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Abstract. Trade wind cumulus clouds have a significant im-
pact on the Earth’s radiative balance due to their ubiqui-
tous presence and significant coverage in subtropical regions.
Many numerical studies and field campaigns have focused
on better understanding the thermodynamic, microphysical,
and macroscopic properties of cumulus clouds with ground-
based and satellite remote sensing as well as in situ obser-
vations. Aircraft flights have provided a significant contribu-
tion, but their resolution remains limited by rectilinear tran-
sects and fragmented temporal data for individual clouds. To
provide a higher spatial and temporal resolution, remotely
piloted aircraft (RPA) can now be employed for direct obser-
vations using numerous technological advances to map the
microphysical cloud structure and to study entrainment mix-
ing. In fact, the numerical representation of mixing processes
between a cloud and the surrounding air has been a key is-
sue in model parameterizations for decades. To better study
these mixing processes as well as their impacts on cloud mi-
crophysical properties, the paper aims to improve exploration
strategies that can be implemented by a fleet of RPA.

Here, we use a large-eddy simulation (LES) of shallow
maritime cumulus clouds to design adaptive sampling strate-
gies. An implementation of the RPA flight simulator within
high-frequency LES outputs (every 5 s) allows tracking indi-
vidual clouds. A rosette sampling strategy is used to explore
clouds of different sizes that are static in time and space. The
adaptive sampling carried out by these explorations is opti-

mized using one or two RPA and with or without Gaussian
process regression (GPR) mapping by comparing the results
obtained with those of a reference simulation, in particular
the total liquid water content (LWC) and the LWC distri-
bution in a horizontal cross section. Also, a sensitivity test
of length scale for GPR mapping is performed. The results
of exploring a static cloud are then extended to a dynamic
case of a cloud evolving with time to assess the application
of this exploration strategy to study the evolution of cloud
heterogeneities. While a single RPA coupled to GPR map-
ping remains insufficient to accurately reconstruct individual
clouds, two RPA with GPR mapping adequately characterize
cloud heterogeneities on scales small enough to quantify the
variability of important parameters such as total LWC.

1 Introduction

Cumulus clouds are ubiquitous over the subtropical oceans
and cover more than 20 % of the ocean surface on aver-
age (Eastman et al., 2011). They mainly interact with short-
wave radiation and therefore exert a net cooling effect on
the Earth system. They also modulate the water and energy
cycles of the atmosphere through vertical transfer from the
sub-cloud layer to the cloud layer. Cumulus clouds are there-
fore a key element of the climate system (Park et al., 2017).
Their representation in global circulation models (GCMs)
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has been shown to be responsible for large uncertainties in
the climate response (Andrews et al., 2012). Due to their
grid scales between 10 and 100 km, GCMs cannot explic-
itly represent shallow clouds and use parameterizations to
represent the impacts of such clouds on the climate radia-
tion budget. One of the biggest uncertainties in understand-
ing the impacts of cumulus clouds on the water and energy
cycle is related to mixing processes (Sanchez et al., 2020).
Mixing processes and entrainment impact cloud microphys-
ical properties by creating heterogeneities of thermodynam-
ical variables, diluting the liquid water content, and reduc-
ing the cloud albedo. Studies on these processes often rely
on the analysis of large-eddy simulations (LESs) that repro-
duce average properties of shallow convection (Guichard and
Couvreux, 2017; Siebesma and Jonker, 2000; Neggers et al.,
2003; Heus and Jonker, 2008). However, such models, with a
horizontal resolution of a few tens of meters, still use param-
eterizations to represent cloud microphysics and small-scale
turbulence to correctly reproduce sub-grid heterogeneities in-
side cumulus clouds such as sub-grid-scale liquid water con-
tent (LWC) variability resulting from mixing processes at the
cloud–air interface.

Observations of cumulus horizontal structures in the west-
ern Atlantic Ocean have been obtained from field campaigns
such as BOMEX (Barbados Oceanographic and Meteoro-
logical EXperiment, Holland and Rasmusson, 1973), SCMS
(Burnet and Brenguier, 2007), CARRIBA (Siebert et al.,
2013), and RICO (Rauber et al., 2007), and cloud instrumen-
tation continues to improve (e.g., the Fast-FSSP, Brenguier
et al., 1998; and the HOLODEC – Holographic Detector for
Clouds, Fugal and Shaw, 2009). However, a sampling strat-
egy that relies on one or two transects through the same cloud
only is not sufficient to reconstruct the cloud cross section
or follow its evolution. Observations from research aircraft
such as Burnet and Brenguier (2007) or with sensors sus-
pended under a helicopter (Siebert et al., 2006; Katzwinkel
et al., 2014) have conducted multiple transects through an
individual cloud with a lower frequency (a maximum of five
transects). It has been shown that airplane transects without
cloud mapping induce a bias in cloud sampling by oversam-
pling the cloud core (Hoffmann et al., 2014). In addition, this
paper illustrates the importance of extending the transects
with Gaussian process regression (GPR) mapping to capture
the fractal nature of clouds.

The field campaigns serve as a basis for the construction
of well-established case studies in which LESs have been
used to develop and evaluate shallow cloud parameterization
(Siebesma et al., 2003; vanZanten et al., 2011). The LESs
reproduce the cloud field and allow the study of isolated
clouds in detail, notably at high spatial and temporal reso-
lution (Zhao and Austin, 2005a).

Over the past 2 decades, remotely piloted aircraft (RPA)
have emerged as a viable tool for observing aerosols and
clouds (Roberts et al., 2008; Sanchez et al., 2017; Calmer
et al., 2019). Their ability to operate as a fleet and follow

complex trajectories based on adaptive sampling is an as-
set which allows a detailed comparison with high-resolution
simulations. Previous studies have developed tools to im-
plement RPA in LESs to optimize trajectories within the
cloud environment with the objective to maximize informa-
tion gain while minimizing energy consumption (Reymann et
al., 2018). In this study, we focus on obtaining relevant mete-
orological data to observe cloud heterogeneities and mixing.
A powerful tool in RPA cloud tracking is Gaussian process
regression (GPR) mapping during flights to best guide the
RPA pattern and during post-processing to reconstruct the
cumulus field (Renzaglia et al., 2016).

The objective of this study is to simulate RPA flights in
LES output in order to optimize an adaptive sampling strat-
egy to provide sufficient thermodynamic information within
a maritime cumulus cloud to quantify the mixing processes.
This study is part of the NEPHELAE project (Network for
studying Entrainment and microPHysics of cLouds using
Adaptive Exploration), which aims to design and develop an
automated fleet of RPA to track a cloud from the beginning
to the end of its life cycle. Section 2 presents the LES model,
cloud identification methods, and the details of the RPA flight
parameters. Section 3 highlights the results of the LES case
study with a description of the cumulus field. We first clas-
sify individual simulated clouds into three categories based
on their volume. We then select one cloud representative of
each category and analyze the evolution of their macrophys-
ical and thermodynamical properties where the adaptive ex-
ploration strategy is applied. Different parameters related to
the number of RPA and the use of mapping are compared
in a static case to reconstruct macrophysical and thermody-
namic fields. The last section focuses on the application of
the exploration in dynamics and the associated limitations.

This study highlights benefits of adaptive sampling and
GPR mapping and illustrates the potential of RPA to address
long-standing challenges in observing clouds.

2 Methodology

2.1 Cloud simulation

2.1.1 BOMEX: a case of marine convection

The numerical simulations focus on the period of 22–23 June
1969 of phase 3 of the BOMEX campaign. These days are
characterized by the presence of a strong inversion at the top
of the boundary layer (Siebesma and Cuijpers, 1995). This
case has been chosen because it represents a typical undis-
turbed non-precipitating trade cumulus cloud field.

The BOMEX case was the subject of a model intercompar-
ison exercise (Siebesma et al., 2003) with 10 LESs based on
different models. The LESs all start with the same initial pro-
files of total mixing water ratio (qt) and liquid potential tem-
perature (θl) from sea level to the boundary layer top mea-
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sured by radiosondes. These LES models use prescribed con-
stant surface latent and sensible heat fluxes of 8×103 K m s−1

and 5.2×10−5 K m s−1 as well as prescribed large-scale and
radiative forcing (Siebesma and Cuijpers, 1995). These LESs
also correctly reproduced the observed vertical thermody-
namical structure and turbulent fluxes for this period (Nitta
and Esbensen, 1974). The horizontal winds are initialized
with U = 8.75 m s−1 and V = 0 m s−1 between sea level and
700 m a.s.l. (meters above sea level) and decrease linearly un-
til U =−4.61 m s−1 at 3000 m a.s.l.

2.1.2 Meso-NH model and configuration

Meso-NH, a French non-hydrostatic mesoscale atmospheric
model (Lac et al., 2018), is used in LES mode to simulate
the BOMEX case and the results are compared to the LES
intercomparison of Siebesma et al. (2003) in Sect. 3. The
classical configuration for LES (detailed in Lac et al., 2018)
is used here. Lateral boundary conditions are cyclic, and a
damping layer is applied at the top of the domain to pre-
vent the reflection of gravity waves. The three-dimensional
turbulence scheme from Cuxart et al. (2000) is based on a
prognostic equation for the sub-grid turbulence kinetic en-
ergy with a Deardorff mixing length (Deardorff, 1980). Trade
cumuli contain only liquid water, and aerosol spectra are not
available from the BOMEX campaign to initialize a two-
moment microphysical scheme; therefore, only a warm bulk
one-moment microphysical scheme is used. Longwave radia-
tive cooling, corresponding to the effect of clear-sky emis-
sions, is prescribed for each atmospheric column as a tem-
perature tendency. A saturation adjustment scheme is used,
so the grid is either entirely saturated (cloud) or entirely clear
(no cloud).

The BOMEX case (Siebesma et al., 2003) was re-
simulated for this study using Meso-NH LES with 1x =
1y =1z= 25 m – a higher horizontal resolution than used
for the intercomparison study (1x =1y = 100 m, 1z=
40 m; Siebesma and Cuijpers, 1995; Siebesma et al., 2003).
The Meso-NH LES was conducted on two different hor-
izontal domains: the same domain as the intercomparison
study (6.4km× 6.4km× 4km with 256× 256× 160 grid
points) named 6.4 km_MNH and a domain 4 times larger
(12.8km×12.8km×4km with 512×512×160 grid points)
named 12.8 km_MNH. The radiative tendency was pre-
scribed for each hour following the values presented in
Siebesma et al. (2003). The duration of these simulations
is 6 h; the first 2 h of the simulation are discarded as spin-
up. The 12.8 km_MNH run continued for 30 min longer dur-
ing which 3D fields were stored every 5 s in order to have
high-resolution data on cloud fields, named HFS for high-
frequency sampling.

Figure 1. Temporal evolution of (a) total cloud cover and (b) liquid
water path from the Siebesma et al. (2003) intercomparison (blue
lines; solid line for the mean and dotted line for the ± standard de-
viation). The black line is for the 6.4 km_MNH domain and the red
line for the 12.8 km_MNH domain. Gray shaded area corresponds
to Meso-NH high-frequency outputs (HFS).

2.1.3 LES validation

To validate the high-resolution Meso-NH, the total cloud
cover (TCC) is compared to results from the reference in-
tercomparison study (Siebesma et al., 2003) as shown in
Fig. 1. The TCC and liquid water path (LWP) stabilize af-
ter the spin-up (20 min delay in Meso-NH; however, convec-
tion results in a similar intensity) to ∼ 15 % and ∼ 5 g m−2,
respectively. From the second to the sixth hour, the TCC of
both Meso-NH simulations remains within the standard de-
viation of the intercomparison study (Siebesma et al., 2003)
with more fluctuations for the 6.4 km domain.

At the end of the simulation, TCC from 6.4 km_MNH
is slightly higher (+5 %) than reported in Siebesma et al.
(2003), while LWP remains nearly the same, confirming the
study of Matheou et al. (2011), who argued that a better spa-
tial resolution significantly increases the TCC.

The vertical profiles of turbulent flux of qt, θl, wind, turbu-
lent kinetic energy (TKE), and LWC are also near the mean
and within the variability of the intercomparison ensemble
presented in Siebesma et al. (2003) (not shown). The TCC
in HFS (shaded area in Fig. 1) varies between 11.9 % and
15.3 % during the 30 min, while the mean LWP in the do-
main is between 4.30 and 6.07 g m−2. In the following sec-
tions, the analysis focuses on the high-temporal-frequency
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outputs (HFS) in order to study the life cycle of individual
clouds.

2.1.4 Cloud identification method

One of the main objectives is to be able to characterize an en-
tire cloud life cycle, including the formation phase when up-
drafts dominate and the dissipation phase when downdrafts
dominate. In order to do that, we need to track individual
clouds as a function of time while exploiting the high spatial
and temporal resolution of the LES.

We first define clouds as coherent 3D structures made
of at least eight contiguous cells containing LWC> 1×
10−3 g kg−1 and overlapping for at least two vertical levels;
i.e., clouds thinner than 50 m or smaller than 1.25×10−4 km3

are filtered out. In order to follow individual clouds, we ap-
ply a method of cloud identification (Brient et al., 2019) as
a function of time, t . As shown in Fig. 2, the cloud iden-
tification method uses matrices of contiguity that isolate a
cell and define it as belonging to cloud N . For each cloudy
cell, the method identifies the neighboring cells connecting
by their face, edge, or corner. If one of them is already tagged
as a cloudy cell, it will get the same tag (Fig. 2, t0). This
method also uses contiguity in time, with the criterion that
a face, an edge, or a corner of a cloudy cell at tn touches a
cloudy cell at tn−1 (Fig. 2, t1). However, the advection of the
cloud must be within a spatial limit between two time steps
defined by the Courant–Friedrichs–Lewy condition (CFL=
(U1t/1x)≤ 1). If the cloud moves two or more lengths dur-
ing one time step, the cloud identification method can lead to
errors. In this study, the advection wind U is between 5 and
8 m s−1, the horizontal resolution is 1x = 25 m, and outputs
are produced every 5 s, which yields a CFL between 1 and
1.6 and does not meet the CFL condition. To solve this issue,
only cumuli with an overall dimension at least 3 times larger
than a mesh (cloud width≥ 75 m) are identified. When filter-
ing small clouds out, the TCC and LWP do not change sig-
nificantly (less than −0.05 % and −6× 10−3 g m−3, respec-
tively). A newly condensed cell can be added to the edge of
the cloud, linked to a previous cloud cell (Fig. 2, t2), or iden-
tified as a new cloud (Fig. 2, t3). The strength of this cloud
identification method is that it can identify individual clouds
in the model domain quickly.

2.2 Description of observational strategy

To improve upon decades of cloud observations, there is a
need to follow a cloud throughout its life cycle and deter-
mine, with high spatial and temporal resolution, its micro-
physical and thermodynamical properties. The goal of this
study is to derive the best strategy to observe the evolution of
an individual cloud. The flight strategy ultimately depends
on how long it takes to sample the cloud, which is largely
determined by the RPA air speed to transect the cloud and
its turning radius to turn around and re-enter the cloud. In

these simulations, the RPA samples every grid point along
its transect. Simulations in this study were conducted using
an RPA air speed of 15 m s−1 and a turning radius of 100 m
(Verdu et al., 2019). In order to optimize the sampling of
clouds by the RPA, a rosette flight pattern is performed in
the LES to create a horizontal cross section of the cloud.
The flight simulation is controlled by the Paparazzi autopi-
lot module (Hattenberger et al., 2014), which makes it possi-
ble to simulate the behavior of an RPA within the LES. The
autopilot module and the LES are combined with the mod-
ule CAMS (Cloud Adaptive Mapping System). The payload
module, which simulates a cloud instrument, is embedded in
the Paparazzi autopilot module to detect the presence of a
cloud using a threshold of LWC≥ 10−2 g m−3. If the LWC
threshold is exceeded, the RPA begins its rosette pattern by
conducting a straight line until it exits the cloud. The ge-
ometric center (red point in Fig. 3, t0) is calculated using
a weighted sum of the LWC after each passage through a
cloud. After exiting the cloud (LWC≤ 10−2 g m−3), the RPA
turns back toward the cloud center (Fig. 3, t1), and the tran-
sects are repeated in the form of a rosette pattern until the
cloud disappears.

3 Results

This section exploits the high temporal and spatial resolution
provided by the LES to optimize the adaptive sampling for
static and dynamic cases. First, an overview of the different
clouds sampled in the LES is provided before selecting three
clouds representative of the cloud population. Then, an ex-
ploration of the selected clouds is carried out with RPA flying
offline in the simulations – first in a static mode (i.e., without
taking into account the displacement of the cloud) and then
in a dynamic mode (i.e., including the wind advection and
time evolution of the cloud).

3.1 Description of a simulated trade cumulus field

During the HFS (12.8 km_MNH domain), an average of 300
clouds per output are identified with a minimum of 270
clouds around the 18th minute and a maximum of 350 clouds
at the 25th minute (Fig. 4). Individual cloud volumes have
been separated into four classes. Class 0 corresponds to a vol-
ume between 10−4 and 10−3 km3, class 1 between 10−3 and
10−2 km3, class 2 between 10−2 and 10−1 km3, and class 3
between 10−1 and 1 km3 (Table 1). Figure 4 presents the evo-
lution of the number of clouds detected at each time step (ev-
ery 5 s). The volume distribution shows that one-third of the
clouds are in class 0, another third in class 1, and another
third in class 2 and 3 with just under 10 clouds exceeding
10−1 km3 at any given time. The temporal evolution in Fig. 4
of the different classes shows a certain stability in the cloud
field. Despite the small number of clouds classified in class 3,
they have a disproportionate role in the transport of moisture
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Figure 2. Scheme of temporal cloud identification method for following a cloud in a dynamic environment.

and heat in the boundary layer since their mass flux is more
than an order of magnitude larger than the clouds of classes
0 and 1.

Some 2150 independent clouds have been identified, 970
of which complete a full life cycle within the 30 min HFS.
For clouds with the life cycle fully described from formation
to dissipation, statistics are calculated for thermodynamical
and macrophysical properties for each of the four volume
classes, as shown in Table 1. For each class, the minimum
(maximum) lifetime is calculated by averaging the smallest
(largest) 10th percentile, and the minimum cloud base height
(cloud-top height) is calculated by averaging all the mini-
mum cloud base heights (cloud-top heights) of each cloud
during their lifetime. The cloud base of a newly formed cloud
is always at the level of the lifting condensation level (LCL),
which is around 550 m a.s.l. The larger the volume, the lower
the average cloud base (which ranged between 550–680 m),
and inversely, the smaller the volume, the higher the aver-
age cloud base (around 800 m). The cloud base also tends to
increase when the cloud dissipates, which increases the av-
erage cloud base, particularly for small clouds. The lifetime
of small clouds is notably less as they dissipate quickly. The
height of the cloud top also increases with the volume, as ver-
tical extension is larger than the horizontal extension for cu-
mulus clouds (Neggers et al., 2003). The larger the volume,
the greater the intensity of the downdrafts wmin and updrafts
wmax. To calculatewmin andwmax, the highest downdraft and
updraft are selected in each individual cloud during its life-
time and then averaged per class. The maximum downdrafts

and updrafts in this study are observed in the biggest clouds
(class 3; −1.69 and 2.77 m s−1).

The average mass flux of the clouds (Fm) is positive, but
the standard deviation is larger than the mean in all four
classes. Standard deviations of mass flux indicate that vari-
ability is related to formation, dissipation, and width of the
bin. A negative Fm represents the dissipation of the cloud and
occurs more often for small clouds than large clouds. The dif-
ference in magnitude value of Fm between the size classes is
significant, with an order of magnitude of difference in Fm
for an order of magnitude change in cloud volume.

3.2 Individual cloud description

Inspired by the study of Zhao and Austin (2005a), who use
an LES with a similar resolution (1x =1y =1z= 25 m) to
study thermodynamical processes in individual clouds with
volumes of 10−2 and 10−1 km3, this study focuses on three
independent clouds representative of volumes of 10−2 km3

(N1, class 1), 2× 10−2 to 3× 10−2 km3 (N2, class 2), and
10−1 km3 (N3, class 3).

3.2.1 Macrophysical and microphysical properties

The evolution of the life cycle for the three clouds (N1, N2,
N3) is followed for 12, 18, and 24 min, respectively. The
growing phase, corresponding to an increase in volume, com-
prises 55 %–65 % of their life cycle. Each of the clouds has
a similar cloud-base height (at 550 m), and their cloud-top
increase follows a logarithmic growth rate, with a higher
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Figure 3. Rosette pattern for different times (and the number of transect associated) of exploration; adapted from Verdu et al. (2019). Green
lines represent the RPA trajectories, red points the calculated geometric center at different times of exploration, and the purple point the last
geometric center.

Table 1. Min, max, mean, and standard deviation of macroscopic and dynamic characteristics of the 970 clouds that complete a full life cycle
during HFS.

Class Volume Lifetime [min] cloudbase [m] cloudtop [m] wmin [m s−1] wmax [m s−1] Fm [kg s−1 m−2] n

[km−3] min/max min/max min/max mean±σ mean±σ mean±σ

0 10−4–10−3 1.16/9.16 812/850 848/877 −0.3± 0.35 0.32± 0.41 0.03± 6.01 501
1 10−3–10−2 3.55/17.75 816/943 935/1035 −0.61± 0.35 0.66± 0.45 1.65± 60.03 333
2 10−2–10−1 5.93/17.08 686/872 1015/1327 −1.01± 0.43 1.25± 0.52 160± 440 118
3 10−1–1 7.44/21.58 555/680 1518/1634 −1.69± 0.41 2.77± 0.84 1245± 1707 18

rate for large clouds. The maximum surface of the horizontal
cross section at 150 m above cloud base occurs at t = 14 min
for cloud N1 with Smax = 0.045 km2, t = 10 min for cloud
N2 with Smax = 0.28 km2, and t = 15 min for cloud N3 with
Smax = 1.06 km2. In Fig. 5c, the maximum LWC for the
three clouds is compared to their pseudo-adiabatic profile,

computed by integrating the adiabatic vertical gradient, β,
through the cloud depth (Korolev, 1993). The difference be-
tween pseudo-adiabatic and maximum LWC for each cloud
level indicates the degree of entrainment mixing that has oc-
curred. The maximum LWC in the HFS follows the pseudo-
adiabatic profile to approximately a third of the height of the
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Figure 4. Temporal evolution of the number of clouds at each model output classified by their different volumes from Table 1.

clouds. The LWC then remains more or less constant until
decreasing near the top, suggesting higher entrainment rates
in the upper part of the clouds.

3.2.2 Thermodynamical properties

Consistent with Zhao and Austin (2005b) and Heus et al.
(2009), the clouds in the HFS present single or several pulses.
As shown in Figs. 5 and 6, cloud N1 can be described by a
simple pulse growth, whereas clouds N2 and N3 show two
and three pulses, with the first being the most important.
The maximum updraft occurs at maximum volume and at
the top of each pulse when the cloud has reached its mature
phase, while maximum downdraft remains relatively con-
stant (Fig. 6a). Similar features are seen for clouds N1, N2,
and N3, for which the magnitude of the updrafts and down-
drafts is related to the size of the cloud (Table 1). Figure 6b
represents the time series of the mean vertical mass flux for
each cross section. High values of vertical mass flux are lo-
cated near cloud base and within the cloud core (studied for
each cloud cross section), and they remain nearly constant up
to half the height of the cloud, while negative vertical mass
fluxes are always located near the cloud edge (also studied
for each cloud cross section) and cloud top in the dissipation
phase (Fig. 6c).

This individual study of clouds has permitted the descrip-
tion of heterogeneities in the horizontal and vertical structure
of cumulus clouds, in particular with respect to LWC. An
observational strategy with sufficiently high sampling resolu-
tion is necessary to capture these heterogeneities and is now
conducted numerically by embedding the exploration of RPA
in the HFS LES.

3.3 Exploration by RPA in LES

In this subsection, we simulate the capacity of RPA to ex-
plore the horizontal variabilities of the thermodynamic vari-
ables in a cloud. First, we demonstrate the concept using
cloud N2 in a static state by neglecting its horizontal advec-
tion and time evolution. We then repeat for the same cloud
N2 but taking into account its evolution with time (dynamic
case). Also, the clouds N1 and N3 are explored in static
mode.

3.3.1 Defining a pattern for a static cloud

For this subsection, the cloud is assumed to be static and the
flight of the RPA is simulated by embedding the Meso-NH
output in the Paparazzi autopilot module. The cloud shape
and position as well as thermodynamical variables do not
change during the exploration by the RPA. Horizontal wind
is fixed to 0 m s−1. To demonstrate the viability of the rosette
pattern described in Sect. 2.2, a cross section at 150 m above
cloud N2 base extracted at t = 10 min is used (correspond-
ing to the time when the cloud reaches its maximum volume)
(Fig. 5). The location of the initial entrance in the cloud is
random and is shown with a red arrow in Fig. 7a. In this case,
the RPA conducts 11 transects at this altitude in the cloud.

After each transect, the sampled horizontal distribution of
LWC is reconstructed for the cross section (Fig. 7b). As the
rosette pattern biases sampling of the geometric center, some
regions in cloud N2 are oversampled, while regions toward
the cloud edge are not measured at all. Nonetheless, to as-
sess the ability of the rosette pattern to properly represent the
horizontal cross section of the cloud, the probability density
functions (PDFs) of reference LWC (Fig. 8a) and w (Fig. 8b)
are compared with the PDFs of the reconstructed cloud cross
section. The reference PDF of LWC (black line in Fig. 8a)
has a main peak (15 % of cloudy grid cells) at 0.37 g m−3,
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Figure 5. Life cycle of three clouds N1, N2, and N3 for (a) their volume and (b) their LWC. The black star represents altitude and time for
static cloud exploration. (c) The comparison between the maximum LWC for each vertical level during each cloud life cycle and the limit of
pseudo-adiabatic LWC (black line).

Figure 6. Life cycle of three clouds N1, N2, and N3 for (a) their minimum and maximum vertical wind, (b) their mass flux, and the (c) vertical
profile of mass flux for each cloud. The black line in (b) corresponds to negative vertical flux. The black star represents altitude and time for
static cloud exploration.

corresponding to the cloud core, and 4 % of cloudy grid
cells have an LWC that approaches the adiabatic value of
0.40 g m−3. The first transect results in an overestimation of
high LWC values, while cloud edges (low LWC values) are
underestimated, as also shown in Hoffmann et al. (2014).
As the number of transects increases, the LWC biases de-
crease and the cumulative reconstructed PDF of the LWC ap-
proaches the reference distribution, but high values are still
overestimated.

For vertical winds, the PDF (black line in Fig. 8b) rep-
resents a Gaussian distribution, and 15 % of model grids in
the cloud cross section exhibit vertical wind between 0.7 and
0.9 m s−1, corresponding to the peak of Gaussian distribution
in the cloud. The cross-sectional area of downdrafts repre-
sents less than 10 % of total vertical wind. High values of up-
drafts are also overestimated with the first transects; however,
the PDF converges to the reference PDF in less time than for
LWC. In this study, the practice of only using the RPA ob-
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Figure 7. (a) Cross section of simulated cloud N2 at 150 m above cloud base in gray with the transect of the RPA; the color represents the
LWC measured. (b) Reconstructed LWC in the cross section based on RPA transects. (c) Reconstructed LWC in the cross section with GPR
mapping with λx = 75 m. The first row corresponds to the end of the first transect, and the second row corresponds to all transects at the end
of the exploration. The red arrow represents the first entrance in cloud N2 starting the rosette pattern (Sect. 2.2).

Figure 8. Reconstructed probability density function (PDF) of (a) LWC with time (color) compared to the reference of cloud N2 (black) at
a height of 700 m a.s.l. (b) Same for vertical wind.

servations to map the cloud is called the transect method. To
compensate for the abovementioned biases of a single trajec-
tory, simple forms such as a circle or ellipse provide a simple
method to estimate the distribution of LWC and updrafts in
the cross section. For example, an equivalent diameter (or the
lengths of major and minor axes for an ellipse) can be esti-
mated by an average transect length to retrieve a surface area
for a circle or an ellipse. To derive a total LWC (LWCtot)
of the cross section, the volume of the reconstructed cloud
section is multiplied by the average LWC, LWC. The tran-
sect method systematically underestimates the cloud volume
section (area of the section multiplied by the 25 m thickness
of the grid cell), while the cloud volumes reconstructed by

circle and ellipse methods are more than twice the actual
volume of the reference cross section, as shown in Fig. 9a.
Clearly, none of these relatively simple methods are able to
accurately reconstruct the cloud cross section (Fig. 9), par-
ticularly related to the fractal character of the borders of
cloud cumulus. To address this deficiency in accurately re-
constructing the cloud cross section using simple methods,
we introduce a novel method that uses Gaussian process re-
gression (GPR). Below, only the transect method (RPA ob-
servations) will be compared with GPR.
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Figure 9. (a) Reconstructed cloud volume with circle method (orange line), ellipse method (yellow line), transect method (blue line), and
GPR method (green line) compared to the reference volume (black line) for cloud N2 in static state at 700 m for one exploration. (b) The
blue line corresponds to LWC calculated by the transect method, the green line by the GPR method, and the dotted black line the reference
LWC. (c) Same for integration of LWC in the section volume.

3.3.2 Gaussian process regression mapping

Gaussian process regression extends the spatial footprint of
an observation by weighting its values with a Gaussian pro-
file. It needs the definition of four length scales (λt,z,y,x) rep-
resenting spatial (z, y, x) and temporal (t) scales. For the
static case, λt =∞ means that an earlier observation is con-
sidered to have the same weight as the last measurements
(temporal variation is not taken into account).

To demonstrate the impact of length scales on GPR, sensi-
tivity tests are carried out for cloud N2 using three different
length scales corresponding to 2, 3, and 4 times the resolu-
tion of the simulation (50, 75, 100 m). The differences of the
reconstructed map of LWC for the different length scales are
shown in Fig. 10. For a horizontal length scale of 50 m, LWC
is underestimated in unsampled regions, consistent with a
length scale that is too short (LWCreconstructed = 0.20 g m−3

compared to LWCreference = 0.24 g m−3). To assess if the
cross section of the cloud is correctly defined in its entirety,
the root mean square error (RMSE) is also calculated and
is equal to 8.92 g m−3. For a 75 m length scale, the recon-
structed cross section represents the reference cloud with
LWCreconstructed = 0.22 g m−3 and an RMSE of 5.71 g m−3.
For the largest length scale, 100 m, the cross section of LWC
extends beyond the edges of the reference cloud, also as ex-
pected for a length scale that is too large (LWCreconstructed =

0.35 g m−3). The RMSE for a 100 m length scale increases

significantly 14.89 g m−3. For the following analysis, the
GPR mapping uses a 75 m length scale.

3.3.3 Criteria for optimizing the exploration

In this section, different methods are applied to better char-
acterize the heterogeneities of the thermodynamic variables
and the total LWC. The exploration with a rosette pattern
is repeated 10 times in the same cloud at the same altitude
with different entrances. In each of these explorations, the
reconstructed LWCtot and LWC are compared to the refer-
ence cloud every 60 s for 12 min. The reference LWCtot and
LWC have values of 1.8×103 g and 0.24 g m−3, respectively.
Four sampling strategies are compared: a single RPA explo-
ration just using observations along the trajectory (1-RPA)
and with GPR mapping (1-RPA + GPR). A similar notation
is used for the 2-RPA exploration.

The LWCtot reconstructed for the four sampling strate-
gies is shown in Fig. 11 with the standard deviation disper-
sion among the 10 flights shown as shading. For the first
minute of exploration, the four methods underestimate the
LWCtot; however, after the second minute (about two to three
transects), the 1-RPA and 2-RPA exploration with the GPR
method calculates LWCtot close to the reference LWCtot,
while with the two other methods without GPR, the LWCtot
stays significantly lower than the reference. After the third
minute, the GPR method yields a stable LWC within the ref-
erence LWC± 10 %, while 1-RPA and 2-RPA explorations
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Figure 10. (a) The first row corresponds to a cross section of simulated cloud N2 at 150 m above the cloud base in color shade. The second
row corresponds to a cross section of LWC reconstructed for cloud N2 with GPR for (b) λx = 50 m, (c) λx = 75 m, and (d) λx = 100 m.
The third row corresponds to the difference between the reference cross section and reconstructed cross section by GPR for the three length
scales; RMSE is also shown.

without GPR never attain the reference LWCtot. In addition,
the standard deviation variability of LWCtot is a factor of
3 less when using GPR.

It is possible to quantify the total LWC reliably around
180 s for exploration with two RPA + GPR mappings and
300 s for a single RPA + GPR mapping. Using Eq. (5) of
Baker et al. (1984) allows relating the time needed for ho-
mogenization based on a turbulence kinetic energy dissipa-
tion rate of 0.89×10−3 m2 s−3 at the level of 700 m (from the
LES); these exploration times allow characterizing LWC het-
erogeneities caused by mixing having a characteristic length
of 155 m with a single RPA and 72 m with two RPA. The si-
multaneous use of two RPA allows us to better characterize
the thermodynamical changes in a cloud section in the case
of a dynamic cloud.

Another stated objective of this study is to optimize the
sampling strategy in order to best describe the thermodynam-
ical heterogeneities in the cloud. To quantify this, the relative
error is calculated as a sum of the difference between the re-
constructed PDF and the reference PDF of LWC for each of
the 20 bins of the distribution as

relative error=
1
nbin

nbin∑
i

∣∣PDFref,i −PDFreconstructed,i
∣∣

PDFref,i
, (1)

where nbin represents the number of bins, PDFref repre-
sents the reference PDF distribution of a variable noted i,
and PDFreconstructed represents the reconstructed PDF distri-
bution with observations for the same variable i. Note that
PDFreconstructed is a cumulative PDF which takes into account
previous transects.

The relative errors for the three methods are shown in
Fig. 12. For the cloud N2, the time required for the single
RPA without GPR to have a relative error below 0.5 is ap-
proximatively 350 s. With two RPA without GPR, the time
required to have a relative error below 0.5 is reduced to 190 s.
Figure 12 shows that the GPR provides a significant time sav-
ing, since an RPA associated with the GPR mapping takes
only 120 s to have a relative error on the PDF below 0.5 and
that two RPA operating simultaneously with a GPR mapping
takes only 80 s.

The time needed to reach different threshold relative errors
of 10 %, 30 %, and 50 % for different variables (LWC, verti-
cal wind, and potential temperature θ ) is reported in Table 2,
highlighting a significantly improved mapping of the cross
section by using the GPR method.

As described by Katzwinkel et al. (2014), the growth, ma-
turity, and dissipation phases of a cloud life cycle have a
timescale of minutes. Consequently, sampling of cloud cross
section must also be completed within timescales of a few
minutes. These results show that cloud cross sections are suf-
ficiently well represented when using GPR methods.

3.3.4 Exploring clouds of different sizes

In this section, a generalization of the rosette pattern with the
GPR method is applied to static clouds N1 and N3 at the time
they reached their maximum cross-sectional area at 150 m
above cloud base. Figure 13 shows the exploration with the
rosette trajectories using GPR mapping.

Length scales between 25 and 400 m were used to find an
optimal length scale for clouds N1, N2, and N3. The sensitiv-
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Figure 11. Temporal evolution of reconstructed LWC total with the transect method with one RPA (blue line) or two RPA (red line) and
with the GPR method with λx = 75 m for a single RPA (green line) and two RPA (purple line). Colored shading areas represent LWCtot±
standard deviation for the 10 explorations for each 60 s. The black line corresponds to reference LWCtot in the cloud N2 section in static
state at 700 m, and the shaded gray area corresponds to ±10 % of LWCtot.

Figure 12. Temporal evolution of relative error in the PDF of the LWC distribution for a single RPA with the transect method (blue line) and
GPR mapping (green line) as well as two RPA with the transect method (red line) and GPR mapping (purple line) during the exploration of
cloud N2 in static state.

ity test was first applied to the cloud N2 (equivalent diameter
597 m), and the most efficient length scale was found to be
75 m. The same tests were performed for the other two clouds
(cloud N1, equivalent diameter 240 m; cloud N3, equivalent
diameter 1161 m), which resulted in similar length scales av-
eraging 75± 5 m for the three cases. The optimum length
scale is independent of the cloud size (e.g., N1, N2, N3), sug-
gesting that the length scale defined for GPR is related to the
length scales of the strongest gradient of the parameter be-
ing explored (i.e., LWC in this case). The strongest gradient
in LWC occurs in the cloud shell, which is generally two to
three grid sizes (i.e., 50 to 75 m) of the LES. Length scales
that are too small (i.e., 25 m) create “gaps” in the exploration,
particularly for large clouds, while length scales that are too

large blend the cloud shell and cloud core, which is relatively
more important for small clouds.

When the dimension of the cloud is smaller than the turn-
ing radius (cloud N1), the exploration is pattern-limited in
that the RPA cannot turn around and re-enter the cloud if
the cloud itself is smaller than the RPA’s turning radius. The
relative error remains higher than 0.3 for the duration of the
simulation. When the cloud radius is much larger than the
turning radius there is simply more surface area to sample,
which prolongs the exploration. For example, the relative er-
ror for cloud N3 only approaches 0.2 by the end of the ex-
ploration. Finally, Fig. 13 shows that when using GPR for a
middle cloud (cloud N2), the relative error is below 0.2 mid-
way through the exploration.
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Figure 13. Temporal evolution of the relative error of LWC distribution for cloud N1 (red line), cloud N2 (green line), and cloud N3 (blue
line) in static state. Shaded area corresponds to ± standard deviation for five explorations.

The results demonstrate that the rosette trajectory associ-
ated with a GPR mapping in a static environment is suit-
able for sampling thermodynamic and microphysical vari-
ables such as LWC or θ and w. We now assess the ability
to measure thermodynamic and microphysical variables for
a case in which the cloud evolves with time and in space (i.e.,
a dynamic case).

3.3.5 GPR reconstruction of a cloud evolving with time

In an evolving cloud, the RPA must constantly adjust its tra-
jectory by taking into account the advection and spatial evo-
lution of the cloud. In this subsection, an adaptive exploration
follows the cloud in the cloud reference frame, which is re-
defined at each time step by accounting for the advective
wind. To demonstrate the challenges in extending the anal-
ysis of a static environment (Sect. 3.3.1 to 3.3.4.) to a dy-
namic one, the adaptive exploration is applied here to cloud
N2. For this case, the rosette pattern (Sect. 2.2) is also applied
at 150 m above cloud base as for the static exploration. Cloud
N2 vertical extent reaches 150 m above cloud base 4 min af-
ter its formation, and we start the exploration of cloud N2 at
this time. The sampling strategy follows the rosette model in
the cloud reference frame; the calculated center of the cloud
moves relative to the advective wind. Observations of the
cloud continue for 12 min (Fig. 14), corresponding to sev-
eral transects in the cloud, until the moment of its dissipation
(at the exploration level). The total horizontal distance cov-
ered is more than 5 km during this period. Figure 14 shows
four periods of the dynamic exploration corresponding to the
first, fourth, seventh, and eighth transects through the cloud
N2. The first transect occurs during the growth phase of the
cloud and does not traverse the region of maximum LWC,
followed by the other transects in the maturity and dissipa-
tion phase of the cloud.

Figure 14b represents the RPA transects in a fixed frame
where advection has been removed (in a Lagrangian refer-
ence frame). The cloud transects are 500–600 m long and
map the evolution of the cloud’s boundary.

Associated with these transects in the time-evolving cloud
N2, the LWC measurements are shown in Fig. 15a. As ex-
pected, there is a clear underestimation of high LWC values
when comparing LWC PDFs (Fig. 15b, transect 1). Between
the fourth and seventh transects (300 to 550 s), the reference
cloud is in a relatively stable mature phase. Once the center
of the cloud is established, the exploration is efficient enough
to reconstruct a PDF resembling that of the reference case
with relative errors between 0.3 and 0.4. However, during
the dissipation phase, the evolution of the cloud cross section
is faster compared to the relatively stable mature phase and
is not well represented by the PDF. These explorations are
repeated several times, and the PDF descriptions are all more
efficient in the mature phase (relative error around 0.3 to 0.4)
than in the developing and dissipating phases. While GPR
certainly improves the ability to reconstruct a cloud cross
section, these results clearly show that to adequately observe
the dissipation phase, the cross section must be reconstructed
in less time. Averaging the multiple explorations (individual
lines in Fig. 15b) yields similar results as a dynamic explo-
ration with multiple uncoordinated RPA. These results show
that the “noise” associated with the reconstructed probability
function of LWC is greater during phases with more rapid
evolution – therefore, to reduce the uncertainty, one needs to
add RPA. In addition, Fig. 15b (50 and 600 s) shows that the
RPA does not capture the higher LWC values associated with
the core of the cloud when the cloud element is small, which
is a result of a less efficient choice of exploration strategy.
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Figure 14. (a) Trajectories of exploration by following cloud N2 for four different transects. The colors represent the measured LWC, and
the gray surface corresponds to the cross section of reference cloud N2 for the different times. The shading colors correspond to the past
transects. The black arrow represents the direction of the advective wind. (b) Measured LWC in cloud frame during the exploration. The
colored lines correspond to the values of measured LWC exceeding 10−2 g m−3, and the gray lines correspond to the measured LWC below
this threshold.

Figure 15. (a) Temporal evolution of LWC measured by RPA for different transects (colors). (b) Reconstructed probability function of LWC
in color and by the reference in black for four transects of exploration (transects 1, 4, 7, 8).
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4 Conclusions

The aim of this study is to determine an observational strat-
egy for reconstructing thermodynamic properties of a cross
section of a cumulus cloud without surface precipitation
within a high-resolution large-eddy simulation (LES). We
reproduce a high-resolution cumulus cloud field with the
Meso-NH model in LES mode (with a 25 m spatial resolu-
tion), wherein the simulations are based on observations dur-
ing the BOMEX field campaign. The high-resolution simu-
lation serves as the basis for this study and compares well
to an intercomparison LES study reported in Siebesma et
al. (2003). By applying a novel cloud identification method
to high-frequency 3D outputs, we isolated three clouds with
different volumes (10−4 to 10−1 km3) representative of the
cumulus cloud population with varying lifetimes between 12
and 18 min. The goal of the sampling with a remotely piloted
aircraft (RPA) is to reproduce a cloud cross section of liquid
water content (LWC) and updraft velocity within a few min-
utes in order to follow the evolution of a cloud through its
growth, maturity, and dissipation phases.

An autonomous RPA using a Paparazzi autopilot module
is embedded into the LES to conduct an exploration of a
cloud level using a rosette pattern. In a static environment
(a cloud that does not evolve with time), the rosette pattern
is applied to the cloud at the time and the level at which the
surface area of its horizontal cross section is maximum. The
rosette pattern is chosen for the adaptive trajectory since at
each exit from the cloud, the RPA automatically conducts
a half-turn to re-enter the cloud and conducts a subsequent
transect through the geometric center of the cloud. The sam-
pling of the cloud continues autonomously using a threshold
LWC of 10−2 g m−3 to determine if the RPA has entered or
exited the cloud. The geometric center is calculated using a
weighted sum of the LWC from the previous transects. The
simulated observations serve to reconstruct different proba-
bility density function (PDF) distributions of LWC, vertical
winds, volume, and total LWC.

Simple methods to derive a cross section using individ-
ual observations or assuming circular or elliptical forms of a
cloud do not reproduce the LWC and its horizontal variabil-
ity. Using only the observations from one or two RPA un-
derestimates the amount and variability of LWC in the cloud
cross-section. Assuming a circle or an ellipse yields a fac-
tor of 2 overestimation of total LWC in the cross section.
We therefore explore another technique to expand the obser-
vational footprint using Gaussian process regression (GPR).
GPR mapping extends individual measurements by applying
a confidence level to the surrounding area and time related
to a given length scale. The results show that GPR mapping
significantly improves the reconstruction of the cloud cross
section. A sensitivity test of the length scale used for GPR
mapping indicates that the characteristic scale of 75 m is the
best for reconstructing the horizontal LWC in a cloud. In fact,
after three transects through the cloud, corresponding to a
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time of≈ 200 s, the GPR mapping adequately reproduces to-
tal LWC (within a relative error of 10 %) and the PDF vari-
ability of the LWC (within 30 % relative error). The addition
of a second RPA simultaneously with GPR mapping further
improves the time of good restitution of the total LWC field
and its distribution by reducing the time needed to obtain a
correct LWC total value to 80 s.

To extend results of a static exploration to a realistic en-
vironment, the rosette pattern was applied to a cloud evolv-
ing in time and space in a dynamic environment. The GPR
mapping method allows us to sample the thermodynamical
distribution sufficiently well for a cloud during its maturity
stage, which is the most stable phase of a cloud life cycle.
However, during the growing and dissipating phases, a sin-
gle RPA coupled with GPR is still insufficient to reproduce
the temporal variability of the cloud life cycle.

In order to improve the observational capacity of air-
borne measurements, various methods are currently being
explored, including the use of a camera system or radar to im-
prove the cloud exploration, particularly for conditions when
the cloud boundaries are broken or not well defined (e.g., a
dissipating cloud).

To optimize the dynamic exploration of a cloud, at least
two RPA are necessary. To improve our observations of the
cloud life cycle, an improved coordination between the RPA
is also necessary to avoid risk of collision and also to couple
with different optimized adaptive trajectories.

Data availability. Data for the static case are currently being
archived and will be accessible online. Due to size of the data for
the dynamic simulation (1.5 TB), please contact the corresponding
authors.
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