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Abstract. Mineral dust particles dominate aerosol mass in
the atmosphere and directly modify Earth’s radiative bal-
ance through absorption and scattering. This radiative forc-
ing varies strongly with mineral composition, yet there is still
limited knowledge on the mineralogy of atmospheric dust.
In this study, we performed X-ray diffraction (XRD) and re-
flectance spectroscopy measurements on 37 different dust de-
position samples collected as airfall in an urban setting to
determine mineralogy and the relative proportions of miner-
als in the dust mixture. Most commonly, XRD has been used
to characterize dust mineralogy; however, without prior spe-
cial sample preparation, this technique is less effective for
identifying poorly crystalline or amorphous phases. In addi-
tion to XRD measurements, we performed visible and short-
wave infrared (VSWIR) reflectance spectroscopy for these
natural dust samples as a complementary technique to deter-
mine mineralogy and mineral abundances. Reflectance spec-
tra of dust particles are a function of a nonlinear combination
of mineral abundances in the mixture. Therefore, we used
a Hapke radiative transfer model along with a linear spec-
tral mixing approach to derive relative mineral abundances
from reflectance spectroscopy. We compared spectrally de-
rived abundances with those determined semi-quantitatively
from XRD. Our results demonstrate that total clay mineral
abundances from XRD are correlated with those from re-
flectance spectroscopy and follow similar trends; however,
XRD underpredicts the total amount of clay for many of the
samples. On the other hand, calcite abundances are signifi-
cantly underpredicted by SWIR compared to XRD. This is
caused by the weakening of absorption features associated
with the fine particle size of the samples, as well as the pres-
ence of dark non-mineral materials (e.g., asphalt) in these
samples. Another possible explanation for abundance dis-

crepancies between XRD and SWIR is related to the differing
sensitivity of the two techniques (crystal structure vs. chem-
ical bonds). Our results indicate that it is beneficial to use
both XRD and reflectance spectroscopy to characterize air-
fall dust because the former technique is good at identifying
and quantifying the SWIR-transparent minerals (e.g., quartz,
albite, and microcline), while the latter technique is superior
for determining abundances for clays and non-mineral com-
ponents.

1 Introduction

Mineral dust aerosols are lofted from the surface into the at-
mosphere, mainly in the arid regions of the world, either af-
fecting the area nearby or traveling long distances causing
global impacts (Goudie and Middleton, 2006). Suspended
mineral particles affect air temperature by scattering and ab-
sorption of incoming sunlight and outgoing long-wave radi-
ation (Miller and Tegen, 1998). Mineral dust–radiation in-
teractions (e.g., absorption and scattering) directly modify
Earth’s radiative balance and energy budget, consequently
contributing to climate change (Tegen and Lacis, 1996;
Tegen et al., 1996). Past studies have discussed that dust
particles’ distinctive radiative forcing strongly depends on
their particle size distribution (PSD) and mineral composi-
tion (Sokolik and Toon, 1999; Sokolik et al., 2001; Ginoux
2017). Atmospheric dust particles contain a diverse mix of
minerals. Such dust is dominantly composed of quartz, car-
bonates, iron oxides, clays, sulfates, and feldspars (Engel-
brecht et al., 2016, their Supplement Sects. S2.1 and S2.2).
Therefore, the relative quantity of the various minerals de-
fines the optical properties of these aerosols.
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As a common approach, particulate matter deposited by
airfall is collected at different geographic locations to deter-
mine mineralogical composition and abundance, as well as
particle size distribution. Despite the fact that the physico-
chemical properties of minerals have a substantial impact
on dust-related radiative forcing, there is no ideal measure-
ment technique for identifying these properties. To date,
X-ray diffraction (XRD) has been frequently used in vari-
ous research studies as a primary or complementary tech-
nique to measure the mineral content of dust particles (e.g.,
Caquineau et al., 1997; Kandler et al., 2009; Engelbrecht et
al., 2009, 2016, 2017; Nowak et al., 2018). For example,
Engelbrecht et al. (2017) performed XRD measurements on
27 dust samples collected from the Arabian Red Sea coast
in order to obtain mineralogy and fractional abundances of
minerals. In that study, they found that the dust samples
were mainly dominated by quartz, feldspars, micas, clays,
and halite and to a lesser extent by carbonates, iron oxides,
and gypsum. While XRD is a powerful technique for char-
acterizing crystalline phases, it is less effective at measur-
ing poorly crystalline and amorphous phases (Moore and
Reynolds, 1997).

In this research, we use visible and short-wave in-
frared (VSWIR) reflectance spectroscopy as a complemen-
tary method to obtain mineral identification and abundances.
To date, very limited studies have used VSWIR to determine
natural dust particle mineralogy (e.g., Reynolds et al., 2020);
however, it can provide quantitative measurements and iden-
tify both amorphous and crystalline phases (Clark, 1999).
This approach has been widely used to obtain mineral com-
positional information in laboratory and remote sensing ap-
plications with particular attention to mineral mixtures (e.g.,
Mustard and Pieters, 1987; Combe et al., 2008). Reflectance
spectra of mixtures are modeled using radiative transfer (RT)
theories, such as that developed by Hapke (1981), or lin-
ear spectral mixing (LSM) (e.g., Ramsey and Christensen,
1998). LSM is employed when a sample reflectance spec-
trum is simply a linear combination of the constituents’ spec-
tra, whereas RT is commonly utilized when materials are in-
timately mixed, and light is interacting with several miner-
als, resulting in a nonlinear relationship between abundance
and spectral feature strength. Since planetary surfaces are
mostly composed of intimately mixed minerals with non-
linear spectral interactions, RT has been found to be an ef-
fective way to derive mineral abundances from reflectance
spectra measured from spacecraft and in the laboratory (e.g.,
Mustard and Pieters, 1987, 1989; Hiroi and Pieters, 1994;
Lucey, 1998; Cheek and Pieters, 2014; Robertson et al.,
2016; Lapotre et al., 2017). Additionally, many studies have
employed RT to model reflectance spectra of synthetic or lab-
oratory mineral mixtures, validating the derived abundances.
For example, Robertson et al. (2016) demonstrated that phys-
ical mixtures of clay and sulfate at varying abundances were
accurately determined (within 5 %) using a Hapke RT model.

Moreover, multiple past studies have shown that the
mineral abundances (for rocks and rocking forming fine-
grained mineral samples) derived from visible and infrared
reflectance spectra are in good agreement with mineral abun-
dances that are obtained using XRD (e.g., Pan et al., 2015;
Thorpe et al., 2015; Leask and Ehlmann, 2016). For exam-
ple, Leask and Ehlmann (2016) performed measurements on
15 rock samples (with various particle sizes) collected from
Oman, and they found that VSWIR reflectance spectroscopy
paired with linear spectral unmixing yields quantitative min-
eral abundance estimates that are consistent (within 10 %–
15 %) with XRD abundance estimations.

Here, we used both XRD and reflectance spectroscopy
as complementary techniques to investigate the variation of
both mineral composition and abundance in natural samples
of atmospheric dust deposited in the city of Ilam, Iran. We
estimated mineral abundances of these homogenous samples
using their reflectance spectra and a Hapke RT model com-
bined with linear mixing, and we compared those results with
semi-quantitative abundances determined by XRD. We ex-
amined the ability of widely used spectral mixing approaches
to determine if they can be used accurately to quantify min-
eral abundances in dust samples collected in urban settings.

2 Methods and material

2.1 Sample collection

For this study, we conducted measurements on 37 samples of
dust captured with marble dust collectors (MDCOs), located
in Ilam, Iran. Based on an original design by Ganor (1975),
we chose MDCOs due to the efficiency and popularity in
desert research (e.g., Offer et al., 1992; Goossens and Of-
fer, 1994; Goossens and Rajot, 2008). In general, the rep-
resentation of dust in the sample depends on the selected
sampling method, which may result in underestimation or
overprediction of some important minerals (von Holdt et al.,
2021). MDCOs (like many other dust catchers) are less ef-
ficient in dust collection in high-wind regimes (Goossens,
2005). However, they were proven to be efficient at collect-
ing dry deposition and less sensitive to local weather condi-
tions (Goossens and Offer, 1994; Sow et al., 2006; Goss et
al., 2013). Sadrian et al. (2012) selected Ilam as their study
area because it is located in western Iran and is affected by
large dust sources in neighboring countries including Iraq,
Kuwait, and Saudi Arabia (Shahsavani et al., 2012), and thus
it is commonly impacted by severe dust storms. To collect de-
position of airborne dust, 13 dust samplers were distributed
and installed throughout the city area (Fig. 1). Deposited
dust was collected in three intervals from September 2011
through June 2012 (Table A1). Specific 3-month periods
were 23 September to 21 December 2011 (fall) and 22 De-
cember 2011 to 19 March 2012 (winter), and 20 March to 20
June 2012 (spring). As part of sample collection procedure,
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Figure 1. Map (© Google Earth) shows the distribution of samplers throughout Ilam. Annotations note sample numbers identified in Ap-
pendix A, Table A1. Latitudes and longitudes are the coordinates for the corners of the map.

first, dust samples in MDCOs were dried at room temper-
ature to preserve the mineralogical and physical properties
of the surface soils from which they were transported. Then,
the dry samples were collected from the samplers by thor-
oughly cleaning the dust depositions using a brush. All sam-
ples were transferred to separate plastic bottles for the further
experiments. A total of 39 samples were collected in order to
determine their mineralogy, heavy metal content, and depo-
sition rate in different areas of Ilam (Sadrian et al., 2012). In
the current research, we revisit the compositional informa-
tion of these dust samples. The mass for the collected dust
samples ranges from minimum ∼ 0.01 g to maximum ∼ 5 g.
Since two samples did not contain enough dust for our anal-
ysis, as shown in Table A1, the measurements for this study
were conducted on 37 samples. It should be noted that there
was no special sample preparation that was performed for the
purpose of dust measurements (with XRD and spectroscopy)
described in the next sections. Prior to these measurements
unwanted debris and detectable man-made and plant materi-
als were removed from the samples, and we made sure to use
a similar quantity of dust (∼ 1 g) for each of the experiments
that were conducted with spectroscopy and for the measure-
ments that were collected using XRD.

2.2 X-ray diffraction (XRD)

XRD is a technique used to obtain the unique crystal struc-
ture of a material. Diffracted beams are measured over a
range of angles (2-theta) and peaks at specific angles are re-

lated to the crystal structure of the mineral (Klein, 2002). For
the Ilam samples we used a Bruker D2 Phaser benchtop X-
ray diffractometer. Qualitative phase identification was per-
formed using XRD evaluation software (DIFFRAC.EVA),
which helps to identify phases in a specimen by comparison
with standard patterns existing in a library. Figure 2 displays
standard reference minerals with unique diffraction patterns
extracted from an accessible, established dataset (American
Mineralogist Crystal Structure Database (AMCSD); Downs
and Hall-Wallace, 2003) compared with unknown peaks in
an Ilam sample (S11). As shown in Fig. 2, matches for quartz
(Q), calcite (C), albite (Al), microcline (M), gypsum (G),
kaolinite (K), and actinolite (Ac) (representative amphibole)
were found in S11. The identification of the illite peak in
Fig. 2 uses data from the published literature such as from
Gualtieri (2000) and Drits et al. (2010). While this peak pat-
tern was available for our analysis in the DIFFRAC.EVA
software, we were not able to export the reference patterns in
order to show them in Fig 2. We used the AMCSD database
for other minerals shown in Fig. 2, but this database does
not include a pattern for illite. Montmorillonite was readily
identified in most of the samples using spectroscopy (Fig. 3).
However, in XRD plots it is difficult to discriminate with-
out special sample preparation (e.g., clay separation). Be-
cause the volumes of dust samples were low, XRD sam-
ple preparation specifically for clay minerals was not con-
ducted. Also, we could not follow sample preparation de-
veloped for low-mass atmospheric dust samples (Caquineau
et al., 1997) due to a lack of access to specialized equip-

https://doi.org/10.5194/amt-15-3053-2022 Atmos. Meas. Tech., 15, 3053–3074, 2022



3056 M. R. Sadrian et al.: Contrasting mineral dust abundances

Figure 2. XRD pattern of sample S11 is compared with those of
standard reference minerals from AMCSD. Dotted lines connect the
diagnostic XRD peak in quartz (Q), calcite (C), albite (Al), micro-
cline (M), gypsum (G), kaolinite (K), and actinolite (Ac) to the cor-
responding XRD patterns in S11, confirming the presence of these
minerals in this particular dust sample. Illite (I) was identified as
described in the text.

ment. In order to account for montmorillonite, we included
the standard reference pattern in all diffractograms and min-
eral abundance determinations. Semi-quantitative (S-Q) as-
sessment of mineral abundances was obtained through in-
tegrated band area ratios and relative intensities of several
lines after removing background and source peak noise. The
result from S-Q analysis of all dust samples is discussed in
Sect. 3.1. S-Q abundances made from the diffraction mea-
surements are derived from the relative proportion of miner-
als in the sample (weight percentage %) and should add up
to 100 %. Given that the XRD is less effective at detecting
and quantifying poorly crystalline minerals and amorphous
phases (Moore and Reynolds, 1997), the obtained abundance
results for other existing crystalline minerals can be overes-
timated. Past studies reported a detection limit which is gen-
erally < 2 % for crystalline minerals and an uncertainty of
approximately±10 % related to mineral quantification. (e.g.,
Bish and Chipera, 1991).

2.3 VSWIR reflectance spectroscopy

Minerals have distinctive spectral characteristics, and band
center, strength, shape, and width are utilized to confidently
identify species (Gaffey et al. 1993; Clark, 1999). In the
VSWIR (350 to 2500 nm) diagnostic absorption bands arise
from transition electrons (generally caused by iron oxides)
in various crystallographic sites and from the overtones and
combinations of the fundamental vibrations of species such
as hydroxyl, water, and carbonate (Hunt, 1977; Clark et al.,
1990). VSWIR reflectance measurements of dust samples

were carried out using a fine-resolution and high-sensitivity
spectral evolution (SE), model RS-5400 portable spectro-
radiometer. To collect sample spectra, dust samples were
placed in a holder, and a contact probe with a halogen light
source was used to capture VSWIR data. As part of rou-
tine calibration, the contact probe measures a white Spec-
tralon plate. All sample measurements are automatically ra-
tioed to the Spectralon calibration target. We subsequently
multiplied measured spectra by the absolution reflectance of
Spectralon, resulting in a measurement that is in reflectance
(Kokaly et al., 2017). Sample spectra were measured with a
0◦ incidence angle and a 38◦ emergence angle, yielding a 38◦

phase angle. Because sample volumes were small (lowest
mass ∼ 0.01 g) and to minimize the effect of the aluminum
holder reflectance, we measured the sample on a holder cov-
ered with black tape. Measurements of the tape alone con-
firmed there were no features introduced by this method.

Mineralogy for the reflectance spectra of the Ilam dust
samples was determined by comparing the samples with the
well-characterized USGS library (Kokaly et al., 2017). Min-
eral constituents were identified with an iterative procedure
and inspection in which phases were identified on the ba-
sis of H2O, OH, and Al–OH absorption features for phyl-
losilicates, the H2O band in sulfates, and CO3 in carbon-
ates (Hunt, 1977; Gaffey, 1986; Clark et al., 1990). Figure 3
shows representative spectra from three Ilam samples (S25,
S26, S30) having varying mineralogy. These samples (S25,
S26, S30) represent a range of mineral compositions includ-
ing calcite, montmorillonite, illite, and gypsum. In this spec-
tral range (1350–2500 nm), common silicates such as micro-
cline, quartz, and albite have no absorption features (dotted
flat lines in Fig. 3) and are thus known as transparent miner-
als in the VSWIR spectral range (Clark, 1999). Iron oxides
have strong diagnostic spectral signatures in the visible and
near infrared (up to around 1000 nm); however, we did not
see absorption features attributed to them in these samples.
Therefore, we truncated all spectral plots at 1350 nm in or-
der to focus on the spectral range above 1350 nm with the
strongest features (SWIR range). Hence, the exclusion of the
spectral range from 350 to 1350 nm will not miss any major
mineral components.

2.4 Optical microscopy (OM)

An Olympus petrographic optical microscope was used to
assess mineralogical composition and relative abundance of
minerals in the samples. Mineral grains were mounted on
a glass slide immersed with Cargille 1.544 refractive index
oil. Particles were identified based on their diagnostic proper-
ties such as color, cleavage, refractive index, and texture. We
were able to detect some coarser particles such as quartz, car-
bonates, and amphibole (Fig. 4a and b); however, fine-grain
clay minerals were not identifiable due to the petrographic
microscopy limitation for grain sizes less than 10 µm. The
presence of man-made materials (which could be related to
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Figure 3. SWIR spectra for three representative samples (S25, S26,
S30) and library spectra of pure minerals showing diagnostic fea-
tures for calcite, montmorillonite, illite, and gypsum. All spectra are
offset for clarity. Arrows near 1400, 1900, 2200, and 2345 nm call
out features arising from OH, water, and Al–OH in mineral struc-
tures, common to many clay minerals such as montmorillonite and
illite. Arrows targeting 2340 and 2480 nm show the wavelengths of
dominant absorption features in calcite. The arrow at 1945 nm rep-
resents the unique spectral signature attributed to water in sulfates
such as gypsum.

asphalt and tar) was revealed by visual inspection of OM im-
ages. Figure 4a and b illustrate the relative abundances of
these dark materials in samples compared to mineral parti-
cles. Additionally, there are numerous angular particles, par-
ticularly in Fig. 4b, that have no cleavage, a refractive index
significantly lower than 1.544, and no crystal structure and
that seem to be amorphous and isotropic. Because these sam-
ples were collected in an urban setting, they contain a variety

of different anthropogenic particles that are difficult to iden-
tify using OM.

2.5 Particle size distribution (PSD)

PSD was determined for all Ilam samples using a Malvern
Mastersizer 3000. This instrument is based on a compact op-
tical system that uses laser diffraction to measure particle size
distribution for both wet and dry dispersions (known as hydro
and aero methods). We selected the wet dispersion method
for PSD analysis because this technique will separate sand-
sized micro-aggregates of particles into their smaller con-
stituents for the final results (Hartshorn et al., 2021). This
method also allows for full sample recovery. For subsequent
analysis, the particle size fractions that make up the samples
were categorized into three groups: clay (< 2 µm), silt (2–
63 µm), and sand (63–500 µm). The 37 dust samples were
dominated by silt sizes but showed a variable size range dis-
tribution, as shown in Fig. 5. The mean for each size range is
clay ∼ 7 %, silt ∼ 83 %, and sand ∼ 10 %.

2.6 Mineral abundance estimation from reflectance
spectra

In order to determine dust mineral abundances from re-
flectance spectra, we initially used linear spectral mixing
(LSM) of the reflectance spectra. This approach assumes that
the spectrum of the sample is a linear combination of the
spectra of individual minerals (endmembers), and it has been
extensively used to characterize materials on the surface of
Earth (e.g., Metternicht and Fermont, 1998; Roberts et al.,
1998; Dennison and Roberts, 2003) and Mars (e.g., Bell et
al., 2002; Combe et al., 2008). Based on LSM, the reflectance
spectra of a mixture can be expressed as (Keshava and Mus-
tard, 2002)

Y (λ)=
∑n

i=1
αiX(λ)i + ε (λ), (1)

where Y denotes the reflectance for the mixed spectrum, αi is
the abundance of the ith endmember in the mixture spectra,
λ is the wavelength, ε represents the residual error between
sample and modeled spectra, and X(λ) is the matrix of in-
put endmember reflectance spectra obtained from the USGS
spectral library (Kokaly et al., 2017).

To solve Eq. (1) for α1, we employed a non-negative lin-
ear least squares (NNLS) algorithm which calculates a com-
ponent’s coefficient or abundance, which must be a positive
number (Rogers and Aharonson, 2008). Our NNLS algo-
rithm was designed using MATLAB R2019a and an available
function called non-negative linear least squares (lsqnonneg).
The inputs for the NNLS model are the dust reflectance
and the matrix of endmember reflectance spectra from the
USGS library, and outputs are the vectors of abundances and
the root mean square error (RMSE) between the dust sam-
ple spectra and the model fit. In order to assess the qual-
ity and the accuracy of the modeled spectra, both the vi-
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Figure 4. Panels (a) and (b) are OM images of representative samples S6 and S11, respectively, depicting the presence of quartz, calcite,
amphiboles (red rectangles), and dark materials (yellow circles). Quantitative and visual assessments reveal that both images contain a high
abundance of dark materials and other unknown particles that have no diagnostic mineral properties.

Figure 5. Ternary diagram showing volume distributions for 37 dust
samples analyzed with the Malvern Mastersizer 3000. Silt is the
most prevalent size class in the samples with a minimum ∼ 69 %
and maximum ∼ 93 %.

sual comparison of the calculated fit and the RMSE were
evaluated. While application of this method resulted in a
very low RMSE for the fit between the sample and mod-
eled spectra, the modeled spectra did not match band centers
and strengths for the absorption features and did not produce
reasonable mineral abundances. As these samples are very
fine-grained, with an intimate association with one another,
multiple scattering effects are expected to be important, and
thus reflectance spectra of the mixture are a nonlinear com-
bination of constituents’ abundances (Nash and Conel, 1974;
Singer, 1981). In order to address this nonlinear mixing, we
implemented a widely used radiative transfer model based on
Hapke (1981) that has been shown to provide reliable mineral

abundances from laboratory particulate mixtures (e.g., Mus-
tard and Pieters, 1987, 1989; Hiroi and Pieters, 1994; Lucey,
1998; Robertson et al., 2016; Lapotre et al., 2017). In order
to determine abundance, the dust sample and library mineral
endmember reflectance spectra are converted to single scat-
tering albedo (SSA) according to Eq. (2) (Hapke, 1981). SSA
is the ratio of the scattering to the extinction of the medium.
A combination of the SSA of mineral endmembers do mix
linearly (Johnson et al., 1983) and thus are able to accu-
rately reproduce the mixture reflectance spectra. Mixture re-
flectance spectra are related to the average SSA (w) through

r =
w

4
1

µo+µ

{[
1+B (g)

]
P (g)+H (µo)H (µ)− 1

}
, (2)

where r is the reflectance, µo and µ are the cosines of the
angles of incident and reflected light, w is the average sin-
gle scattering albedo, H is the Chandrasekhar function for
isotropic scatterers, B(g) is backscatter function, P(g) is the
average single-particle phase function, and (g) is the phase
angle. Following the reasoning of Mustard and Pieters (1989)
that there is negligible backscattering at intermediate phase
angles, we set backscatter function B(g) to zero. We assume
these particles scatter isotropically, and we can set P(g)= 1.
Hapke’s approximation of Chandrasekhar’sH function is de-
fined by Eq. (3),

H (µ)=
1+ 2µ

1+ 2µγ
, (3)

where γ =
√

1−w. We now invert Eq. (2) to calculate w
based on the reflectance measurement, which yields the ex-
pression

w =
4(µ+µo)r
H (µ)H (µo)

, (4)

where we use Eq. (3) to obtain H(µ) and H(µo). This equa-
tion includes w on both the left side and in the H functions.
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In order to solve this, w is subtracted from both sides of
the equation, and we solve for the value of w that results
in zero, using the MATLAB command “fzero”. This com-
mand is used to find the roots for nonlinear equations of a
single variable. As r , µ (38◦), and µo (0◦) are known, the
root is the value of w that makes the whole equation zero.
Using this method, we derived SSA at each wavelength for
both dust sample spectra and the mineral endmembers from
the library. Because the average SSA (w) of a sample is a
linear combination of individual mineral SSA, we employ a
linear spectral mixing approach (Eq. 1), but Y is now w of
the measured sample, and X is the SSA spectra of pure min-
erals from the USGS library. Using Eq. (5), we determine the
fractional contribution of a given mineral.

wmix =

N∑
i=1

fiwi, (5)

where wmix is the average SSA, wi is the SSA for individual
endmember i, and fi is the fractional geometric cross-section
for component i. Based on Lapotre et al. (2017), fi can be
expressed as

fi =

(
mi

ρidi

)
/
∑(

mn

ρndn

)
(6)

for an n component mixture. In Eq. (6), di , ρi , and mi are
the grain size, density, and mass abundance of endmember i.
Past studies reported the density of dust particles between 2
and 3 g cm−3 (e.g., Delany et al., 1967; Maring et al., 2000;
Reid et al., 2003; Fratini et al., 2007), so we set the den-
sity as 2.5 g cm−3 for all dust samples. Based on information
provided in the USGS library, we selected spectra measured
at finer grain sizes when available. For some samples, the
USGS library includes multiple samples for a given mineral
type. Through trial and error, we selected individual samples
that provided the best fits. These spectra are shown in Ap-
pendix B (Fig. B1). Most library minerals used were in the
grain size range < 150 µm. Our samples have a narrow size
distribution (Fig. 5) so that our model assumes all compo-
nents have the same grain size and does not allow this to
vary as a free parameter.

To derive fractional abundances, the NNLS MATLAB
solver is used to input a matrix of mineral endmember SSA
and dust sample w. This algorithm attempts to find the mass
abundances that reproduce the best model fit for a dust sam-
ple spectrum. Figure 6 displays the calculated linear least
squares fit of the model to the measured spectra of three
representative dust samples (S15, S33, S17). In addition to
minerals, we found hydrocarbon (C–H) absorption features
related to asphalt and tar in many of the samples in our pre-
liminary analysis, and thus we included their spectra (Fig. 7a)
in the input endmember bundles for modeling all 37 samples.
Our analysis determined the RMSE between the sample and
the modeled spectrum with variable small numbers between

0.022 and 0.16 (Appendix A, Table A1 and Appendix C,
Fig. C1). Sample S15 (Fig. 6a) displays a relatively well-
modeled fit based on our visual evaluation and a low RMSE
(0.044). Many of the samples, such as S33 (Fig. 6b), used a
substantial amount of asphalt or tar to reproduce a good fit
in the wavelength region between 2300 and 2370 nm. Some
parts of the fit for S15 and S33 have minor discrepancies
(e.g., near 2255 nm for S15 and between 1550 and 1730 nm
for S33), but absorption feature shapes and centers are accu-
rately determined. We found many spectra (e.g., S17, Fig. 6c)
are not modeled well due to the contribution and presence
of other materials. We visually identified dry grass, plastic,
and styrofoam in some samples. Figure 7b shows the spec-
tra for dry grass and plastic extracted from the USGS library
(Kokaly et al., 2017), as well as styrofoam that we charac-
terized in the laboratory. These urban materials have strong
absorptions with a wide range of spectral features (Kokaly et
al., 2017). Not including them in the model likely prevents
a good match to the measured spectra. Because the focus of
this research was on the mineral constituents, we did not at-
tempt to include other non-mineral components in order to
obtain good fits for all samples. Asphalt and tar were in-
cluded in all models because their absorption bands occur in
many samples and provide a good match to the overall SSA.

3 Results

3.1 XRD (total mineral abundance)

S-Q analysis, as described in Sect. 2.2, resulted in mineral
mass abundances shown in Fig. 8. The XRD bar chart (Fig. 8)
indicates that individual mineral abundances vary from sam-
ple to sample, yet there is some regularity. Quartz and al-
bite (plagioclase), followed by illite (clay), are the most com-
mon minerals in the samples. Kaolinite and montmorillonite
(clays) are dominantly detected in minor and trace levels in
the samples and thus make up a small fraction of the total
abundances. Some minerals in the XRD bar chart are more
variable both in their presence and abundance. Calcite (car-
bonate) shows the highest variation with a range between
0 % and 63 % of the total mineral abundance. Microcline (K-
feldspar), actinolite (amphibole), and gypsum (sulfate) are
among the least common minerals. XRD detected gypsum in
only three samples collected close to construction sites. Since
sulfate is a common mineral on many construction sites, its
infrequent and rare presence may be derived from nearby
building materials.

3.2 SWIR reflectance spectroscopy (total mineral
abundance)

As discussed in Sect. 2.6, all spectra were modeled to de-
rive mineral abundances. The goodness of the fit is highly
dependent on the input endmembers. While additional end-
members can improve the quality of the model, incorporating
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Figure 6. Panels (a)–(c) display the model fit for the representative samples S15, S33, and S17. Measured spectra are shown with solid
blue lines and modeled with dash-dot red lines. The smaller plots on the bottom show the root mean square error (RMSE) as a function of
wavelength and the total RMSE. The fit uses SSA derived from library endmember reflectance spectra. Out of 37 modeled spectra, S15 (a)
and S33 (b) represent relatively good fits and low RMSE; however, S17 (c) shows misfits and a relatively high RMSE. Materials contributing
to the misfits are discussed in the text.

Figure 7. Panels (a) and (b) show the spectra for non-mineral materials common in urban settings. The arrows in panel (a) point to a doublet
arising from C–H bonds in asphalt and tar. Spectra in (b) are for other materials that were visually identified in the samples whose absorption
features may lead to poorer model fits. All spectra for both figures are offset for clarity.

extra endmembers just to improve the fit can lead to erro-
neous abundances. Therefore, we included only the phases
that were identified with SWIR and XRD based on diagnos-
tic features. Figure 9 demonstrates mineral abundance vari-
ations obtained from linear mixing of SSA. This figure de-
picts a high abundance of microcline, quartz, and albite in the
samples, although these minerals are featureless in the SWIR
range (Fig. 3). As also shown in Fig. 3, pure library minerals
have much stronger absorption features (greater depth) than

those observed in the Ilam samples. This is referred to as
higher spectral contrast. Therefore, the model automatically
uses microcline, quartz, and albite as neutral endmembers
to create a model spectrum that fits weaker features. By in-
corporating featureless material, the overall spectral contrast
is reduced at all wavelengths (Hamilton et al., 1997, 2000).
This results in relatively low abundances of other minerals
(Fig. 9). In order to better compare to XRD, we removed
microcline and other spectrally neutral minerals (quartz and
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Figure 8. Bar charts demonstrate the relative phase concentration (wt %) calculated from the total diffracted peak area of various minerals
obtained by XRD analysis.

albite) and then re-normalized the abundances for both XRD
and SWIR (Fig. 10).

Figure 10 displays normalized mineral fractions (%) after
removing microcline, quartz, and albite from both SWIR and
XRD. A comparison of these bar charts reveals that SWIR
models are dominated by the abundance of clays, with of-
ten a lower abundance of carbonate and asphalt. Montmoril-
lonite, kaolinite, and illite are the most prevalent components
and are highly variable in the samples. Since it is difficult to
distinguish montmorillonite from illite using XRD, we will
compare the abundance of all clay minerals in the next sec-
tion. Surprisingly, asphalt has a relatively high fraction and is
included in the models of the majority of samples but would
not be observed by XRD due to its lack of crystal structure.
This suggests that asphalt may act as an agent to reduce spec-
tral contrast and contribute to the lower relative abundance
of carbonate, similar to that of microcline and other trans-
parent minerals. The three samples that contain gypsum are
the same in both SWIR and XRD. Although actinolite (am-
phibole) is a variable component in the XRD data, it is not
apparent or used in the SWIR models at a detectable level.

3.3 Comparison of mineral abundances from XRD and
SWIR spectroscopy

Due to the contribution of the non-mineral materials in the
samples, many model fits were poor (e.g., Fig. 6c) and hence
did not retrieve mineral abundances correctly. Poor models
may omit, underestimate, or even overestimate the abun-
dance value for specific minerals. In order to better com-
pare the mineral abundances derived from the spectra and
XRD S-Q results, a thorough examination inspected both
model fit match quality and RMSE (Appendix C, Fig. C1)

and identified 21 samples that had well-matched absorption
feature centers and strengths (check marks in Fig. 10 and Ap-
pendix C, and, e.g., Fig. 6a and b) and RMSE values below
0.07. In order to compare equivalent abundances, transparent
mineral amounts were first removed from both SWIR and
XRD (Fig. 10), and then endmember fractions that had non-
zero values were re-normalized to 100 %. Illite and kaolinite
are among the most common minerals detected with XRD,
but in SWIR, both display a very high variability. Montmo-
rillonite presents as a small fraction in XRD abundances but
is often quite high in SWIR. In order to compare illite, kaoli-
nite, and montmorillonite abundances from XRD and SWIR,
we collected their abundances together into a clay group.
Figure 11 compares the abundance of the dominant non-
transparent mineral components (clays and carbonates) for
the 21 samples having good spectral fits. Figure 11 demon-
strates a positive correlation for both clay and carbonate
abundance values from XRD and SWIR. However, whereas
the best fit correlation for clays displays a linear relationship
between abundances generated from these two approaches,
the one-to-one comparison of the fractions mostly shows an
underestimation of the amount of clay by XRD. On the other
hand, the best fit correlation plot for calcite (Fig. 11b) in-
dicates that SWIR significantly underestimates calcite abun-
dances compared to the corresponding XRD percentages.

4 Discussion – discrepancies in derived abundances
between XRD and SWIR

In this study, we obtained compositional information and
mineral mass abundances for dust samples from both XRD
and SWIR. The goal was to compare spectrally derived abun-
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Figure 9. Bar charts show the relative mass fraction (%) calculated from a linear combination of SSA of minerals and asphalt. The unrealis-
tically large proportions of microcline, quartz, and albite are discussed in the text.

Figure 10. Bar charts show XRD (a) and SWIR (b) normalized abundances after removing the transparent minerals. Those samples with
check marks had a relatively well-modeled spectral fit (e.g., Fig. 6a and b) as described in the text and are used for subsequent comparison
as described in Sect. 3.3.

dances with S-Q-determined abundance values via XRD. We
also aimed to evaluate if combining the Hapke model for
SSA and the LSM can accurately predict mineral abundances
in natural dust samples collected in urban areas. SWIR
vastly overpredicts microcline, quartz, and albite abundances
as these spectrally neutral minerals are automatically em-

ployed in modeling to uniformly decrease spectral contrast
between measured spectra and model fit. After normalizing
both datasets for the influence of transparent minerals on the
SWIR data, our analysis illustrates that XRD somewhat un-
derpredicts total clay mineral content (Fig. 11a) but under-
predicts montmorillonite by a significant margin (Fig. 10). In
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Figure 11. Plots display the difference between abundance values (in wt %) derived from XRD and SWIR. Data and the best fit line are
in blue, and a 1 : 1 correspondence is shown in red. In (a) clay abundances obtained from SWIR demonstrate a relatively higher value,
suggesting underestimation by the XRD. In (b) the SWIR-derived abundances strongly underestimate the amount of calcite compared to
XRD.

contrast, spectral modeling predicts a considerable amount of
montmorillonite (up to 47 %) in the samples. A comparison
of clay abundances from these two techniques showed a pos-
itive correlation. However, individual sample comparisons
mostly showed a higher abundance for clays derived from
spectroscopy. Calcite abundances determined from XRD and
SWIR also have a linear correlation (Fig. 11b), although
SWIR greatly underestimates its abundance. These results
also reveal that SWIR is highly sensitive to non-mineral com-
ponents such as man-made and plant materials (Figs. 6c, 7a,
and b). In Fig. 10, asphalt is one of the most common con-
stituents detected by SWIR, and it substantially contributes
to the total abundances for many samples. XRD detected
actinolite in a few samples, with varied levels of abundance;
however, the SWIR models did not use this mineral even
though it was included in the endmember bundle. Possible
reasons for the discrepancies in the results obtained from
XRD and SWIR are discussed next.

4.1 Nature of techniques

X-ray diffraction (XRD) is the most frequent technique used
to characterize dust mineralogy; nevertheless, it is less ef-
fective at detecting weakly crystalline or amorphous phases.
Given that S-Q mineral abundances tend to underpredict
clay mineral abundances, when the sum of all phases in
the mixture is normalized to 100 %, the abundance value
for calcite and other crystalline minerals may then be over-
estimated. SWIR spectroscopy, being sensitive to molecu-
lar bonding, provides additional information. In SWIR, clay
minerals have unique features and strong absorptions; hence
their abundances can be best estimated using this wavelength
range. Our result determined that XRD underpredicts total
clays and, in particular, montmorillonite abundances com-
pared to SWIR. Therefore, we recommend using SWIR in
combination with XRD for identifying and quantifying min-
eral dust particles as the latter traditional approach may over-
look some clay phases in the sample.

4.2 Limitation of library and modeling for fine grains

Natural samples have a range of particle sizes, and the min-
erals in the library used for modeling should match the par-
ticle size of the sample. Variable size classes (clay, silt, and
sand) were present in our dust mixtures, which substantially
altered the strengths of absorption features (Fig. 3) and the
overall brightness of the reflectance in each sample spectrum
(Gaffey, 1986; Cooper and Mustard, 1999). Gaffey (1986)
showed that calcite absorption feature depth is weakened
with decreasing particle size. The well-characterized suite
of minerals used in the USGS spectral library (Kokaly et
al., 2017) often contains minerals at smaller grain sizes, but
for the most part, published data use a grain size of 74–
250 µm. This larger particle size results in a relatively high
spectral contrast for the library minerals. We used Hapke’s
equation to convert reflectance spectra to single scattering
albedo (SSA). The model was able to fit the absorption fea-
tures in most cases. However, as a result of the different par-
ticle sizes encountered in our samples and the library, our
model used neutral endmembers (microcline, quartz, and al-
bite) to reduce spectral contrast and match the absorption
feature strength of the samples (Hamilton and Christensen,
2000, and Fig. 9).

We explored whether sample particle size distribution had
an effect on the quality of the model fit, particularly for the
fraction of particle sizes greater than 30 µm. We found no
systematic relationship between the quality of the model fit
and the fraction of particles larger than 30 µm in the samples.
Samples S15 and S17 (Fig. 6), respectively, have 14 % and
40 % of their particle sizes larger than 30 µm; however, S15,
with a higher fraction of fine particles, has a better modeled
fit. Although we found no link between particle size and fit
quality, there may still be some uncertainty in the derived
abundances. Hapke models were initially derived for grain
sizes larger than the wavelength, allowing geometric optics
assumptions to be utilized. Many models did not match the
measured spectra and so did not produced accurate mineral
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abundances. As a result, we recommend constructing a suite
of endmembers for LSM from a spectral library that is within
the same size range as typical natural dust samples. This
will help to reduce differences in absorption band intensities
across the spectrum, which should lead to improved model
fits and more accurate mineral abundances.

4.3 Contribution of non-mineral constituents

Inspection of all model fits identified 16 samples that had
poor matches (e.g., Appendix C and Fig. 6c). These samples
showed a strong contribution of known and unknown man-
made and plant materials (Fig. 7a and b) in their measured
spectra. Among the possible additional materials are a vari-
ety of particles such as asphalt, tar, styrofoam, plastic, and
dry grass, some of which were visually identified. Absorp-
tion from these materials can contribute strongly to the mea-
sured spectra preventing a good match. Additionally, many
studies have demonstrated that mixing dark grains with other
minerals can diminish the mixture’s reflectance and consider-
ably weaken the absorption bands observed (Nash and Conel,
1974; Singer, 1981; Clark, 1983). We note that the absolute
reflectance values for asphalt and tar in the USGS library
(Kokaly et al., 2017) are less than 23 %, thus contributing
as dark agents in dust samples. Calcite has a strong diagnos-
tic absorption feature around 2340 nm, but this appears only
weakly in our measurements (e.g., Figs. 3 and 6). The ab-
sence of this feature may be due not only to fine grain size
but also to the contribution of strong absorption from dark
man-made constituents. This also leads to the underestima-
tion of calcite abundance obtained from SWIR. XRD is not
sensitive to non-crystalline phases and thus is not sensitive
to their presence in the samples. Therefore, it is preferable to
use XRD to obtain abundances for crystalline phases when
mixed with other materials. To characterize and quantify ur-
ban dust, reflectance spectroscopy should also be utilized to
account for non-mineral materials that are present in mix-
tures as XRD would miss them. As Fig. 7 displays, SWIR can
quickly identify non-mineral diagnostic absorptions (such a
hydrocarbon bonds). These materials can contribute strongly
to dust mixtures collected from urban settings. Including var-
ious additional urban materials in spectral libraries would
probably help improve the model fit, but this was not in the
scope of this research.

XRD detected both actinolite and kaolinite in trace and mi-
nor levels. In SWIR, however, actinolite was included in end-
member bundles, but it was not selected by the models. Spec-
trally derived kaolinite, on the other hand, had highly vari-
able amounts (0 %–50 %), although we did not uniquely ob-
serve its diagnostic absorption features in any of the samples.
The absence of abundance values for actinolite and unique
spectral signatures for kaolinite could be due to their ab-
sorption features being suppressed when mixing with other
minerals and with dark grains. In addition to the effect of
non-mineral components, kaolinite absorption features can

be weakened or disappear as montmorillonite abundances in-
crease in the mixture (e.g., Ducasse et al., 2020).

4.4 Obtaining abundances from long-wave infrared
(LWIR)

In the VSWIR, reflectance spectra are shaped by electronic
and vibrational transitions (Hunt, 1977) allowing detection of
compositional information of surface materials. Clay miner-
als commonly display sharp and narrow diagnostic absorp-
tion bands in this wavelength range (Fig. 3) and thus can
be best identified and abundances estimated. For other min-
erals, the vibrational absorptions detectable in VSWIR are
weaker signals compared to corresponding features in the
long-wave infrared (LWIR, ∼ 2.5 to 25 µm). In particular,
carbonates and silicates have very strong vibrational absorp-
tions in LWIR and are readily detectable in this wavelength
range (e.g., Salisbury and Walter, 1989). As noted above,
SWIR is not sensitive to the common dust minerals quartz
and feldspars (albite and microcline). LWIR water absorp-
tions in clay minerals remain strong when mixed with dark
grains (Clark, 1983). Therefore, employing LWIR may bet-
ter estimate abundances of minerals that are either feature-
less or are obscured in VSWIR. Additionally, LWIR min-
eral absorption features in a mixture combine linearly (e.g.,
Thomson and Salisbury, 1993), allowing the interpretation of
measured spectra as a linear combination of its components’
abundances. Thorpe et al. (2015) showed that LWIR spectra
modeled with LSM can recover mineral abundances (such as
for quartz and feldspars) that are relatively in a good agree-
ment with XRD-determined abundances. Therefore, in future
work, to identify all clays, as well as quartz and feldspars,
using combined VSWIR and LWIR is recommended, which
should identify all minerals present in the samples.

5 Conclusions

In this research, we set out to test if SWIR reflectance spec-
troscopy combined with a Hapke model and linear spec-
tral mixing of SSA can accurately estimate mineral abun-
dance consistent with semi-quantitative values determined
by XRD. The techniques showed better agreement after nor-
malizing for the use of transparent minerals to match weak
features in the measured spectra. Both total clay content and
carbonate are linearly correlated between the two techniques.
However, XRD underpredicted total clay content, and SWIR
significantly underpredicted carbonate content. Our analysis
showed that SWIR is well-suited to identify clay phases that
would be missed by XRD techniques and is also a quick and
effective way to survey a group of samples with little prepa-
ration. Figure 11a shows that spectrally derived clay abun-
dances correlate well with XRD-derived abundances, but the
latter technique underpredicts clay abundances unless sam-
ples undergo time-consuming additional sample preparation
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(e.g., clay separations). From the evaluation of SWIR spec-
tra of dust samples, we conclude that calcite-dominant ab-
sorption features are weakened when mixtures are composed
of very fine-grained minerals combined with dark man-made
materials. This limitation consequently leads to underpredic-
tion of calcite in the SWIR abundance determinations. SWIR
is advantageous in detecting absorption features attributed to
non-mineral materials in samples. These materials are com-
mon in urban settings and may also be important for radia-
tive forcing in the atmosphere. Optical microscope images
confirm the presence of black and angular-shaped materi-
als, but their composition is not readily identified with this
technique. XRD, on the other hand, is not sensitive to non-
crystalline phases, so it does not have the ability to charac-
terize them. While each of these approaches are useful for
estimating abundances of different types of particles, a com-
bination of the two for full characterization of urban dust
has yielded complementary results. However, because quartz
and feldspars are substantial fractions of total mineral abun-
dances of dust samples (Fig. 8), we suggest the use of XRD
as an initial reliable method for mineral identification and
quantification. Based on our analysis, we recommend that fu-
ture research include spectral measurements in both VSWIR
and LWIR as the latter spectral range can be complementary
to the former and obtain abundances for VSWIR-transparent
minerals (e.g., quartz and feldspars). As a result, the present
minerals in the bulk sample can be qualitatively and quanti-
tatively assessed by both VSWIR and LWIR, and then confi-
dently compared with XRD-determined mineral abundances.

Because our analysis uses VSWIR and contributes to fun-
damental measurements of dust, it can guide further dust
mineralogy investigations by satellite imaging spectrometers
such as the Earth Surface Mineral Dust Source Investiga-
tion (EMIT) (Green et al., 2020). VSWIR reflectance spec-
troscopy can readily identify clays, carbonates, and iron ox-
ides and distinguish them from non-mineral materials that
are components of dust mixtures.
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Appendix A

Table A1. Locality of 13 deposition samplers in Ilam. Sample numbers shown with N/A did not have enough sample volume for analysis.
Root mean square errors (RMSEs) for spectral model fit are also shown. Bold and italic fonts on sample number and RMSE indicate those
with a good spectral model fit as described in the text and shown with checks in Fig. 10 and Fig C1.

Sample Root mean square Sampling time Latitude Longitude Elevation
number error (RMSE) for (meters above

spectral model fit the sea level)

S1 0.062 21 December 2011 (fall)
S2 0.065 19 March 2012 (winter) 33◦38’5.97” N 46◦24’38.26” E 1388
S3 0.072 20 June 2012 (spring)

S4 0.052 21 December 2011 (fall)
N/A – 19 March 2012 (winter) 33◦37’49.62” N 46◦25’27.98” E 1404
S5 0.036 20 June 2012 (spring)

S6 0.085 21 December 2011 (fall)
S7 0.054 19 March 2012 (winter) 33◦38’8.93” N 46◦24’46.49” E 1400
S8 0.05 20 June 2012 (spring)

S9 0.11 21 December 2011 (fall)
S10 0.043 19 March 2012 (winter) 33◦37’27.47” N 46◦22’22.57” E 1295
S11 0.057 20 June 2012 (spring)

S12 0.07 21 December 2011 (fall)
S13 0.035 19 March 2012 (winter) 33◦36’3.79” N 46◦25’13.01” E 1438
S14 0.027 20 June 2012 (spring)

N/A – 21 December 2011 (fall)
S15 0.044 19 March 2012 (winter) 33◦38’35.23” N 46◦24’54.96” E 1429
S16 0.028 20 June 2012 (spring)

S17 0.12 21 December 2011 (fall)
S18 0.06 19 March 2012 (winter) 33◦37’34.57” N 46◦25’15.31” E 1296
S19 0.076 20 June 2012 (spring)

S20 0.12 21 December 2011 (fall)
S21 0.09 19 March 2012 (winter) 33◦38’29.05” N 46◦24’47.64” E 1423
S22 0.082 20 June 2012 (spring)

S23 0.041 21 December 2011 (fall)
S24 0.041 19 March 2012 (winter) 33◦38’19.72” N 46◦26’24.21” E 1429
S25 0.16 20 June 2012 (spring)

S26 0.14 21 December 2011 (fall)
S27 0.066 19 March 2012 (winter) 33◦37’26.04” N 46◦24’46.38” E 1376
S28 0.022 20 June 2012 (spring)

S29 0.075 21 December 2011 (fall)
S30 0.042 19 March 2012 (winter) 33◦38’42.44” N 46◦24’57.64” E 1462
S31 0.083 20 June 2012 (spring)

S32 0.061 21 December 2011 (fall)
S33 0.048 19 March 2012 (winter) 33◦38’21.68” N 46◦23’56.16” E 1395
S34 0.034 20 June 2012 (spring)

S35 0.11 21 December 2011 (fall)
S36 0.043 19 March 2012 (winter) 33◦38’1.49” N 46◦23’58.75” E 1370
S37 0.074 20 June 2012 (spring)
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Appendix B

Figure B1. Mineral spectra from USGS library (Kokaly et al., 2017) used by model to retrieve mineral abundances for natural dust samples.
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Appendix C

Figure C1.
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Figure C1.
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Figure C1. Spectral model fit (red line) and RMSE are shown for all 37 dust sample SSA spectra (blue line). Check marks represent that the
model fits relatively well based on visual inspection and relatively low RMSE.
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