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Abstract. The need for highly accurate atmospheric wind
observations is a high priority in the science community,
particularly for numerical weather prediction (NWP). To ad-
dress this need, this study leverages Aeolus wind lidar level-
2B data provided by the European Space Agency (ESA) as
a potential comparison standard to better characterize atmo-
spheric motion vector (AMV) bias and uncertainty. AMV
products from geostationary (GEO) and low Earth orbit-
ing (LEO) satellites are compared with reprocessed Aeolus
horizontal line-of-sight (HLOS) global winds observed in
August–September 2019. Winds from two Aeolus observ-
ing modes are compared with AMVs, namely Rayleigh-clear
(RAY; derived from the molecular scattering signal) and Mie-
cloudy (MIE; derived from the particle scattering signal).
Quality-controlled (QC’d) Aeolus winds are co-located with
QC’d AMVs in space and time, and the AMVs are projected
onto the Aeolus HLOS direction. Mean co-location differ-
ences (MCDs) and the standard deviation (SD) of those dif-
ferences (SDCDs) are determined and analyzed.

As shown in other comparison studies, the level of agree-
ment between AMV and Aeolus wind velocities (HLOSVs)
varies with the AMV type, geographic region, and height of
the co-located winds, as well as with the Aeolus observing
mode. In terms of global statistics, QC’d AMVs and QC’d
Aeolus HLOSVs are highly correlated for both observing
modes. Aeolus MIE winds are shown to have great poten-
tial value as a comparison standard to characterize AMVs,

as MIE co-locations generally exhibit smaller biases and
uncertainties compared to RAY co-locations. Aeolus RAY
winds contribute a substantial fraction of the total SDCDs in
the presence of clouds where co-location/representativeness
errors are also large. Stratified comparisons with Aeolus
HLOSVs are consistent with known AMV bias and uncer-
tainty in the tropics, NH extratropics, the Arctic, and at mid-
to upper-levels in clear and cloudy scenes. AMVs in the
SH/Antarctic generally exhibit larger-than-expected MCDs
and SDCDs, most probably due to larger AMV height as-
signment errors and co-location/representativeness errors in
the presence of high wind speeds and strong vertical wind
shear, particularly for RAY comparisons.

1 Introduction

Improving atmospheric 3D wind observations in the tropo-
sphere has long been a high priority in the science commu-
nity. In 2018, the National Academies Press published the
2017–2027 decadal survey for Earth science and applica-
tions from space (National Academies of Sciences, Engineer-
ing, and Medicine, 2018) that included 3D winds in a series
of observation requirement priorities and accompanying rec-
ommendations. The survey found that radiometry-based at-
mospheric motion vector (AMV) tracking should be an im-
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portant approach to address the priority requirement of 3D
winds.

AMVs are wind observations derived from tracking clouds
and water vapor features in satellite images through time.
Both geostationary (GEO) and polar-orbiting, i.e., low Earth
orbiting (LEO), satellites observe the motion of such features
in several spectral regions. Infrared bands that are specifi-
cally sensitive to water vapor (WV) absorption can capture
different atmospheric motions using the same channel by
tracking (1) upper-level cloud tops and (2) water vapor mo-
tions in clear air related to upper-tropospheric features (in-
cluding the jet stream and atmospheric waves; Velden et al.,
1997). Window channel infrared (hereafter IR) cloud-tracked
AMVs are based on longwave and shortwave channels that
are useful for detecting motions in cloudy scenes at mid-
to upper-levels related to, e.g., cirrus clouds and at lower
levels related to, e.g., low stratus clouds and fog, respec-
tively (Velden et al., 2005). AMVs are regularly assimilated
in numerical weather prediction (NWP), and they have been
shown to positively impact operational forecast skill (e.g., Le
Marshall et al., 2008; Berger et al., 2011; Wu et al., 2014).
Since NWP data assimilation (DA) methods assume knowl-
edge of observational error statistics, any improved charac-
terization of AMV observation errors has the potential to im-
prove NWP DA and, hence, forecast skill.

Aeolus is a novel polar-orbiting satellite that was launched
in 2018 by the European Space Agency (ESA) to observe
vertical wind profiles from space (Stoffelen et al., 2005;
Straume-Lindner, 2018). On board Aeolus is a Doppler wind
lidar (DWL) instrument (Reitebuch et al., 2009) which ob-
serves winds along the line-of-sight (LOS) of the DWL laser
detected by the precision timing of the backscattered signal.
Rayleigh and Mie receivers detect molecular backscattering
and aerosol and cloud backscattering, respectively (Straume
et al., 2018), and are converted into horizontal LOS (HLOS)
wind velocities (HLOSVs). Rayleigh and Mie receivers ob-
serve both clear and cloudy scenes; hence, the resultant wind
retrievals fall into one of the following four possible observ-
ing modes: Rayleigh-clear, Rayleigh-cloudy, Mie-clear, and
Mie-cloudy. Rayleigh-clear and Mie-cloudy winds are of bet-
ter quality and are recommended for use in analysis based
on NWP assessments by ESA and ECMWF (Rennie et al.,
2020). Rayleigh-cloudy winds are not typically used, as they
sample the same locations as Mie-cloudy winds and are gen-
erally contaminated by the Mie channel. Mie-clear winds are
routinely discarded, as they are of poorer quality since the
Mie backscattered signal is dominated by noise in clear con-
ditions (Rennie et al., 2020; Abdalla et al., 2020).

This study aims to leverage Aeolus level-2B (L2B) HLOS
wind profiles as a potential comparison standard to character-
ize AMV observation bias and uncertainty. The availability
of the consistent, global Aeolus dataset provides the unique
opportunity to assess the performance of AMVs relative to
a global reference wind profile dataset observed by a single
unit. Such a direct global comparison has not previously been

possible due to the limited spatial coverage of other available
reference datasets, e.g., rawinsonde winds, which are mostly
available in the Northern Hemisphere over land (e.g., Chen
et al., 2021; B. Liu et al., 2022; Martin et al., 2021). Further-
more, Aeolus observations are made at a set of fixed vertical
levels that represent the averages of accumulated measure-
ments within vertical range bins. The thickness of these range
bins increases with height to mitigate the decrease in signal
strength with height (Rennie and Isaksen, 2020a). As such,
height-related HLOS wind errors should be small relative to
errors in the AMV height assignment.

The structure of the paper is as follows: Sect. 2 describes
the datasets used. Section 3 defines the quality controls, co-
location methodology, and skill metrics. Section 4 compares
AMVs with co-located Aeolus RAY and MIE wind observa-
tions and discusses the resulting characterization of AMVs
in terms of the mean co-location difference (MCD) and the
standard deviation (SD) of co-location differences (SDCDs)
based on different sets of conditions. AMV performance met-
rics specific to GOES-16 and the suite of available LEO satel-
lites are described in more detail. Section 5 summarizes the
findings.

2 Data

2.1 Aeolus level-2B winds

Aeolus level-2B wind profiles (de Kloe et al., 2020) used
in this study are derived from retrievals from the satellite’s
backup laser, known as flight model-B (FM-B), which was
switched on in 2019. The L2B wind product consists of ge-
olocated vector wind profiles projected along the HLOS of
the FM-B laser, which points away from the Sun (i.e., per-
pendicular to the spacecraft track) at 35◦ off nadir. Aeolus
observations are collected as a line of profiles to the right of
the satellite track. Because of the terminator orbit and sen-
sor geometry away from the poles, winds in ascending orbits
(southeast to northwest ground track) are observed around
sunset (local Equator crossing time (LT) is 18:00 LT), and
winds in descending orbits (northeast to southwest ground
track) are observed around sunrise (local Equator crossing
time is 06:00 LT). The satellite completes one orbit around
Earth in approximately 92 min and has a 7 d repeat cycle.

This study uses Aeolus wind profiles (baseline B10 prod-
uct) during the period of 2 August–16 September 2019, with
12 h from 3 September omitted to account for the corre-
sponding Aeolus blocklisted1 period (defined as a period of

1The meaning of the term “blocklist” is identical to the term
“blacklist”; however, “blacklist” has racist connotations (Conger,
2021). The term “blocklist” is intentionally used in an effort to sup-
port the usage of more neutral computing terminology in scientific
research; in fact, the Aeolus project has already adopted this new
terminology and refers to the list of dates when Aeolus data should
be excluded as “blocklisted” dates.
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time when the Aeolus dataset is known to be degraded and
should not be included in research or operations). The se-
lected period of study was recommended by ESA for analy-
sis, as the Aeolus data are more stable, and the biases are rel-
atively small (Rennie and Isaksen, 2020a). In this study, pro-
files of Aeolus Rayleigh-clear HLOS winds (hereafter RAY
winds) and Mie-cloudy HLOS winds (hereafter MIE winds)
are co-located with AMVs. The AMVs projected onto the co-
located Aeolus HLOS will be referred to as AMV winds, and
the original AMVs will be referred to as AMV wind vectors
hereafter. Data from the other observing modes (Rayleigh-
cloudy and Mie-clear) are of poorer quality and quantity and
are not used.

The Aeolus winds were reprocessed by ESA using the
updated L2B processor v3.3 that includes the M1 mirror
temperature bias correction that was activated on 20 April
2020 (Rennie and Isaksen, 2020a). The M1 mirror temper-
atures are scene dependent and vary based on the top-of-
atmosphere radiation. Since the M1 mirror reflects and fo-
cuses the backscattered laser signal onto the Rayleigh and
Mie receivers, changes in the mirror shape due to ther-
mal variations result in perceived frequency shifts of the
signal. The operational M1 bias correction uses instrument
temperatures as predictors and innovation departures from
ECMWF backgrounds as a reference and is shown to im-
prove the quality of the Rayleigh and Mie wind retrievals,
reducing the Aeolus HLOS wind bias relative to ECMWF
background winds by over 80 %, meaning that the global av-
erage Rayleigh-clear bias decreased to near zero and the Mie
bias decreased to −0.15 m s−1 (Abdalla et al., 2020). While
the M1 bias correction is capable of considerably reducing
the telescope-induced wind bias, some residual bias may re-
main, e.g., in cases where the top-of-atmosphere reflected ra-
diation strongly influences the telescope temperature (Weiler
et al., 2021). Additionally, residual biases may remain in part
due to potential calibration issues of the Aeolus L2B winds
that could, in turn, lead to biases between Aeolus and NWP
background winds (H. Liu et al., 2022).

Recent studies have compared Aeolus winds with vari-
ous reference wind datasets for validation (e.g., rawinson-
des and NWP forecasts). For example, Martin et al. (2021)
validated Aeolus HLOS winds against rawinsonde and NWP
forecast equivalents for 2018–2019. They found that the es-
timates of global mean absolute biases and standard devi-
ations of Aeolus based on comparisons with rawinsonde,
the ECMWF Integrated Forecasting System (IFS), and the
German Weather Service (DWD) forecast model reference
datasets are all comparable, with bias magnitudes ranging
from 1.8 to 2.3 m s−1 for Rayleigh and 1.3 to 1.9 m s−1 for
Mie and standard deviations ranging from 4.1 to 4.4 m s−1

for Rayleigh and 1.9 to 3.0 m s−1 for Mie. In addition, the
biases vary with latitude and season in a similar way from
reference dataset to reference dataset, with the largest differ-
ences observed in the tropics and extratropics, particularly
during the summer/autumn season. Similarly, the Straume et

al. (2020) quality assessments showed good correspondence
between Aeolus L2B winds and ECMWF model winds for
September 2018. Even though Aeolus exhibited random er-
rors that exceeded the mission requirements (4.3 m s−1 for
Rayleigh) or just met the requirements (2.1 m s−1 for Mie),
the Aeolus winds still had a positive impact on preliminary
NWP experiments. (It should be noted that the results from
Martin et al. (2021) and Straume et al. (2020) characterize
Aeolus winds before they were reprocessed with the signif-
icant M1 wind bias correction applied. The Aeolus bias and
error estimates should improve when using the reprocessed
winds.) In addition, ECMWF conducted several studies to
verify the quality of Aeolus observations (e.g., de Kloe et al.,
2020). They found that Aeolus provides high-quality wind
observations relative to ECMWF backgrounds after applying
the M1 bias correction and proper quality controls (QCs; see
Sect. 3), as well as accounting for Aeolus blocklisted dates.
RAY winds minus ECMWF IFS HLOS winds have a global
mean of −0.04 m s−1 and a standard deviation of 5.3 m s−1.
MIE minus IFS winds have a global mean of −0.16 m s−1

and a smaller standard deviation of 3.8 m s−1 (Abdalla et al.,
2020). Related NWP impact assessments show that Aeolus
has a positive impact on operational global forecasts (ESA-
ESRIN, 2019; Rennie and Isaksen, 2020b) at major NWP
centers including ECMWF, the DWD, Météo-France, and the
UK Met Office. It is noted that the ECMWF IFS is used as
a reference in the calculation of the reprocessed Aeolus L2B
winds (where the M1 bias correction is retroactively applied),
and thus, a model dependency is introduced into the dataset
(Weiler et al., 2021).

Despite the high quality and positive impacts, limitations
remain with the Aeolus L2B dataset (Abdalla et al., 2020;
Weiler et al., 2021). Mie and Rayleigh random errors could
be further improved, as the Mie error standard deviations av-
erage to approximately 3.5 m s−1 and Rayleigh error stan-
dard deviations increase from 4 m s−1 to over 5 m s−1 from
July to December 2019 (Abdalla et al., 2020). Furthermore,
MIE winds exhibit a slow (fast) wind speed dependent bias
for high HLOS speeds of negative (positive) sign. Addition-
ally, at the time of writing, it has become apparent that issues
thought to be due to instrumentation or software malfunc-
tions affect the quality of the winds. One specific issue is a
more rapid decrease in the atmospheric return signal relative
to the laser energy itself, and this is linked to slowly increas-
ing random errors for Rayleigh-clear winds (Straume et al.,
2021). Efforts at ESA are currently underway to resolve these
issues.

2.2 Atmospheric motion vectors

AMVs examined in this study (Tables 1–2) are operationally
used by the National Oceanic and Atmospheric Administra-
tion (NOAA) National Centers for Environmental Prediction
(NCEP) and are archived in 6 h satellite wind (SATWND)
BUFR (Binary Universal Form for the Representation of me-

https://doi.org/10.5194/amt-15-2719-2022 Atmos. Meas. Tech., 15, 2719–2743, 2022



2722 K. E. Lukens et al.: Exploiting Aeolus level-2b winds to help characterize AMV bias and uncertainty

teorological data) files centered on the analysis times 00:00,
06:00, 12:00, and 18:00 UTC. All AMVs included in the
SATWND files are produced by NESDIS (National Environ-
mental Satellite, Data, and Information Service), JMA (Japan
Meteorological Agency), and EUMETSAT. AMVs derived
from sequences of GEO satellite images are observed equa-
torward of∼ 60◦ latitude and are stratified by type, including
IR, water vapor cloudy (WVcloud), and water vapor clear
(WVclear) AMVs; visible band AMVs are not used in this
study. Polar AMVs (observed at latitudes poleward of 60◦)
are derived from cloud-tracked IR channels in areas covered
by three consecutive LEO satellite images.

Numerous studies have evaluated bias and uncertainty
characteristics of AMVs through direct comparison with
in situ rawinsonde observations and NWP analyses (e.g.,
Velden et al., 1997; Bormann et al., 2002, 2003; Le Marshall
et al., 2008; Bedka et al., 2009; Velden and Bedka, 2009; Key
et al., 2016; Daniels et al., 2018; Cotton et al., 2020). The
derived motion wind algorithms that generate IR, WVcloud,
and WVclear AMVs can vary between centers (Santek et al.,
2014, 2019). AMV performance metrics vary significantly
by season, level, type, satellite/producer, etc. (e.g., Santek
et al., 2019; Daniels et al., 2018; Cotton et al., 2020; Key
et al., 2016; Le Marshall et al., 2008). For example, typical
values of AMV wind speed bias acquired from seven dif-
ferent data producers and verified against rawinsonde winds
can range from −1.8 to 0.3 m s−1, and wind speed uncer-
tainty represented by the standard deviation can range from
4 to 6.5 m s−1, with higher vector wind root mean square er-
rors of 6–9 m s−1. Even for a single satellite, e.g., GOES-16
or Aqua, speed bias and uncertainty can vary geographically
and vertically.

In fact, AMVs have state-dependent errors that can vary
based on wind speed and water vapor content and gradient
(Posselt et al., 2019). Past reports show that AMVs tend to
exhibit a slow speed bias (1–5 m s−1) at high levels (above
400 hPa) in the extratropics and a fast speed bias (1–3 m s−1)
at middle levels (400–700 hPa) in the tropics (Bormann et
al., 2002; Schmetz et al., 1993; von Bremen, 2008). Recent
improvements to AMV derivation schemes, e.g., in GOES-
16/17 and Himawari-8, have reduced the fast speed bias, with
the residual bias largely being attributed to height assignment
errors (Cotton et al., 2020). Height assignments to the AMVs
via satellite- and ground-based techniques (Jung et al., 2010;
Salonen et al., 2015) have been shown to account for a large
source of AMV uncertainty (Velden and Bedka, 2009). One
factor of the height assignment error is that AMVs are gener-
ally assigned to discrete levels when, instead, they better cor-
relate with atmospheric motions in layers of varying depth
that depend on the vertical moisture profile (Velden et al.,
2005; Velden and Bedka, 2009). Moreover, speed biases and
uncertainties tend to be higher at higher elevations and in
combination with strong wind shear (Bormann et al., 2002;
Cordoba et al., 2017), and this is attributable to larger height
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Table 2. As in Table 1 but for all LEO IR window channel AMVs.

Satellite Operator Sensor Total co-location Counts (%) passing Counts (%) passing
counts RAY QC MIE QC

Aqua NASA MODIS 32 806 1732 (5.3) 1882 (5.7)
MetOp-A EUMETSAT AVHRR 27 710 2935 (10.6) 4930 (17.8)
MetOp-B EUMETSAT AVHRR 31 258 3354 (10.7) 5652 (18.1)
NOAA-15 NOAA AVHRR 4879 489 (10.0) 654 (13.4)
NOAA-18 NOAA AVHRR 3822 358 (9.4) 557 (14.6)
NOAA-19 NOAA AVHRR 10 456 1074 (10.3) 1308 (12.5)
NOAA-20 NOAA VIIRS 70 610 5230 (7.4) 9598 (13.6)
S-NPP NOAA VIIRS 60 395 4262 (7.1) 8268 (13.7)
Terra NASA MODIS 17 818 1916 (10.8) 2571 (14.4)

assignment errors (hereafter the wind shear height assign-
ment error effect).

3 Approach and quality controls

Aeolus HLOS global wind profiles are co-located with
satellite-derived AMVs. The co-location approach imple-
mented here was also used by Hoffman et al. (2022) and
follows that employed at the University of Wisconsin-
Madison/Cooperative Institute for Meteorological Satellite
Studies (CIMSS; Santek et al., 2021). AMV co-location
datasets are prepared separately for RAY and MIE winds.
(A single AMV might appear in both datasets.) AMV ob-
servations are compared with Aeolus observations from the
same and neighboring 6 h cycles to account for all possible
co-locations. An Aeolus observation is retained for compar-
ison with an AMV if the Aeolus observation satisfies all of
the following co-location criteria:

1. Aeolus time falls within 60 min of the AMV time.

2. Aeolus pressure is within 0.04 log10 (pressure) of the
AMV height assignment. (Note that the log of pressures
is used to account for the nonlinear decrease in pressure
with increasing altitude.)

3. Aeolus observation location is within the 100 km hori-
zontal great circle distance of the AMV location.

If multiple Aeolus observations satisfy these criteria for the
same AMV observation, then the Aeolus observation clos-
est in distance is retained. Then, if multiple Aeolus observa-
tions still meet all co-location criteria, the observation clos-
est in pressure to the AMV observation is kept for analysis.
There is no need to consider closeness in time, given the co-
location criteria and the Aeolus orbit. After co-location, the
AMV wind vector is projected onto the HLOS direction of
its paired Aeolus observation.

Our choice of co-location criteria is conservative com-
pared to those defined by the IWWG (International Winds
Working Group) 1998 workshop (Velden and Holmlund,

1998). Although the larger time and distance criteria defined
by IWWG (90 vs. 60 min and 150 vs. 100 km) might re-
tain more co-location pairs and thus a larger sample, the co-
located winds would more likely have larger MCDs and SD-
CDs. Our smaller time and distance criteria restrict the num-
ber of possible Aeolus matches to any one AMV and help
avoid Aeolus matches from two different orbits. The IWWG
height criterion is a fixed pressure difference (25 hPa) that
might be too small at lower levels where pressure layers are
tightly spaced in elevation but too large in the upper atmo-
sphere where the elevation distance between pressure layers
is much larger. Our height criterion is based on a log10 scale
and accounts for the varying distances between pressure lay-
ers throughout the vertical and corresponds to pressure differ-
ences ranging from approximately 300 to 1 hPa for pressures
from 1000 to 10 hPa, respectively.

Once co-located, Aeolus winds and AMVs are filtered by
additional QC tests to retain pairs of QC’d observations. (QC
was implemented after co-location in order to test and com-
pare the use of different QC criteria without having to repeat
the co-location process.) Aeolus QC criteria were chosen fol-
lowing the ESA’s recommendations for the RAY and MIE
observing modes, and these are consistent with those listed in
Rennie and Isaksen (2020a). Specifically, RAY winds are re-
jected if winds are close to topography (pressure > 800 hPa),
have horizontal accumulation lengths < 60 km, vertical ac-
cumulation lengths < 0.3 km, L2B uncertainty > 12 m s−1

at upper levels (pressure < 200 hPa), or L2B uncertainty
> 8.5 m s−1 at lower levels (pressure > 200 hPa). L2B un-
certainty refers to the Aeolus HLOS wind error estimate as-
signed to each wind measurement. Horizontal and vertical
accumulation lengths refer to the horizontal and vertical dis-
tances over which individual measurement signals are accu-
mulated and averaged to improve the signal-to-noise ratio.
In this way, the Aeolus observations represent wind volumes
and not discrete points or levels. The accumulation lengths
can vary and depend on the processor settings. Similarly,
MIE winds are rejected if winds are near topography (pres-
sure > 800 hPa) or L2B uncertainty > 5 m s−1 at any level.
For all AMVs, a forecast-independent quality indicator (QI)
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of at least 80 % is used to filter and retain the high-quality
data; this threshold is recommended for AMV studies and in
NWP by the user community and has been shown to improve
statistical agreement between AMV-producing centers (San-
tek et al., 2019). No explicit outlier QC is applied, and since
there are no extreme outliers (seen below in Figs. 6 and 9),
the QC that is applied is sufficient to eliminate them. Total
co-location counts per satellite and the percentage of obser-
vations that pass QC for each AMV type and Aeolus mode
are presented in Tables 1–2. (It is noted that Himawari-8 and
INSAT 3D WVclear AMVs are not included in the NCEP
data archive.)

The performance of QC’d AMVs relative to co-located
QC’d Aeolus winds are characterized by analyzing the statis-
tics of the difference between AMV HLOSV minus Aeolus
HLOSV. The two key statistics calculated for the co-location
difference (always in the sense of AMV minus Aeolus) are
the MCDs and the SDCDs. Because we are comparing the
AMV and Aeolus HLOSV, a scalar quantity, our statistics
can only be analogs of the standard one. We include the for-
mulae for all the statistics in Appendix A. It is important
to emphasize that the co-location differences have several
components that include errors in both AMVs and Aeolus
winds. Specifically, these are due to the observation error of
the AMVs and Aeolus HLOSV, representativeness errors due
to differences in scales observed, which are related to dif-
ferent shapes of the observing volumes, and to co-location
errors due to the space and time mismatches between the ob-
servations. As previously mentioned, the estimated SD for
Aeolus L2B winds is 3.8 m s−1 for MIE and 5.3 m s−1 for
RAY. We note that it might be possible to estimate the statis-
tics of the co-location and representativeness errors. The co-
location difference may be considered to have the following
three independent components: the error of the AMV winds,
the error of the Aeolus winds, and the difference between the
truth evaluated for the AMV and the Aeolus winds. We can
isolate the first component, the AMV error, if we know the
other two components, and we already have estimates of the
second component, the Aeolus wind error in the L2B data.
The last component is the error due to representativeness
and co-location differences. The differences in time and lo-
cation give rise to the co-location error. The difference in the
shapes of the observing volumes gives rise to the representa-
tiveness error. If we simulate the AMV and Aeolus observa-
tions from a high-quality forecast or analysis or simulation,
which is taken to be the truth, then we can calculate estimates
of the combined representativeness and co-location errors. If
the truth fields are simply interpolated to the observation lo-
cations, then the calculated estimates are for the co-location
errors alone. For this study, we take the first step in isolating
the co-location/representativeness errors by removing the in-
fluence of the Aeolus error from the SDCDs, as the simula-
tion of the AMV and Aeolus observations is out of the scope
of this study. The removal of the Aeolus error estimate re-
sults in a smaller SDCDs, which still includes AMV random

and representativeness errors and the co-location error. The
SDCDs are larger for RAY comparisons than for MIE com-
parisons in terms of both the original (or total) and adjusted
values. Although the Aeolus L2B uncertainty is highly de-
pendent on the time period and processor used to determine
the HLOS winds, it is the correct uncertainty estimate for our
study.

The geometry of the Aeolus observation affects how the
HLOS winds are interpreted for analysis (Straume et al.,
2018). The observed HLOSV provides both a speed and di-
rection and represents the motion of air projected onto the
line-of-sight of the laser that, in 2D space, is nearly orthogo-
nal to the satellite orbit direction (see Fig. 5a in Lux et al.,
2020). Thus, in the ascending orbit phase away from the
poles, a positive HLOSV indicates a westerly wind, and a
negative HLOSV indicates an easterly wind; the opposite is
true for winds in the descending orbit phase. Figure 1 il-
lustrates that, in the tropics, the HLOSV is approximately
equal to the zonal wind in the ascending and descending
orbit phases. In the left column of Fig. 1, profiles of mean
HLOSV for AMVs (solid lines) and Aeolus (long dashed
lines), as well as mean AMV wind speed not projected onto
the HLOS direction (short dashed lines), are shown. In the
center column of Fig. 1, HLOSV MCDs (solid lines) and to-
tal SDCDs (short dashed lines), as well as the adjusted SD-
CDs with the mean Aeolus L2B uncertainty removed (long
dashed lines), are plotted. Open circles indicate pressure lev-
els at which MCDs are statistically significant at the 95 %
level (p value < 0.05), using the paired two-sided Student’s
t test. Corresponding co-location counts are shown in the
right column of Fig. 1. The mean AMV and Aeolus HLOSV
and their differences exhibit similar magnitudes of opposite
sign throughout the vertical between the ascending (Fig. 1a–
b) and descending (Fig. 1d–e) orbit phases. This indicates
that mean HLOSV differences that include winds from both
the ascending and descending orbit phases would be small
and would represent differences of larger opposing magni-
tudes. Moreover, the removal of Aeolus L2B uncertainties
from the total SDCDs results in adjusted SDCDs of similar
magnitude between the orbit phases, implying that the qual-
ity of Aeolus winds is not wholly dependent on orbit phase
during the study period. To simplify the interpretation of the
observed HLOS winds, we multiply HLOSVs in descending
orbit phases by −1. In doing so, a positive HLOSV (away
from the poles) now indicates a westerly wind and negative
a HLOSV an easterly wind, regardless of the Aeolus orbit
phase. All statistics in what follows, including Figs. 2, 3, and
5–14, are based on co-location differences that combine as-
cending and −1 times for descending orbit phase winds.

4 AMV–Aeolus comparison results

In this section, we examine in detail the performance of
AMVs from the GOES-16 GEO satellite and summarize the
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Figure 1. Vertical comparisons of co-located GOES-16 AMVs and RAY winds in the tropics (30◦ S to 30◦ N). The top row shows Aeolus
ascending orbits (ASCs), (a) mean AMV (solid lines), and RAY (dashed lines) winds (m s−1), (b) MCDs (solid), SDCDs (short dashed), and
AMV HLOSV errors, as represented by the SDCD–Aeolus L2B uncertainty (long dashed; m s−1), and (c) co-location counts. Panels (d–
f) are the same as panels (a–c) but for Aeolus descending orbits (DESCs). Colors denote the AMV type, with IR (red), WVcloud (blue), and
WVclear (green). Colored open circles indicate levels where MCDs are statistically significant at the 95 % level (p value < 0.05), using the
paired Student’s t test. Vertical zero lines are displayed in the left and center panels in black. Levels with observation counts > 25 are plotted.

AMV performance of all LEO satellites available in the study
period. Here, the reader should keep in mind that perfor-
mance is relative to Aeolus and for the vector AMV projected
onto the Aeolus HLOS. In agreement with previous stud-
ies, our results confirm that the level of agreement between
AMVs and Aeolus winds varies per combination of condi-
tions, including the observing scene type (clear vs. cloudy)
coupled with AMV type, geographic region, and height of
the observable. Moreover, the findings highlight the value of
using Aeolus MIE winds as a comparison standard to charac-
terize AMVs. For context, we begin with summary statistics
for samples that include all conditions.

Figure 2 summarizes the performance of all available GEO
AMV HLOS winds relative to Aeolus RAY (left column) and
MIE winds (right column) in the period of study; likewise,
Fig. 3 summarizes LEO AMV performance. The statistics in-
clude correlation (r), MCDs, and SDCDs, and their formulae
are listed in Appendix A. The correlation between co-located
HLOS winds describes the overall relation of AMVs to Ae-
olus. The other statistics have their usual meaning (Wilks,

2011) applied to the HLOSVs. Since the MCDs are small
compared to the SDCDs, the RMSDs (root mean square dif-
ferences) and SDCDs are very similar, and in the following
we will only discuss the SDCDs, but any statement concern-
ing the SDCDs also applies to the RMSDs. Using the paired
two-tailed Student’s t test, mean differences significantly
different from zero at the 90 % (p value < 0.10) and 95 %
(p value < 0.05) confidence levels are indicated in Figs. 2–3
by striped and solid bars, respectively, and dotted bars indi-
cate the differences that are not statistically significant. Ob-
servation counts are displayed by gray-blue shading. Direct
comparisons between our statistics and those from previous
studies are limited because all our statistics are HLOSVs and
not vector winds. Although we compare mean AMV–Aeolus
co-location differences with speed statistics, recall that, in
general, the HLOS wind generally approximates the zonal
component of the horizontal flow rather than the wind speed.

The main points from the summary co-location statis-
tics of RAY and MIE winds with AMVs are the follow-
ing: MIE comparisons exhibit higher correlations and lower

https://doi.org/10.5194/amt-15-2719-2022 Atmos. Meas. Tech., 15, 2719–2743, 2022



2726 K. E. Lukens et al.: Exploiting Aeolus level-2b winds to help characterize AMV bias and uncertainty

Figure 2. AMV–Aeolus global mean statistics in the (a, b) NH, (c, d) tropics (TRs), and (e, f) SH for GEO satellites that include the
correlation (r) in red, mean co-location difference (MCD) between the HLOS winds (AMV–Aeolus) in navy blue, standard deviation of
the co-location difference (SDCD) in yellow, and co-location counts as light blue shaded areas. Solid colors denote the 95 % statistical
significance, stripes denote the 90 % statistical significance, and dots indicate the differences that are not statistically significant.

SDCD values relative to RAY, thereby reflecting the general
higher accuracy of MIE vs. RAY winds. In Fig. 2, GOES
and Himawari-8 AMVs have high correlations with Aeolus
(> 0.90). MCDs vary, depending on the AMV satellite, but
are generally smallest in the tropics and largest in the SH
extratropics where the SDCDs are larger. For RAY compar-
isons with GOES and Himawari-8 AMVs, the SDCDs range
from 5.27 m s−1 in the NH extratropics to 6.5 m s−1 in the
SH extratropics and are comparable to wind speed RMSDs
relative to rawinsonde winds (Santek et al., 2019). Of the

satellites listed in Fig. 2, Meteosat wind correlations are low-
est, and the corresponding SDCD values are highest by at
least 2–3 m s−1. LEO AMV–Aeolus co-locations in Fig. 3
exhibit statistically significant MCDs that are comparable to
observed wind speed biases for Aqua and Terra AMVs (Key
et al., 2016; Le Marshall et al., 2008). AMVs from most
LEO satellites exhibit higher SDCD values by ∼ 1–2 m s−1

relative to GEO, particularly in the Antarctic, where SDCD
values are of the order of 7.5–8.5 m s−1 for RAY and 5.9–
7.5 m s−1 for MIE.
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Figure 3. As in Fig. 2 but for LEO satellites.

Differences in the SH extratropics and Antarctic pole ex-
hibit higher SDCD values compared with the rest of the
globe. This is likely due to several factors. During the
study period, the SH region of GEO fields of view cov-
ers a portion of the winter storm tracks that propagate east-
ward all the way around the Southern Ocean. The SH storm
tracks exist year-round, and in winter (June–July–August)
the upper-tropospheric subtropical jet is stronger and acts
as a waveguide for eastward-propagating baroclinic waves
over a broader latitude range (Trenberth, 1991; Nakamura
and Shimpo, 2004; Hoskins and Hodges, 2005), thus ampli-
fying wind shear and storm track intensity. This is one factor
that explains the higher SDCD values observed in GEO dif-
ferences in the SH extratropics, as AMV uncertainties tend to
increase with increasing wind speed (Posselt et al., 2019) and
high wind shear (Bormann et al., 2002; Cordoba et al., 2017).
In the Antarctic polar region, the general strengthening of
the polar vortex aloft in late winter/early spring (i.e., dur-
ing the study period) is related to a stronger Equator-to-pole
temperature gradient brought about by gradually increasing
subtropical lower stratospheric temperatures from March to
September (Zuev and Savelieva, 2019). A stronger Antarc-
tic polar vortex is associated with stronger zonal winds aloft
(and stronger shear), which could increase the corresponding
SDCD values for AMVs due to the wind shear height assign-
ment error effect. Surface effects may also play a role, as very
cold brightness temperatures at or near the polar surface may
be misinterpreted as cloud tops due to the low temperature

contrast between clouds and the surface snow or ice (Key et
al., 2016).

As a case study, we examine in greater detail the perfor-
mance of AMVs from GOES-16, a GEO satellite (Sect. 4.1).
This is done because, compared with other GEO satel-
lites, GOES-16 exhibits high correlations with Aeolus RAY
(> 0.90) and MIE winds (> 0.94), relatively small SDCDs
(5.8–6.5 m s−1 for RAY and 4.7–5 m s−1 for MIE), and have
the largest extratropical sample size from which to com-
pute robust statistics (see Fig. 2). The other GEO satellites
are not further examined as they exhibit larger RAY SDCDs
(Meteosat-8 and Meteosat-11), have a much smaller extrat-
ropical sample size (Himawari-8, Meteosat-8, and Meteosat-
11), or are not actively used in NCEP operations (GOES-15
and INSAT-3D). GOES-16 AMVs are derived from full disk
images centered at 75.2◦W longitude from the onboard Ad-
vanced Baseline Imager (ABI). GOES-16 cloud-top AMVs
are generally of good quality and, when validated against
rawinsonde winds, exhibit a relatively small mean difference
in wind speed ranging from −1.0 to +0.5 m s−1 and mean
vector differences of 3–6 m s−1 that tend to increase with
height (Daniels et al., 2018). Figure 4 presents the GOES-
16/Aeolus co-location number densities (i.e., the total num-
ber of co-located observation pairs within each grid cell on
a 1.25◦ (∼ 140 km) resolution map) covering the period of
study. QC’d GOES-16 AMVs co-located with QC’d RAY
and MIE winds are shown in Fig. 4a and b, respectively. MIE
co-locations exhibit three bands of high-density winds along
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Figure 4. Number densities of quality-controlled GOES-16 AMV observations co-located with quality-controlled Aeolus (a) Rayleigh-clear
(RAY) and (b) Mie-cloudy (MIE) HLOS winds. Colors indicate total number of co-located observation pairs within a grid cell at 1.25◦

(approximately 140 km in the N–S direction) horizontal resolution. Total observation count per panel is displayed at the top left corner.
This and all subsequent plots are for all co-locations with quality-controlled AMV and Aeolus winds during the study period (2 August to
16 September 2019).

the Intertropical Convergence Zone (ITCZ) and extratropical
storm tracks, with few winds found between 0–30◦ S. A simi-
lar but smoother version of the MIE distributions is shown for
co-located RAY winds. The MIE co-location number den-
sity is greater than that for RAY, as AMV observation den-
sity tends to be higher in very cloudy or very moist scenes
(Velden et al., 1997).

For the LEO perspective, we choose to examine the perfor-
mance of all LEO IR AMVs rather than from a single satellite
(Sect. 4.2). This is done because, compared to GEO, LEO
AMVs from each satellite comprise a relatively small sam-
ple of co-located winds, and this would render any associ-
ated performance metric unreliable. Furthermore, unlike the
suite of available GEO satellites, where each observe a dif-
ferent region of the globe (except for small areas where the
footprints of neighboring satellites overlap), each LEO satel-
lite observes AMVs in the same polar regions and thus sam-
ples the same atmospheric motions. Figure 5 depicts the ob-
servation number densities of QC’d LEO AMVs co-located
with QC’d RAY and MIE winds in the Arctic and Antarc-
tic polar regions bounded by 60◦ latitude for Arctic RAY
(Fig. 5a), Arctic MIE (Fig. 5b), Antarctic RAY (Fig. 5c),
and Antarctic MIE (Fig. 5d). In general, more LEO/MIE
co-location pairs pass QC and are retained in the analysis
than for RAY winds. Co-locations in the Arctic are found
across the high latitudes, with MIE comparisons exhibiting
higher concentrations poleward of Eurasia and North Amer-
ica. Antarctic co-locations are primarily found over the west-
ern half of the continent. In this region, water vapor features
are more suitable for tracking and deriving AMVs as they ex-
ist downstream of intense upper-level storm tracks (Hoskins

and Hodges, 2005) in an area of higher annual precipitation
(Grieger et al., 2016).

4.1 GOES-16 AMVs vs. Aeolus

To increase the size of our co-location dataset, we com-
pared all types of GOES-16 AMVs to both Rayleigh-clear
and Mie-cloudy winds. In addition, we do not show results
from WVclear AMV co-locations with Mie-cloudy winds,
as correlations for this category of co-locations are poor, and
the sample size is very small (see Table 1), and this result
may be unreliable. With a larger dataset, it might be possi-
ble to compare Rayleigh-clear and Mie-cloudy winds to clear
and cloudy AMVs only, respectively. Additionally, winds
retrieved from tracking clear-sky and cloud motions repre-
sent different dynamical features and tend to behave differ-
ently. For example, the recommended time interval for track-
ing cloud motions is 10–15 min to capture short cloud life-
times and rapid intensification/deformation, while the rec-
ommended time interval for clear-air motions of 30 min is
suitable to capture variations in jet streams and other clear-
air features (Schmetz et al., 2000).

4.1.1 Rayleigh-clear (RAY) comparisons

Figure 6 depicts density scatterplots that summarize the rela-
tionship of GOES-16 AMVs to RAY winds to highlight the
regional differences in IR (Fig. 6a, d, g), WVcloud (Fig. 6b,
e, h), and WVclear AMVs (Fig. 6c, f, i). Sample statistics are
based on Aeolus as the reference dataset and are displayed
in the lower right of each panel. AMVs are highly correlated
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Figure 5. Number densities of IR-derived AMVs from all available LEO satellites co-located with Aeolus RAY (a, c) and MIE (b, d) winds
in the (a, b) Arctic (north of 60◦ N) and (c, d) Antarctic (south of 60◦ S) are shown. Colors indicate total number of co-located observation
pairs within a grid cell at 1.25◦ (approximately 140 km in the N–S direction) horizontal resolution. Dashed latitude lines are spaced every
5◦. The total observation count per panel is displayed in the top left corner.

with RAY winds (0.88–0.91 in the extratropics and 0.93–0.95
in the tropics), with most co-locations for each AMV type
falling close to the one-to-one line that indicates a perfect
match. Note that, in the NH and SH extratropics, most co-
locations are found in the upper-right quadrant, where HLOS
winds are of positive sign and indicate the dominant westerly
flow of the extratropics. In the tropics, many co-locations are
grouped in the lower-left quadrant that indicates the easterly
flow of the tropical trade winds at lower levels, and the rest
are found in the upper-right quadrant that represents westerly
tropical flow at upper levels. Of the three AMV types, the
best match is for WVclear AMVs, with the comparisons ex-
hibiting the smallest SDCD values in each geographic region

that, in turn, are comparable to known wind speed SD and
RMS (root mean square) of all GEO AMVs relative to raw-
insonde winds (Santek et al., 2019). This is expected since
WVclear AMVs and Aeolus RAY winds are most probably
sampling similar clear-sky scenes, and clear scenes are more
homogeneous over time and space scales, which, in turn, im-
plies smaller co-location differences. Ideally, one would ex-
pect samples large enough to provide statistically significant
co-location differences between RAY winds and WVclear
AMVs only; as it turns out, the co-location differences are
also statistically significant for IR and WVcloud AMVs (see
Fig. 7). In these cases, cloudy AMVs are co-located with Ae-
olus RAY winds that represent clear scenes, and since they do
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not observe the same type of scene, Aeolus and/or AMV rep-
resentativeness errors are most probably larger (hereafter we
refer to this as the cloudy/clear sampling effect).

Figure 7 presents mean vertical profiles of GOES-16
AMVs and Aeolus RAY winds and corresponding MCD and
SDCD distributions, similar to what is shown in Fig. 1. This
perspective can provide additional insight into the accuracy
of AMVs in representing the mean horizontal flow through-
out the atmospheric column. Mean vertical profiles are plot-
ted per AMV type in the NH extratropics (Fig. 7a–c), trop-
ics (Fig. 7d–f), and SH extratropics (Fig. 7g–i). In Fig. 7a,
d, and g, AMV HLOSV (solid lines) and Aeolus HLOSV
(long dashed lines) generally show good agreement at all lat-
itudes, and large gradients of HLOSVs correspond to layers
of strong vertical wind shear inferred by the higher rate of
change of AMV wind speed in the vertical (short dashed
lines). Corresponding MCDs are statistically significant at
most levels at all latitudes (Fig. 7b, e, and h) and seem to
depict known AMV biases relative to high-quality sources
of wind profile observations, particularly outside of the SH.
For example, in the NH extratropics, MCDs range from−0.5
to −1.0 m s−1 at levels where co-location counts peak and
could represent a small slow AMV bias, as previously noted
by Bormann et al. (2002). In the tropics, AMVs exhibit an
apparent small fast bias, which is the positive MCDs of 0.5
to 1.0 m s−1 that could be associated with larger AMV errors
(and larger Aeolus errors) in layers of high winds and strong
vertical wind shear (Cotton et al., 2020).

Profiles of the total RAY SDCDs (short dashed lines in
Fig. 7b, e, and h) that include AMV errors, Aeolus errors,
and co-location/representativeness errors exhibit rather large
values (> 6 m s−1) that tend to increase with height in layers
of strong wind shear, particularly in the tropics, and SH ex-
tratropics. Moreover, the Aeolus QC acts to retain HLOSVs
with larger uncertainties at levels above 200 hPa; this would
explain the corresponding increase in total SDCDs at those
levels. To better isolate the AMV error, the Aeolus error es-
timate is removed from the total SDCDs at each level, re-
sulting in mean profiles of adjusted SDCDs (long dashed
lines in Fig. 7b, e, and h) that include AMV errors and co-
location/representativeness errors. Overall, the adjusted SD-
CDs for all AMV types exhibit similar magnitudes and dis-
tributions in each geographic region throughout the verti-
cal. WVclear comparisons have slightly smaller adjusted SD-
CDs at the upper levels, suggesting that sampling differences
may play a role in the higher accuracy observed for WV-
clear AMVs, given that WVclear representativeness errors
are likely small due to Aeolus RAY and WVclear AMVs
observing similar scenes. Aeolus RAY uncertainty is larger
in the presence of clouds and appears to have a consider-
able impact on the corresponding SDCDs, as the reductions
in IR and WVcloud SDCDs (∼ 1 m s−1) are larger than for
WVclear SDCDs (0.5 m s−1). In the NH extratropics, the
adjusted SDCDs for each AMV type is generally constant
around 5 m s−1, and in the tropics it increases with decreas-

ing pressure from 5 to 6 m s−1. AMV–RAY comparisons
generally exhibit larger MCDs and SDCDs in the SH extra-
tropics at upper levels due to the wind shear height assign-
ment error effect. This is illustrated in Fig. 8, which shows
that the adjusted SDCDs (solid lines) for all AMV types no-
tably increase with increasing AMV wind speed in the SH
extratropics relative to the other regions. This is also true for
Aeolus error estimates (dashed lines) associated with IR and
WVcloud comparisons in the SH (Fig. 8e).

4.1.2 Mie-cloudy (MIE) comparisons

Figure 9 presents density scatterplots like those in Fig. 6 but
compares GOES-16 AMVs and MIE winds. MIE SDCDs are
considerably smaller than those for RAY comparisons, and
this is attributed to the general higher accuracy of Aeolus
MIE wind retrievals. Another possible reason is that MIE
comparisons might generally have smaller co-location er-
rors. Because co-located Aeolus MIE winds and IR and WV-
cloud AMVs are, by definition, more likely sampling simi-
lar cloudy scenes at similar altitudes, we expect the Aeolus
and AMV random and representativeness errors to be small
(hereafter the cloudy/cloudy sampling effect). IR and WV-
cloud AMVs are highly correlated with MIE winds, ranging
from 0.93 in the NH extratropics to 0.97 in the tropics. Most
MIE co-locations fall along the one-to-one line that corre-
sponds to a perfect match. Statistics of AMV minus MIE
co-location differences are generally consistent, albeit with
some notable exceptions, with those for AMV comparisons
with high-quality rawinsonde winds. MCDs and SDCDs are
smallest in the tropics at −0.3 and 4.4 to 4.6 m s−1, respec-
tively, particularly for WVcloud comparisons, which seem
to have the fewest outliers. SH extratropical comparisons ex-
hibit the largest SDCDs (around 5 m s−1) but are still compa-
rable to those associated with high-quality rawinsonde winds
(Velden and Bedka, 2009; Santek et al., 2019). The smaller
SDCDs observed in the NH and tropics suggest that AMVs
accurately represent cloud-tracked motions associated with
the North Atlantic storm track in summer and the summer-
shifted ITCZ; such features are well defined by high MIE
number densities in the north and middle portions of the
GOES-16 field of view in Fig. 4b. The larger SH SDCDs
suggest reduced accuracy in AMV winds that could be due
to the wind shear height assignment error effect.

Similar to Fig. 7, Fig. 10 depicts vertical distributions of
AMV and MIE HLOSVs and their differences. In the tropics
and NH extratropics, MIE comparisons have nearly identi-
cal profiles of HLOSVs for the IR and WVcloud samples,
with the largest MCDs observed at mid-levels in the tropics
(at −1.5 m s−1) and at upper-levels in the NH extratropics
(−2.0 m s−1), respectively. However, some of the larger dif-
ferences occur at levels with a small sample size and may
not be reliable. Despite the vertical variation in the MCDs,
profiles of total and adjusted SDCDs are relatively constant
at 4–5 m s−1, and the contribution of Aeolus uncertainty to
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Figure 6. Density scatterplots of co-located GOES-16 AMVs and RAY winds. Rows are for the (a–c) NH extratropics (30–60◦ N), (d–f) trop-
ics (TRs; 30◦ S to 30◦ N), and (g–i) SH extratropics (30–60◦ S). Columns are for different AMV types, including (a, d, g) IR, (b, e, h) WV-
cloud, and (c, f, i) WVclear. Colors indicate total number of co-located observation pairs within the cells plotted, which are 1 m s−1 on a
side. Sample statistics are displayed in the bottom right corner of each panel. Horizontal and vertical zero lines are plotted in black, as is the
diagonal one-to-one line. The red star denotes statistical significance at 95 %, using the paired two-tailed Student’s t test. HLOSV units are
in meters per second (hereafter m s−1).

the total SDCDs is small, as the removal of Aeolus errors
only slightly reduces the SDCDs. The results suggest that,
for MIE comparisons, the dominant factors contributing to
the error consist of some combination of AMV random and
representativeness/co-location error.

In the NH above 250 hPa, SDCDs increase slightly with
decreasing pressure in a region of strong wind shear that
could lead to larger AMV height assignment errors and rep-
resentativeness errors. Indeed, the adjusted SDCD is shown
to be larger for faster AMV wind speeds while the corre-

sponding Aeolus MIE error estimates remain relatively con-
stant (Fig. 11). This result, in combination with likely small
AMV-MIE co-location errors from the cloudy/cloudy sam-
pling effect, suggests that AMV height assignment errors
dominate the larger SDCDs observed in layers of high wind
speed and strong shear. Additionally, in the tropics, a com-
parison with Aeolus MIE winds reveals a negative HLOSV
bias in the IR and WVcloud GOES-16 AMVs below the
higher cloud tops of the ITCZ (Fig. 10e). Larger MCDs ap-
pear at levels with higher wind speeds, as do larger values
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Figure 7. Vertical profiles of co-located GOES-16 AMVs and RAY winds. The top row shows the NH extratropics (30–60◦ N), (a) mean
AMV HLOSV (solid lines), RAY HLOSV (long dashed lines), mean AMV wind speed (short dashed lines; m s−1), (b) MCDs (solid), SDCDs
(short dashed) and AMV HLOSV errors, as represented by SDCD–Aeolus L2B uncertainty (long dashed; m s−1), and (c) co-location counts.
Panels (d–f) are as in panels (a–c) but for the tropics (30◦ S to 30◦ N), and panels (g–i) are as in panels (a–c) but for the SH extratropics
(30–60◦ S). Colors denote the AMV type, including IR (red), WVcloud (blue), and WVclear (green). Colored open circles indicate levels
where MCDs are statistically significant at the 95 % level (p value < 0.05), using the paired Student’s t test. Vertical zero lines are displayed
in the left and center panels in black. Levels with observation counts > 25 are plotted.

of adjusted SDCDs, although the samples are small. Be-
cause Aeolus MIE errors remain small and constant around
2 m s−1, with respect to AMV wind speed (Fig. 11c), and
AMV-MIE co-location errors are likely small, the results
suggest that AMV height assignment errors contribute most

to the negative MCDs and corresponding larger SDCDs, in
agreement with Cotton et al. (2020, 2021), who also note a
negative bias largely thought to be attributed to AMV height
assignment errors. This finding is relatively new, and the
fact that comparisons with Aeolus depict this feature hints

Atmos. Meas. Tech., 15, 2719–2743, 2022 https://doi.org/10.5194/amt-15-2719-2022



K. E. Lukens et al.: Exploiting Aeolus level-2b winds to help characterize AMV bias and uncertainty 2733

Figure 8. AMV HLOSV error (SDCD–Aeolus uncertainty) derived from GOES-16 RAY comparisons (solid lines; m s−1) and Aeolus
L2B uncertainty (dashed lines; m s−1) with respect to AMV wind speed binned at 10 m s−1 for (a) NH, (c) tropics (TRs), and (e) SH.
(b, d, f) Counts per 10 m s−1 bin for each region.

at the value of using Aeolus MIE winds as a standard for
comparison to characterize cloud-tracked AMVs. Addition-
ally, our comparisons with Aeolus depict another noted fea-
ture in monitoring AMVs by Cotton et al. (2020, 2021):
a pronounced negative wind speed bias in the tropics for
Meteosat-8 is evidenced by large negative MCDs and cor-
responds to large SDCDs in all regions (not shown). This
feature is evident in both RAY and MIE comparisons.

MCDs are largest in the SH extratropics and are sta-
tistically significant throughout the vertical, ranging from
−1.0 m s−1 at low levels to <−3.0 m s−1 above 300 hPa

(Fig. 10h). Strong wind shear corresponding to an inten-
sified jet is inferred at upper levels (Fig. 10g). The larger
MCDs aloft are associated with increases in adjusted SDCDs
with height, which are of the order of 4–6 m s−1. Moreover,
the large MCDs represent over 8.5 % of the corresponding
HLOSVs at upper levels and could be attributed to larger
AMV height assignment errors corresponding to stronger
storm tracks in winter. This is exemplified in Fig. 11e, where
Aeolus MIE errors are shown to be small (2 m s−1) and re-
main relatively constant with increasing AMV wind speed,
while the adjusted SDCDs are larger and increase with AMV
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Figure 9. As in Fig. 6 but for comparisons of IR (a, c, e) and WVcloud (b, d, f) AMVs and MIE winds.

wind speeds > 40 m s−1. The results imply that the large sys-
tematic differences in MCDs at upper levels in the SH extra-
tropics are most probably attributed to larger AMV errors in
combination with strong wind shear.

4.2 LEO AMVs vs. Aeolus

Figure 12 presents density scatterplots that compare LEO
AMVs derived from IR window channels with RAY and MIE
winds in the Arctic (Fig. 12a–b) and Antarctic (Fig. 12c–
d) during the study period. LEO AMVs show good corre-
spondence with both Aeolus observing modes in the polar
regions. In general, comparisons in the Arctic have small
yet significant MCDs (around −0.2 m s−1) and SDCDs esti-
mates of 5.2–6.5 m s−1, while Antarctic comparisons exhibit

larger MCDs and SDCDs. Moreover, MIE comparisons in
the Arctic exhibit the smallest SDCDs, and RAY compar-
isons in the Antarctic have the largest SDCDs and more evi-
dent outliers. This suggests that, during the study period, IR
LEO AMVs are best able to capture cloud-tracked motions
during the summer season (in the Arctic) when cloudiness in-
creases in the vertical and more water vapor content is gener-
ally available to track features (Alekseev et al., 2018). Water
vapor content in the Arctic is largest in summer due to an
influx of water vapor from melting ice and snow and reced-
ing sea ice extent, as well as intensified meridional moisture
fluxes from low latitudes (Alexseev et al., 2018).

As was done for the GOES-16 case study, we examine
the vertical differences between all LEO AMVs and Aeo-
lus winds to ascertain how AMVs characterize the dynamical

Atmos. Meas. Tech., 15, 2719–2743, 2022 https://doi.org/10.5194/amt-15-2719-2022



K. E. Lukens et al.: Exploiting Aeolus level-2b winds to help characterize AMV bias and uncertainty 2735

Figure 10. As in Fig. 7 but for comparisons of IR (red) and WVcloud (blue) AMVs and MIE winds.

flow at the poles (Fig. 13). RAY (red colors) and MIE com-
parisons (blue colors) are presented together. AMV HLOSV
and Aeolus HLOSV profiles are similar throughout the ver-
tical, with notably larger MCDs in the Antarctic at upper
levels. In the Arctic (Fig. 13, top row), MIE winds and co-
located AMVs depict faster motions relative to RAY com-
parisons. Statistically significant MCDs are of the order of
−0.5 m s−1 at mid-levels where co-location counts peak, rep-
resenting slower AMV winds relative to Aeolus. The MCDs
become larger (more negative) nearer the tropopause (around
300–250 hPa), where HLOSVs reach upwards of 15 m s−1,

and AMV wind speeds reach 30 m s−1, while correspond-
ing total SDCDs are generally constant but smaller for MIE
(∼ 5 m s−1) than RAY (∼ 7 m s−1). Removal of the Aeolus
uncertainty yields adjusted SDCD profiles that are nearly
equal to the total MIE SDCDs, indicating the higher accuracy
of MIE winds in the Arctic at all levels, including those with
higher wind speeds. This independence of Aeolus MIE un-
certainty to changes in wind speed is clear in Fig. 14a, where
Aeolus MIE errors are shown to be smaller relative to RAY
and remain relatively constant with increasing AMV wind
speeds. In addition, the near doubling of MIE co-location
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Figure 11. As in Fig. 8 but for MIE comparisons with GOES-16 IR (red) and WVcloud (blue) AMVs.

counts at mid-levels relative to RAY (Fig. 13c) could be due
to increased cloudiness associated with more moisture avail-
ability in the Arctic summer (Alekseev et al., 2018).

In the Antarctic (Fig. 13, bottom row), HLOSVs increase
from 5 m s−1 at mid-levels to nearly 30 m s−1 at very high
levels (∼ 150 hPa), and RAY comparisons are shown to cap-
ture generally faster motions throughout much of the vertical
column. MCDs are small (around −0.5 m s−1) at mid-levels,
where co-location counts peak but are larger aloft and repre-
sent over 10 % of the corresponding HLOSV. Larger MCDs
aloft could be attributed to the wind shear height assignment
error effect related to the strengthening of the Antarctic po-

lar vortex in late winter/early spring. As shown in the Arctic,
MIE comparisons in the Antarctic have smaller total SDCDs
(5–7 m s−1) than RAY (6–12 m s−1, respectively) throughout
the vertical; however, Antarctic MIE and RAY SDCDs are
larger than in the Arctic and appear to increase with height.
Higher SDCD values at upper levels may be attributed to
larger AMV and Aeolus errors in layers of faster winds. Ad-
justed SDCDs and Aeolus error estimates for RAY compar-
isons increase with increasing AMV wind speed (Fig. 14c),
suggesting that both AMV errors and Aeolus errors in lay-
ers of high winds and strong shear contribute to the larger
SDCDs observed in the Antarctic.
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Figure 12. Density scatterplots of co-located IR–window AMVs from all available LEO satellites and RAY (a, c) and MIE (b, d) winds.
Comparisons in the (a–b) Arctic (north of 60◦ N) and (c–d) Antarctic (south of 60◦ S) are shown. Colors indicate total number of co-located
observation pairs within the cells plotted, which are 1 m s−1 on a side. Sample statistics are displayed in the bottom right corner of each
panel. Horizontal and vertical zero lines are plotted in black, as is the diagonal one-to-one line. A red star denotes statistical significance at
the 95 % level, using the paired two-tailed Student’s t test. HLOSV units are m s−1.

5 Summary and conclusions

This study summarizes statistical comparisons of AMVs
with the novel Aeolus L2B HLOS winds for samples strat-
ified by specific sets of conditions and discusses their rela-
tionship to known AMV characteristics. Because Aeolus ob-
serves the HLOSVs – the horizontal wind projected onto the
HLOS of the DWL – derived from the detection of molecular
and aerosol backscattering signals, the assessments of mean
co-location differences (AMV minus Aeolus) and SD of the
differences are all in terms of AMV winds projected onto the
co-located Aeolus HLOS. In the tropics, due to the Aeolus
observing geometry, HLOSV represents the zonal wind. Ae-
olus HLOSV profiles utilized in this study are classified as
RAY or Rayleigh-clear winds (representing mostly clear-sky
scenes) and MIE or Mie-cloudy winds (representing cloudy
scenes only). Winds quality controlled (QC’d) following rec-
ommendations by the ESA for Aeolus and by the user com-
munity for the satellite winds are retained for analysis. The
performance of QC’d AMVs relative to co-located QC’d Ae-

olus winds are characterized by analyzing sample statistics
of the co-located differences, which is AMV HLOSV mi-
nus Aeolus HLOSV. These statistics should not be strictly
interpreted as overall AMV performance, as differences arise
from errors in both AMVs and Aeolus winds and from rep-
resentativeness and co-location errors.

Comparisons of GOES-16 AMVs and IR cloud-tracked
AMVs from LEO satellites are assessed to estimate the
dependence of AMVs on different combinations of condi-
tions including Aeolus observing mode/scene type (clear or
cloudy), AMV type (IR, WVcloud, and WVclear), and geo-
graphic region (tropics and extratropics for GOES-16, Arctic,
and Antarctic polar regions for LEO). GOES-16 was chosen
as a representative of GEO performance, as the AMVs ex-
hibit high correlations with Aeolus, relatively low MCDs,
and SDCDs and have a large sample size from which to
compute robust statistics. The summary assessment of all
LEO AMVs provides a unique, comprehensive perspective
on the characteristics of polar AMVs using a larger sample
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Figure 13. Vertical profiles of co-located LEO AMVs and RAY (red) and MIE (blue) winds. The top row shows the Arctic (north of 60◦ N),
(a) mean AMV HLOSV (solid lines), Aeolus HLOSV (long dashed lines; m s−1), and mean AMV wind speed (short dashed lines; m s−1),
(b) MCDs (solid), SDCDs (short dashed), and AMV HLOSV error, as represented by SDCD–Aeolus L2B uncertainty (long dashed; m s−1),
and (c) co-location counts. Panels (d–f) are as in panels (a–c) but for the Antarctic (south of 60◦ S). Colored open circles indicate levels
where MCDs are statistically significant at the 95 % level (p value < 0.05), using the paired Student’s t test. Vertical zero lines are displayed
in the center panels in black. Levels with observation counts > 25 are plotted.

of co-located Aeolus wind profiles relative to other available
datasets, e.g., rawinsonde profile data. Vertical distributions
of differences in HLOSV are examined, as this perspective
has the potential to provide additional insight into how accu-
rately each AMV type represents the horizontal flow in the
vertical. AMVs exhibit different characteristics in clear and
cloudy scenes that vary with geographic region and in the
vertical, which is in agreement with the findings in Velden
et al. (1997), Posselt et al. (2019), and others. Overall, GEO
and LEO AMVs are found to compare as well with Aeo-
lus RAY and MIE winds as they do to conventional data
sources and NWP products, particularly in the tropics, NH
extratropics, in the Arctic, and at mid- to upper-levels in both
clear and cloudy scenes. SH comparisons generally exhibit
larger-than-expected SDCDs that could be attributed to larger
height assignment errors and larger representativeness and
co-location errors in regions of high winds and strong verti-
cal wind shear.

The main findings from comparing GOES-16 AMVs with
RAY and MIE winds are the following. Aeolus MIE winds

show great potential value as a comparison standard to char-
acterize AMVs. MIE comparisons generally exhibit smaller
biases and uncertainties compared to RAY, reflecting the
higher accuracy of MIE winds and AMVs in cloudy scenes
and larger co-location errors for RAY winds in cloudy
scenes. This is attributed to a combination of smaller Aeolus
MIE uncertainties and smaller co-location/representativeness
errors due to the cloudy/cloudy sampling effect; that is, the
fact that both Aeolus and AMV winds are, by definition, sam-
pling similar cloudy scenes at similar altitudes. The contri-
bution of Aeolus MIE uncertainty to the overall SDCDs is
small; in fact, removal of Aeolus uncertainties further re-
duces the small MIE SDCDs without much change to its
vertical distribution, suggesting that, for MIE comparisons,
the dominant factors contributing to the total error consist of
AMV random errors and representativeness/co-location er-
rors. Additionally, the AMV–Aeolus MIE comparisons de-
pict a relatively new finding that is also noted in Cotton et
al. (2020, 2021) and is largely thought to be attributed to
AMV height assignment errors, i.e., a negative speed bias
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Figure 14. As in Fig. 8 but for LEO IR RAY and MIE comparisons at the poles.

in the IR and WVcloud AMVs in the tropics. The fact that
comparisons with Aeolus exhibit this feature hints at the use-
fulness of Aeolus MIE winds as a standard for comparison
to characterize AMVs. (It should be noted that, because the
period of study is relatively short, the datasets are not large
enough to examine in detail many of the features identified
and studied in the NWP SAF AMV monitoring. However, it
could be possible to verify the identification of such features
in AMV comparisons with Aeolus observations by using a
larger co-location dataset, which the authors are preparing
and making publicly available.)

Regarding GOES-16 RAY comparisons, sampling differ-
ences may play a role in the higher correlation between Ae-
olus RAY winds and WVclear AMVs, since they both rep-
resent similar clear-sky scenes. This is especially true in the
tropics and NH extratropics where MCDs are small, and SD-
CDs are comparable to AMV error values compared with
high-quality rawinsonde winds. It is likely that co-location
errors play a larger role in the RAY SDCDs for IR and WV-
cloud AMVs due to the cloudy/clear sampling effect, where
clear-sky Aeolus winds are co-located with cloudy AMVs
and, thereby, observe different scenes, yielding larger errors.
In addition, the removal of Aeolus uncertainties from the to-
tal SDCDs considerably reduces the RAY SDCDs, particu-

larly for IR and WVcloud comparisons, indicating that Ae-
olus contributes a substantial fraction of the total SDCDs in
the presence of clouds.

Polar AMVs have smaller MCDs for MIE compared to
RAY, although Antarctic AMVs have larger SDCDs than
the Arctic. In fact, GEO and LEO comparisons in the
SH/Antarctic exhibit the largest SDCDs of all regions ex-
amined. Large wind shear is evident in the SH/Antarctic
throughout much of the atmospheric column, and this can
dramatically affect AMV height assignment errors. Indeed,
AMV errors are shown to generally increase with increas-
ing AMV wind speed, as do corresponding Aeolus errors
for RAY winds, suggesting that both contribute to the larger
SDCDs observed in layers of high wind speed. Addition-
ally, larger RAY MCDs aloft could be attributed to larger co-
location/representativeness errors due to IR AMVs and RAY
winds viewing different scenes. The possible mischaracteri-
zation of very cold surface temperatures as clouds may also
be a factor. For GOES-16 MIE comparisons in the SH, AMV
errors are larger and increase with AMV speeds > 40 m s−1,
while Aeolus MIE errors are small and remain relatively con-
stant. This implies that the large systematic differences in
MCDs at upper levels in the SH extratropics are most proba-
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bly attributed to larger AMV errors in combination with the
wind-shear height assignment error effect.

The use of Aeolus winds as a benchmark dataset for the
comparative assessment of AMVs has valuable implications
for future research, including the validation of 3D winds
and the use of such data in NWP. For example, the findings
presented here contribute to the ongoing development of a
feature track correction (FTC) observation operator to ac-
count for AMV height assignment and other biases in data
assimilation (Hoffman et al., 2022). Future studies should
use larger datasets like the ones that the authors are prepar-
ing to compare clear-scene AMVs with Aeolus Rayleigh-
clear winds only and cloudy-scene AMVs with Aeolus Mie-
cloudy winds only. Such studies are anticipated to yield addi-
tional insights into the seasonal performance of AMV char-
acteristics representing different dynamical features in clear
and cloudy scenes and how this might be accounted for or
improved upon in AMV algorithms. Moreover, the robust-
ness of dynamical features identified in AMV monitoring
could be further validated following this approach. In addi-
tion, Aeolus Mie-cloudy comparisons using larger datasets
are expected to have a significant impact towards improving
our understanding and characterization of AMV quality in
cloudy scenes, given the cloudy/cloudy sampling effect and
the small contribution of Aeolus Mie-cloudy error to the to-
tal SDCDs throughout the vertical in all geographic regions,
implying that the corresponding adjusted SDCDs better de-
pict true AMV uncertainty. This is especially critical where
AMV height assignment errors are likely large but Aeolus
Mie-cloudy errors are small and remain relatively constant
with respect to height and AMV wind speed, e.g., in lay-
ers of strong vertical wind shear and in the SH. One lesson
learned from this study is that QC of both AMV and Aeo-
lus observations is critical and largely improves the results.
The Aeolus project has done much to eliminate errors of all
types, but some improvements are expected, e.g., via the re-
moval of DWL instrument calibration-dependent error. Fur-
thermore, some of the bias corrections currently applied de-
pend on ECMWF forecasts, and the analysis of H. Liu et
al. (2022) demonstrates that additional bias corrections for
Aeolus are possible and that such corrections can improve
NWP analysis and forecast results (Garrett et al., 2022).

Appendix A

Formulae for the statistics used in this study are presented
here. Since HLOSV is a scalar, these formulae correspond di-
rectly with the standard textbook formulae. The co-location
database is composed of pairs (xi,yi) for i = 1, n, where n

is the number of co-locations, i is the co-location index, x is
the Aeolus HLOSV, and y is the AMV HLOSV. The corre-
lation (r) between co-located HLOSVs describes the overall
relation of AMVs to Aeolus and is defined as follows:

r =

n∑
i=1

(xi − x)(yi − y)

sxsy
. (A1)

Overbars denote sample means. The corresponding standard
deviations sx and sy are defined as follows:

sm ≡

√√√√ 1
n− 1

n∑
i=1

(wi −w)2, (A2)

where w can equal x or y. The co-location difference (CD)
is the difference in m s−1 between each pair of co-located
AMV HLOSV and Aeolus HLOSV, as follows:

CD= yi − xi, (A3)

and the mean (MCD) represents the sample mean of the CD
for select conditions, such as a specific geographic region,
pressure level, AMV type, or Aeolus observing mode.

MCD=
1
n

n∑
i=1

(CD). (A4)

Using Eq. (A2), we can define the corresponding SDCDs in
terms of CD as follows:

SDCD=

√√√√ 1
n− 1

n∑
i=1

(CDi −MCD)2. (A5)

Finally, the adjusted SDCD, sadj, is defined, in the following,
as the SDCD with the corresponding Aeolus error estimate
sx removed:

sadj =

√
SDCD2

− s2
x . (A6)
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