
Atmos. Meas. Tech., 15, 3261–3278, 2022
https://doi.org/10.5194/amt-15-3261-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Machine learning techniques to improve the field performance of
low-cost air quality sensors
Tony Bush1,2, Nick Papaioannou1, Felix Leach1, Francis D. Pope3, Ajit Singh3, G. Neil Thomas4, Brian Stacey5, and
Suzanne Bartington4

1Department of Engineering Science, University of Oxford, Parks Road, Oxford, OX1 3PJ, UK
2Apertum Consulting, Harwell, Oxfordshire, UK
3School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
4Institute of Applied Health Research, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
5Ricardo Energy & Environment, The Gemini Building, Fermi Avenue, Harwell, Didcot, OX11 0QR, UK

Correspondence: Felix Leach (felix.leach@eng.ox.ac.uk)

Received: 16 September 2021 – Discussion started: 29 October 2021
Revised: 8 April 2022 – Accepted: 29 April 2022 – Published: 1 June 2022

Abstract. Low-cost air quality sensors offer significant po-
tential for enhancing urban air quality networks by providing
higher-spatiotemporal-resolution data needed, for example,
for evaluation of air quality interventions. However, these
sensors present methodological and deployment challenges
which have historically limited operational ability. These in-
clude variability in performance characteristics and sensi-
tivity to environmental conditions. In this work, we inves-
tigate field “baselining” and interference correction using
random forest regression methods for low-cost sensing of
NO2, PM10 (particulate matter) and PM2.5. Model perfor-
mance is explored using data obtained over a 7-month period
by real-world field sensor deployment alongside reference
method instrumentation. Workflows and processes developed
are shown to be effective in normalising variable sensor base-
line offsets and reducing uncertainty in sensor response aris-
ing from environmental interferences. We demonstrate im-
provements of between 37 % and 94 % in the mean absolute
error term of fully corrected sensor datasets; this is equiva-
lent to performance within±2.6 ppb of the reference method
for NO2,±4.4 µg m−3 for PM10 and±2.7 µg m−3 for PM2.5.
Expanded-uncertainty estimates for PM10 and PM2.5 correc-
tion models are shown to meet performance criteria recom-
mended by European air quality legislation, whilst that of
the NO2 correction model was found to be narrowly (∼ 5 %)
outside of its acceptance envelope. Expanded-uncertainty es-
timates for corrected sensor datasets not used in model train-

ing were 29 %, 21 % and 27 % for NO2, PM10 and PM2.5
respectively.

1 Introduction

1.1 Air quality context

Poor air quality is recognised as the largest environmen-
tal risk to human health worldwide (Public Health Eng-
land, 2018). Pollution levels in many UK cities regularly ex-
ceed legal limits and health-based guidelines and exert a na-
tional mortality burden equivalent to 28 000–36 000 deaths
each year (Kelly, 2018), with estimated economic costs of
more than GBP 20 billion. Road transport is widely recog-
nised as the major urban air pollution source, particularly
for NO2 (Leach et al., 2020). Within this context in the UK,
there has been a continued policy commitment to tackling
poor air quality through the UK Clean Air Strategy (Defra,
2019; Defra and DfT, 2017). As a result, there is much de-
mand for air quality evidence which can contribute to respon-
sive decision-making for pollutant mitigation interventions.
In turn, low-cost sensor technologies have proved attractive,
offering some advantages over traditional instrumentation.
These include lower operating costs (infrastructure, commis-
sioning and running costs), reduced administrative barriers
(planning) and options for deployment in dense networks
to deliver high-spatiotemporal-resolution datasets. One such
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setting which has adopted this approach is in the city of Ox-
ford, where the “OxAria” study commissioned a low-cost
sensor network to enhance regulatory grade air quality data
for rapid assessment of COVID-19-related transport varia-
tions and local emissions control policy interventions includ-
ing a proposed Zero Emission Zone (National Institute for
Health Research, 2020)

Low-cost or, at least, more affordable air quality sensors
provide considerable potential to enhance spatial coverage
of high-quality measurements which have historically been
limited by the prohibitive cost of regulatory grade monitor-
ing (Castell et al., 2017). Low-cost sensors offer potential for
(i) a more agile and responsive technique for capturing the
impact of air quality interventions and hotspots, being more
flexible and quicker to deploy to capture the spatiotempo-
ral variability in pollutant levels arising from specific emis-
sions sources or influences of the built environment (Schnei-
der et al., 2017); (ii) supplementing regulatory monitoring,
modelling and source attribution evidence base for better-
informed population exposure estimates and policy decisions
(Morawska et al., 2018); and (iii) opportunities for mobile
air quality measurements and citizen science approaches that
further challenge the traditional evidence base and democ-
racy of information sources that contribute to local air quality
policy (Lim et al., 2019; Wang et al., 2021).

Low-cost sensors utilise and require (i) hardware which is
both sensitive and specific to air pollutants at ambient lev-
els, (ii) robust calibration, and/or (iii) data processing meth-
ods to generate data of sufficient reliability and accuracy for
the intended purpose(s) (Hasenfratz et al., 2012; Zimmer-
man et al., 2018). The latter present multiple methodological
challenges: calibrations developed in the laboratory may not
reflect real-world performance, resulting in sensor baseline
drift, and post hoc data calibration is typically necessary to
optimise data quality (Karagulian et al., 2019). For these rea-
sons there remain concerns about data quality and reliability
which impose limitations upon current applications beyond
a research setting (Bigi et al., 2018; Clements et al., 2019;
Crilley et al., 2018, 2020; Woodall et al., 2017). However,
their accelerated uptake in local authority settings is testa-
ment to their potential to deliver a new, high-resolution evi-
dence base capable of contributing to modern policies for air
quality management and public health protection.

1.2 Machine learning applications

Given the challenges and opportunities above, several stud-
ies have been undertaken using, primarily, machine learning
(ML) algorithms, for low-cost sensor calibration and val-
idation. ML techniques offer significant benefits in terms
of utility over simpler methods such as multivariate regres-
sion and decision trees which can offer greater interpretive
facility to understand and quantify the interfering factors.
There is a trade-off, from an air quality domain perspec-
tive, between understanding and quantifying the sensor per-

formance and developing satisfactory, practicable methods to
support higher-quality sensor observations at the expense of
knowing “why and how much”. Given the setting for this
research outlined above and more broadly, the current ap-
petite for low-cost sensor data to support and influence local
policy, data volumes and complexity of interferences, black-
box ML approaches present greater utility. Techniques such
as artificial neural networks (ANNs) (Esposito et al., 2016;
Spinelle et al., 2017a; De Vito et al., 2009), high-dimensional
multi-response models (Cross et al., 2017) and multiple lin-
ear regression (MLR) models have been developed with
variable results. In addition, experimental evidence suggests
that sensors from the same manufacturer can behave differ-
ently under the same environmental conditions (Spinelle et
al., 2017a), highlighting the importance of model develop-
ment using data generated by multiple sensors. Furthermore,
ANNs have been shown to be able to meet sufficiently low
levels of uncertainty for certain gaseous pollutants such as
ozone (Spinelle et al., 2017a), but higher uncertainty levels
for NO2 persist, and further model performance optimisation
is required.

Random forest (RF) models present an alternative ML
method which have shown promise as a tool for low-cost sen-
sor calibration and validation. Zimmerman et al. (2018) used
an RF regression (RFR) model for validation of co-located
sensor for four gases (CO2, CO, O3 and NO2) and found er-
ror rates of < 5 % for CO2,∼ 10 %–15 % for CO and O3, and
30 % for NO2. These estimates were within the precision and
accuracy error metrics from the US EPA Air Sensor Guide-
book for personal exposure (Tier 4) monitoring (Zimmerman
et al., 2018).

RFs are an ensemble decision tree approach which employ
multiple decision trees to solve regression and classification
problems. They are a bagging technique, growing their de-
cision trees in a bootstrap fashion (random sampling with
replacement). A final prediction of the target value (in our
case the reference method air quality concentration) is made
as an aggregation (average) of the values estimated by the
component trees.

Decision trees are known to be prone to overfitting, espe-
cially when allowed to grow deep, because after bootstrap
sampling, their trees are grown by considering all sampled
features at each decision node. RFs use an alternative, im-
proved tree growth method which tends to limit this propen-
sity for overfitting. The RF method achieves this by adding
greater diversity to the data used to train its decision trees. As
a result, predictions from all trees have less correlation and,
therefore, when aggregated, a better prediction. RFs do this
by selecting a random subset of training features for consid-
eration at each decision node for each bootstrapped sample.
Consequently, even if by chance, the same bootstrapped sam-
ple were selected to train two trees, the resulting trees will
likely be different because of subsequent random sampling
of features at each decision node (Breiman, 1996).
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Figure 1. Visual representation of a generic, two-variable decision tree regression problem (a) and its mapping onto a parameter space for
the independent variables (b).

A generic example of a two-variable regression problem
is presented in Fig. 1. In this figure, the decision tree (on
the left) splits the parameter space into partitions (branches)
based on logical operators on criteria relating to the param-
eter space (variable X∗< 0.∗, etc.). These operations con-
tinue until a terminal node is reached. At this point, a single
prediction is made which is the average of all the available
values that the dependent variable takes in that partition. The
same process is navigated for more than two features; how-
ever the parameter space becomes non-trivial to visualise.

One major problem that decision trees can suffer from is
high variance (Hastie et al., 2009). Often a small change in
the data can result in a very different series of splits and to
a large change in the structure of the optimal decision tree.
At least in part, this specificity of decision trees contributes
to a tendency to overfit, which results in models that do not
generalise well to unseen data/situations. Although methods
to manage this behaviour exist, they add an extra burden and
are either not needed by RF models or included out of the
box.

The disinclination of RF models to overfit is a key ad-
vantage of the technique and comes from the bagging and
random feature selection methods employed. They build a
diverse ensemble of many weakly correlated predictors (de-
cision trees) which, at run time, predict based on the modal
class (in classification models) or the average of all predic-
tions (regression models). It is the diversity of predictions
and their prediction error that present advantages for RF
models, as when averaged to make the ensemble prediction,
they often result in better performance than decision trees.

From an operations perspective they offer benefits to the
multivariate regression problems presented in this paper, as
they (i) are tolerant of multiple collinearity, which is intrin-
sic to the air quality datasets of interest; (ii) suffer less from
overfitting and therefore promote a well-generalised model
which is adept to deployment across multiple datasets de-

rived from different sensor locations; (iii) do not require data
transformation for optimisation, thereby simplifying the data
logistics and computational burden; (iv) handle multiple in-
puts variables with ease; and (v) are relatively easy to de-
ploy, train and test across common desktop computer envi-
ronments available to air quality practitioners.

This study further develops practicable methods for en-
hancing low-cost air quality sensor data uncertainty. Whilst
ML techniques are established for low-cost air quality sen-
sor validation with co-located sensors for NO2 (and other
gases), in this study we aim to advance the baselining strate-
gies of low-cost air quality sensors by repurposing existing
analytical techniques which, to the best of our knowledge,
have not previously been used for field baselining and in-
terference correction. In addition, we apply RF algorithms
to low-cost particle sensors. We present an approach which
utilises an RFR to predict and compensate for interferences
from multiple environmental parameters upon the sensor sig-
nals. These methods offer a flexible, extendable and reusable
technique(s) to account for drift/changes in sensor calibra-
tion that can commonly occur in the field, in addition to a
correction model to compensate for environmental interfer-
ences from, for example, temperature and relative humidity
amongst others.

2 Methods and materials

2.1 Air quality instrumentation

The sensor technology used in this research was the Praxis
Urban sensor system supplied by South Coast Science Ltd.
The units were equipped with an Alphasense NO2-A43F
electrochemical NO2 sensor (Alphasense Ltd., 2019a) and an
Alphasense N3 optical particle counter (OPC) (Alphasense
Ltd., 2019b). The sensor system sample rate was set to 10 s
intervals. The sensor was deployed as received from the sen-
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sor manufacturer, with no additional calibration performed
prior to field deployment beyond standard acceptance tests.

Reference measurements of ambient NO2, PM10 (par-
ticulate matter) and PM2.5 were obtained from the De-
fra Oxford St Ebbe’s Automatic Urban and Rural Network
(AURN) monitoring station (UKA00518) (Defra, 2021). The
St Ebbe’s monitoring station is located in a southern Oxford
residential area, approximately 250 m from the nearest main
road; as such it presents a typical urban-background envi-
ronment. St Ebbe’s employs a Teledyne T200 chemilumines-
cence NOx analyser and a Palas Fidas 200 fine-dust aerosol
optical spectrometer. Both the Praxis Urban sensors and the
AURN sensor inlets are located at a height of 2.7 and 8 m
from the nearest minor road. The reference methods are des-
ignated type-approved reference instrumentation for regula-
tory compliance monitoring (Defra, 2013). Reference mea-
surements were obtained at 15 min resolution by special ar-
rangement with the network operators for the period 1 June to
31 December 2020. Official 1 h time resolution datasets were
considered too coarse for RF model development, and the
sourcing of higher-time-resolution data was, therefore, es-
sential for the characterisation of the transient interferences.
Sensor and reference method sample inlets were co-located
within 0.5 m (gases) and 2 m (particles) for the study dura-
tion.

2.2 Air quality datasets

Measurements obtained from the OxAria sensor unit co-
located at the Oxford St Ebbe’s AURN monitoring station
was the primary source of data for model development in
this work. The unit was installed in June 2020 as part of a
wider project aimed at understanding the impacts of COVID-
19 upon air and noise quality in Oxford. Sensor and reference
measurement data were collected throughout June to Decem-
ber 2020. Sensor data were aggregated to a 15 min mean res-
olution, from the initial logging interval of 10 s, to ensure
conformity with the time datum for the AURN datasets. The
quality assurance status of the AURN datasets was valid/ver-
ified.

2.3 Sensor baseline offset correction

The rationale for the baseline correction was to prepare sen-
sor datasets for interference correction using an RF model.
There was clear evidence for variability in the baseline of the
NO2 sensors deployed (more details are in the results sec-
tion) but less so in the PM sensor data. Any variation in the
baseline conditions at a network level will confound com-
parisons undertaken across the network and with air qual-
ity limit values and guidelines, irrespective of the pollutant
species. Importantly, baseline variability was also anticipated
to be problematic for the deployment of a generalised RF cor-
rection model, the characteristics of which will be “locked
in” to the baseline of the dataset used for its training. In this

case, the co-located sensor at St Ebbe’s displayed a baseline
offset of approximately + 80 ppb (NO2). To address this is-
sue, sensor baseline correction was handled separately from
transient environmental interferences. A series of filters and
baseline identification techniques was developed to adjust for
variance in sensor signal and correct for the sensor baseline
in a systematic and automatable way. This method enables
the sensor baseline to be standardised across a small network
of sensors and has been applied in this ongoing research to
the NO2, PM10 and PM2.5 datasets. The four-stage process-
ing approach is summarised in the schematic presented in
Fig. 2 and outlined in more detail in the sections below. The
offset correction model operated at the same resolution as
the reference data (15 min means) and was initialised with
∼ 6 months of continuous sensor data.

2.3.1 Stage 1 – empirical filters for removal of outliers
and anomalies

The data-filtering criteria presented in Table 1 was devel-
oped to facilitate pragmatic screening of anomalous sensor
data points. Their development was informed by a combi-
nation of local meteorological observations, data-logged by
the reference monitoring station, and an analysis of typical
sensor performance from the sensor. The acceptable sample
flow rate criteria for the PM sensor was recommended by the
manufacturer. When one or more parameters were detected
outside the bands of acceptance shown (in Table 1), the sen-
sor observation(s) were excluded from further analysis. Fil-
ters for NO2 and particles are presented in Table 1. Filters (i)
and (iii) removed data points outside of precautionary esti-
mates of the normal range of ambient temperature in Oxford,
thereby excluding any anomalies arising from temperature-
dependent sensor system corrections that may be perform-
ing out of range. Filters (ii) and (iv) performed a similar role
for relative humidity. Filter (v) removed particles data during
periods of low OPC sample flow rate. Application of these
empirical filters rejected ∼ 1 % of the initialisation dataset.

2.3.2 Stage 2 – baseline identification and offset/drift
correction

Stage 2 implemented a statistical method developed in the
analytical domain for baseline correction in chromatography
and Raman spectroscopy. The method, adaptive iteratively
reweighted penalised least squares (airPLS) (Zhang et al.,
2010, 2011), combines least-squares regression smoothing,
a penalty to control the amount of smoothing and a weight-
ing function to constrain the baseline from following peaks
in the sensor signal. Weightings are changed iteratively, af-
ter an initial best fit, with large weights applied where the
newly iterated signal was below the previously fitted base-
line and conversely small weights applied where the signal
was above the fitted baseline.
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Figure 2. Schematic of the sensor baseline correction model including interfaces with the downstream RFR interference correction model.

Table 1. Filtering criteria used for the initial screening out of anomalous sensor data.

Acceptable sensor parameters – NO2 Acceptable sensor parameters – PM10 and PM2.5

(i) −10 ◦C < sensor temperature < 35 ◦C (iii) −10 ◦C < sensor temperature < 35 ◦C
(ii) Sensor relative humidity > 35 %∗ (iv) Sensor relative humidity > 35 %∗

(v) Sensor sample flow rate > 2 mL min−1

Filters (i)–(iv) were derived from local meteorological data. Filter (v) is a manufacturer recommendation. ∗ There were
∼ 1400 15 min periods or 2.5 weeks (total) in 2020 when relative humidity was < 35 %.

Performance and flexibility were key factors in the selec-
tion of a preferred method for baseline correction. airPLS
requires neither significant user intervention to perform sat-
isfactorily nor prior information or supervision, e.g. peak de-
tection. It is a fast, flexible technique and readily deployable
in code (Zhang et al., 2011). In addition, airPLS offers im-
portant benefits as a controlled, systematic and reproducible
approach to the handling of baseline offset in individual and
networked sensors. No data losses occurred in stage 2 cor-
rections.

2.3.3 Stage 3 – baseline overfit compensation

airPLS is highly efficient in correcting a baseline to zero,
an artefact that derives from its intended application domain
(chromatography) where a zero baseline is generally encour-

aged. Stage 3 applies a compensation method for the effi-
cacy of the airPLS algorithm in correcting sensor baseline
to zero, which in effect removes the urban, regional and
rural background contributions from the sensor signal. The
method scales the stage 2 outputs by the difference between
the identified stage 2 baseline and that of the city scale back-
ground, the latter having been calculated using airPLS in this
case using observations from the Oxford St Ebbe’s urban-
background AURN station. A compensation was calculated
for each data point, i.e. at a 15 min time resolution. Taking
the NO2 time series this compensation method resulted in
an average uplift of +2.4 ppb. For PM10 and PM2.5 the up-
lift was +2.6 and +1.5 µg m−3 respectively. No data losses
occurred during the stage 3 corrections.
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Figure 3. NO2 RFR model performance returns with increasing model complexity (maximum number of leaf nodes included in training,
validation and cross-validation datasets).

2.3.4 Stage 4 – residual-error removal

The final stage of the sensor offset correction method ac-
counts for the remaining residual anomalies that present as
negative concentrations not accounted for in stages 1–3. The
impact of this stage on the sample population was intended to
be low and accounted for a further ∼ 3 % reduction in sam-
ple size. Approximately 6 months of continuous 15 min mean
sensor data, paired with reference methods concentrations,
was then used for RF training and validation activities.

2.4 Sensor interference correction with random forest
regression modelling

The following sections present the configuration of the
RF model and approach to model training. RF modelling
was carried out in Python implemented using the scikit-
learn open-source machine learning library (Pedregosa et al.,
2011).

2.4.1 Feature engineering

Feature engineering describes the process of creating new
training features (variables/parameters) that are more illus-
trative of the underlying problem being modelled. The aim
of feature engineering is to affect better model training and
performance. It is a common pre-processing step in RF mod-
elling and many other regression and classification tech-
niques (Breiman, 2001; Yu et al., 2011).

Feature engineering was constrained in scope and com-
plexity by the need to deploy the model across a network
of sensors. Hence, feature datasets must be readily available
or replicable throughout the network of sensors. This opera-
tional constraint introduced a simplification of the known en-
vironmental interferences acting upon the Alphasense NO2-
A43F electrochemical sensor. Spinelle et al. (2017b) reported

evidence of cross sensitivities with NO2 and O3 on the (sim-
ilar) Alphasense NO2-B43F electrochemical sensors. How-
ever, because O3 was only measured at half of the wider
OxAria sensor network and is less commonly found within
an air quality management setting in the UK, we chose to
forego its inclusion as a training feature for the RF correc-
tion model. Although this may come with the penalty of re-
duced model training performance – Spinelle et al. (2017b)
reported an O3-to-NO2 cross sensitivity of ∼ 6 % ppb−1 of
NO2 – it comes with the benefit of a potentially broader real-
world application domain, outside of a research setting.

Table 2 presents the features used in model training of the
pollutant specific correction model. The source of the train-
ing feature is presented in the “Type” column.

2.4.2 Random forest regression model training

RF model training was performed with co-located sensor and
reference measurements acquired at the St Ebbe’s AURN
monitoring station over the period June to November 2020.
After feature engineering (above), the core dataset was split
into training and validation datasets using a 75 %-to-25 %
split respectively. This “hold-out” validation method was
combined with a k-fold cross-validation approach (Berrar,
2018) to estimate the performance of the model in terms of
the mean absolute error (MAE) score (Buitinck et al., 2013;
Pedregosa et al., 2011).

In many cases, RF models work reasonably well with the
default values for the hyperparameters specified in the soft-
ware packages (Probst et al., 2019). Even so, for standard-
isation across pollutant applications and computational effi-
ciency we considered constraining the models using tree size
metrics – number of trees, maximum number of leaf nodes
and the minimum number of samples required to split an in-
ternal node.
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Figure 4. A 3 h rolling mean raw low-cost sensor and reference method NO2 time series at three locations in Oxford for 2020.

Table 2. Model feature (variables) used in RF model training and prediction by the pollutant model. T : current time.

Model NO2 PM10 PM2.5 Type

Sensed concentration/mass Yes Yes Yes Stock
Working electrode voltage Yes No No Stock
Auxiliary electrode voltage Yes No No Stock
Corrected working electrode voltage (offset corrected) Yes No No Stock
Sample flow rate No Yes Yes Stock
Sample time of flight No Yes Yes Stock
Temperature Yes Yes Yes Stock
Relative humidity (RH) Yes Yes Yes Stock
Rate of change in temperature at T − 15 min Yes Yes Yes Engineered
Rate of change in temperature at T − 30 min Yes Yes Yes Engineered
Rate of change in RH at T − 15 min Yes Yes Yes Engineered
Rate of change in RH at T − 30 min Yes Yes Yes Engineered
Hour of day Yes Yes Yes Engineered
Day of week Yes Yes Yes Engineered
Rush hour classifier Yes Yes Yes Engineered

“Stock” indicates a feature based directly upon logged sensor observations. “Engineered” indicates a featured derived from
re-analysis of one of more stock features.

The maximum number of leaf nodes hyperparameter was
established by way of a cross-validation sensitivity test on
an array of 10 to 5000 nodes (node spacing set to 50). The
cross-validation exercise fitted an RFR model to the input
feature dataset and iterated over the array of nodes to predict
the MAE. Cross-validation results for NO2 are presented in
Fig. 3. These are illustrative of similar behaviours for PM10
and PM2.5. Figure 3 shows the MAE decreasing as a func-
tion of increasing maximum number of leaf nodes (model
complexity). Cross-validation results similar to those pre-
sented in Fig. 3 were used to identify the optimum number
of leaf nodes for each pollutant-specific model, the point on
the x axis where increased model complexity delivers only
a marginal improvement in the MAE for training, validation
and cross-validation test samples. The process was repeated
for the PM10 and PM2.5 models. Figure 3 also confirms some
assumptions about RFR model training in general:

1. Gains in the MAE quickly drop-off with increasing fea-
ture numbers.

2. For RF model predictions which are based on an ensem-
ble average of all trees, the MAE of predictions based
on training data will tend towards but never reach zero.

3. k-fold cross-validation produced the most conservative
estimates of model accuracy (highest MAE).

The maximum of 3500 of leaf nodes was established
by this cross-validation process for the NO2 RFR model,
whereas the same hyperparameter for both PM10 and PM2.5
models was set at 3000 nodes. The minimum number of sam-
ples allowed in a single partition was set to 2.

Having established the maximum number of leaf nodes for
the three pollutant-specific models (NO2, PM10 and PM2.5),
the number of trees was determined. The best practice on
setting the optimum number of trees within RF is variable

https://doi.org/10.5194/amt-15-3261-2022 Atmos. Meas. Tech., 15, 3261–3278, 2022
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Figure 5. Illustrative impacts of each stage in the sensor baseline offset correction model upon 15 min mean sensor observations at St Ebbe’s
for August 2020. (a) Raw sensor signal and reference method. (b) Correction 1 – application of empirical filters for anomaly and outlier
removal. (c) Correction 2 – baseline offset correction. (d) Correction 3 – compensation for efficacy of baseline offset correction. (e) Correction
4 – removal of residuals. This figure presents the sensor offset correction model for illustrative purposes. Outputs from (e) are in turn parsed
by the RF interference correction model to correct for transient effects of environmental parameters (not shown).

with advice ranging from between 64–128 (Oshiro et al.,
2012). For this research, the incremental improvement in the
MAE arising from between 100 and 500 trees was evaluated.
Results did not show significant improvement in the model
MAE over this range within the context of the typical ambi-
ent air quality concentrations expected. The number of trees

used was set to 100 to minimise computational cost during
training. Table 3 presents a summary of the hyperparameters
used in the training of each random forest model. As a check
on the hyperparameters presented in Table 3, the model’s
sensitivity to departures from these parameters was tested
using the scikit-learn GridSearch function (Pedregosa et al.,

Atmos. Meas. Tech., 15, 3261–3278, 2022 https://doi.org/10.5194/amt-15-3261-2022
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Figure 6. Relationship between uncorrected sensor, RF-model-corrected sensor and reference method observations for NO2. The dotted line
shows the unity slope. R-sqd: R2.

Figure 7. Relationship between uncorrected sensor, RF-model-corrected sensor and reference method observations for PM10. The dotted
line shows the unity slope. R-sqd: R2. ugm-3: µg m−3.

Table 3. Summary of random forest hyperparameter settings used
in model training.

Hyperparameter Model type

NO2 PM10 PM2.5

No. of trees 100 100 100
Criterion 0 0 0
Max tree depth 0 0 0
Min samples per leaf node 1 1 1
Max no. of leaf nodes 3500 3000 3000
Min sample per node 2 2 2
Min leaf node weight fraction 0 0 0
Min impurity decrement 0 0 0
Min impurity split 0 0 0
Max no. of features 15 15 15
No. of jobs −1 −1 −1
Bootstrap sampling 1 1 1

2011). These tests showed that only small (< 0.01 ppb) im-
provements in the MAE associated with the validation could
be achieved by further tuning the hyperparameters shown in
Table 3.

3 Results and discussion

3.1 Uncorrected sensor data

Figure 4 presents the 3 h rolling mean of “raw” real-world
NO2 observations from three OxAria low-cost electrochem-
ical sensors and a reference method, i.e. sensor data outputs
before any correction algorithms are applied. The rolling 3 h
mean is presented to attenuate noise in the datasets for visu-
alisation. Sensor A and the reference method are co-located
at an urban-background location; sensor B is located at an
urban centre location; and sensor C is at a roadside loca-
tion. The sensor systems are identical and were calibrated
at the same time by the manufacturer. Figure 4 shows a com-
paratively low signal-to-noise ratio in the sensor’s observa-
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Figure 8. Relationship between uncorrected sensor, RF-model-corrected sensor and reference method observations for PM2.5. The dotted
line shows the unity slope. R-sqd: R2. ugm-3: µg m−3.

tions when compared with the reference method and marked
variability in the baseline(s) which confound interpretation
of the pollutant levels. The severity of the variability in sen-
sor baseline offset is further contextualised when sensor lo-
cation is considered (as noted above). Sensor A being at
the urban background is far from significant NO2 emissions
sources, whereas sensors B (urban centre) and C (roadside)
are comparatively close to major road transport emission
sources. Despite their relative proximity to emission sources,
the baseline for the urban-background sensor is ∼ 40 ppb
higher than its urban-centre/roadside neighbours. Given that
the sensors were calibrated to the same standard within a lab-
oratory environment prior to deployment in the field, our as-
sumption is that the sensor baselines have been influenced
in some way after calibration, then stabilised as shown. In
addition, frequent spikes in the sensor trace(s) can be ob-
served which manifest as both short-lived, transient events of
∼ 10 s duration in the 100–500 ppb range and as longer-lived
> 60 s events, frequently in the 1000–2000 ppb range. This
sort of sensor behaviour is linked to multiple environmental
interferences of which temperature and relative humidity are
amongst the most important (Spinelle et al., 2015). We antici-
pate that these sensor characteristics are replicated across the
OxAria sensor network and indeed throughout similar sensor
networks using electrochemical NO2 sensors and are there-
fore the focus of the sensor offset correction model described
in the following sections.

3.2 Sensor baseline offset correction results

Figure 5 presents the incremental outputs of each stage of
the sensor baseline correction model described in Sect. 2.3.
As an example, co-located NO2 sensor and reference method
observations from St Ebbe’s are presented for August 2020.
This sensor and fragment of the 2020 time series were chosen
as illustrative of the performance of the model on a sensor

of a known offset (∼ 80 ppb) and the general effect of each
stage in the correction process.

Commenting individually on each stage presented in
Fig. 5, Fig. 5a indicates the presence of a clear offset in the
NO2 sensor signal of ∼+80 ppb relative to the co-located
reference method. Figure 5b presents the outcome of ap-
plying empirical filters to screen out anomalous sensor be-
haviours and data outliers. Noticeably for this location, the
empirical filters have screened out observations around 10
August but left the > 250 ppb spike in concentrations on 13
August in place. Figure 5c presents the removal of the sensor
baseline using airPLS, and Fig. 5d shows compensation for
its efficacy; the baselines of the part-corrected sensor time
series and reference method baseline are recalculated (again
using airPLS), and the sensor baseline is scaled by the differ-
ence in the two terms. The last step shown in Fig. 5e removes
any residual negative errors not already captured.

The data presented in Fig. 5c show the airPLS-based base-
line correction model to be effective at standardising the vari-
able baseline shown in the NO2, PM10 and PM2.5 sensor sig-
nals across the network. The method also maintains the fi-
delity of the dynamic range of the original sensor signal. Its
effectiveness facilitates the training of generalised RF cor-
rection models. In terms of optimisations, the approach was
relatively insensitive to changes in the configuration of the
empirical filters applied in stage 1 corrections and the lambda
value of the airPLS technique which controls the order of
smoothing applied to the baseline estimate.

The overfitting of the part-corrected sensor baseline (to
0 ppb) introduced by the efficacy of the airPLS technique is
compensated for by rescaling the sensor baseline to that of
the city background. If this is an oversimplification of the ex-
perimental error handling, it is a reasonable trade-off given
the volume of data involved and computational logistics in-
volved overall.

The availability of a reliable and high-quality city back-
ground at a time resolution comparable to that of sensor ob-
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Figure 9. Time series of uncorrected-baseline-adjusted sensor, fully corrected sensor and reference method observations for NO2 at Oxford
St Ebbe’s for 2020.

Figure 10. Time series of uncorrected-baseline-adjusted sensor, fully corrected sensor and reference method observations for PM10 at Oxford
St Ebbe’s for 2020. ugm-3: µg m−3.

servations, e.g. at most 15 min means, is essential for ef-
fectively screening transient anomalous sensor behaviours
which skew sensor datasets significantly and mask important
underlying data structures or anomalies. We also note that
the reference method data-resolved to these time resolutions
is difficult to obtain in the UK.

3.3 Random forest correction modelling results

3.3.1 Random forest regression model training

Outputs from the model training exercise are shown in
Figs. 6–8 as a series of regression plots for the RFR mod-
els developed for NO2, PM10 and PM2.5. For each pollutant,
three regression plots are presented to illustrate (i) the rela-
tionship between the baseline-corrected sensor observations
and reference method (left), (ii) the same relationship con-
strained to the validation subset (middle), and (iii) the re-
lationship between the fully corrected sensor observations

(with both baseline correction and RFR interference correc-
tions applied) and reference method. A simple ordinary least-
squares (OLS) regression analysis is presented in each case
to describe each relationship. All data shown are at a 15 min
mean resolution.

The plots to the right of Figs. 6–8 show that the respective
RF models are highly effective in predicting the target ob-
servations (reference method). In doing so, they demonstrate
their capability to predict the combined interferences from
a variety of environmental factors found in the data of the
left and middle regression plots. The left and middle plots
also show that training and validation datasets come from
the same sample population (one having been randomly sam-
pled from the other), providing a useful internal validation of
model training to reflect variations in training features. Fur-
ther checks on the models using unseen data from outside of
the sample populations will better test likely performance of
the models in the field.
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Figure 11. Time series of uncorrected-baseline-adjusted sensor, fully corrected sensor and reference method observations for PM2.5 at
Oxford St Ebbe’s for 2020. ugm-3: µg m−3.

Table 4. RFR correction model performance in terms of the MAE relative to reference method observations (validation data) for June to
November 2020.

Mean absolute error (MAE) Coefficient of determination (R2) Change in the MAE arising

Baseline Fully corrected Baseline Fully corrected from full RFR correction
corrected (baseline+RFR) corrected (baseline+RFR)

NO2 (ppb) 16.8 1.2 0.05 0.86 93 %
PM10 (µg m−3) 34.6 1.9 0.01 0.79 95 %
PM2.5 (µg m−3) 8.9 0.9 0.28 0.91 90 %

Figures 6–8 show the dramatic impact of the RF model
correction as demonstrated by the coefficients of variation
in each of the three cases. The R2 value of the fully cor-
rected sensor vs. reference method observations is a con-
venient evaluator for the ability of the models to capture
the variability in the dependent datasets. Clearly, the PM2.5
model performs excellently in this respect with an R2 value
of 0.91 and OLS slope and intercept terms approaching unity.
The respective R2 value for both PM10 and NO2 RF models
(0.79 and 0.86) also indicate good model performance. The
values for R2 above are consistent with the out-of-bag scores
achieved at training time (0.85, 0.79 and 0.91 for NO2, PM10,
and PM2.5 respectively) which provide an additional check
on model performance using data not explicitly used in the
training. Even so, it is clear from Figs. 6 and 7 that the mod-
els struggled, on occasion, to accurately predict higher refer-
ence concentrations, and NO2 and PM10 predicted concen-
trations are generally more scattered compared with PM2.5.
It is also noticeable that in all three cases the RF models are
biased, tending to underpredict the reference concentration
as demonstrated by the regression equation slope terms, and
this is particularly noticeable in the > 15 ppb concentration
unit range.

3.3.2 RF correction performance characteristics
(hold-out validation set)

The performance of each component of the correction
method upon 15 min mean data is presented in Table 4 in
terms of the MAE delivered by correction outputs at each
stage, relative to the reference method observations. Table 4
shows that the RFR correction adds significant value to the
baseline correction, alone contributing to a further 90 %–
95 % reduction in the MAE terms. In concentration units this
equates to fully corrected NO2 sensor observations within
approximately ±1.2 ppb of the reference observation. Simi-
lar comparisons for PM10 and PM2.5 indicate fully corrected
concentrations within ±0.9 µg m−3 (PM10) and 1.9 µg m−3

(PM2.5) of the reference method. These compare favourably
with results in the literature for all three pollutants.

The impact of corrections to this order of magnitude upon
the sensor time series can be visualised in Figs. 9–11, which
present 15 min mean uncorrected-baseline-adjusted sensor
observations, fully corrected sensor observations and refer-
ence observations for NO2, PM10 and PM2.5. Figure 9 shows
that for NO2 there is some visual evidence of the RFR model
overcorrecting (relative to the reference method) during pe-
riods of peak concentration, particularly in mid to late June
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Figure 12. Time series of uncorrected-baseline-adjusted sensor, fully corrected sensor and reference method observations for NO2 at Oxford
St Ebbe’s (unseen data) for December 2020.

Table 5. RFR correction model performance in terms of the MAE relative to reference method observations (unseen data) for December
2020.

Mean absolute error (MAE) Change in the MAE arising from

Baseline Fully corrected full RFR correction
corrected (baseline+RFR

correction)

NO2 (ppb) 4.1 2.6 37 %
PM10 (µg m−3) 75.5 4.4 94 %
PM2.5 (µg m−3) 10.0 2.7 73 %

and August. Otherwise, the NO2 correction tracks that of the
reference observations well.

3.3.3 RF correction model performance characteristics
(unseen data)

Table 5 presents estimates of the correction model perfor-
mance based on 15 min mean unseen data from December
2020, i.e. data used previously for neither model training nor
validation. The data shown are, as expected, less favourable
compared with the validation set, returning higher values for
the MAE metric, but for the air quality context, these val-
ues are within 1.4 ppb (NO2) and 2.5 µg m−3 (PM10) and
1.8 µg m−3 (PM2.5) of the MAE returned by the model vali-
dation set (Tables 4 and 5).

In late November–December 2020 and latterly, continu-
ing through the first quarter of 2021 (not shown), the sen-
sor network observed episodes of high particle concentra-
tions which coincided with a drop in ambient temperature
(and dew point temperature) to the order of 10 ◦C. Neither
reciprocal changes in relative humidity were observed, nor
was there an obvious change in sensor sample flow rate. It
is noteworthy also that similar conditions were not common-
place throughout the model training dataset (June to Novem-
ber 2020). The episode conditions observed by the sensor

network were not replicated in the reference method dataset
and are likely the main driver for the increase in the MAE for
the particulate matter correction models shown in Table 5.
Figures 13–14 show examples of the episodes in December
2020 for PM10 and PM2.5 respectively, including the absence
of a reciprocal peak in the reference data and the performance
of the model correction.

Despite these issues, and as demonstrated in Figs. 13–
14, the RF models deliver substantial improvements on the
raw dataset (not shown in Table 5) and baseline-adjusted
data (shown). Improvements in the MAE attributable to the
RF model in the range of 37 %–94 % are shown; these are
equivalent to fully corrected observations within, on average,
approximately ±2.6 ppb of the reference method for NO2,
±4.4 µg m−3 for PM10 and ±2.7 µg m−3 for PM2.5.

The decrease in model performance observed with the un-
seen dataset and the observations on ambient conditions and
sensor operation (above) illustrate the need for long time se-
ries for model training, covering all environmental conditions
to which the sensors will be exposed.
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Figure 13. Time series of uncorrected-baseline-adjusted sensor, fully corrected sensor and reference method observations for PM10 at Oxford
St Ebbe’s (unseen data) for December 2020. ugm-3: µg m−3.

Table 6. Expanded-uncertainty estimates for fully corrected sensor observations using the RFR validation dataset (the target values are the
target expanded-uncertainty criteria recommended by European legislation).

Pollutant Expanded Fully and finally corrected R2 Conformance with
uncertainty expanded uncertainty∗ value target expanded-

uncertainty objective

NO2 21 % 17 % 0.86 True, ≤ 25 %
PM10 40 % 15 % 0.79 True, ≤ 50 %
PM2.5 19 % 12 % 0.91 True, ≤ 50 %

∗ Expanded-uncertainty estimates with allowance to correct for a non-zero intercept and non-unitary slope in the
linear regression relationship of the sensor to the reference method.

3.3.4 Corrected sensor performance vs. European air
quality data quality objectives

Tables 6 and 7 present expanded-uncertainty estimates for
fully corrected sensor observations. These estimates were
calculated using a spreadsheet tool (EC Working Group,
2020) to provide a further performance indicator on the ad-
equacy of these data for air quality assessment applications.
Table 6 presents expanded-uncertainty estimates associated
with fully corrected sensor data from the validation dataset
(data not used in the RFR model training) and shows that
these data for all pollutants perform well against the tar-
get expanded-uncertainty criteria recommended by European
legislation (expanded uncertainties of 21 %, 40 % and 19 %
respectively for NO2, PM10 and PM2.5). Guidance on the cal-
culation of expanded uncertainty (EC Working Group, 2010)
also allows for the correction of slope and intercept terms
in the relationship between the sensor and reference method.
The result of this further correction is presented in Table 6
as the “full and final correction”. Expanded-uncertainty es-
timates for the validation set with full and final corrections
applied were 17 %, 15 % and 12 % for NO2, PM10 and PM2.5
respectively. Highly respectable coefficients of determination
between reference and fully and finally corrected sensor ob-

servations were also found in all cases as already shown in
Figs. 6–8. However, because the validation set and model
training datasets are closely coupled – the validation set be-
ing taken at random from the same sample population as that
used for model training – expanded-uncertainty estimates
based solely on these data should be interpreted with caution
and may, depending on the application scenario of the cor-
rection model, present an overly optimistic estimate of real-
world measurement uncertainty.

Results from reciprocal calculations based on unseen data
offer a more rigorous/precautionary test of expanded uncer-
tainty, indicative of real-world applications. Table 7 presents
these data for fully corrected sensor observations from De-
cember 2020. Table 7 shows the expanded-uncertainty esti-
mates for fully corrected unseen sensor data of 29 %, 21 %
and 27 % respectively for NO2, PM10 and PM2.5. Further cor-
rections, for slope and intercept terms, had negligible change
on these estimates (30 %, 25 % and 28 % expanded uncer-
tainty respectively for NO2, PM10 and PM2.5). As expected,
these data are more uncertain than the validation set; even
so, performance is good relative to the target data quality
objectives (DQOs). The fully and finally corrected datasets
for PM10 and PM2.5 meet the expanded-uncertainty crite-
ria recommended by European legislation. The expanded-
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Table 7. Expanded-uncertainty estimates for fully corrected sensor observations from an unseen dataset for December 2020 (the target values
are the target expanded-uncertainty criteria recommended by European legislation).

Pollutant Expanded Fully and finally corrected R2 Conformance with
uncertainty expanded uncertainty∗ value target expanded-

uncertainty objective

NO2 29 % 30 % 0.72 False, ≤ 25 %
PM10 21 % 25 % 0.30 True, ≤ 50 %
PM2.5 27 % 28 % 0.47 True, ≤ 50 %

∗ Expanded-uncertainty estimates with allowance to correct for a non-zero intercept and non-unitary slope in the
linear regression relationship of the sensor to the reference method.

uncertainty estimate for NO2 was within 5 % of the accep-
tance criteria.

4 Conclusions

This study has presented and demonstrated a simple and
effective method for attenuating the confounding effects
of sensor baseline variability and interferences from ambi-
ent environmental parameters upon low-cost electrochemical
and optical particle counter sensor signals.

The methods presented in this paper have been tested at
a high temporal resolution against high-quality, co-located
reference method observations sourced from the UK’s reg-
ulatory monitoring network (AURN). Using the MAE as an
indicator of sensor error (relative to reference observations),
the methods developed can reduce the error in NO2, PM10
and PM2.5 observations from the low-cost sensors tested
by up to 88 %–95 % (based on model validation data not
used in RF training). In the case of the low-cost NO2 sen-
sor, corrections reduced the MAE of sensor observations
to within ±1.2 ppb of the reference observation. Similarly,
for PM10 and PM2.5, MAE estimates were within ±1.9 and
±0.9 µg m−3 respectively. The R2 value achieved for fully
corrected NO2, PM10 and PM2.5 sensor observations were
0.86, 0.79 and 0.91 respectively.

Tests on how the methods generalised to unseen condi-
tions have shown that the RFR correction models trained
on data from June to November 2020 are tolerant of a
wide range of competing environmental interferences. Tests
based on data from December 2020, unseen by the RF
model in training, delivered MAE estimates for fully cor-
rected low-cost NO2, PM10 and PM2.5 sensors of 2.6 ppb, 4.4
and 2.7 µg m−3 respectively. Despite this observed (and ex-
pected) drop in performance, the MAE values in corrections
to unseen datasets were within 1.4 ppb (NO2) and 2.5 µg m−3

(PM10) and 1.8 µg m−3 (PM2.5) of those returned by the
model validation set.

Given these indicators for the level of improved uncer-
tainty that can be achievable with the methods presented, we
propose that data from reputable, high-quality sensors may
now have a meaningful role in the air quality assessment

toolkit. Indeed, using the methods presented, sensor data may
deliver data quality of at least comparable levels to that dis-
played by passive sampler methods (for NO2), with the ben-
efit of higher temporal resolution.

To substantiate potential future applications, this paper
has presented data demonstrating that the RF-based meth-
ods are capable of delivering fully corrected low-cost sensor
data that meet the general requirements for “indicative mea-
surements” as set out by the European Ambient Air Qual-
ity Directive. In doing so, we have used methods prescribed
by the European Commission Working Group on Guidance
for the Demonstration of Equivalence to calculate expanded-
uncertainty estimates for fully corrected sensor observations.
For tests based on validation and unseen datasets, the ex-
panded uncertainty of fully corrected sensor data was within
the requirements set by the European Ambient Air Quality
Directive for indicative monitoring (within±25 % of the ref-
erence observation for NO2, ±50 % for particles) for PM10
and PM2.5. Estimates for NO2 were outside of the acceptance
criteria by∼ 5 %. Fully corrected expanded-uncertainty esti-
mates for PM10 and PM2.5 were within or proximal to the
equivalence thresholds (±25 %) established by the European
Commission Working Group on Guidance for the Demon-
stration of Equivalence. In tests using unseen data, the most
stringent test available to the study, the expanded-uncertainty
estimates for RFR-model-corrected observations for NO2,
PM10 and PM2.5 were 30 %, 25 % and 28 % respectively.

Demonstrating conformance with these regulatory thresh-
olds in a traceable way is a significant milestone, not only
for the potential to unlock applications as “supplementary
assessment” methods for compliance assessments but also
within the context of the stringency of the acceptance cri-
teria and the rigour of the expanded-uncertainty calculation
method set out by the working group.

We anticipate application of the model in other local con-
texts will require re-training and validation of the RF model
for local conditions, an important focus for future research.
As such, the techniques developed are presented as a work-
ing method to be adapted for other applications rather than
a definitive model for wider generalisations. We also note
that scaling of the method to applications across a sensor net-
work is likely to be limited by the diversity of the RF training
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Figure 14. Time series of uncorrected-baseline-adjusted sensor, fully corrected sensor and reference method observations for PM2.5 at
Oxford St Ebbe’s (unseen data) for December 2020. ugm-3: µg m−3.

datasets and the quality of the city scale background (both
spatial and scalar representativeness). However, this work
has demonstrated capabilities for applications to monitoring
across a small city, with clear potential benefits for support-
ing air quality management.
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