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Abstract. Cloud masking is a key initial step in the re-
trieval of geophysical properties from satellite data. Despite
decades of research, problems still exist of over- or underde-
tection of clouds. High aerosol loadings, in particular from
dust storms or fires, are often classified as clouds, and vice
versa. In this paper, we present a cloud mask created us-
ing machine learning for the Advanced Himawari Imager
(AHI) aboard Himawari-8. In order to train the algorithm,
a parallax-corrected collocated data set was created from
AHI and Cloud-Aerosol Lidar with Orthogonal Polariza-
tion (CALIOP) lidar data. Artificial neural networks (ANNs)
were trained on the collocated data to identify clouds in AHI
scenes. The resulting neural network (NN) cloud masks are
validated and compared to cloud masks produced by the
Japanese Meteorological Association (JMA) and the Bureau
of Meteorology (BoM) for a number of different solar and
viewing geometries, surface types and air masses. Here, five
case studies covering a range of challenging scenarios for
cloud masks are also presented to demonstrate the perfor-
mance of the masking algorithm. The NN mask shows a
lower false positive rate (FPR) for an equivalent true pos-
itive rate (TPR) across all categories, with FPRs of 0.160
and 0.259 for the NN and JMA masks, respectively, and
0.363 and 0.506 for the NN and BoM masks, respectively,
at equivalent TPR values. This indicates the NN mask ac-
curately identifies 1.13 and 1.29 times as many non-cloud
pixels for the equivalent hit rate when compared to the JMA
and BoM masks, respectively. The NN mask was shown to be

particularly effective in distinguishing thick aerosol plumes
from cloud, most likely due to the inclusion of the 0.47
and 0.51 µm bands. The NN cloud mask shows an improve-
ment over current operational cloud masks in most scenar-
ios, and it is suggested that improvements to current opera-
tional cloud masks could be made by including the 0.47 and
0.51 µm bands. The collocated data are made available to fa-
cilitate future research.

1 Introduction

Earth-observing satellite instruments are critical for measur-
ing geophysical parameters for weather (Eyre et al., 2019)
and climate (Stengel et al., 2020). Often the first step in mea-
suring a geophysical parameter is to determine if the scene is
“clear”. This process is called cloud masking. Cloud masks
are needed to observe and retrieve surface parameters. Masks
are required to differentiate clouds from aerosols when run-
ning property retrievals or flux calculations. These data are
integrated into climate models to generate reanalysis prod-
ucts such as ERA5 (Hersbach et al., 2020) as starting points
for future climate modelling (Eyring et al., 2016) or for val-
idating model outputs (Jian et al., 2020), making them an
important tool in understanding the Earth’s climate.

However, in many cloud-masking algorithms, high aerosol
optical depth events such as dust storms and biomass burn-
ing events are also mislabelled as clouds. This may be ap-
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propriate if the aerosols would cause significant errors in the
retrieval. For example, regions of high dust loadings are iden-
tified and removed so as not to bias sea surface temperature
retrievals (Merchant et al., 2006). However, the application
of satellite data, for example, during fire events, may be used
to identify the thick aerosol plumes in order to understand
the air quality. In this case, removing the thick plumes would
adversely affect the intended application.

Clouds and aerosols are observed by both active satel-
lite instruments such as Cloud-Aerosol Lidar and Infrared
Pathfinder Satellite Observation (CALIPSO) (Winker et al.,
2004) and passive polar orbiting satellite instruments such as
the Sea and Land Surface Temperature Radiometer (SLSTR)
(Coppo et al., 2013), the Advanced Very High Resolution
Radiometer (AVHRR) (Stengel et al., 2020) and the Mod-
erate Resolution Imaging Spectroradiometer (MODIS) (Jus-
tice et al., 1998). Different types of satellite instruments have
advantages and disadvantages. Geostationary satellites such
as Himawari-8 (Bessho et al., 2016) and the Geostationary
Operational Environmental Satellite (GOES) (Schmit et al.,
2005) allow for large-scale observation of atmospheric vari-
ables with high temporal resolution, medium spatial resolu-
tion and good regional coverage. However, individual pas-
sive sensors can only see in 2-D. For example, to classify
whether a bright, cold pixel is snow and/or ice or a cloud top,
a retrieval algorithm must be applied to the pixel to classify
it. These algorithms require evaluation using ground-based
instruments and active instruments to ensure that they are
accurate. Active instruments, such as the Cloud-Aerosol Li-
dar with Orthogonal Polarization (CALIOP) lidar instrument
aboard the polar-orbiting CALIPSO satellite, use on-board
radiation sources to analyse the atmosphere which enables
higher horizontal and vertical resolution atmospheric pro-
files than measurements from passive imagers; i.e. they have
to ability to see vertical structure. As they have their radi-
ation source on board, active instruments can operate inde-
pendently of solar illumination and are more sensitive to thin
atmospheric layers, such as thin cirrus and aerosols, than pas-
sive instruments. In addition, active sensors can retrieve the
height of layers within a pixel by evaluating the strength of
the return signal and time taken for the pulse to return. This
makes them able to detect clouds and aerosols within their
pixels much more accurately than passive instruments. How-
ever active instruments typically only have a nadir view with
a small footprint, significantly reducing their spatial cover-
age and temporal resolution compared with passive viewing
satellites. Combining the temporal and spatial resolution of
passive instruments with the more accurate classification of
atmospheric layers achieved by active sensors is desirable
to create an optimal algorithm for classifying clouds and
aerosols. By using active instruments to label passive sen-
sor pixels, classification algorithms for passive sensors can
be developed that take advantage of the increased accuracy
of active sensors.

In this paper, we develop a neural network (NN) cloud
mask which, while needing to perform well in all atmo-
spheric scenarios, is specifically focused on minimising the
misidentification of thick aerosol as clouds. In the following
sections, we first review existing cloud-masking techniques,
then we describe the approach to collocate the active and
passive instruments in order to train a NN algorithm. We
describe the structure of the neural network algorithm and
demonstrate the algorithm performance by analysing four
case studies, and comparing qualitatively and quantitatively
the performance of the mask with existing cloud-masking al-
gorithms from the Australian Bureau of Meteorology (BoM)
and the Japanese Meteorological Agency (JMA) (Imai and
Yoshida, 2016). The case studies and validation will present
results for the cloud mask globally but the case studies will
focus on distinguishing between aerosol and clouds, particu-
larly high aerosol loading events.

2 Review of existing cloud identification techniques

Many property retrieval algorithms for passive imagers rely
on empirical cloud masks to identify cloud in satellite scenes
(Lyapustin et al., 2018). These masks use models of what
clouds and aerosols should look like under certain condi-
tions as tests, which are often applied in combination to
satellite scenes to identify any cloud and aerosol pixels (Zhu
et al., 2015; Imai and Yoshida, 2016; Le GLeau, 2016). The
most significant problem with these algorithms is the depen-
dence on a number of predefined thresholds, which leads
to a high sensitivity to surface type, atmospheric variabil-
ity or instrument calibration and does not capture the more
complex, often non-linear relationships between instrument
channels, clouds, aerosols and the surface. This can result in
misidentification of thick aerosol plumes or bright surfaces
as clouds or incorrectly identify thin clouds as aerosol. Prod-
ucts, such as Japan Aerospace Exploration Agency (JAXA)’s
aerosol retrieval product and the multi-angle implementation
of atmospheric correction (MAIAC) aerosol retrieval algo-
rithm (Yoshida et al., 2018; Lyapustin et al., 2018), have
cloud masks that are more suited to differentiating cloud and
aerosols, although these are not perfect either. Bayesian sta-
tistical techniques can improve the speed and accuracy of
classification, as well as removing the dependence on ar-
bitrary thresholds (Uddstrom et al., 1999; Hollstein et al.,
2015). However, these algorithms often struggle to capture
the more complex relationships between the inputs and clas-
sifiers as they cannot fully adapt to more complex classifi-
cations, such as identifying low, cold clouds over the poles
(Poulsen et al., 2020).

Machine learning techniques, such as NNs, are an alter-
native to conventional cloud-identification algorithms. These
algorithms develop relationships between their inputs and
outputs that best fit the data they are trained on, which re-
moves any dependence on empirical thresholds and allows
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them to discover complex relationships between multiple in-
put variables, potentially improving the accuracy when com-
pared to empirical and Bayesian algorithms. Examples of
neural network algorithms can be found in Sus et al. (2018),
Yao et al. (2018), Mahajan and Fataniya (2019) and Poulsen
et al. (2020). The disadvantage of these algorithms, at least
for supervised neural nets, is that they require large amounts
of accurately labelled data. This can be achieved by labelling
areas as cloud or aerosol by hand as in Hughes and Kennedy
(2019) and Marais et al. (2020). However, this is limited
by a person’s ability to accurately differentiate clouds from
aerosol plumes in satellite scenes and is very time intensive.
An alternative, and the method used in this paper, is to col-
locate the passive imagers with high-resolution vertically re-
solved active instruments, such as radars and lidars, to ac-
curately label pixels which contain cloud or aerosol (Holz
et al., 2008; Taylor et al., 2016). This leads to an accurate
training and validation set and provides detailed information
about the composition of the atmosphere within these pixels.
However, the variability of cloud scenes, the narrow swath
and long return-to-target times of active instruments requires
a significant number satellite scenes to be processed in order
to gather enough data points to effectively train a NN. Sev-
eral studies have applied this technique to polar orbiting in-
struments, such as Poulsen et al. (2020) collocating CALIOP
data with SLSTR, as well as studies by Wang et al. (2020)
and Lee et al. (2021) creating machine learning algorithms
for Visible Infrared Imaging Radiometer Suite (VIIRS) for
cloud phase and dust detection retrieval, respectively, using
data collocated with CALIOP. These studies all demonstrate
the success of machine learning algorithms trained on data
labelled by active instruments but do not extend the tech-
nique to geostationary instruments, which require a more
sophisticated collocation technique to account for the paral-
lax between the active and passive sensors. These studies do
not focus on biomass burning plumes, which are of particu-
lar significance over Australia. In addition, in this paper, we
combine this technique with explainable machine learning
models to better understand the influence of passive instru-
ment channels on the outcome of the classification.

3 Description of key data sets

Two sources of data were collocated to generate the training
and validation data: the Advanced Himawari Imager (AHI)
instrument aboard Himawari-8 and the CALIOP instrument
aboard CALIPSO. The individual data sets are described
in the following sections. The collocated data were created
with the intention of identifying clouds and aerosols indepen-
dently in AHI pixels using the active lidar instrument data as
the truth label. While many individual data sets were collo-
cated, not all were included in the final algorithm. The data
set was split with 80 % used to train the algorithm and 20 %
of the collocations used to validate the results.

3.1 Himawari-8 AHI

The AHI aboard the JMA’s Himawari-8 geostationary satel-
lite is a next-generation passive imager (Bessho et al., 2016).
The satellite was launched in October 2014 and became op-
erational in July 2015. AHI has 16 bands covering the visible
shortwave (SW) to thermal longwave (LW) at 0.5–2 km reso-
lutions at nadir. The channel specifications are summarised in
Table 1 along with the primary objective of the channel. Full-
disk scenes are centred at 140.7◦ E on the Equator with a field
of view (FOV) of approximately 80◦ in radius and are gener-
ated every 10 min. The AHI L1b product in Himawari Stan-
dard Data (HSD) format is used for this collocation and read
in using the Satpy Python package (Raspaud et al., 2021) us-
ing the default calibration. For the higher-resolution channels
(see Table 1), the values are downsampled to 2 km resolution.
The mean and the standard deviation of these high-resolution
channels (channels 1–4) over the downsampled area are cal-
culated and considered as inputs into the NNs. The auxiliary
information from AHI is also included in the collocated data,
such as the latitudes, longitudes, solar and observation an-
gles.

3.2 CALIOP

CALIOP is an active lidar instrument aboard NASA’s polar-
orbiting CALIPSO satellite (Winker et al., 2004). CALIOP
uses a dual-band laser to take vertical profiles of the atmo-
sphere directly below its orbital path every 333 m along track.
This is reprocessed to 1 and 5 km along track for higher ac-
curacy at the cost of spatial resolution. The instrument has a
high sensitivity to the presence of clouds and sensitivity to
particle shape and absorption characteristics, so it is able to
distinguish clouds (liquid and ice) with high accuracy and be-
tween aerosol type with limited accuracy. CALIOP provides
day and night global coverage, albeit with a narrow swath
and long return cycle, making CALIOP useful for analysing
cloud masks. Each overpass is made up of profiles contain-
ing layers with vertical resolutions dependent on the altitude
of the layer that is measured by CALIOP. Measurements at
both 5 and 1 km were assessed for the cloud-masking algo-
rithm. While the 5 km algorithm is more sensitive to optically
thin clouds, after initial investigation optimum results were
found using the 1 km L2 cloud-layer version 4.20 product
(CAL_LID_L2_01kmCLay-Standard-V4-20) (Young et al.,
2018) because the higher spatial resolution leads to increased
accuracy of identifying small-scale clouds in AHI pixels at
2 km resolution. The version 4 product is used for this study
due to improvements made in the cloud–aerosol discrimi-
nation (CAD) score algorithm for this product (Liu et al.,
2019). The CAD algorithm seeks to discriminate between
cloud and aerosol particles, such as fine spherical dust parti-
cles and water clouds, by using 5-D probability density func-
tions (PDFs) to assign values between −100 and 100 to each
layer, with −100 being certainly aerosol and 100 being cer-
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Table 1. Description of Himawari-8 AHI channels (Bessho et al., 2016) and purpose (Zhang et al., 2018).

Wave- Spatial
length resolution

Band (µm) (km) Comments

1 0.47 1 aerosol absorption
2 0.51 1 composite imaging
3 0.64 0.5 vegetation, aerosol over water
4 0.86 1 cirrus clouds
5 1.6 2 phase and particle size, snow
6 2.3 2 land, phase particle size and snow
7 3.9 2 clouds and nighttime fog
8 6.2 2 high-altitude water vapour
9 6.9 2 mid-altitude water vapour
10 7.3 2 low-altitude water vapour
11 8.6 2 total atmospheric water, cloud phase, dust
12 9.6 2 ozone
13 10.4 2 surface clouds, atmospheric window
14 11.2 2 clouds, atmospheric window
15 12.4 2 total water ash, atmospheric window
16 13.3 2 air temperature cloud height

tainly clouds. The CAD algorithm improves on the previous
version by applying the algorithm to all single-shot retrievals,
which were previously classified as clouds by default, as well
as making improvements to identifying elevated aerosol lay-
ers and cloud layers under dense aerosols such as smoke (Liu
et al., 2019). The version 4 algorithm is validated on the 5 km
product, but inspection of CAD scores between the 5 and
1 km products indicates similar performance. Therefore, al-
though the 5 km product is more suitable for use with the
CAD score, the 1 km product is still appropriate for use in
this study. However, it is important to note that extreme cases
of aerosols can still lead to classification of aerosol layers as
cloud from the CALIOP classification and that small-scale
(less then 1 km across) clouds can be potentially misclas-
sified and be a source of error in the NNs and validation;
i.e. the pixel classification by CALIOP is assumed to be true
throughout this study, but CALIOP misclassifying layers is a
potential source of uncertainty within this study.

The variables from CALIOP contained in the collocated
data include the vertical feature mask, feature top altitudes
and CAD score are saved in the collocated data file for each
layer to allow for analysis of clouds and their properties.

4 Methodology

In order to create the neural network algorithms, we need to
collocate AHI data with the most accurate “truth” data from
the CALIOP instrument. To ensure the most applicable train-
ing data are generated, we need to take into account parallax
when carrying out the collocations between the active and
passive satellites. The collocated data set was then used to

train and validate the neural network algorithms which are
described in Sect. 4.2.

4.1 Collocation of data

The overall collocation process is shown in Fig. 1. The col-
location process has two main steps. First, there is a rough
collocation to identify temporally matching Himawari and
CALIOP orbits and then there is a second step to perform a
parallax correction.

The initial rough collocation, shown in Fig. 1a follows the
steps below:

– The section of a full CALIOP overpass that lies within
the FOV of AHI is identified; this leads to temporal un-
certainty of approximately ±5 min.

– The AHI scenes that lie with the start and end of the
CALIOP section run are identified.

– The AHI scenes are retrieved.

Parallax correction

Once the initial collocation is performed, the CALIOP sub-
section that lies within the start and end of each AHI scene
scan time is found. From these sections, every CALIOP layer
was parallax corrected to ensure accurate collocation with its
corresponding AHI pixel. This is an important step for mak-
ing sure the data set was accurately labelled. As shown in
Fig. 2, the parallax between the two instruments can cause
layers to be shifted by several pixels in AHI from their posi-
tion as observed by CALIOP; this can be particularly signif-
icant for high clouds at the edge of the full disk. The process
for performing the parallax correction is shown in Fig. 1c.
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Figure 1. The full collocation process for a single CALIOP file. The full process from CALIOP file to collocated data frame is described in
panel (a), whilst the processes of finding collocated AHI scenes and collocating CALIOP profile layers are described in panels (b) and (c),
respectively.

The parallax correction for each layer was performed by
doing the following:

– The observation angles of the CALIOP layer were cal-
culated as it would be seen by AHI at the position and
altitude specified in the CALIOP data, i.e. the angle that
corresponds to the dashed line beneath the cloud layer
in Fig. 2.

– The observation angles of the CALIOP layer as seen by
AHI were then matched with the observation angles for
AHI corresponding to the Earth’s surface.

– Where the AHI observation angles matched, the layer
was assigned to the collocated AHI pixel; i.e. the cloud
layer in Fig. 2 would be assigned to the pixel that cor-
responds with the red star. As the match is to the clos-
est pixel, this leads to a spatial uncertainty of approxi-
mately ±1 km at nadir for AHI.

– This was repeated for every layer and a pseudo-
CALIOP profile was generated for each AHI pixel. This
includes thin layers that AHI may struggle to observe
and are accepted as a potential source of error in the
final cloud mask.

After each CALIOP file had been collocated, the data were
cleaned by

– checking for duplicate layers and keeping only the clos-
est matching AHI pixel and

– removing layers with AHI pixel data or CALIOP layer
information missing.

These checks ensure the quality of the data in the final prod-
uct is high. No further quality flags were applied to the col-
located data but were instead stored with each entry to allow
for further filtering of the collocated data to ensure only high-
quality data were used to train the algorithm.

Approximately 7300 CALIOP overpasses were collocated
for 2019 to make the full training and test validation data set,
making these data suitable for large-scale statistical studies
of cloud and aerosol in AHI scenes. The density distribu-
tion of collocated AHI pixels for all of 2019 is shown in
Fig. 3, displaying a relatively even distribution across the
AHI’s field of view (FOV) for day and night. As can be seen
in Fig. 3a and c, outside the polar regions, there is very little
regional bias in the collocated data for day and night pixels,
with the notable exception of the region where AHI’s twice-
daily downtime syncs with CALIOP’s orbit. However, due
to CALIPSO’s Sun-synchronous orbit, twilight data are only
available towards the poles. The concentration of collocated
data at the poles for twilight scenes should be kept in mind
when analysing the results.

4.2 Training and validation of neural networks

The cloud identification algorithm is based around a feed-
forward neural network and implemented using the Tensor-
Flow (version 2) package for Python (Abadi et al., 2016).
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Figure 2. The difference in observation angles between CALIOP
(blue) and AHI (red) for a layer (grey) at some altitude above the
surface of the Earth (brown). At more extreme observation angles
for AHI, i.e. towards the edge of the FOV, large differences in the
apparent location of the layer can occur. For example, if the eleva-
tion angle of AHI from the layer is 45◦ at an altitude of 10 km, the
location of the layer is shifted by 10 km, approximately the equiva-
lent of five pixels at 2 km resolution.

Three models were created for day, twilight and night sce-
narios to analyse a scene pixel by pixel. The time of day was
separated by solar zenith angle (SZA) and corresponding to
0◦≤SZA < 80◦, 80◦≤SZA < 90◦ and SZA≥ 90◦, respec-
tively. After experimenting with different input data, the final
inputs to the neural network are as follows:

– day – channels 1–16 (mean values for downscaled chan-
nels), Himawari observation angles and cos(SZA);

– twilight – channels 1–16, including standard deviations
and mean values for downscaled channels; and

– night – channels 7–16 and Himawari observation an-
gles.

Only these inputs are used for the models. Auxiliary data,
such as satellite zenith angle, latitude and longitude, are used
only for further analysis of results.

For each of the different networks, the collocated data are
normalised between approximately −1 and 1 to ensure opti-
mal neural network performance using the following simple

equation:

Inorm =
I − Iavg

Imax− Iavg
, (1)

where I is the original input value in percentage reflectance,
brightness temperature and degrees for shortwave bands,
longwave bands and angles, respectively, Inorm is the nor-
malised input value, Iavg is selected by the approximate mid-
dle of the range of physically expected values, and Imax
is the maximum expected input value. Iavg has values of
50, 273.15, 0 and 0 for shortwave bands in percentage re-
flectance, longwave bands in brightness temperature, obser-
vations angles in degrees and cos(SZA), respectively. Imax
has values of 100, 423.15, 90 and 1 for shortwave bands,
longwave bands, observation angles and cos(SZA), respec-
tively. The CALIOP data are labelled using binary flags. The
binary flags for cloud identification was selected from the
collocated CALIOP profiles. If the top layer of the collo-
cated CALIOP profile was found to be cloud, a filter would
be applied to decide the label. If the layer has a high CAD
score (CAD score > 50 Koffi et al., 2016), the layer is called
a cloud layer. The CAD score filtering ensures any thick
aerosol plumes from biomass burning that are occasionally
flagged as clouds by CALIOP are not erroneously labelled as
such for the NN training. This minimises the number of true
cloud layers that are mislabelled as non-cloud in the train-
ing of the NNs. However, high thin cirrus can have low CAD
scores, but the accurate labelling of elevated aerosol layers is
considered to be more important for this study.

Each NN is optimised by iterating through 1, 2, 5, 10 and
20 layer structures. For each iteration, 10, 20, 50, 100 and
200 neurons were used per layer, e.g. 2 layers of 50 neurons
or 5 layers of 100 neurons. All available inputs were used,
and a subset of 2000 collocated data sets with a quality as-
surance (QA) filter of 0.7 on collocated overpasses were used
for the optimisation process. This was repeated five times for
the stochastic gradient descent (SGD) and Adam (Kingma
and Ba, 2015) optimisers to account for different cloud and
cloud-free scenarios and also to account for the statistical ef-
fect due to the small variations in the minimisation process.
In total, this corresponds to 50 configurations that were inves-
tigated. The simplest NN structure with the highest average
area under the receiver operating characteristic (ROC) curve
value was used as the final algorithm and applied to the full
data set. This is found to be 10 layers of 100 neurons each for
the day, twilight and night algorithms when using the SGD
optimiser. Therefore, the final structure of each NN consists
of

– an input layer of N neurons, where N is the number of
inputs used, with tanh activation;

– a dropout layer with dropout rate of 0.2 to prevent over-
fitting (Srivastava et al., 2014);
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Figure 3. Heat maps of collocated AHI pixels within a 10-pixel by 10-pixel area in the AHI FOV for the full 2019 data set broken down by
(a) day, (b) twilight and (c) night. The northern and southernmost region contain the highest concentration of collocated pixels as CALIOP
is in a polar orbit, causing it to return to the same area in each AHI scene. Outside these regions, AHI pixels are relatively evenly distributed
across the whole AHI FOV, with the exception of the region to the centre right of the FOV, which is due to AHI having gaps in coverage at
02:40 and 14:40 UTC every day.

– 10 layers of 100 neurons each with tanh activation for
each layer; and

– a single neuron output layer with sigmoid activation.

Each NN is trained over 200 epochs to ensure convergence.
The NNs give a continuous output between 0 and 1, so an
optimal threshold must be found for each NN to convert the
values to a binary cloud mask. These are found after the op-
timisation process by taking the threshold which maximises
the true positive rate (TPR) and minimises the false positive
rate (FPR) of the final algorithms. For this analysis, both con-
tinuous and binary values are used.

For validation of the NNs, several metrics are used. The
FPR and TPR can be calculated by applying thresholds on
the continuous output of the NNs. The binary outputs can
also be processed into values such as the Kuiper skill score
(KSS), which is calculated by

KSS= TPR−FPR=
a

(a+ c)
−

b

(b+ d)
, (2)

where a is the number of true positives, b is the number of
false positives, c is the number of false negatives, and d is the
number of true negatives (Hanssen and Kuipers, 1965). KSS
is useful metric that balances the TPR and FPR for analysing
how accurate an algorithm is at identifying cloudy pixels
from non-cloudy pixels and comparing different products. A
perfect KSS is 1, representing a perfect classifier algorithm,
whilst 0 indicates an algorithm with no skill. Using statisti-
cal analysis alongside case studies allows for a wide-ranging
analysis of the NN algorithms.

A subset of 30 collocated overpasses from 2020, which
is not used in the initial training and validation, is used to
carry out a statistical analysis of the NN mask, including a
comparison with cloud masks from the JMA and BoM de-
scribed briefly in Sect. 4.3. The masks are also compared for

different case studies. These masks are chosen as they are op-
erational cloud masks for the AHI instrument that match the
NN cloud mask in spatial resolution and projection to ensure
that the comparison is as fair as possible.

4.3 Description of auxiliary cloud masks

The finalised NN mask is compared to cloud masks from the
BoM and JMA. The cloud masks used in the comparison are
described in Sect. 4.3.1 and 4.3.2.

4.3.1 Bureau of Meteorology (BoM)

The BoM mask uses the Nowcasting Satellite Applica-
tion Facility (NWCSAF) cloud-masking algorithm run with
NOAA Global Forecast System (GFS) (NOAA, 2021) nu-
merical weather prediction (NWP) information. The full de-
scription of the algorithm is given in Le GLeau (2016) and
the key features are outlined below.

– The algorithm is based on look-up tables (LUTs) to cal-
culate thresholds which are applied to individual pixels
to identify cloud.

– The algorithm is split into land and sea algorithms for an
initial run. These algorithms use a combination of ther-
mal channel differences during day, twilight and night,
as well as the 0.6 µm channel during day and twilight.

– A range of other threshold tests are applied to further
identify features which are usually difficult to identify,
e.g. low-level clouds, cloud edges, thin cirrus.

4.3.2 Japanese Meteorological Agency (JMA)

The JMA mask is based on both the NWCSAF Cloud Mask
(CMA) (Le GLeau, 2016) and NOAA Advanced Baseline
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Imager Clear Sky Mask (ACM) products (Heidinger and III,
2013). The full algorithm description can be found in Imai
and Yoshida (2016).

– The main concept behind the JMA cloud mask is to
compare AHI channel data to NWP values to decide if
a pixel is cloudy.

– A subset of nine channels is used (bands 3, 4, 5, 7, 10,
11, 13, 14 and 15).

– Snow and/or sea ice are filtered and flagged ice are fil-
tered and flagged in final cloud mask.

– Aerosol pixels are also filtered using the ash detection
algorithm from Pavolonis et al. (2013).

– The cloud mask utilises information from the previous
scene and a scene 1 h prior to capture temporal varia-
tion.

5 Results

5.1 Statistical comparison of cloud masks using
CALIOP

The cloud masks were compared statistically by using col-
located CALIOP data as the truth label. There are 30 collo-
cated data sets, where each data set is a CALIOP overpass
that has been collocated with AHI data, that were not used
for training and validation were analysed by the NNs. This
data set consisted of approximately 60 000 collocated pix-
els randomly selected from January to June 2020. The pix-
els were also collocated with the matching BoM and JMA
binary cloud masks. An example of collocated data used in
this comparison is shown in Fig. 4 with the cloud masks and
truth label shown above the profile curtain plot to demon-
strate the strengths and weaknesses of each cloud mask. It
can be seen that the NN and JMA cloud masks show simi-
lar performance, whilst the BoM mask classifies most pixels
on either side of clouds as clouds, leading to a conservative
cloud mask. This performance is further demonstrated in the
statistical analysis.

The TPR and FPR for each cloud mask was calculated and
plotted on a ROC curve representing the combined outputs
of the NNs in Fig. 5. An overall comparison of the perfor-
mance shows that the NN cloud mask has the best perfor-
mance over all, with a KSS of 0.632 versus 0.523 for the
JMA product and 0.432 for the BoM product. The low FPR
and low KSS of the JMA product suggest a cloud mask that
balances cloud masking without being conservative, i.e. clas-
sifying non-cloud pixels as cloud to ensure all clouds are
cleared in a scene, but does not perform as well as the NN,
whilst the high FPR and low KSS of the BoM mask suggests
a cloud mask that overclassifies pixels as cloud. The combi-
nation of high TPR and high KSS shows that the NN is better

at not classifying non-cloudy pixels as cloudy than the JMA
and BoM masks. This is important for accurately identifying
optically thick aerosol plumes.

The continuous output of the NN mask can have any
threshold applied to produce a binary mask; e.g. all pix-
els with continuous values greater than 0.5 can be assigned
as clouds. The values presented were found after optimisa-
tion, but the threshold can be adjusted so that it matches
the TPR or the FPR of the other algorithms. In this analy-
sis, the threshold that yields the equivalent TPR of the BoM
and JMA algorithms separately was calculated and are rep-
resented by the dashed coloured lines in Fig. 5. The blue and
magenta horizontal lines correspond to the TPRs of the BoM
and JMA masks, respectively, whilst the same coloured ver-
tical lines show the FPRs of the NN mask at those TPRs. If
the NN thresholds were chosen so that the TPR of each al-
gorithm matched, the associated FPRs would be 0.363 ver-
sus 0.506 for NN and BoM algorithms and 0.160 versus
0.259 for the NN and JMA algorithms, respectively. This im-
plies that the NN accurately identifies 1.13 and 1.29 times
as many non-cloudy pixels when compared to the BoM and
JMA masks, respectively, if the binary output threshold is
tailored to match their TPRs.

The performance for each mask was further broken down
by satellite zenith angle, solar zenith angle, air mass and sur-
face type (over ocean or over land). The results show that the
NN algorithms perform best during day and night but have
lower performance during twilight, where the FPR increases
significantly over the day and night algorithms. Overall, the
NN mask shows a notable improvement over the BoM and
JMA masks, which show lower values of KSS for all situa-
tions. From the TPR and FPR values presented in Table 2,
the JMA mask generally has similar TPR values when com-
pared to the NN in all scenarios but with higher FPR values,
whereas the BoM mask has significantly higher TPR and
FPR values. This shows that the JMA and BoM masks are
more conservative than the NNs; i.e. the NNs are better at
accurately identifying non-cloud during all conditions. The
NN mask also outperforms the other masks at all satellite
zenith angles, retaining similar TPR and FPR values over all
angles and does not drop in performance towards the edge of
the scene at the same rate as the BoM and JMA masks. In
particular, the BoM FPR values increase significantly with
satellite zenith angle, leading to very poor performance at
high angles. All the algorithms show approximately equiva-
lent changes in performance for air mass values above 3, but
the NN mask does not have as large a drop-off at low air mass
values.

5.2 Explainable machine learning

Machine learning models are often seen to be opaque black
boxes from which it is difficult to extract physical inter-
pretations. However, there exists new tools that can begin
to explain the performance of individual machine learning
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Figure 4. The CAD scores from a collocated CALIOP overpass are plotted along with the cloud masks used in this study and the truth label
used for training the NN algorithms.

Table 2. Summary of KSS, TPR and FPR for various angular geometries, surface types and air masses. Note that 2sat is the satellite zenith
angle.

Mask subset NN JMA BoM

Metric KSS TPR FPR KSS TPR FPR KSS TPR FPR

0◦≤2sat < 30◦ 0.611 0.854 0.243 0.547 0.888 0.341 0.499 0.928 0.429
30◦≤2sat < 60◦ 0.642 0.864 0.221 0.595 0.874 0.279 0.500 0.943 0.444
2sat ≥ 60◦ 0.630 0.860 0.230 0.463 0.687 0.224 0.357 0.935 0.578
Land 0.658 0.837 0.179 0.529 0.755 0.227 0.440 0.859 0.419
Ocean 0.610 0.867 0.257 0.512 0.790 0.278 0.406 0.957 0.551
Day 0.631 0.862 0.231 0.529 0.828 0.299 0.417 0.959 0.542
Twilight 0.608 0.921 0.313 0.430 0.624 0.194 0.303 0.903 0.600
Night 0.639 0.852 0.213 0.535 0.726 0.190 0.490 0.905 0.415
2≤ air mass < 3 0.592 0.840 0.248 0.472 0.762 0.290 0.366 0.935 0.569
3≤ air mass < 4 0.616 0.855 0.239 0.507 0.767 0.260 0.391 0.942 0.551
Air mass≥ 4 0.617 0.861 0.243 0.507 0.795 0.288 0.422 0.938 0.515
Overall 0.632 0.861 0.229 0.523 0.783 0.160 0.432 0.937 0.363

models. SHAP (Lundberg et al., 2020; Lundberg and Lee,
2017) is one such tool. The package is based on the Shapley
game theory approach to explain multi-input models. SHAP
works by perturbing each model input over several iterations
and calculating how much this affects the final output of the
model. From this, a value related to the importance of the in-
put can be extracted for the model. Carrying out this analysis
for a range of pixels, both cloud and non-cloud, allows the
otherwise opaque models to be analysed statistically. In ad-

dition using this tool, it is possible to identify the importance
of each input for an individual pixel.

The final versions of the day, twilight and night NNs that
make up the NN cloud mask are analysed using the SHAP
package. As the SHAP computation is computationally ex-
pensive, the results of averaging five different subsets of 200
randomly sampled pixels per iteration for each NN over land
and ocean are presented in Fig. 6. The error bars are gener-
ated by taking the standard deviation from the sample of five
subsets.
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Figure 5. ROC curve comparing the false positive and true posi-
tive rate of the cloud masks. The ROC curve is produced using the
continuous output from the neural network, whilst each point is cal-
culated using the binary cloud mask for each algorithm. The dotted
lines indicate where the algorithm point would be if it used a bi-
nary threshold that matched the associated algorithms’ (denoted by
colour) TPR.

These results show that during the day, for both land
and ocean, the NN relies on information found in the vis-
ible and near-visible shortwave infrared (SWIR) mean val-
ues, as well as channels in the longwave infrared (LWIR),
with band 15 (12.4 µm) being particularly important due to a
small amount of water vapour absorption compared with the
“cleaner” band 13 (10.4 µm) channel. The high importance of
the SW channels is due to the spectral response of clouds in
the visible and SWIR bands, which differs compared to most
surface types, especially over the dark ocean surface. From
Fig. 6, the relatively high significance values for the visible
channels show that they are particularly important over land,
where it can be seen that the blue (0.47 µm) band – band 1 – is
approximately as important as band 2 (0.51 µm) and almost
as important as band 3 (0.64 µm). Furthermore, the differ-
ent spectral responses of cloud and aerosol in the blue band
are likely why the NN shows a notable improvement over
the other algorithms, especially during high aerosol load-
ing events as those that will be shown in Sect. 5.3. Bands
1 and 2 are not used in the JMA and BoM cloud masks, so
that may be one of the key reasons for the improved per-
formance of the NN algorithm. The dependence on LWIR
atmospheric windows is due to the difference in brightness
temperature between the surface and cloud, particularly at
higher altitudes. In addition, the relatively high importance
of band 11 (8.6 µm), which contains information on cloud

phase (see Table 1), suggests the NN is attempting to extract
information on the microphysical properties of a pixel from
this band and may be a key factor in the improvement of the
NN dealing with optically thick aerosol plumes when used
in combination with the visible bands. The relatively high
dependence on the observation angle implies that the NN is
accounting for aberration and path-length effects on the spec-
tral response of clouds at the edge of a scene. The solar zenith
angle during day and other water vapour channels were not
found to be important.

For night pixels, it can be seen that band 15, the thermal
window channel at 12.4 µm, dominates the classification skill
over ocean, whilst the importance of all the channels is much
more evenly distributed for land pixels. Band 15 is important
for detecting low-level moisture and can be useful in identi-
fying low-level cloud that might be of a similar temperature
to the sea surface temperatures in other channels, leading to
the high importance over ocean. Over land, the larger range
in surface temperature values at night leads the NN to depend
on several inputs rather than a single atmospheric window
channel. The relatively high importance of band 7 (3.9 µm),
which has a SWIR and LWIR component, suggests the NN
is also extracting information on low-level cloud from this
band. Observation angles are also important for the night al-
gorithm likely due to the path length of radiation in the at-
mosphere, as well as potentially being used as a proxy for
identifying high-latitude regions.

Twilight pixels are a challenge for cloud masks due to the
very high air mass values causing visible channels to appear
significantly different from the day equivalents. The twilight
NN appears to place lower importance on the shorter wave-
length visible channels, which are more strongly scattered
during twilight, and instead relies more strongly on the band
4 (0.86 µm) mean, the SWIR and the thermal channels. Over
ocean, the NN places very high significance on the band 4
mean, which is less affected by Rayleigh scattering and is
dark for the ocean surface. This suggests the algorithm looks
for high band 4 values to identify cloud over ocean in combi-
nation with the traditional infrared window channel of band
14. Over land, bands 11 and 14 have approximately equiva-
lent significance in the NN. Bands 4 and 14 serve the same
role over land as they do over ocean. However, unlike over
ocean, some land surface types can be bright in band 4 at
twilight. This causes the NN to require an additional cloud-
detection band to effectively identify cloud over land during
twilight, and the NN has found band 11 to be most useful for
this purpose.

5.3 Case studies

In this section, we present a full-disk comparison, a case
study over China during a significant dust storm and three
regional case studies over Australia.

Atmos. Meas. Tech., 15, 3031–3051, 2022 https://doi.org/10.5194/amt-15-3031-2022



D. Robbins et al.: Improving cloud–aerosol discrimination 3041

Figure 6. Plot summarising the output from the SHAP analysis. The SHAP values for each scenario, day, night, twilight, sea and land are
normalised to 100. The results indicate the relative contribution of each input to defining the cloud mask.

5.3.1 Full disk: global view

The case study presented in Fig. 7 is a full-disk scene for
1 November 2020 at 03:30 UTC. The scene is predominantly
daylight, with twilight just appearing in the top right of the
image. A region of sunglint can be seen north of Australia.

All the case studies have the same format, with Fig. 7a, c
and e showing true-colour, natural-colour and EUMETSAT-
style dust RGB false-colour composites. The true-colour
RGB false-colour composite is generated from the visible
bands (bands 1–3) to show approximately how the scene ap-
pears if observed with the human eye. The natural-colour
RGB false-colour composite uses bands 2–4 and shows veg-
etated areas as green, arid areas as pale brown, cold ice-phase
clouds as pale blue and warmer water-phase clouds as white.
Both the true and natural-colour RGB false-colour compos-
ites show sunglint due to the presence of shortwave bands.
The EUMETSAT-style dust RGB false-colour composite is
derived from bands 11, 13 and 15 and does not show any
sunglint due to being purely thermal channels. This RGB
false-colour composite can be used at night and is particu-
larly useful as it shows cold clouds as black and red, includ-
ing thin cirrus, and shows thick dust plumes as purple. In
Fig. 7b, d and f, results from the cloud masks are shown. In
Fig. 7b, the continuous output from the NN mask is shown
for the scene. In Fig. 7d, the binary cloud mask from the
NN is shown. Finally, in Fig. 7f, a comparison between the
NN, BoM and JMA masks is shown. In this comparison, dark
red and dark blue correspond to where all masks agree there
are clouds and non-clouds, respectively. The pale red sec-
tions are where the BoM and NN masks agree, but the JMA
mask gives a different classification; e.g. BoM and NN indi-
cate clouds but JMA indicates non-clouds. Similarly, white
is where JMA and the NN agree and pale blue is where JMA

and the BoM masks agree. From the NN binary mask and the
mask comparison, the class assigned by the JMA and BoM
masks can be inferred.

Three different RGB false-colour composites are pre-
sented which highlight different features in the scene, such
as ice-phase clouds which appear cyan in the natural-colour
RGB false-colour composite. Both the continuous output
from the NN algorithm and the binary mask are shown in
Fig. 7b and d and show that regions of small clouds and
cloud edges are the most uncertain for the NN mask. Fig-
ure 7f shows the comparison between the NN, BoM and JMA
cloud masks. All three masks show good agreement for the
majority of pixels, with areas of high cold clouds shown as
red and clear land and ocean broadly shown as blue. Gener-
ally, areas where cloud masking appears to fail are towards
the edges of clouds and clouds at small scales. At approxi-
mately 10◦ S, towards the centre of the scene, there is a small
region of sunglint. Some very small areas within this region,
concentrated just north of Australia, are shown as pale blue
in the mask comparison, indicating that the JMA and BoM
cloud masks agree on the classification of this region but the
NN mask disagrees with the other masks. In the NN mask, it
can be seen that the area of sunglint is broadly shown to be
non-clouds; i.e. the mask is not misclassifying some sunglint
pixels, whilst the BoM and JMA masks are. In the twilight
region of the scene, which is outside the collocated region of
twilight data, it can be seen that the NN cloud mask fails to
detect low-level clouds. This is likely due to low-level clouds
outside the collocated region appearing significantly differ-
ent to those within the region. The NN mask likely interprets
the cool bright surface as polar surface and such behaviour
is expected when using an algorithm significantly beyond its
training data set. Therefore, the twilight algorithm does not
perform well outside the region it was trained on, and aiming
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Figure 7. A full-disk AHI scene for 1 November 2020 at 03:30 UTC. A total of three RGB false-colour composites of the scene are presented
in the left-hand column, showing (a) true-colour, (c) natural-colour and (e) dust RGBs. The top, middle and bottom panels of the right-hand
column show (b) the NN continuous cloud mask, (d) NN binary cloud mask and (f) a comparison of the three binary masks for the scene.
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to improve this algorithm will be an area of future develop-
ment.

5.3.2 Dust storm over China

The scene presented in Fig. 8 shows a significant dust storm
over China from 15 March 2021 at 03:30 UTC. In Fig. 8e, the
dust plume can be seen as the pink region across China to-
wards the north of the centre of the scene and is partially cov-
ered by clouds. In addition, there is a region of snow and ice
towards the north of the scene which is also covered by some
clouds. From Fig. 8d and f, it can be seen that the NN cloud
mask improves on the JMA and BoM masks when dealing
with snow and ice in the north of the scene as it does not
misclassify the majority of the snow and ice. The JMA and
BoM masks fail to effectively classify the dust plume, which
the NN mask accurately identifies as non-clouds. Given that
this event was a historically significant event with an unusu-
ally high plume (Filonchyk, 2022), the failure of the cloud
masks might be expected. However, large areas of the dust
plume are assigned relatively high values by the NN mask. In
Fig. 8b, it can be seen that the section of the dust plume that
is towards the centre of the scene is assigned scores slightly
below those assigned to clouds – the plume has values of
approximately 0.5, whereas clouds have values close to 1 –
indicating that, although the NN mask is not confident the
plume is clouds, the dust storm poses a challenge to the NN
mask classification algorithm. A future algorithm could use
this information within convolutional NNs to improve the
performance further for large plumes or to develop uncer-
tainty metrics.

The following case studies look at a mixture of high
aerosol optical depth (AOD) events, small and subpixel
clouds and sunglint in scenes from Australia. The regions
each of the case studies cover are shown in Fig. 9a and b.

5.3.3 Australian case study A: smoke from the
2019–2020 Australian bushfires

Case study A is a region on the southeast coast of Australia
from an AHI scene on 1 January 2020 at 03:30 UTC dur-
ing the “Black Summer” bushfires (see Fig. 10). This scene
shows an optically thick smoke plume as well as thick and
optically thin clouds. This scene shows the difficulty in dis-
tinguishing between smoke and clouds. The majority of the
smoke plume is successfully classified as non-clouds by the
network. When compared to the other cloud masks, it can be
seen that the network classifies less of the smoke as clouds
than the JMA mask and both classify significantly less smoke
as clouds than the BoM mask, which classifies optically thin
smoke as clouds. There are regions off the coast towards the
centre of the scene that are classified as clouds by the NN and
appear to be low, warm clouds under optically thick smoke.
This is not surprising as the spectral signature is predomi-
nantly sensitive to the top layers of aerosol or clouds.

The overall improvement in performance for the NN mask
is likely due to including the additional channels not included
in the JMA or BoM masks. In particular for distinguishing
optically thick smoke during the day, we expect the 0.47 µm
channel to add useful information, as the spectral response
of cloud and smoke are significantly different in this band
(Gautam et al., 2016). However, there are small regions of
the smoke plume over land and along the coast which are
classified erroneously as clouds by the NN. From the contin-
uous mask, it can be seen that these regions are classified as
cloud by the NN mask with relatively high confidence. Parts
of these regions correspond to clouds which can be seen in
the natural-colour RGB false-colour composite but not all of
it. Comparing the areas that do not appear to have clouds
with the dust RGB false-colour composite show that it aligns
approximately with regions of dense smoke that have a pink
colour, suggesting that the smoke plume has significant dust
contamination. In addition, these regions may contain par-
ticularly high levels of water vapour, which from Sect. 5.2
is known to be important in cloud classification for the NN.
This water vapour likely comes from the intense period of
fire activity from just before this case study (Peterson et al.,
2021). There is the possibility that the water vapour has be-
gun to condense within these regions of the plume and there-
fore could be forming cloud particles. However, without the
ability to eliminate the presence of cloud beneath this layer,
it is not possible to determine the exact cause of this issue
and further investigation is warranted.

5.3.4 Australian case study B: northern Australian
mixed scene

This case study is also taken from 1 January 2020 at
03:30 UTC and covers the Gulf of Carpentaria and northern
Queensland (see Fig. 11). The region illustrates many scenar-
ios that are typically difficult to identify with cloud masks.
Present in this scene is sunglint in the top left, sediment in
the water off the coast, thin cirrus at the top of the scene and
subpixel clouds over the land.

In this region, high, cold ice-phase clouds are consistently
flagged as clouds by all the masks. However, both the JMA
and BoM masks falsely classify more non-cloud pixels as
clouds than the NN mask does over ocean. Towards the left
of the scene, the JMA and BoM masks misidentify areas of
sunglint as clouds. Both the JMA and BoM masks also iden-
tify the edges of areas of murky water off the west coast of
Cape York as clouds. Over land, the low, warm, small-scale
clouds over Cape York are not well identified by the NN,
whereas the JMA and BoM masks flag more of this areas as
clouds.
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Figure 8. A partial-disk AHI scene covering southeast Asia for 15 March 2021 at 03:30 UTC. A total of three RGB false-colour composites
of the scene are presented in the left-hand column, showing (a) true-colour, (c) natural-colour and (e) dust RGBs. The top, middle and bottom
panels of the right-hand column show (b) the NN continuous cloud mask, (d) NN binary cloud mask and (f) a comparison of the three binary
masks for the scene.
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Figure 9. True-colour RGB false-colour composites from AHI scenes over Australia for (a) 1 January 2020 at 03:30 UTC and (b) 5 Jan-
uary 2020 at 05:00 UTC showing the approximate areas of three case study regions. Region A contains an optically thick smoke plume on
the SE coast of Australia, whilst region B contains a challenging scenario for cloud masks in the Gulf of Carpentaria. Region C contains a
thick dust plume in central Australia.

5.3.5 Case study C: central Australian optically thick
dust

Figure 12 shows a region in central Australia with a thick
dust plume from 5 January 2020 at 05:00 UTC. This plume
is accurately classified by the NN, and the majority of the
plume is correctly classified by the BoM mask. However,
both the BoM and JMA misclassify some or all of the plume
as clouds. To the north of the dust plume, there is a salt lake
visible in the image. This is classified by the NN as non-
clouds but misclassified by the other masks. This indicates
another area of improvement for the NN and is particularly
important for retrievals over Australia where salt lakes are
prevalent.

Towards the centre and top of the scene there are areas
of small-scale clouds. The JMA and BoM masks identify
the majority of the cloud in this region, whereas the binary
NN mask fails to identify the smallest clouds. However, it
can be seen that this region has values of approximately 0.5
or higher in the continuous mask, indicating that a lower
threshold could lead to better classification. The dust plume
has continuous values significantly below 0.5, so decreasing
the threshold would not lead to misclassification of the dust
plume, allowing the NN to be significantly more accurate
than the other masks in this scenario.

6 Conclusions

Identifying cloud-affected scenes in satellite data is an im-
portant step prior to retrieving geophysical properties from
remote sensing data. Failure to identify clouds correctly can
result in substantial biases in a geophysical retrieval. In prac-
tice, this means that cloud masks are tailored towards con-

servatively clearing any non-surface features at the cost of
identifying many non-cloud scenes as clouds.

However, conservative cloud masks can introduce other bi-
ases. In the cases of air quality and fire applications, it is
important to remove clouds while still identifying the thick
aerosol plumes. In this study, a set of neural networks (NNs)
are developed to improve the detection of clouds and aerosol
for AHI (Bessho et al., 2016) scenes with the specific goal
of identifying cloud-affected scenes as accurately as possible
and at the same time improving cloud–aerosol discrimination
during heavy aerosol loading events.

Data for training and validating these NNs are generated
by collocating the AHI instrument with parallax-corrected
CALIOP (Winker et al., 2004) 1 km cloud-layer products.
Approximately 7300 CALIOP overpasses are collocated
from 2019 for training separate day, twilight and night al-
gorithms. These algorithms are optimised by sweeping over
a range of possible structures using either the stochastic gra-
dient descent or Adam optimisers. The optimal algorithms
are then statistically compared to the Japanese Meteorolog-
ical Agency (JMA) and Bureau of Meteorology (BoM) op-
erational cloud masks (Le GLeau, 2016; Imai and Yoshida,
2016; Heidinger and III, 2013) using 30 collocated CALIOP
overpasses from 2020. Analysis of KSS values showed that
the NN cloud mask is an overall improvement over the BoM
and JMA cloud masks in all scenarios. When using the NN
with a true positive rate equivalent to the other masks, the NN
accurately detects 1.13 and 1.29 times as many non-cloud
pixels versus the JMA and BoM masks, respectively.

The NN algorithms were analysed using the SHAP pack-
age (Lundberg et al., 2020; Lundberg and Lee, 2017) to un-
derstand the influence of each input on the NN performance.
For the day algorithm, it is found that all the visible channels
are important, including bands 1 (0.47 µm) and 2 (0.51 µm),
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Figure 10. Region A on the SE coast of Australia from an AHI scene for 1 January 2020 at 03:30 UTC. A total of three RGB false-colour
composites of the scene are presented in the left-hand column, showing (a) true-colour, (c) natural-colour and (e) dust RGBs. The top, middle
and bottom panels of the right-hand column show (b) the NN continuous cloud mask, (d) NN binary cloud mask and (f) a comparison of the
three binary masks for the scene.
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Figure 11. Case study B covering the Gulf of Carpentaria from an AHI scene for 1 January 2020 at 03:30 UTC. A total of three RGB
false-colour composites of the scene are presented in the left-hand column, showing (a) true-colour, (c) natural-colour and (e) dust RGBs.
The top, middle and bottom panels of the right-hand column show (b) the NN continuous cloud mask, (d) NN binary cloud mask and (f) a
comparison of the three binary masks for the scene.
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Figure 12. Region C covering central Australia and highlighting a dust storm for 5 January 2020 at 05:00 UTC. A total of three RGB false-
colour composites of the scene are presented in the left-hand column, showing (a) true-colour, (c) natural-colour and (e) dust RGBs. The top,
middle and bottom panels of the right-hand column show (b) the NN continuous cloud mask, (d) NN binary cloud mask and (f) a comparison
of the three binary masks for the scene.
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as well as the atmospheric window thermal channels. The
night NN relies on the atmospheric window channels, as well
as band 7 (3.9 µm), whilst the twilight NN relies heavily on
the band 4 (0.86 µm), likely due to less Rayleigh scattering
in these bands compared with shorter wavelengths, as well as
the SWIR channels values to classify clouds, and the tradi-
tional atmospheric window thermal channel. However, a lack
of collocated twilight data outside the polar regions limits the
finding for twilight scenes.

The masks were compared for several AHI scenes cov-
ering a range of difficult scenarios, the results suggested the
NN mask improves on the JMA and BoM masks for optically
thick aerosol plumes, regions of sunglint and challenging
surface types. One case study was a scene that contained a
very optically thick smoke plume, taken from 1 January 2020
at 03:30 UTC during the Black Summer bushfires of Aus-
tralia. This showed that the NN cloud mask significantly im-
proves on the BoM and JMA mask at classifying smoke as
non-clouds. The NN mask struggles to deal with small-scale
clouds, but due to its improved abilities to differentiate thick
aerosol plumes from clouds, increasing the threshold on con-
tinuous values can rectify this issue. In addition, the twilight
algorithm struggles outside the polar regions.

Overall, the NN mask shows improved performance over
the JMA and BoM cloud masks for all cloud scenes, particu-
larly during heavy aerosol loading events. The findings sug-
gest that including additional channels such as bands 1 and
2 in the JMA and BoM algorithms could aid in the discrim-
ination between clouds and heavy aerosol loadings during
daylight conditions.

Code and data availability. The code and models
needed to run the NN cloud masks are available at
https://doi.org/10.5281/zenodo.6538854 (Robbins and Proud,
2022). The data used for training and validating the models are
available from Robbins et al. (2021). The AHI data were obtained
from archives on NCI’s Gadi. The JMA cloud mask was accessed
from https://registry.opendata.aws/noaa-himawari (last access: 17
December 2021; AWS, 2021).
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