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Abstract. Detection of liquid-containing cloud layers in
thick mixed-phase clouds or multi-layer cloud situations
from ground-based remote-sensing instruments still poses
observational challenges, yet improvements are crucial since
the existence of multi-layer liquid layers in mixed-phase
cloud situations influences cloud radiative effects, cloud life-
time, and precipitation formation processes. Hydrometeor
target classifications such as from Cloudnet that require a li-
dar signal for the classification of liquid are limited to the
maximum height of lidar signal penetration and thus often
lead to underestimations of liquid-containing cloud layers.
Here we evaluate the Cloudnet liquid detection against the
approach of Luke et al. (2010) which extracts morphologi-
cal features in cloud-penetrating cloud radar Doppler spec-
tra measurements in an artificial neural network (ANN) ap-
proach to classify liquid beyond full lidar signal attenuation
based on the simulation of the two lidar parameters particle
backscatter coefficient and particle depolarization ratio. We
show that the ANN of Luke et al. (2010) which was trained
under Arctic conditions can successfully be applied to ob-
servations at the mid-latitudes obtained during the 7-week-
long ACCEPT field experiment in Cabauw, the Netherlands,
in 2014. In a sensitivity study covering the whole duration
of the ACCEPT campaign, different liquid-detection thresh-
olds for ANN-predicted lidar variables are applied and eval-
uated against the Cloudnet target classification. Independent
validation of the liquid mask from the standard Cloudnet tar-
get classification against the ANN-based technique is real-
ized by comparisons to observations of microwave radiome-
ter liquid-water path, ceilometer liquid-layer base altitude,
and radiosonde relative humidity. In addition, a case-study

comparison against the cloud feature mask detected by the
space-borne lidar aboard the CALIPSO satellite is presented.
Three conclusions were drawn from the investigation. First,
it was found that the threshold selection criteria of liquid-
related lidar backscatter and depolarization alone control the
liquid detection considerably. Second, all threshold values
used in the ANN framework were found to outperform the
Cloudnet target classification for deep or multi-layer cloud
situations where the lidar signal is fully attenuated within low
liquid layers and the cloud radar is able to detect the micro-
physical fingerprint of liquid in higher cloud layers. Third,
if lidar data are available, Cloudnet is at least as good as the
ANN. The times when Cloudnet outperforms the ANN in
liquid detections are often associated with situations where
cloud dynamics smear the imprint of cloud microphysics on
the radar Doppler spectra.

1 Introduction

In mixed-phase clouds the variable mass ratio between lig-
uid water and ice as well as its spatial distribution within the
cloud play an important role in cloud lifetime, precipitation
processes, and the radiation budget (Sun and Shine, 1994;
Yong-Sang et al., 2014; Morrison et al., 2012). The com-
plexity of interactions in mixed-phase clouds may result in
parameterizations that are based on highly uncertain mixed-
phase cloud classifications and thus lead to a misrepresen-
tation of those clouds in models of all scales. Illingworth et
al. (2007) compared vertical ice water and liquid-water con-
tent as observed by a combination of ground-based radar, li-
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dar, and microwave radiometer (MWR) comprised within the
Cloudnet project with global climate models (GCMs). They
showed that many GCMs underestimate the presence of mid-
level clouds (As, Ac) by at least 30 % and that there is a large
spread in the stated frequency of occurrence of liquid wa-
ter in the models. This underestimation of the supercooled
liquid fraction (SLF) in mixed-phase clouds in many GCMs
was e.g. also described in Komurcu et al. (2014). Tan et al.
(2016) argued that a realistic representation of the SLF in
the GCM is needed to better constrain the equilibrium cli-
mate sensitivity. They stated that this can only be reached by
more accurate observations of the distribution of supercooled
liquid in mixed-phase clouds. This remains a challenge due
to the difficulty in identifying the presence of supercooled
liquid-water layers embedded in cloud regions dominated by
ice (Shupe et al., 2008; Luke et al., 2010; Silber et al., 2020).
Besides single-layer mixed-phase clouds existing of a su-
percooled liquid top where ice particles are nucleated and
precipitate out, multi-layer clouds (MLCs) often exist (Vas-
sel et al., 2019). MLCs can interact microphysically via the
seeder—feeder effect (e.g. Cotton and Anthes, 1989; Hobbs
and Rangno, 1998; Radenz et al., 2019; Ramelli et al., 2021);
i.e. ice crystals nucleated in an upper liquid layer can fall
into lower liquid layers, interact with its hydrometeors and
influence cloud lifetime and precipitation efficiency. We thus
argue that it is important to improve the detection of multi-
layer liquid-layer occurrences.

Synergistic measurements of cloud Doppler radar and po-
larization lidar can be used to identify the cloud thermody-
namic phase in mixed-phase clouds (e.g. Shupe, 2007; Illing-
worth et al., 2007; de Boer et al., 2009; Kalesse et al., 2016a)
based on differences in the scattering mechanisms at the dif-
ferent wavelengths. While cloud radars are highly sensitive to
large particles such as ice crystals (the backscattering cross
section is proportional to the particle size D® for the size
range in which the Rayleigh approximation is valid), lidars
are sensitive to higher concentrations of smaller particles
such as cloud droplets and aerosol particles as the backscat-
tering cross section is proportional to the projected surface
area of the scatterers (O’Connor et al., 2005). As an addi-
tional variable, the state of polarization of the received li-
dar backscatter cross section gives information about parti-
cle shape. This is usually utilized by means of the detec-
tion of the circular or linear depolarization ratio (Sassen,
1991), hereafter referred to as the lidar depolarization ratio.
When multiple scattering is negligible, a low (high) lidar de-
polarization ratio indicates the presence of spherical (non-
spherical) particles (Hu et al., 2006). Except for small quasi-
spherical ice particles, ice is usually non-spherical, so that
the lidar depolarization ratio can also be used to infer cloud
phase (Seifert et al., 2010). In conclusion, liquid-dominated
layers are characterized by high lidar backscattering cross
sections and low lidar depolarization ratios concurrent with
small radar reflectivities and small mean radar Doppler ve-
locities. Ice-dominated layers lead to a low lidar backscatter-
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ing cross section and a high lidar depolarization ratio as well
as higher radar reflectivities and higher mean Doppler veloc-
ities. Such synergistic lidar-radar retrievals are however only
applicable up to the maximum lidar observation height deter-
mined by complete signal attenuation at a penetrated optical
depth of about 3 and thus do not allow for the characteriza-
tion of cloud liquid in the entire vertical column, e.g. in the
presence of multi-layered mixed-phase clouds.

Since cloud Doppler radars are able to penetrate multi-
ple liquid layers, they can be used to detect warm and su-
percooled liquid layers (SCLs) beyond the lidar measure-
ment range via identification of morphological features in
the cloud radar Doppler spectrum (Luke et al., 2010; Ver-
linde et al., 2013; Kalesse et al., 2016b) and thus have great
potential to characterize the distribution of SCLs in the en-
tire vertical column. Specifically, if cloud ice and liquid are
observed in the same radar sampling volume and if their pop-
ulations are sufficiently separated by their respective terminal
fall velocities, the cloud radar Doppler spectra may contain
multiple peaks. Since the terminal velocity of small cloud
droplets is negligible, they cause a peak at about 0ms~! in
the Doppler spectra; any deviation from this is caused by ver-
tical motions (Shupe et al., 2004). Ice particles have larger
and broader fall velocity distributions and thus cause a spec-
tral peak at higher Doppler velocities. If the fall velocity dif-
ference between liquid and ice is small (for example when
the ice population is comprised of smaller crystals), single-
peak skewed (non-Gaussian) Doppler spectra are observed
(Williams et al., 2018). Sub-volume turbulence does however
induce spectrum broadening which can smear microphysi-
cally induced morphological features in the Doppler spec-
trum (Kollias et al., 2007). The separation of both hydrome-
teor populations is thus only possible if the cloud radar set-
tings are optimized to reduce spectrum broadening by a short
dwell time, a small beam width, and a small resolution vol-
ume (Kollias et al., 2016). Sufficient range-dependent sensi-
tivity of the cloud radar is also required as the reflectivity of
the liquid peak comprised of small droplets can be as low as
—40 dBz for convective situations (Lamer et al., 2015).

As specific technical settings and cloud conditions are
required in order to identify liquid water directly from
cloud radar measurements, more sophisticated approaches
are needed to make cloud radars applicable to a broader
range of conditions. Artificial neural networks (ANNs) are
increasingly being used in atmospheric science to evaluate
large data sets and/or to combine the advantages of differ-
ent sensors. In short, ANNs are mathematical models trained
to recognize patterns. Validation is often done by compar-
ison to other (physical) retrievals. As emphasized in Lilje-
gren (2009), ANN-based retrievals have been proven to be
reliable statistical techniques that are preferable to compu-
tationally expensive variational retrievals for certain appli-
cations. Liljegren (2009) developed an ANN algorithm in
which G-band vapour radiometer measurements are used
to retrieve low amounts of liquid water and water vapour.

https://doi.org/10.5194/amt-15-279-2022



H. Kalesse-Los et al.: Evaluating cloud liquid detection against Cloudnet 281

Strandgren et al. (2017a) determine cirrus properties from
the SEVIRI imager on Meteosat second-generation satellites
based on a set of ANN-trained SEVIRI thermal observations
and satellite-based lidar backscatter products, among others.
Andersen et al. (2017) use an ANN based on 15 years of
monthly averaged Moderate Resolution Imaging Spectrora-
diometer (MODIS) liquid cloud products to determine the
drivers of marine liquid-water cloud occurrence. All of the
above studies employ multi-layer perceptrons (MLPs, a spe-
cific type of feed-forward artificial neural network) that are
commonly used in atmospheric sciences as they are able to
model highly non-linear functions (Andersen et al., 2017).
Generally speaking, a vector of output data is estimated from
an input data vector by modelling the relationship between
the input and output data. The training of the MLP is done for
a variety of examples where the input and corresponding out-
put are known. The MLP structure consists of an input layer,
a chosen number of hidden layers, and an output layer. Each
of these layers is made up of a certain number of neurons that
exchange information in a way that the output of the previous
layer is used to process the output for each connected neuron
in the subsequent layer according to the corresponding nu-
meric weights assigned to each neuron—neuron connection
through an activation function (Strandgren et al., 2017b). By
using error back propagation introduced in Rumelhart et al.
(1986), the numeric weights of the neurons are adjusted in
an iterative process until the squared error between the pre-
dicted (estimated) output and the known reference output
data reaches its minimum.

In the present study an ANN pre-trained in Arctic con-
ditions developed by Luke et al. (2010) for cloud radar-
based liquid detection beyond full lidar signal attenuation
is applied to mid-latitude observations (Sect. 2). The objec-
tive of the study is to evaluate the ANN-based liquid clas-
sification against the Cloudnet target classification (Hogan
and O’Connor, 2006) by using independent measurements of
MWR liquid-water path (LWP), first liquid-dominated cloud
base height from ceilometer observations, relative humidities
with respect to liquid as obtained from radio soundings, and
for one case study also space-borne lidar observations from
a CALIPSO overpass (Sect. 3). A short conclusion summa-
rizing the findings is provided in Sect. 4.

2 Methods
2.1 Observations
2.1.1 ACCEPT field experiment

Data used in this study were obtained during the Analysis of
the Composition of Clouds with Extended Polarization Tech-
niques (ACCEPT) field experiment which took place at the
Cabauw Experimental Site for Atmospheric Research, CE-
SAR, (51.971° N, 4.927° E) in the Netherlands from 1 Octo-
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ber to 18 November 2014. During that field experiment, the
remote-sensing instrumentation suite operated by the Royal
Netherlands Meteorological Institute (KNMI) was comple-
mented by the Leipzig Aerosol and Cloud Remote Observa-
tions System (LACROS; Biihl et al., 2013) mainly consisting
of a vertically pointing 35 GHz MIRA-35 cloud radar (Gors-
dorf et al., 2015), a ceilometer, a multi-wavelength polariza-
tion Raman lidar (PollyXT; Engelmann et al., 2016), and a
HATPRO-MWR (Rose et al., 2005). Additionally, a new po-
larimetric hybrid-mode 35 GHz cloud radar (named hybrid
MIRA-35) from METEK GmbH described in Myagkov et al.
(20164, b) and the Transportable Atmospheric Radar (TARA,
S-band) operated by the TU Delft were deployed (Pfitzen-
maier et al., 2017).

2.1.2 MIRA-35 characteristics

In the present study, data from the vertically pointing MIRA-
35 were used as input to the ANN of Luke et al. (2010) to pre-
dict liquid beyond full lidar signal attenuation. The MIRA-35
was operated with a pulse length of 208 ns, resulting in a ver-
tical range resolution of 31.18 m. Incoherent averages of 20
Doppler spectra produced from a series of 256 consecutive
radar pulses with a pulse repetition frequency of 5000 Hz led
to a temporal resolution of 1.024 s. The MIRA-35 Doppler

spectrum resolution was 8 cms™ .

2.1.3 Cloudnet target classification

The observations of the MIRA-35, the ceilometer and the
MWR have been processed using the widely used Cloud-
net processing chain. One of the main products of Cloud-
net is the target classification product (Hogan and O’ Connor,
2006) which is illustrated in Fig. 1 and which we use to vali-
date the ANN-predicted liquid detections. In order to classify
a cloud volume to contain liquid, the Cloudnet target classifi-
cation algorithm requires a valid lidar-attenuated backscatter
coefficient. For deep or multiple liquid layers and situations
with low-level fog, the lidar signal can get fully attenuated, so
the Cloudnet target classification thus underestimates the oc-
currence of liquid in the entire vertical atmospheric column
and overestimates the presence of ice as a target category
(Griesche et al., 2020). Such a situation is depicted in the
synergistic radar—lidar observables and the resulting Cloud-
net target classification in Fig. 1. The signals of the PollyXT
lidar/ceilometer were fully/partially attenuated by the near-
surface fog occurring after 18 November 2014, 07:30 UTC,
so that the cloud in 1.5-2.5 km around the 0 °C isotherm was
classified as ice cloud.

2.2 Description of the used artificial neural network

Luke et al. (2010) use collocated measurements with profil-
ing cloud Doppler radar and polarization lidar in thin mixed-
phase clouds or lower layers of thick mixed-phase clouds
to provide information about the existence of liquid water
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Figure 1. (a) MIRA-35 radar reflectivity factor, (b) radar mean Doppler velocity (middle), (¢) radar spectrum width, (d) PollyXT lidar-
attenuated backscatter coefficient at 532 nm, (e) PollyXT lidar linear volume depolarization, and (f) Cloudnet target classification of
17 November 2014, 00:00 UTC, to 18 November 2014, 13:30 UTC, observed during the ACCEPT experiment in Cabauw, Netherlands.

Black dots (a—c) indicate the first cloud base detected by the ceilometer.

in higher cloud layers by predicting the lidar backscatter
and depolarization signal from morphological features in the
cloud radar Doppler spectrum. The procedure to determine
the existence of supercooled liquid droplets from cloud radar
Doppler spectra is a two-step technique. In the first step,
morphological feature extraction from cloud radar Doppler
spectra is done by applying a second-order Gaussian con-
tinuous wavelet transform (CWT) to each measured radar
Doppler spectrum. In that way, the spectral power is decom-
posed into a two-dimensional array with feature localization
in Doppler velocity and spectrum width; each Doppler spec-
trum can thus be regarded as a sum of different Gaussians.
In the second step, a selected subset of bins from six differ-
ent scales of the CWT as well as the first three radar mo-
ments (reflectivity factor Z, — dBZ, mean Doppler velocity
Vp —ms~!, and Doppler spectrum width & —ms~!) of each
Doppler spectrum is the input to the ANN used in this work
to predict the existence of liquid. The ANN is of the multi-
layer perceptron (MLP) type consisting of 256 input nodes,
five hidden layers, and two output nodes. Each of the five
hidden layers consists of 32 nodes. Lidar particle backscatter
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coefficient (8 — st~ m~!) and lidar depolarization ratio (§)

are the two output variables from which the existence of lig-
uid is predicted using appropriate thresholds of 8 and § later
on. In the training phase, which was performed on data from
the Mixed Phase Arctic Clouds Experiment (MPACE, Ver-
linde et al., 2007) obtained in autumn 2004 at the US Depart-
ment of Energy’s (DOE’s) Atmospheric Radiation Measure-
ment (ARM) North Slope of Alaska (NSA) permanent site
in Utqiagvik (formerly known as Barrow), Alaska, the back
propagation of errors algorithm was applied. In short, the 8
and 6 output of the ANN for each time and height pixel were
compared to values measured with a high-spectral-resolution
lidar (HSRL, Eloranta, 2005). The difference between ANN-
predicted and lidar-observed (i.e. the error) was monitored,
and the internal weights of the nodes were adjusted until
the error did not decrease any further during the succes-
sive cycling through the Doppler spectra training data set.
Only a fraction of the MPACE data was considered in the
training phase: most of the data were used for validation.
Turbulent broadening of the cloud radar Doppler spectrum
(e.g. in strong convection) decreases the imprint of cloud mi-
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crophysics on the Doppler spectra. The MPACE data set was
characterized by largely stratiform conditions. As stated in
Gardner and Dorling (1998), the ability of an ANN to predict
cloud properties does not only depend on an informed choice
of predictors, but also requires sufficient data that fully rep-
resent all cases that the ANN is required to generalize, as
ANNs perform well for interpolation but poorly for extrapo-
lation. We can thus only expect good predictions of liquid in
low-turbulent clouds but not in strongly convective clouds.
The objective of this study was to check the performance
of the ANN trained with the MPACE observations in Luke
et al. (2010) on a new data set, and the ANN was thus not
re-trained.

2.3 Classifying liquid-containing sections from ANN
predictions

The ANN predicts backscatter coefficient and particle depo-
larization ratio. Thresholds need to be applied to these pre-
dicted B and § in order to identify regions which show optical
properties similar to the ones produced by liquid water.

For visual illustration of the mapping from predicted li-
dar variables to hydrometeor class labels, a scatter plot of
predicted 8 and § was created (Fig. 2a). As previously men-
tioned, lidar-observed or ANN-predicted high values of B
and near-zero § are reliable indicators of liquid-dominated
cloud regions; they clearly stand out as a feature in Fig. 2a.
The scatter plot of predicted 8 and § shows two more distinct
features, one between the functions “linear-1" and “linear-2”
with higher values of § and lower values of g indicating ice
and another feature of very high values of § and very low
values of B situated below the function “linear-2” that can
be attributed to the optically thinner ice cloud with lower
radar reflectivities above 7km on 18 November 2014 (see
Fig. 2b). Similarly to Luke et al. (2010), fixed thresholds of
B and & were used to derive a binary mask separating liquid
predictions from other target types. For a sensitivity study
of ANN-predicted liquid occurrence for the entire ACCEPT
data set, different HSRL-based published thresholds (Shupe,
2007; de Boer et al., 2009; Luke et al., 2010) as well as a new
linear function threshold (labelled “linear-1” in Fig. 2) were
employed (see Table 1). Threshold values for 8 of all three
published studies are similar. Shupe (2007) and Luke et al.
(2010) use the same § threshold of 0.1 for liquid classifica-
tion, while de Boer et al. (2009) with a value of 0.03 are much
more stringent. The studies are subsequently referred to as
“Shupe2007”, “deBoer2009”, and “Luke2010”. The linear-1
threshold function was found by a sensitivity study and gave
the most similar classification results to the three cited pub-
lished threshold values. Figure 2b shows the corresponding
time-height representation colour-coded by linear separation
of the predicted (backscatter vs. depolarization) dimension
using linear functions.

The liquid classification methods were applied to the en-
tire ACCEPT data set. In doing so, the following pre- and
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Table 1. Published thresholds of B and § for lidar-based liquid clas-
sification and the linear-1 function threshold used for the ACCEPT
data set.

Method Thresholds

Shupe2007 log(B) > —4.5,8 <0.1
deBoer2009 log(B) > —4.3,5 < 0.03
Luke2010 log(B) > —4.3,6 < 0.1

Linear function-1 (mé+8) m=12,=-5.0

post-processing steps were applied to the 7-week-long data
set. Firstly, to account for the effects of radar partial beam
filling, cloud edges are excluded from the ANN input data
by setting data in the first and last range gates of a detected
cloud (i.e. cloud base and cloud top pixel) to “clear sky”. Sec-
ondly, pixels classified as aerosols/insects were explicitly ex-
cluded. Thirdly, using model temperature data of the Global
Data Assimilation System (GDAS1) employed by the Global
Forecast System (GFS) model, unphysical liquid predictions
below —37°C were re-classified as ice. The in-cloud pix-
els which were classified as liquid-containing by the ANN
using the above-mentioned thresholds were sometimes quite
patchy. Similarly to Shupe (2007), a homogenization step to
create more coherent liquid layer structures by usinga 5 x 5
pixel neighbourhood smoothing was introduced. A pixel was
kept as a liquid-containing pixel when at least 60 % of the
pixels in the 5 x 5 box around the centre one were also clas-
sified as liquid-containing.

3 Results and discussion

To assess the performance of the Luke et al. (2010) ANN-
based liquid prediction from cloud radar Doppler spectra us-
ing different published thresholds of lidar backscatter coef-
ficient and depolarization ratio against the Cloudnet target
classification and against independent observables, a two-
step validation was performed. Firstly, a case study (17—
18 November 2014 consisting of 100 000 samples) was anal-
ysed in depth: see Table 2. Secondly, statistical results for the
ANN-based liquid prediction for the entire ACCEPT data set
(1070 h of observations, i.e. 1.7 million samples) are given in
Table 3 and discussed subsequently. In the following, the ab-
breviation CD is used for cloud droplet-bearing samples and
non-CD for non-cloud droplet-bearing samples. It should be
noted that no further distinction between other liquid-bearing
samples such as drizzle/rain is made for the ANN-based lig-
uid predictions.

Predictions that meet the criteria from Sect. 2.3 are com-
pared to classifications from Cloudnet (treated as ground
truth). The comparison yields an error matrix consisting of
correctly classified predictions, i.e. true positive (TP) and
true negative (TN) as well as false positive (FP) and false
negative (FN), which concern wrong predictions respec-
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Figure 2. (a) Frequency of occurrence of ANN-predicted lidar backscatter coefficient 8 vs. predicted lidar linear depolarization § for the
17-18 November 2014 case study. (b) Time-height mapping of predicted g and § of the three corresponding areas in the (a) panel, which
are separated by the two linear thresholds. Black dots (b) indicate the ceilometer cloud base height.

tively. Described below are four metrics used to evaluate the
predictive performance against Cloudnets’ liquid detection,
three correlation coefficients o, p, and the fraction of liquid
predicted located within a relative humidity above 90 %.

1. Error matrix: a 2-by-2 matrix consisting of the num-
bers for correctly identified CD (TP) and non-CD (TN)
time—height grid cells as well as falsely classified non-
CD (FP) and CD (FN) cells respectively, i.e.

TP FEN
EM=<FP m ) )

2. Precision: a real value between O and 1, where 1 is
the perfect score. prec = TPT—EFP, i.e. the fraction of
how many predictions were correctly classified as CD
(i.e. TP) by the sum of TP and predictions falsely clas-
sified as CD (i.e. FP). In the context of this work, it mea-
sures the amount of CD overestimation. The closer pre-
cision gets to 1, the more precisely actual CD cells are
predicted as such. Precision can also be described as 1
minus the false alarm rate.

3. Recall or probability of detection: a real value between

0 and 1, where 1 is the perfect score. recall = TP&%,
i.e. the fraction of TP and the sum of TP and falsely
classified non-CD (i.e. FN). In the context of this work,
“recall” measures the amount of CD underestimation.
The closer recall gets to 1, the less likely it is missing
actual CD cells. Note: the ceilometer lidar signal which
is used as a ground-truth indicator for CD availability
is much more sensitive to CD than Doppler cloud radar

signals, and thus recall values below 1 are expected.

4. Accuracy: a real value between 0 and 1, where 1 is the

perfect score. acc = %, i.e. the fraction of
all correctly predicted CD pixels and the sum of all sam-
ples. In the context of this work it measures the over-

all fraction of correct vs. incorrect predictions, where
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acc = (.75 if the retrieval correctly classifies three out
of four inputs.

5. Correlation between MWR-LWP and retrieved liquid
layer thickness LLT: The MWR-LWP time series is cor-
related with the LLT time series computed as the sum
of the vertical extent of CD-containing volumes LLT =
Ncp - 8h, with §h =40 m range resolution. Profiles in
which rain was observed on the ground were excluded
from the correlation coefficient determination to avoid
wrong MWR-LWP caused by a wet MWR radome.

6. Correlation between ceilometer first cloud base height
(CBH) and retrieved first liquid layer height (LLH): the
ceilometer first CBH time series is correlated with the
first LLH time series as retrieved from the CD mask.

3.1 17-18 November 2014 case study results

The 37.5h-long case study of 17 November 2014,
00:00 UTC, to 18 November 2014, 13:30 UTC, was char-
acterized by a multitude of cloud types, including pure
liquid-water clouds, stratiform mixed-phase clouds, high
clouds, mid-level clouds and near-surface clouds (fog) as
shown in Fig. 1. On 17 November 2014 between 03:00-
09:00 UTC and 15:00-24:00 UTC several rain showers from
low mixed-phase clouds with cloud top temperatures be-
tween —10 and —2 °C were observed. At around 12:00 UTC,
a thin warm liquid cloud at 1 km altitude with a LWP be-
low 30 gm™~2 was present. On 18 November, different multi-
layer clouds with varying vertical extents were present, a
high cloud at 6-9 km was firstly situated above a mid-level
cloud at 2-5km and later on over a precipitating stratiform
cloud at about 2 km altitude with a cloud top temperature of
—5°C. Below this cloud was a layer of near-surface fog.

In Fig. 3 the comparison of the resulting liquid masks of
the ANN of all presented thresholds and for Cloudnet for
this case study are shown. There is mostly good agreement
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Figure 3. Sensitivity study of liquid pixel classifications of the 17-18 November 2014 case study using liquid mask thresholds of
Shupe2007 (a), deBoer2009 (b), Luke2010 (c), and linear-1 (d) on the ANN-predicted lidar variables. Light brown: Cloudnet-only lig-
uid classifications, blue: ANN-predicted pixels using the given thresholds which were not classified as liquid droplets by Cloudnet, red:
pixels classified as liquid by the ANN and Cloudnet, grey shading: pixels for which neither Cloudnet nor the ANN classified cloud droplets,

black dots: ceilometer first cloud base height, and white: clear sky.

in liquid detection for the stratiform mixed-phase clouds
on 17 November before 21:00 UTC and the liquid cloud
at around 12:00 UTC on 17 November. However, since the
liquid-threshold boundaries of deBoer2009 are very strict,
many potential liquid pixel candidates are not considered
(e.g. around 03:00 UTC and 18:00 UTC on 17 November).
For this particular case, the Cloudnet target classification al-
gorithm was not able to fully identify the cloud top layer
at —10°C during 21:00-24:00 UTC on 17 November and
at about 2 km during 09:00-12:00 UTC on 18 November as
mixed-phase and/or supercooled liquid-containing because
of full lidar signal attenuation in the rain/fog below. The
ANN-based liquid detection clearly outperforms Cloudnet in
these situations.

For independent validation of the areas classified as liquid-
containing, the summed-up liquid layer thickness (LLT) of
all pixels classified as liquid by the ANN or Cloudnet is com-
pared to the MWR-LWP (Fig. 4) as proposed by Luke et al.
(2010). MWR-LWP uncertainty amounts to 25 gm™2. Pro-
files in which considerable amounts of rain/drizzle reached
the ground were excluded in the LLT determination to avoid
situations with a wet MWR radome, leading to an invalid
MWR-LWP estimate (as indicated by the rain flag in Fig. 4).
In some situations the ANN and in others Cloudnet match
the time series of MWR-LWP better. A large discrepancy be-
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tween ANN-LLT and MWR-LWP is obvious on 18 Novem-
ber, 04:00-06:00 UTC: MWR-LWP is very low, while ANN-
LLT is high. A misclassification of ice as liquid by the ANN
at 2-3.5km height can thus be concluded which is corrob-
orated by the PollyXT lidar signal showing high depolar-
ization values indicating ice crystals. After 07:00 UTC on
18 November, the lidar signals are fully attenuated by the
fog near the ground and are thus not available for assessment
of ANN classifications in higher layers. Analysis of radar
Doppler spectra time and height spectrograms at around 6—
9 km altitude showed only monomodal spectra related to the
falling ice crystals from above. In conclusion, most certainly,
no formation of supercooled liquid at 7 km altitude at —37 °C
occurred. The ANN thus most likely misclassified ice as lig-
uid because the observed Doppler spectra at around 7 km
were characterized by high spectrum width, small reflectivi-
ties and small mean Doppler velocities. High Doppler spec-
trum width might be related to more turbulent conditions
which result in a decrease in the performance of the ANN
because the microphysical imprint of the hydrometeors on
the radar Doppler spectra is decreased.

The error matrix and evaluation metrics (first eight rows
in Table 2) show the performance of the ANN by compar-
ing ANN-based liquid predictions to valid Cloudnet liquid
detections for time—height cells with reliable radar and lidar
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Table 2. Error matrix, performance metrics, and correlation coefficients for MWR-LWP vs. LLT, MWR-LWP vs. LWP,4, and ceilometer
CBH vs. LLH, case study 17-18 November. The statistic includes only valid pixels.

Shupe2007  deBoer2009 Luke2010 Linear-1  Cloudnet
TP 28 684 22209 26 803 28816 46215
TN 59342 60 605 59615 59620 62424
FP 3082 1819 2809 2804 0
FN 17531 24006 19412 17399 0
Precision 0.903 0.924 0.905 0.911 1
Recall 0.621 0.481 0.580 0.624 1
Accuracy 0.810 0.762 0.795 0.814 1
PMWR—LWP,LLT 0.436 0.533 0.490 0.489 0.471
PMWR—LWP,LWP,q 0.275 0.471 0.335 0.345 0.399
Pceilo—CBH,LLH 0.775 0.725 0.738 0.755 0.913
Lig-PxI (liquid pixel) at RH > 90 % n/a n/a n/a n/a n/a

n/a: not applicable

signal status. Depending on the threshold given in Table 1,
precision ranges between 0.9 (Shupe2007) and 0.92 (de-
Boer2009). Contrarily, recall values range between 0.53 (de-
Boer2009) and 0.67 (linear-1), indicating that looser thresh-
olds are better at detecting more TPs while keeping the num-
ber of FNs comparably low. Overall accuracy ranges be-
tween 0.76 (deBoer2009) and 0.81 (linear-1). Regions with
high Doppler spectrum width near the cloud base (see Fig. 1,
18 November, 03:00-06:00 UTC between 2 and 3 km alti-
tude) contribute a large portion of those FPs for all thresh-
olds. Lower recall values indicate a higher degree of under-
estimation of CD detections, which is caused by liquid lay-
ers with low LWP values below 50 gm~2, e.g. the thin liquid
cloud on 17 November around 12:00 UTC at 0.5 to 1 km alti-
tude. Profiles characterized by low precipitation rates of rain
and drizzle have a negative Cloudnet rain flag and are thus
not excluded from the analysis. For these drizzle/rain pixel
the ANN often predicts liquid (see Figs. 3 and A2 between
0 and 1.5 km). Since the ANN does not distinguish between
different liquid classes such as drizzle/rain and cloud droplets
(CDs), the ANN classifies all these pixels as cloud droplets,
which are then counted as FPs. FNs often occur when Cloud-
net classifies a certain hydrometeor class at low altitude and
extends this target class for all pixels in the profile up to the
cloud top, which e.g. either happens in low-intensity pre-
cipitation (see Fig. Al, misclassification of drizzle/rain as
cloud droplets by Cloudnet, e.g. 17 November 2014, 03:00-
04:00 UTC, 0.5-2 km) or for the ice and supercooled droplets
class on 17 November, 17:30 UTC, resulting in a 1 km-deep
mixed-phase layer at 1.5-2.5 km altitude. In such situations
the ANN might be more accurate in determining the location
of cloud droplets, but since it is evaluated against Cloudnet
as a ground truth, FNs result.

In this work the ceilometer first CBH is correlated with
the predicted first LLH. pceilo—cBu,LLE Of the four ANN
methods are on the order of 0.86 (deBoer2009) to 0.92
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(Shupe2007) for the entire ACCEPT data set (see Table 3);
i.e. there is a failure rate of 8 %—14 %. This failure rate can be
explained by several conditions. Firstly, in some situations,
like on 18 November 2014 between 01:00 and 04:00 UTC,
the ceilometer cloud base variable is not representing the
base of the liquid layer but instead the base of precipitat-
ing ice crystals (Fig. 1). This is caused by specular reflection
from the planar planes of horizontally aligned ice crystals as
described in Westbrook et al. (2010). When the ANN is not
misclassifying these ice crystals as liquid, the difference in
ceilo-CBH and ANN-LLH is high. Secondly, there are situ-
ations where liquid layers with low LWP are only detected
by the ceilometer but not by the cloud radar (17 November,
11:00 UTC, cloud at 1.7 km). Thirdly, there are cloud scenes
where the ceilometer is fully attenuated by precipitation or
low-level fog (thus reporting the precipitation or fog base as
first cloud base) which the radar can penetrate/is not sensi-
tive to or which is below the first radar range gate. Fourthly,
in situations where the ceilometer is still able to penetrate
light precipitation to detect CBH (17 November, 03:00-
09:00 UTC, 17:00-24:00 UTC) and the ANN misclassifies
drizzle/rain as cloud droplets, further discrepancies arise.
These conditions lead to a decrease in the pceilo—CBH,LLH-
The pceilo—cBH,LLH for ceilometer CBH and Cloudnet for the
entire ACCEPT data set is higher and amounts to 0.97. While
the liquid layer base height variable in Cloudnet is based on
the gradient of the ceilometer-attenuated backscatter coeffi-
cient, the internal ceilometer cloud base determination is not
precisely documented in the ceilometer manual. Differences
in cloud base height leading to a failure rate of 3 % may thus
occur due to different backscatter coefficient thresholds.

The pmwr—Lwp,LLT also shows positive correlations for
all the methods. As shown in Table 2, it ranges between
0.44 (Shupe2007) and 0.53 (deBoer2009); for Cloudnet
the pMmwr—Lwp.LLT amounted to 0.47. Converting the LLT
to the physically more meaningful LWP,q cor results in
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Figure 4. Comparison of MWR-LWP (left y axis, blue bars) and liquid layer thickness (LLT, right axis) of the ANN-predicted liquid layer
masks and Cloudnet LLT (orange) for the 17-18 November 2014 case study for all used liquid-detection thresholds. The disdrometer-based
Cloudnet rain flag is depicted by green and red markers near the bottom of the plot respectively, indicating profiles with rain (red) and times
where it was drizzle-/rain-free or precipitation rates were too low to be observed by the disdrometer.

PMWR—LWP,LWP,4 that are very similar to PMWR—LWP,LLT>
with moderate correlation (0.47) for deBoer2009 and weaker

correlations for all the other methods. Both pmwRr—Lwp,LLT
and pMwRr-Lwp,LWP,; Of deBoer2009 show the strongest
relationship with the measured MWR-LWP. The period
17 November, 21:00 UTC, to 18 November, 12:00 UTC, in
Fig. 4 shows the highest differences in LLT between the
deBoer2009, Cloudnet, and other methods. The number of
CD predictions in the precipitating system (17 November,
20:00-23:00 UTC), the region with higher spectrum width
(18 November, 04:00-06:00 UTC, at the cloud base and
18 November, 10:00-13:00 UTC, at 7 km altitude; see Fig. 3)
is lowest for deBoer2009, therefore reflecting the MWR-
LWP best. However, deBoer2009 also counts the least num-
ber of TPs, due to its tight thresholds, which seems to have
minor effects on the correlation coefficient. Unfortunately, no
radiosondes were launched during the presented case study,
so the relative humidity-related measure could not be deter-
mined. Multiple other case studies had similar results.

3.2 5 October 2014 case study results

As previously mentioned, no validation of the ANN lig-
uid prediction can be made if the ground-based lidar sig-
nals are fully attenuated. We therefore use the unique op-
portunity to compare the Cloudnet and ANN liquid identi-
fications in multi-layer cloud situations to a nearby (47 km
distant) CALIPSO overpass on 5 October 2014, 01:05 UTC.
On 5 October 2014, 01:00-04:00 UTC, multiple cloud layers
were present. Besides warm stratiform liquid clouds below
3 km altitude, a mid-level cloud with a cloud top temperature
of —14 °C was observed at 5 km altitude. An extensive cirrus
was present between 7 and 10.5 km altitude. From 01:00 to
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03:00 UTC, the PollyXT lidar signal was mostly fully atten-
uated by the lowest liquid cloud at 1 km altitude, leading to
a misclassification of liquid as ice by Cloudnet for the warm
cloud at 2.5 km altitude. Also (except for a few pixels where
the lidar had a valid signal), Cloudnet classified the mid-level
cloud as ice cloud. The ANN correctly predicted liquid for
all warm clouds (note that below the cloud base of the low-
est cloud layer, ANN also predicts liquid which is counted
as CDs) since it does not distinguish between different lig-
uid classes such as cloud droplets and rain/drizzle. The ANN
classifies the mid-level cloud as liquid-topped with ice pre-
cipitating from it below. The phase classification of the ANN
in the cirrus is mostly ice except for some regions close to the
cloud base, where high spectrum width and near-zero mean
Doppler velocities result in a prediction of supercooled lig-
uid.

The cloud fields were extensive, so CALIPSO identified
a very similar cloud situation with a cirrus of high vertical
extent and a mid-level cloud at 3.5-5 km. The CALIOP sig-
nal was fully attenuated in this cloud layer, so the low-level
warm clouds were missed by the satellite observation. The
CALIPSO cloud-phase index classified the high cloud as ice
cloud and the mid-level cloud as liquid-topped cloud with
liquid-only or liquid + ice in the lower regions of this cloud.
CALIPSO thus validates the ANN-based liquid prediction
for the mid-level cloud. This points to the usefulness of em-
ploying satellite-based hydrometeor target classifications as
an independent validation tool.
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Figure 5. Observations and retrievals on 5 October 2014, 01:00-04:00 UTC: (a) MIRA-35 radar reflectivity factor, (b) PollyXT 1064 nm
attenuated backscatter coefficient, (¢) Cloudnet target classification, and (d) comparison of Cloudnet and ANN liquid masks. The first
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3.3 Statistical results for the entire ACCEPT field
campaign

mary of this evaluation is presented in Table 3. All ANN
thresholds achieve high precision values > 0.9, indicating
a low FP rate. Recall values are moderately lower com-
pared to the 17-18 November 2014 case study, ranging from
0.4 (deBoer2009) to 0.54 (Shupe2007). Accuracy lies above

A more general evaluation of all methods is done for the en-
tire ACCEPT field campaign comprised of 1070 h of obser-
vations counting more than 1.7 million samples. The sum-
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0.75 (three out of four predictions are correct) for all meth-
ods except slightly lower values for deBoer2009 (explained
in Sect. 3.1). However, deBoer2009 achieves the best cor-
relation for oMwr-Lwp,LLT and PMWR-LWP,LWP,, due to
CD overestimation (larger numbers of FPs) for Shupe2007,
Luke2010, and linear-1. Overall, all the methods achieve
better correlation values for the entire data set compared
to the case study of 17-18 November 2014, with high
Peeilo—CBH,LLH, values ranging from (0.86-0.92) to (0.97)
for Cloudnet respectively. The similar values of correlation
coefficients and cloud droplet prediction error matrix ele-
ments in Tables 2 and 3 indicate that the entire data set is
well represented by the 17-18 November 2014 case study.
As indicated in Sect. 3.1, misinterpreted spectral signatures
(small ice particles with low fall speed are misclassified as
liquid) and turbulence-broadened radar Doppler spectra are
the main driver of misclassifications of the pre-trained Luke
et al. (2010) approach.

An additional independent validation is done using ra-
diosonde launches from the campaign site as well as launches
from DeBilt airport about 30 km away. Liquid-detected pix-
els are only evaluated in this way within £30 min of a ra-
diosonde launch, meaning only a small subset of data from
the entire field experiment is considered. Radio sounding
profiles with relative humidity (RH) with respect to liquid
water (w.r.t.1.) larger than 90 % overlapping with liquid de-
tection layers occur only during 1.5 h out of 58 h of available
liquid detection data; i.e. only during 2.5 % of the time is lig-
uid classified. This validation method thus only has very lim-
ited utility for the quality of the thermodynamic-phase clas-
sifications made but is shown here for the sake of complete-
ness as similar future evaluation studies might have larger
data sets available. As shown in the last row of Table 3, for
all methods the majority of the number of liquid-containing
pixels occur when the radiosonde RH w.r.t.l. is larger than
90 % and liquid occurrence is thus likely. There are two
explanations why the fraction of Cloudnet-classified liquid
pixel overlapping with areas of radiosonde RH > 90 % is
much higher (72 %) than for the ANN results (54 %—61 %).
Firstly, with the radiosonde drifting away with height (and
time), the assumption of having the same thermodynamic
profile over the ACCEPT site and the sounding location be-
comes less certain for liquid detections higher in the atmo-
spheric profile (where the ANN is predicting more liquid
than Cloudnet). Secondly, not all elements of the error matrix
are represented in the overlap fraction of the pixel with liquid
detection and RH > 90 %: while liquid pixels unrecognized
by Cloudnet (i.e. beyond lidar attenuation) are not included
in the overlap fraction, wrongly detected ANN liquid pixels
(i.e. FPs) are included and thus reduce the fraction of overlap
pixels for ANN-predicted liquid.

To understand the performance of the liquid prediction by
the ANN more in depth, conditions under which enhanced
spectrum width values lead to liquid-prediction error matrix
elements TP, FP, and FN are described subsequently. The co-
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existence of multiple hydrometeor types with sufficiently dif-
ferent fall velocities in the same radar volume leads to multi-
modal Doppler spectra with a high total spectrum width. If
the slow-falling hydrometeors have a low reflectivity and nar-
row peak width, the ANN likely predicts liquid. If there are
indeed small cloud droplets and larger ice crystals in the vol-
ume, this results in TPs. If however there is a co-existence
of multiple ice crystal types of which one is small and has
a small fall velocity, this results in FPs. Furthermore, if the
enhanced spectrum width (SW) is not caused by multiple hy-
drometeor types but by turbulence, liquid peak signatures can
be smeared, thus leading to FNs. Under calm conditions (low
turbulence) it is more likely that a bimodal Doppler spectrum
with two ice classes is misclassified as one ice and one lig-
uid class, leading to FPs. This problem diminishes with in-
creasing turbulence because of broadening of the peaks and
smearing of the individual peaks. The latter (smearing) is the
same mechanism for FNs under high turbulent conditions.
However, considering only spectrum width is not suffi-
cient as it is always a combination of radar reflectivity, mean
Doppler velocity, spectrum width, etc., that leads to cor-
rect or incorrect classification of liquid by the ANN. By
discussing relative frequency of occurrence (FoO) plots of
radar moments and environmental temperature of the liquid-
prediction error matrix elements TP, TN, FP, and FN as illus-
trated in Fig. A3 in the Appendix, we assess which combina-
tions of moments mostly lead to TPs. As shown in Fig. A3,
the distribution of radar moments of TPs is different from
those of TNs, FPs, and FNs, while the FoO distribution of
radar moments of the latter (TNs, FPs, FNs) are mostly
similar. Specifically, the radar reflectivities of TPs of cloud
droplets is monomodal with a maximum FoO at —25 to
—30dBZ, while it is bimodal for TNs, FPs, and FNs, with
the two maxima occurring at —25 and —10dBZ. The sec-
ond maximum at —10dBZ can be attributed to situations in
which the ANN predicted cloud droplets in drizzle/rain. With
values between —2 and 0.5ms™ !, the distribution of mean
Doppler velocities of TPs is narrower than of TNs, FPs, and
FNs, which have Vp values between about —4 and 1 m g1
and a maximum FoO at more negative values of around
—0.5ms~! than the TPs (maximum FoO at —0.2ms™1).
TPs generally occur at larger spectrum width ¢ than TNs,
FPs, and FN, with a maximum FoO of TPs at 0.2-0.25ms ™!,
while the FoO of TNs, FPs, and FNs peaks at 0.05-0.1 m s L
Spherical particles have a theoretical radar linear depolariza-
tion ratio (LDR) of minus infinity dB; however, due to tech-
nical limitations, the smallest detectable LDR of the MIRA
cloud radar is —30 dB, which corresponds to the peak of FoO
of TPs. While FN also peaks at —30 dB, TN and FP are char-
acterized by high FoO in the range of —30 to —25 dB, which
again can be attributed to drizzle/rain, where perfect spheric-
ity of the hydrometeors is not always given. The FoO distri-
butions of error matrix elements in the environmental tem-
perature space show that only a considerable fraction of TNs
are detected at very low temperatures, which is plausible.
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Table 3. Error matrix, performance metrics, and correlation coefficients for ceilometer CBH vs. LLH, MWR-LWP vs. LLT, and MWR-LWP
vs. LWPyq cor for the entire ACCEPT data set. The statistic includes only valid pixels.

Shupe2007  deBoer2009 Luke2010 Linear-1  Cloudnet
TP 406235 302 643 374880 401331 757342
TN 919571 938429 925740 925243 962 586
FP 43015 24157 36 846 37343 0
FN 351107 454699 382462 356011 0
Precision 0.904 0.926 0.911 0.915 1
Recall 0.536 0.400 0.495 0.530 1
Accuracy 0.771 0.722 0.756 0.771 1
PMWR—LWP,LLT 0.490 0.566 0.515 0.530 0.473
PMWR—LWP,LWP,q 0.348 0.462 0.370 0.387 0.432
Peeilo—CBH,LLH 0.915 0.859 0.897 0.905 0.974
Lig-Pxl at RH > 90 % 0.602 0.653 0.626 0.620 0.816

Maximum FoO of all four error matrix elements occurs at
positive temperatures, which is caused by the consecutive at-
tenuation of the ground-based lidar signal with height, leav-
ing more pixels at higher temperature in the Cloudnet—-ANN
comparison. Comparing the FoO of the liquid detection error
matrix with respect to the different backscatter and depolar-
ization thresholds (Shupe2007, deBoer2009, Luke2010, and
linear-1), the more stringent criteria of deBoer2009 generally
lead to narrower FoO distributions of TPs. Summarizing, as
shown in the description of FoO of the radar moments of the
error matrix components above, TPs are mostly character-
ized by high spectrum width in combination with low abso-
lute values of Vp and small radar reflectivities, but due to the
overlap of radar moments of all error matrix elements, the
same combination of Z., Vp, and o can be caused by TPs,
TNs, FPs, and FNs.

4 Summary and outlook

The current study shows that synergistic observations of de-
polarization lidar and cloud Doppler radar in conjunction
with machine learning techniques can be used to detect liquid
beyond full lidar signal attenuation. This approach performs
well in stratiform cloud situations but is not suited for situa-
tions in which the imprint of different hydrometeor popula-
tions in the same cloud volume on the cloud radar Doppler
spectrum is masked, e.g. by turbulent spectrum broadening.
We demonstrated that the ANN of Luke et al. (2010) pre-
trained with the MPACE data set in Alaska could success-
fully be applied to the ACCEPT data set obtained in Cabauw,
Netherlands, and is able to improve the Cloudnet target clas-
sification for stratiform optically thick liquid layers or sit-
uations in which multiple liquid layers exist. We applied
different published lidar-based liquid-detection thresholds to
the predicted lidar backscatter coefficients and depolariza-
tion lidars — all were found to perform better in some situ-
ations than others and could be seen as either too stringent
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(deBoer2009), missing thinner liquid layers, or too broad
(Shupe2007, Luke2010, linear-1), leading to misclassifica-
tions of ice as liquid. No suggestion on best thresholds can
thus be made. To overcome limitations due to ambiguities
caused by thresholding, focus should therefore be put on
the development of techniques which do not rely on explicit
lidar thresholds for liquid detection. This could be realiz-
able by applying novel convolutional artificial neural net-
works which could be used to exploit the full information
content of high-resolution cloud radar Doppler spectra. Ad-
ditionally, radar Doppler spectra peak-separation techniques
such as PEAKO (Kalesse et al., 2019) and peakTree (Radenz
et al., 2019) are helpful for assessing the possibilities of lig-
uid occurrence.

Furthermore, two recent studies also showed the bene-
fit of distinguishing between cloud top liquid-bearing layers
and embedded liquid layers when assessing the performance
of liquid-detection retrievals (Silber et al., 2020; Kalogeras
et al., 2021). Silber et al. (2020) retrieved the cloud ther-
modynamic phase of Arctic clouds based on 1-year zenith-
pointing Ka-band radar and HSRL observations. They found
that cloud top liquid-bearing samples can be more reliably
detected than embedded liquid layers as the latter are more
difficult to separate from falling ice signatures in the prob-
ability density function (PDF) of the first three radar mo-
ments as well as Doppler spectrum left slope and right slope.
Kalogeras et al. (2021) developed a Ka-band radar-only,
moment-based technique for supercooled liquid-water de-
tection in Arctic mixed-phase clouds. The novelty of this
method is that it is a neighbourhood-dependent algorithm
employing gradients of moments. They concluded that the
best skill levels for liquid detection are realized for combina-
tions of spectral width and reflectivity vertical gradient and
also found their algorithm to be most reliable when applied
to cloud tops.

The identification of the presence of liquid layers in the en-
tire vertical column of optically thick or multi-layered cloud
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situations is a first step in getting a better understanding of
which microphysical particle growth processes might occur
in a mixed-phase cloud. The shown results will therefore be
used in follow-up studies for characterization of microphysi-
cal hydrometeor growth processes.
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Figure A1. Zoom of Cloudnet target classification from O to 4 km altitude for the 17—-18 November 2014 case study in Cabauw, Netherlands.
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Figure A2. Zoom of comparison of cloud droplet detection of Cloudnet and ANN (using linear-1 thresholds) from 0 to 4 km altitude for the
17-18 November 2014 case study in Cabauw, Netherlands. Black dots indicate ceilometer first cloud base height.
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Figure A3. Relative frequency of occurrence plots of radar moment reflectivity (Ze, left column), mean Doppler velocity (Vg4, second left
column), spectrum width (middle column), linear depolarization ratio (LDR, second to right column), and environmental temperature 7'
(right column) of ANN liquid-prediction error matrix elements TP (blue), TN (green), FP (grey), and FN (red) for the four utilized ANN-
lidar variable thresholds of Shupe2007 (first row), deBoer2009 (second row), Luke2010 (third row), and linear-1 threshold (fourth row) for
the entire ACCEPT field experiment.
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