrations and for EC
measurements.

3.3.2 Elemental oxide predictions

Taking advantage of known mineral absorbance bands in the
mid-infrared range (Hahn et al., 2018; Madejová and Ko-
madel, 2001; Senthil Kumar and Rajkumar, 2013) (Sect. S9),
Multilevel calibrations for soil elements were evaluated for
the five crustal elements commonly used to estimate soil: sil-
icon, aluminum, calcium, titanium, and iron (Table 1 and
Fig. 4 for Si and Ti). All models present a satisfactory
agreement between XRF and FT-IR predicted concentrations
(R2> 0.94). The quality of prediction of the elemental ox-
ides falls into two groups. The first group includes silicon,
aluminum and calcium and is characterized by moderate rel-
ative errors (11 %–13 %), similar in magnitude to the FT-IR
OC model (12 %) and have similar errors to XRF measure-
ments. This indicates that like OC and TC, on-average FT-
IR does not add additional uncertainty. The second group
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Figure 4. Comparison of predicted FT-IR OC, EC, Si, Ti, SO4, and mass concentrations using the multilevel model against their reference
measurements. Each subplot contains all 19 608 samples collected in the year 2015.

includes titanium and iron which have larger relative er-
rors (20.9 %–24.8 %), analogous to HIPS BC and EC mod-
els (23.3 %–30 %). Comparing residuals to collocated XRF
measurements (Sect. S9) shows that the FT-IR based models
have a larger interquartile range. For Fe, XRF uncertainty is
quite low and FT-IR adds additional uncertainty to the mea-
surement. XRF Ti measurements have higher error than the
other elements but there is an incremental increase in error
due to FT-IR. In addition, cross plots of titanium concentra-
tions show a bifurcation (Fig. 4). While most samples fall
near their expected titanium concentration, samples collected
at the Sycamore Canyon (AZ) site present a systematic neg-

ative bias, consistent across years, tentatively attributed to a
site-specific soil composition not accounted for by the lim-
ited calibration. Takahama et al. (2019) demonstrated sev-
eral methods to identify the possible occurrence of anoma-
lous predictions in OC and EC based on comparison of new
sample spectra to calibration spectra based on projected PLS
scores and regression residual vectors. These samples with
systematic negative bias in titanium predictions can presum-
ably be identified using such an approach, provided that com-
positional differences are detected in the IR spectrum. Al-
though distinct IR fingerprints exist, FT-IR calibrations for
quantifying mineral contents should be interpreted with care
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Figure 5. Annual median reference method concentrations (left), difference in % below MDL (middle) and normalized relative error (right)
per site for OC, EC, silicon, and sulfate for CONUS for 2015. For the MDL plot, sites in green and blue indicate that the FTIR has the
same or fewer samples below MDL than the reference method. Sites in yellow and red have more samples below MDL for FTIR than for
the reference method. For the relative error maps, the median relative error of the reference method estimated using methods described in
Table 1 is white. For sites in blue, FTIR has lower relative error than the reference method and sites in red are higher.

as specific elements may be indirectly quantified through
their correlation with another element even in the absence of
clear IR signature (Hahn et al., 2018). For instance, the vari-
able importance in projection (VIP) scores for the Si, Al, and
Ti calibrations suggests use of similar spectral variables, with
small differences, for prediction of these species (Sect. S9).
However, the 21 GMM sites coverage still meet the neces-

sary requirements for providing a reliable insight into soil
composition in the IMPROVE network.

Figure 5 shows the distribution of concentrations of XRF
Si across CONUS. The highest annual median concentra-
tions are in the southwest. Similar patterns are found for Al,
Ca, Ti, and Fe except that high Fe concentrations are also ob-
served at the urban sites, particularly Fresno (CA) and Birm-
ingham (AL) (Figs. S10-6 through S10-9). For Si, FTIR nor-
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malized error is lower than XRF in the west where concen-
trations are higher. For Ca, Ti and Al, FT-IR normalized error
is lower only in the southwest. For Fe, FT-IR is above XRF
normalized error. The percentage of samples below MDL are
similar to XRF (0 %–10 % different) in the southwest and
central US and modestly higher (15 %–20 %) in the north-
west and eastern US for Si. For Fe, the spatial pattern is sim-
ilar but the FTIR % below MDL is up to 50 % higher than
XRF. However, for Al, Ca, and Ti, FTIR percent below MDL
is approximately the same or lower than XRF at all sites.

3.3.3 Inorganic ions

The two most abundant inorganic anions quantified in the
network, nitrate and sulfate, can also be measured by FT-
IR (absorption bands used for prediction are discussed in
Sect. S9). FT-IR sulfate concentrations display a satisfac-
tory agreement with the reference IR measurements (Fig. 4).
Model performance metrics include R2 above 0.98 and rela-
tive error of 6 %. The relative error is the same as for FT-IR
PM2.5 and lower than OC, TC, and Si (Table 1). However,
IC measurements have even lower error than FT-IR sulfate.
Compared to sulfate, FT-IR nitrate concentrations (Sect. S9)
are characterized by a moderate drop in the overall model
performance (R2

= 0.927) while relative bias and error ex-
ceed 15 % and 50 %, respectively and the error far exceeds
reference IC nitrate measurement error. A direct compari-
son against differential nitrate concentrations at collocated
sites highlights the broad uncertainty in determining nitrate
content from PTFE filters (Sect. S9, Fig. S9-3). Unlike ny-
lon filters for which nitrate is trapped on the surface, nitrate
is known to evaporate from PTFE filters and the extent of
volatilization is dependent on temperature and relative hu-
midity during and after sampling. This causes a discrepancy
between the mass of nitrate deposited onto the nylon fil-
ter and the mass of nitrate on the PTFE filter (Eldred and
Ashbaugh, 2004), therefore FT-IR calibrations with the ni-
trate measurements by IC from nylon filters as the reference
should be used with caution. Although there are physical lim-
itations to measuring ambient nitrate on PTFE filters, a mea-
sure of nitrate on PTFE filters which corresponds to its con-
tribution to the gravimetric mass is useful for mass closure
and data validation. FT-IR has been shown to be useful for
measuring and evaluating nitrate under controlled laboratory
conditions (ex. Wu et al., 2007). For network samples, nitrate
could be measured using laboratory calibration standards and
this effort will be addressed in future work.

The annual median sulfate concentrations by IC are shown
in Fig. 5. Annual median concentrations are highest in the
southeast and eastern US with a gradient in concentrations
observed across the midwest. The median relative error for
sulfate by IC is only 2 % and all FTIR sulfate has higher
relative error. There are however, spatial differences. In the
eastern US sulfate relative error is less than 15 % but in the
west, it is considerably higher, peaking in Wyoming where

concentrations are very low. The % below MDL is very sim-
ilar for FTIR and IC across the continent. Due to volatility
of nitrate, the nitrate metrics for FTIR are poor compared to
sulfate (Fig. S10-11).

3.3.4 PM2.5 mass predictions

Since the major aerosol species are shown to be reasonably
well measured by FT-IR, it was anticipated that PM2.5 mass
calibration would perform well. The PM2.5 model presents
reliable filter mass predictions (R2

= 0.985) characterized by
relative bias and error that are 1/3 to 1/2 of those for OC
and on par with gravimetric error (Table 1). The cross plot of
gravimetric mass and FT-IR predictions (Fig. 4) and maps of
predictions metrics (Fig. S10-12) show that PM2.5 mass can
be accurately predicted across a broad concentration range
indicating that FT-IR spectra of PTFE filters do not contain
interferents or other limitations that make PM mass predic-
tions error prone.

3.4 Long-term stability

Finally, multilevel calibrations are extended to 2016 and
2017 to evaluate the inter-year consistency and determine
if the assumptions behind limited sites and biomass burning
models remain valid over time. For each sampling year, new
calibrations were developed following the framework estab-
lished for 2015. Models were recalibrated with data from the
21 sites and biomass burning samples were detected by the
functional group screening procedure. Fig. 6 shows the me-
dian relative bias (top) and error (bottom) for the 3 years of
data (cross plots and prediction metrics shown for all pre-
dicted species for 2016 and 2017 in Sect. S11). These results
indicate that the modeling methodology provided reasonably
consistent results across all 3 years.

Normalized bias for most species is below 3 % and nor-
malized error is consistent for all species across all 3 years.
The relative bias for EC and BC are similar to other species
in 2015 and 2017 but in 2016 they are larger in magni-
tude than the other two years and different in sign. the
first year of TOR data from the multiwavelength TOR
instruments is 2016 (Chow et al., 2015) so higher bias
could be potentially be related to the new instruments.
However, the HIPS instrument was overhauled beginning
in 2017 which provides no explanation for high bias in
2016 (http://vista.cira.colostate.edu/improve/Data/QA_QC/
Advisory/da0041/da0041_HIPSmodifications.pdf, last ac-
cess: 6 October 2019). Further, the EC and BC calibrations
are independent of each other except for using the same fil-
ters for calibrations (as all species do) so the fact that the
median bias is roughly equal but opposite in sign is not due
to codependence of the models.

In future work, calibrations models will be updated more
frequently than annually with the most recent year of ambient
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Figure 6. (a) Median percent bias and (b) median percent error for each constituent measured for each year.

samples which may smooth biases and errors due to changes
to atmospheric condition and instrument drift.

4 Conclusion

In this paper, we investigate the feasibility of using FT-IR to
measure speciated PM2.5 concentrations in a large monitor-
ing network. In this method, all sites in the network collect
PTFE filters for FT-IR analysis. A few select sites, used for
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calibration, retain all sampling and analyses of current IM-
PROVE sites to enable re-calibration of the FT-IR method on
a routine basis. Re-calibration is especially important as at-
mospheric changes occur and as conditions in the network
evolve over time, for example new reference instruments,
new or significantly modified FT-IR instruments, changes to
sampling protocol or changes in filter material. The validity
of such a design was evaluated with all PTFE filters collect-
ing PM2.5 aerosols at 161 IMPROVE sites in 2015 and then
tested for all filters in 2016 and 2017.

A multi-level modeling algorithm was used whereby
smoke impacted samples are identified and predicted by one
model and the rest of the samples are predicted by another
model developed from 21 selected IMPROVE sites. The data
from the two models are combined to evaluate performance
of the FT-IR method. The selection of sites was performed
such that if one of the 21 sites ceases to operate, another site,
selected from the same compositional cluster can be used for
calibration.

The cross-plots and prediction metrics indicate that the
Multilevel model is equivalent to conventional calibrations
built from samples from every available site. Reliable perfor-
mance in predicted concentrations were reported for a broad
range of atmospheric constituents with detectable infrared
signatures such as OC, EC, TC, sulfate, soil elements (Si,
Al, Ca, Ti, Fe), light absorption, and PM2.5 mass. Due to
volatilization off the PTFE filter, nitrate measurements were
found to be unsatisfactory. NaCl is not active in the infrared
and cannot be measured. The calibration method was devel-
oped using data from 2015, and the same methodology was
applied to 2016 and 2017. The model performance metrics in
all 3 years were similar. Results across∼ 61 500 FT-IR spec-
tra highlight the suitability of the Multilevel calibration de-
sign to quantify multiple atmospheric PM2.5 species in large
monitoring networks.

This work presents an alternative, lower cost, filter analy-
sis method to measure speciated aerosol in a routine monitor-
ing network. This could be a valuable addition to routine spe-
ciated aerosol monitoring networks, such as IMPROVE, by
incorporating monitoring sites that collect samples on only
a PTFE filter for subsequent analysis. This would provide
the opportunity to have a subset of less expensive monitoring
site, which could be used for scoping studies to understand
the aerosol composition in unmonitored locations. It could
also serve as a network cost savings method by having a sub-
set of network sites collect aerosol samples on Teflon filters
only. However, the inability to measure particulate nitrate is
a significant deficiency for using this method to replace ex-
isting monitoring sites. The FTIR derived aerosol concen-
trations are also a semi-independent measurement from the
routine speciated aerosol measurements. Therefore, routine
FTIR measurements would provide valuable QA/QC infor-
mation for any speciated monitoring network. In addition,
FTIR derived concentrations could be used to substitute for
missing concentrations in the case where the Teflon sample

is valid, but filter samples or analyses on the nylon or quartz
fiber filters are not.

For IMPROVE’s urban counterpart, the CSN network,
after evaluation of the quality of predictions in CSN, this
framework could be used to accomplish goals similar to those
of IMPROVE. Additionally, this method could be used to
predict samples collected in the Federal Reference Method
(FRM) network which is a PM mass only network. In addi-
tion, this method, with appropriate ambient standards, could
be applied at other regional or international monitoring net-
works or sites to provide low-cost comprehensive composi-
tion data. As shown in our previous work, additional data,
including an estimate of organic matter and it’s functional
group composition, can also be obtained from FT-IR spec-
tra of PTFE filters, further increasing the utility of infrared
spectroscopy of aerosol samples.
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