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S1 Details of instrumentation    29 

The ARISense sensor package is shown in Figure S1; see Cross et al. (2017) for full description. Version 2.0 added a 30 

GSM cell module and replaced the Ox-B421 with the Ox-B431 sensor (Alphasense Ltd., UK). The ARISense sensor 31 

packages used AC or DC power and drew 3 – 4 W on average. In rural Malawi, units relied on a DC power system of 32 

four 9-Watt solar panels and four 12,000mAh rechargeable batteries; batteries were in a separate weather-proofed 33 

housing with a single bus connected to the ARISense unit. Raw data were sampled every 60 seconds, integrated, and 34 

stored as daily data files on an internal USB drive. During deployment in Malawi, data files were periodically sent via 35 

email or uploaded to a shared Google Drive by an on-site local assistant using an Android phone. 36 

 37 

 38 

 39 

The MicroPEM uses a proprietary software to provide real-time mass concentration estimates from the nephelometer. 40 

We did not apply any correction factors and the internal slope was set to 1. The filters were equilibrated in a climate-41 

controlled weighing chamber for 24 hours (22 ± 2 °C, 35 ± 2.5 % RH) and charge neutralized with Polonium and 42 

electrostatic ionization sources prior to pre‐ and post‐weighing on an ultramicrobalance (Mettler Toledo UMX-2, 0.1 43 

µg readability). Field handling blanks (N= 3) were collected in Malawi and were used to correct the gravimetric PM2.5 44 

concentrations. During field data collection, the filters were stored in sealed containers and were wrapped in foil to 45 

minimize exposure to light. The filters were stored in a refrigerator while in Malawi (when possible) and in the freezer 46 

after returning to the U.S. While in transit, the filters were at ambient temperature. The field blank‐corrected 47 

gravimetric filter mass concentrations were used to post‐correct the optical nephelometer readings. 48 

 

Figure S1: Image of ARISense (Version 1.0) interior (left), including integrated circuit board and internal data 

logging system. Image of ARISense in deployment setting (right) with solar panel power system mounted at 

Village 2 site in Mulanje, Malawi.  

 

 

 

 



S2 Details of pre-collocation in North Carolina 49 

This study was conducted in 2017, before any standardized protocols were developed. The variable collocation periods 50 

used in this study were constrained by equipment malfunction, limited field personnel in Malawi, and international 51 

travel timelines. Recent U.S. EPA guidelines for supplemental air sensor performance assessment suggest 1) a 52 

minimum of 30 days (720 hours) of collocation, 2) two collocations during two different climatic seasons OR at two 53 

different sites, 3) a 24-hour averaging interval for the sensor and reference data, and 4) a 75% data completeness 54 

requirement (Duvall et al., 2021a, b). 55 

 56 

 57 

 58 

Figure S2: Image of ARISense and reference instrumentation (left) at the Triple Oak monitoring site (right), North 59 

Carolina, USA. Image source: Google Earth Version 9.143.0.0 (May 1, 2018). NC Collocation Site, Durham, NC, 60 

27560 USA.  35.865°N, 78.820°W. Borders and labels; places layer. Accessed: August 19, 2021. © Google Earth 61 

2021. NC DEQ data available from: https://xapps.ncdenr.org/aq/ambient/AmbtSiteEnvista.jsp?site=371830021 62 

 63 

 64 

 65 

 66 

 67 

 68 

 69 

 70 

 71 

 72 

 

 

https://xapps.ncdenr.org/aq/ambient/AmbtSiteEnvista.jsp?site=371830021


S3 Description of assessment metrics and target values 73 

 74 

Table S1: U.S. EPA recommended performance metrics and target values for low-cost gas (ozone) and particle sensor 75 

evaluation. Adapted from Tables ES-2 (Duvall et al., 2021a, b). ppbv = parts per billion by volume. 76 

Performance Metric   O3 Target Value PM2.5 Target Value 

Precision Standard deviation (SD) OR ≤ 5 ppbv ≤ 5 µg m-3 

  Coefficient of Variation (cV) ≤ 30% ≤ 30% 

Bias Slope (m)  1.0 ± 0.2 1.0 ± 0.35 

  Intercept (b) -5 ≤ b ≤ 5 ppbv -5 ≤ b ≤ 5 µg m-3 

Linearity Coefficient of Determination (R2) ≥ 0.80 ≥ 0.70 

Error Root Mean Square Error (RMSE) ≤ 5 ppbv RMSE ≤ 7 µg m-3 or NRMSE ≤ 30% 

 77 

 78 

The Coefficient of Determination (R2) was used to assess linearity. For n measurements,  79 

 80 

𝑅2 = 1 −
∑ (𝑐𝑡𝑟𝑢𝑒,𝑖−𝑐𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑,𝑖)

2𝑛
𝑖=1

∑ (𝛥𝑐𝑡𝑟𝑢𝑒,𝑖)
2𝑛

𝑖=1

         (1) 81 

 82 

where 𝑐𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑,𝑖 is the concentration as measured by the ARISense monitor, 𝑐𝑡𝑟𝑢𝑒,𝑖 is the corresponding 83 

concentration measured by the reference instrument, and  84 

 85 

𝛥𝑐𝑡𝑟𝑢𝑒,𝑖 =  𝑐𝑡𝑟𝑢𝑒,𝑖 −
1

𝑛
∑ 𝑐𝑡𝑟𝑢𝑒,𝑗

𝑛
𝑗=1          (2) 86 

 87 

The error in the ARISense measurements compared to the reference measurements was assessed using the Root Mean 88 

Square Error (RMSE): 89 

 90 

𝑅𝑀𝑆𝐸 = √∑ (𝑐𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑,𝑖−𝑐𝑡𝑟𝑢𝑒,𝑖)
2𝑛

𝑖=1

𝑛
         (3) 91 

 92 

To assess precision, the Coefficient of Variation (cV) was used:  93 

 94 

𝑐𝑉 =

√
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1
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 96 



where 97 

  98 

𝛥𝑐𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑,𝑖 =  𝑐𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑,𝑖 −
1

𝑛
∑ 𝑐𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑,𝑗

𝑛
𝑗=1        (5) 99 

 100 

To assess bias, we fit a linear regression model using the reference measurements as the independent variable or ‘true’ 101 

concentration and the ARISense measurements as the dependent variable or ‘estimated’ concentration and calculated 102 

the slope and intercept:  103 

 104 

𝑐𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 =  𝑚 ∗ 𝑐𝑡𝑟𝑢𝑒,𝑖 + 𝑏         (6) 105 

 106 

where 𝑚 is the slope and 𝑏 is the y-intercept.  107 

 108 

For OPC-N2 measurements, prediction intervals were calculated for mean 1-hr averaged RH-corrected ambient PM2.5 109 

concentration measurements for each ARISense OPC-N2 using collocation data from ARI023 (Table 2) collected at 110 

the Village 2 site (Fig. 1d).  Prediction intervals are a useful predictor to interpret future optical particle sensor readings 111 

collected after the evaluation period (Bean, 2021). We surmise statistical prediction intervals based off the collocation 112 

data of ARI023 can be used to interpret the 2017 ARISense data sets for the following reasons: a) we observed highly 113 

similar responses from the Alphasense OPC-N2 units in ARI013, ARI014, and ARI015 during pre-collocation in NC 114 

(R2 > 0.9), b) this is the best-available in situ collocation data for our specific deployment conditions and source 115 

aerosol, and c) we only aimed to report low confidence level (1-sigma) prediction intervals with our measurements. 116 

Further, several studies have reported high OPC-N2 inter-unit agreement with a cV around 0.2 (Bulot et al., 2019; 117 

Crilley et al., 2018; Badura et al., 2018), although some review studies have shown low repeatability and 118 

reproducibility across Alphasense OPC-N2 units (Rai et al., 2017). 119 

To estimate the interval for mean hourly averaged OPC-N2 measurements, we applied a Box-Cox transformation 120 

(Box and Cox, 1964) to a linear regression model using the ARI023 MicroPEM measurements as 𝑐𝑡𝑟𝑢𝑒,𝑖 and the OPC-121 

N2 measurements as 𝑐𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 to obtain an error term in the linear regression model independent of 𝑐𝑡𝑟𝑢𝑒 and 122 

normally distributed, with zero mean and constant variance (Fig. S3b):  123 

 124 

𝑐𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑(𝜆) =  (𝑐𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑
𝜆 − 1)/𝜆         (7) 125 

 126 

where 𝜆 = -0.14. Interval estimates for mean hourly OPC-N2 measurements were calculated as prediction intervals:  127 

 128 
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 130 

where t is the t-statistic value for a given level of significance α.  131 



 132 

Figure S3: RH-corrected OPC-N2 PM2.5 mass concentration (1-hr avg.) linear model residuals and fit range. Residuals 133 

= difference between OPC-N2 and MicroPEM measurements; (a) raw data, and (b) box-cox transformed data with 134 

outliers occurring from 3-6 AM local time (the morning cooking period) excluded. Original R Code (Bean, 2021). 135 

(a) 

 

(b) 

 

 



The prediction intervals were reverse-transformed and used to estimate the range of mean hourly 𝑐𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑  136 

measurements. Outlying observations occurring between 3-6 AM were excluded for the fit to converge due to high 137 

ambient RH conditions (> 70%) coinciding with periods of fresh, biomass emissions from nearby morning cooking 138 

activity (Fig. S4). The analysis was completed in R (version 3.6.0) using RStudio (version 1.2.5042) with MASS 139 

(version 7.3-51.4) and ggplot2 (version 3.3.2) libraries.  140 

 141 

 142 

Figure S4: Alphasense OPC-N2 RH-corrected PM2.5 mass concentration versus MicroPEM PM2.5 concentration data 143 

used for the linear model; Fit line shown in blue, grey shaded area indicating 68% confidence interval in slope; Dotted 144 

red lines indicate 68% prediction interval upper and lower limits calculated from the linear model.  Data are 60-min 145 

averaged. Data collected from 3-6 AM (morning cooking periods) were removed for the fit to converge. Original R 146 

Code (Bean, 2021). 147 



S4 Satellite images of Malawi deployment sites 148 

 149 

Figure S5: Satellite image of Mulanje “Village” sites (1 mile scale), blue markers indicate ARISense monitoring sites. 150 

Image source: Google Earth Pro Version 7.3.4.8248. Mulanje, Malawi. Borders and labels layer. Accessed: June 5, 151 

2020. © Google Earth 2021. 152 

 153 



 154 

Figure S6: Satellite image of “University” (1000ft scale), blue markers indicate low-cost monitoring sites. ARI015 155 

was deployed to the University site and was mounted on the roof of an office building (7 m above ground) at the 156 

Bunda College of Agriculture in the Lilongwe University of Agricultural and Natural Resources near Lilongwe, 157 

Malawi for 382 days from 25 June 2017 to 13 July 2018. Image source: Google Earth Pro Version 7.3.4.8248. Centre 158 

for Agricultural Research, Lilongwe University of Agriculture and Natural Resources, Bunda, Malawi. 14.180°S, 159 

33.774°E, eye elevation 1125 m. Borders and labels layer. Accessed: June 5, 2020. © Google Earth 2021. 160 

 161 

 162 

 163 

S5 Details of high-concentration biomass burning emission experiments  164 

Emissions measurement equipment, described in Champion and Grieshop (2019), placed near the emission sources 165 

directly in the plume measured mean CO concentrations of 50-300 ppb and maximum CO concentrations of 200-3800 166 

ppm. In all experiments, the ARISense were placed further away (3-8 m) from the source. ARISense CO sensors 167 

saturated (at 5 ppm) for much of the testing period. Depending on the source type, these experiments ranged from 20-168 

48 hours each. ARI013 was used for 3 experiments (75 hours total) and ARI014 was used for 4 experiments (100 169 

hours total). 170 

 171 

 172 

 173 

 174 

 175 



S6 Details of remote sensing data 176 

MOPITT and MERRA-2 data were obtained for the Village and University sites. The resolution of the satellite 177 

observations meant that Village 1 and Village 2 fell within the same spatial cell. Given this, the Village 1 and Village 178 

2 monthly mean measurements were averaged, and the “Village Mean” was used to compare to the remote sensing 179 

observations. The ARI015 data (University) was located far enough away and was dissimilar enough from the Village 180 

Mean data to be kept separate (Fig. S8). 181 

 182 

 183 

Figure S7: Scatter plot of Village 2 (y-axis) and Village 1 (x-axis) monthly mean CO concentration (calibrated with 184 

the kNN Hybrid model). A one-to-one line is shown as the dotted black line. 185 

 186 

 187 

Figure S8: Scatter plot of University (y-axis) and Village Mean (average from Village 1 and 2) (x-axis) monthly mean 188 

CO concentration (calibrated with the kNN Hybrid model). A one-to-one line is shown as the dotted black line. 189 

 190 



Table S2: NASA Goddard Earth Sciences Data and Information Services Center (GES-DISC) Interactive Online 191 

Visualization and Analysis Infrastructure information used to obtain MOPITT observations for two locations 192 

(“Village Mean” and “University”) in Malawi.  193 
 

Data product Spatial Resolution Temporal 

Resolution 

Date Range 

MOPITT (satellite 

observation): The 

Measurement of Pollution 

in the Troposphere 

(MOPITT) sensor 

launched aboard Terra 

satellite 

Time Series, Area-

Averaged of 

Multispectral CO 

Surface Mixing Ratio 

(Daytime/Descending) 

monthly () 

1° Monthly 2017-07-01 to 

2018-07-31 

     

 
User Bounding Box 

("Village Mean") 

User Bounding 

Box ("University") 

Data Bounding 

Box ("Village 

Mean") 

Data Bounding 

Box 

("University") 

 
35.5555°, -16.0451°, 

35.5555°, -16.0451° 

33.7744°, -14.18°, 

33.7744°, -14.18° 

36°, -16°, 36°, -16° 34°, -14°, 34°, -14° 

 194 

 195 

Table S3: NASA Goddard Earth Sciences Data and Information Services Center (GES-DISC) Interactive Online 196 

Visualization and Analysis Infrastructure information used to obtain MERRA-2 observations for two locations 197 

(“Village Mean” and “University”) in Malawi.  198 
 

Data product Spatial Resolution Temporal 

Resolution 

Date Range 

MERRA-2 (global 

atmospheric reanalysis): 

The Modern-Era 

Retrospective analysis for 

Research and Applications, 

Version 2 (MERRA-2); 

MERRA-2 Model 

M2TMNXCHM v5.12.4 

Time Series, Area-

Averaged of CO 

Surface Concentration 

(ENSEMBLE) 

monthly 0.5 x 0.625 

deg. [MERRA-2 ()] 

0.5° x 0.625° Monthly 2017-07-01 to 

2018-07-31 

     

 
User Bounding Box 

("Village Mean") 

User Bounding 

Box ("University") 

Data Bounding Box 

("Village Mean") 

Data Bounding 

Box 

("University")  
35.5555°, -16.0451°, 

35.5555°, -16.0451° 

33.7744°, -14.18°, 

33.7744°, -14.18° 

35.625°, -16°, 

35.625°, -16° 

33.75°, -14°, 

33.75°, -14° 

 199 



S7 Supporting figures from pre-collocation in North Carolina 200 

 201 

 202 

 203 

 204 

 205 

 206 

 207 

 208 

 

Figure S9: Scatter plots of raw differential voltage data from each gas sensor (rows) in each monitor pair 

(columns) during pre-collocation in NC. Linear fit coefficients (y = mx + b) and the Coefficient of Determination 

(R2) are shown for each monitor-monitor gas sensor pair. Data points are colored by ambient temperature. 

 

 



 209 

 Table S4: ARI013 performance metrics for each gas sensor calibrated by the five modelling approaches used in this 210 

study: k-nearest neighbor (kNN) hybrid, random forest (RF) hybrid, high-dimensional model representation (HDMR), 211 

multi-linear regression (MLR), and quadratic regression (QR). Metrics were calculated only on a subset of the pre-212 

colocation data that was not used to train the models. CO = carbon monoxide, NO = nitrogen oxide, NO2 = nitrogen 213 

dioxide, Ox = oxidants. R2 = Coefficient of Determination, cV = Coefficient of Variation, RMSE = Root Mean Square 214 

Error, Slope and Intercept are the fit regression coefficients from simple linear regression.  215 

ARI013  
    

 Slope Intercept R2  
RMSE 

(ppb) 
cV 

CO           

HDMR 0.66 102 0.63 65 0.30 

MLR 0.66 102 0.63 65 0.30 

kNN Hybrid  0.85 41 0.77 52 0.33 

RF Hybrid 0.78 68 0.78 68 0.33 

QR 0.75 76 0.72 58 0.34 

      

NO      

HDMR 0.77 2 0.77 5 1.1 

MLR 0.52 4 0.51 6 0.9 

kNN Hybrid  0.87 1 0.87 3 1.2 

RF Hybrid 0.80 2 0.86 7 1.1 

      

NO2      

HDMR 0.30 7 0.33 5 0.34 

MLR 0.27 7 0.31 5 0.32 

kNN Hybrid  0.68 2 0.58 4 0.52 

RF Hybrid 0.54 4 0.60 5 0.43 

      

Ox      

HDMR 0.94 1 0.94 3 0.53 

MLR 0.92 2 0.92 3 0.52 

kNN Hybrid  0.99 0 0.96 3 0.54 

RF Hybrid 0.90 2 0.95 4 0.51 

 216 

 217 

 218 

 219 

 220 



Table S5: ARI014 performance metrics for each gas sensor calibrated by the five modelling approaches used in this 221 

study:  k-nearest neighbor (kNN) hybrid, random forest (RF) hybrid, high-dimensional model representation (HDMR), 222 

multi-linear regression (MLR), and quadratic regression (QR). Metrics were calculated only on a subset of the pre-223 

colocation data that was not used to train the models. CO = carbon monoxide, NO = nitrogen oxide, NO2 = nitrogen 224 

dioxide, Ox = oxidants. R2 = Coefficient of Determination, cV = Coefficient of Variation, RMSE = Root Mean Square 225 

Error, Slope and Intercept are the fit regression coefficients from simple linear regression.  226 

ARI014  
    

 Slope Intercept R2  
RMSE 

(ppb) 
cV 

CO           

HDMR 0.72 84 0.70 58 0.31 

MLR 0.72 84 0.70 58 0.31 

kNN Hybrid  0.87 34 0.80 48 0.34 

RF Hybrid 0.80 59 0.81 64 0.34 

QR 0.79 64 0.76 62 0.34 

      

NO      

HDMR 0.81 1 0.82 4 1.2 

MLR 0.62 3 0.68 6 1.0 

kNN Hybrid  0.92 0 0.93 3 1.2 

RF Hybrid 0.82 1 0.88 7 1.1 

      

NO2      

HDMR 0.33 6 0.37 4 0.35 

MLR 0.27 7 0.32 5 0.33 

kNN Hybrid  0.65 2 0.57 4 0.51 

RF Hybrid 0.55 4 0.58 5 0.43 

      

Ox      

HDMR 0.94 1 0.94 3 0.53 

MLR 0.93 2 0.93 3 0.52 

kNN Hybrid  0.98 0 0.96 3 0.54 

RF Hybrid 0.89 3 0.95 4 0.51 

 227 

 228 

 229 

 230 

 231 



Table S6: ARI015 performance metrics for each gas sensor calibrated by the five modelling approaches used in this 232 

study:  k-nearest neighbor (kNN) hybrid, random forest (RF) hybrid, high-dimensional model representation (HDMR), 233 

multi-linear regression (MLR), and quadratic regression (QR). Metrics were calculated only on a subset of the pre-234 

colocation data that was not used to train the models. CO = carbon monoxide, NO = nitrogen oxide, NO2 = nitrogen 235 

dioxide, Ox = oxidants. R2 = Coefficient of Determination, cV = Coefficient of Variation, RMSE = Root Mean Square 236 

Error, Slope and Intercept are the fit regression coefficients from simple linear regression.  237 

 238 

ARI015  
    

 Slope Intercept R2  
RMSE 

(ppb) 
cV 

CO           

HDMR 0.81 55 0.83 47 0.32 

MLR 0.81 55 0.83 47 0.32 

kNN Hybrid  0.91 23 0.88 40 0.34 

RF Hybrid 0.83 51 0.93 68 0.33 

QR 0.88 39 0.93 51 0.35 

      

NO      

HDMR 0.88 1 0.89 3 1.10 

MLR 0.80 1 0.81 4 1.04 

kNN Hybrid  0.95 0 0.92 2 1.15 

RF Hybrid 0.85 1 0.95 3 1.04 

      

NO2      

HDMR 0.33 6 0.34 4 0.33 

MLR 0.26 7 0.27 5 0.30 

kNN Hybrid  0.71 2. 0.65 3 0.49 

RF Hybrid 0.58 4 0.92 5 0.43 

      

Ox      

HDMR 0.90 2 0.90 3 0.42 

MLR 0.84 4 0.85 4 0.40 

kNN Hybrid  0.98 0 0.95 2 0.44 

RF Hybrid 0.84 4 0.99 7 0.37 

 239 



 240 

Figure S10: Intercomparison of (a) ARI013 and ARI015 PM2.5 mass concentration measurements, (b) ARI013 and 241 

ARI015 PM2.5 mass concentration measurements, and (c) ARI014 and ARI015 PM2.5 mass concentration 242 

measurements during pre-collocation in NC. Point color indicates relative humidity conditions. Linear regression 243 

coefficients (y = mx + b), fit line (red line), and the Coefficient of Determination (R2) are shown for each paired 244 

comparison; A one to one comparison line is shown as the dotted black line. The time series of PM2.5 mass 245 

concentration measurements from ARI013, ARI014, and ARI015 (d) shows time alignment. Line color indicates 246 

ARISense unit number.  247 

 248 

 249 

 250 

 251 

 252 

 253 



S8 Supporting figures from OPC-N2 collocation in Malawi 254 

 255 

  256 

Figure S11: Scatter plots of uncorrected PM2.5 mass concentration measurements from the Alphasense OPC-N2 257 

sensor in ARI023 compared to measurements made by the mass-corrected MicroPEM nephelometer during 258 

collocation in Malawi for Test 1 (a), Test 2 (b), and Test 3 (c). Three tests were conducted over 130 hours. Point color 259 

indicates relative humidity conditions.  Linear regression coefficients (y = mx + b), fit line (red line), and the 260 

Coefficient of Determination (R2) are shown for each paired comparison; A one to one comparison line is shown as 261 

the dotted black line.  262 

 263 



  264 

Figure S12: Scatter plots of (a) uncorrected and (b) RH-corrected PM2.5 mass concentration measurements from the 265 

Alphasense OPC-N2 sensor in ARI023 compared to measurements made by the mass-corrected MicroPEM 266 

nephelometer during collocation in Malawi (1-min resolution). Point color indicates relative humidity conditions.  267 

Linear regression coefficients (y = mx + b), fit line (red line), the Coefficient of Determination (R2), root mean square 268 

error (RMSE), and the coefficient of variation (cV) are shown for each paired comparison; A one to one comparison 269 

line is shown as the dotted black line. 270 

 271 

 

Figure S13: Zoom of Figure S12b.  

 



 272 

Table S7: Metrics from the MicroPEM and uncorrected and RH-corrected OPC-N2 observations during collocation 273 

for three averaging intervals. R2 = Coefficient of Determination, cV = Coefficient of Variation, RMSE = Root Mean 274 

Square Error, Slope and Intercept are the fit regression coefficients from simple linear regression. 275 

Averaging Interval Slope Intercept R2 RMSE cV 

1 min uncorrected 1.6 0 0.1 29 2.1 

1 hr uncorrected 0.7 9 0.03 22 1.5 

24 hr uncorrected -0.9 24 0.2 14 0.6 

1 min RH Corrected 0.87 0 0.2 12 1.6 

1 hr RH Corrected 0.43 4 0.06 9 1.1 

24 hr RH Corrected -0.27 11 0.1 6 0.4 

 276 

 277 

 278 

 279 

 280 

Figure S14: Times series of ARI023 uncorrected PM2.5 concentration during colocation in Malawi. Data are colored 281 

by wind direction. Spikes in the time series are associated with widespread biomass cookstove use during the morning 282 

(5-7 AM). Cookstove activity was largely associated with southerly winds. 283 

 284 

 285 



Table S8: Metrics for RH-corrected, 1-hr averaged data stratified by ambient concentration (as measured by 286 

MicroPEM), RH, and wind direction. R2 = Coefficient of Determination, cV = Coefficient of Variation, RMSE = Root 287 

Mean Square Error, Slope and Intercept are the fit regression coefficients from simple linear regression. 288 

 289 

 290 

 291 

 

Concentration (µg m-3) Slope Intercept R2 RMSE cV 

0-5 -2.2 14 0.06 11 1.5 

5-10 1.3 -1 0.03 9 1.2 

10-15 0.5 5 0.00 12 1.0 

15-20 1.3 -11 0.02 10 0.77 

20-105 0.38 3 0.17 19 0.68 

 

RH (%) Slope Intercept R2 RMSE cV 

10 to 20 0.47 0 0.36 8 1.03 

20 to 30 0.53 0 0.73 5 0.90 

30 to 40 0.45 1 0.63 5 0.55 

40 to 50 0.53 2 0.43 5 0.63 

50 to 60 0.47 2 0.38 6 0.60 

60 to 70 0.61 0 0.31 7 0.79 

70 to 80 0.19 10 0.00 13 1.1 

80 to 90 1.2 9 0.03 20 1.1 

 

Wind direction Slope Intercept R2 RMSE cV 

N 0.41 3 0.13 5 0.83 

NE 0.57 0 0.45 5 0.87 

E 0.51 5 0.06 12 1.4 

SE 0.41 5 0.04 11 1.4 

S 0.31 5 0.04 10 1.1 

SW 0.45 3 0.15 6 0.92 

W 0.40 3 0.27 4 0.67 

NW 0.62 1 0.34 4 0.84 
 

 



Table S9: Performance metrics of PM2.5 mass concentration measurements from the Alphasense OPC-N2 (ARI023) 292 

compared to the mass-corrected MicroPEM nephelometer during collocation in Malawi. The number of data points in 293 

all three scenarios are identical, but the assumed kappa value, applied as part of an RH-correction algorithm, is 294 

different. This RH-correction algorithm is based on the kappa value and ‘shifting’ the bin cut-offs (Di Antonio, et al. 295 

2018). In this case, the assumed density is held constant, and the kappa value is changed. κ = 0.6 is the empirical value 296 

which achieved the best agreement between an OPC-N2 and reference data in the UK (Di Antonio (2018)). κ = 1 297 

indicates an aerosol mixture with appreciable amounts of inorganics (theoretical value, based on Petters & 298 

Kreidenweis (2007)). κ = 0.15 was reported to be the continental average value for Africa, based on Pringle et al, 2010 299 

and Pope at. al, 2018 (modelled and observed). Data are 60-min averaged. R2 = Coefficient of Determination, cV = 300 

Coefficient of Variation, RMSE = Root Mean Square Error. 301 

Kappa Slope Intercept R2 RMSE cV 

0.15 0.59 5 0.05 14 1.3 

0.6 0.41 4 0.07 9 1.06 

1 0.32 4 0.08 8 0.97 

 302 

 303 

Table S10: Performance metrics of PM2.5 mass concentration measurements from the Alphasense OPC-N2 (ARI023) 304 

compared to the mass-corrected MicroPEM nephelometer during collocation in Malawi. The number of data points in 305 

all scenarios are identical, but the assumed kappa value, applied as part of an RH-correction algorithm, and the 306 

assumed density is different in each. This RH-correction algorithm is based on the kappa value and ‘shifting’ the bin 307 

cut-offs (Di Antonio, et al. 2018). Species data (κ and density) based on Hagan & Kroll (2020) & Petters & 308 

Kreidenweis (2007). Data are 60-min averaged. R2 = Coefficient of Determination, cV = Coefficient of Variation, 309 

RMSE = Root Mean Square Error. 310 

Aerosol type  Kappa Density (g cm-3) Slope Intercept  R2 RMSE cV 

Ammonium Nitrate 0.67 1.72 0.42 4 0.08 9 1.04 

Dust 0.03 2.6 0.58 6 0.04 32 1.43 

Wildfire 0.1 1.58 1.02 12 0.03 15 1.35 

Background 0.25 1.45 0.35 6 0.03 12 1.32 

 311 



S9 Supporting figures of ARISense performance during Malawi deployments    312 

 313 

Figure S15: Relative humidity (RH) (left) and temperature (right) normalized frequency histograms for the NC pre-314 

colocation (grey) and Malawi deployment (color) environments for all three ARISense monitors. ARI013 was 315 

deployed to the Village 2 site, ARI014 to the Village 1 site, and ARI015 to the University site.  Histogram color 316 

indicates ARISense unit number in deployment environment. 317 

 318 

 319 



 320 

Figure S16: Dew point (left) and pressure (right) normalized frequency histograms for the collocation (grey) and 321 

deployment (color) environments for all three ARISense monitors. ARI013 was deployed to the Village 2 site, ARI014 322 

to the Village 1 site, and ARI015 to the University site.  Histogram color indicates ARISense unit number in 323 

deployment environment. 324 



 325 

Figure S17: Bivariate distributions of ARI014 NO2 differential voltage, RH, and T data collected during collocation 326 

(blue) and deployment (orange) made using kernel density estimation. NC = North Carolina, V1 = Village 1. 327 

Density is reflected in the color scheme; Darker colors indicate more data points in that region. 328 

 329 

 330 

Figure S18: Diurnal trends of calibrated ozone data from ARI013 (Village 2 site) before Dec 2017 (left) and after 331 

Dec 2018 (right). Thick line indicates hourly mean, shaded region indicates interquartile range. Midnight is the zero 332 

hour. Line color indicates model type. Hours are in local time. 333 

 334 



 335 

Figure S19: Bivariate distributions of Ox voltage and temperature data collected during the first half of deployment 336 

(July-November 2017 - orange) and in the second half of deployment (December 2017-July 2018 – blue) for each 337 

ARISense monitor using kernel density estimation. Density is reflected in the color scheme; Darker colors indicate 338 

more data points in that region. 339 



 340 

Figure S20: ARISense temperature (flow cell and box), dew point, relative humidity, pressure and flow rate 341 

normalized frequency histograms for the 130-hour OPC-N2 collocation (ARI023 in grey) in Malawi and the 1-year 342 

deployment in Malawi (ARI013 in green). 343 



 344 

Figure S21: ARISense CO differential voltage, PM2.5 mass concentration, wind speed, and wind direction normalized 345 

frequency histograms for the 130-hour OPC-N2 collocation (ARI023 in grey) in Malawi and the 1-year deployment 346 

in Malawi (ARI013 in green). 347 

 348 

 349 

 350 

 351 

 352 

 353 

 354 

 355 

 356 

 357 

 358 

 359 

 360 

 361 

 362 

 363 

 364 

 365 

 366 

 367 



S10 Supporting figures of ARISense performance over time    368 

 369 

Figure S22: Data recovery rate (%) for the 1-year deployment for each ARISense monitor at their respective sites; (a) 370 

shows data recovery by sensor type where CO =  carbon monoxide, NO =  nitric oxide, NO2 =  nitrogen dioxide, Ox 371 

=  oxidants, and OPC = Optical Particle Counter, (b) shows data recovery by season (using the CO differential voltage 372 

sensor data recovery rate) where DJF =  December-January-February, MAM =  March-April-May, JJA =  June-July-373 

August, and SON = September-October-November. 374 

(a) 

 

(b) 

 



 375 

 376 

Figure S23: Timeseries of temperature data from ARI015 (top), ARI014 (middle), and ARI013 (bottom) from the 377 

full 1-year pilot deployment in Malawi. LUANAR = University, Makaula = Village 1, and Mikundi = Village 2. Gaps 378 

in the timeseries indicate periods when the ARISense were not collecting data. Text labels indicate the causes of data 379 

loss: ‘solar not keeping up’ refers to insufficient solar power in the winter months; ‘logging issues and unrest’ refer to 380 

the combination of corrupted USB devices which failed to log data, and a period of social unrest in the southern region 381 

of the country which created unsafe conditions for our assistant to visit the monitors; ‘collaborator visits for reset’ 382 

indicate when a collaborator visited the village locations to replace the USB devices and update the firmware. 383 

 384 

 385 

 386 

 387 

 388 

 389 

 390 

 391 



S11 Comparison of first and last month of deployment data 392 

Histograms of T and RH from July 2017 and July 2018 suggest the range in conditions was the same for both years, 393 

particularly for temperature (Fig. S24). However, for the Village 2 site, the average and maximum RH were higher by 394 

10-15% in July 2018 compared to July 2017. Further, the mean temperature was 2° cooler in 2018. Conversely, at the 395 

University site in 2018, the average RH was 6% higher, while the minimum RH was 5% lower, compared to 2017 396 

suggesting more variable environmental conditions in the second year. However, for the Village 1 and University 397 

sites, the mean temperatures were identical for both years.  398 

 399 

 400 

Figure S24: Dew point (left), RH (center), and temperature (right) normalized frequency histograms from the first 401 

month of deployment (grey) and last month of deployment (colored) for ARI013, ARI014, and ARI015 at their 402 

respective deployment sites. 403 



 404 

Figure S25: Bivariate distributions of data collected during the first month of deployment (July 2017) and data 405 

collected one year later in the last month of deployment (July 2018) for each ARISense monitor using kernel density 406 

estimation. Density is reflected in the color scheme; Darker colors indicate more data points in that region. 407 



 408 

Figure S26: Diurnal trends of raw, uncalibrated voltage readings from July 2017 (left) and July 2018 (right), for each 409 

ARISense at each respective monitoring location. Thick line indicates hourly mean, shaded region indicates 410 

interquartile range. Midnight is the zero hour. Line color indicates sensor. 411 



 412 

Figure S27: Diurnal trends of kNN-hybrid model calibrated concentration readings from July 2017 (left) and July 413 

2018 (right), for each ARISense at each respective monitoring location. Thick line indicates hourly mean, shaded 414 

region indicates interquartile range. Midnight is the zero hour. Line color indicates sensor. 415 



S12 Supporting figures for post-deployment collocation in North Carolina  416 

 417 

Figure S28: Scatter plots of raw differential voltage data from each gas sensor in ARI014 (y-axis) and ARI013 (x-418 

axis) measured during post-collocation in North Carolina. Linear fit coefficients and the coefficient of determination 419 

(R2) are shown for each monitor-monitor gas sensor pair. Data points are colored by ambient temperature. 420 

 421 

 422 

 423 

 424 

 425 

 426 

 427 



Table S11: ARI013 post-collocation performance metrics for each gas sensor calibrated by the five modelling 428 

approaches used in this study: k-nearest neighbor (kNN) hybrid, random forest (RF) hybrid, high-dimensional model 429 

representation (HDMR), multi-linear regression (MLR), and quadratic regression (QR). CO = carbon monoxide, NO 430 

= nitrogen oxide, NO2 = nitrogen dioxide, Ox = oxidants. R2 = Coefficient of Determination, cV = Coefficient of 431 

Variation, RMSE = Root Mean Square Error, Slope and Intercept are the fit regression coefficients from simple linear 432 

regression. 433 

ARI013 
   

 

 Slope Intercept R2 RMSE (ppb) cV 

CO     
 

HDMR 0.54 63 0.52 128 0.48 

MLR 0.54 63 0.52 128 0.48 

kNN Hybrid  0.54 99 0.66 98 0.37 

RF Hybrid 0.5 104 0.72 99 0.34 

QR 0.80 -57 0.45 179 0.93 

      

NO      

HDMR 0.23 -19 0.04 36.10 -1.18 

MLR 0.16 0.21 0.07 18.70 4.82 

kNN Hybrid  0.012 0.88 0.03 19.60 1.21 

RF Hybrid 0.04 5.36 0.02 16.70 0.818 

      

NO2      

HDMR -0.1 1.1 0.02 13.20 18.19 

MLR -0.2 -0.8 0.06 16.50 -2.17 

kNN Hybrid  -0.04 5.1 0.01 9.60 0.654 

RF Hybrid -0.002 6.5 0.00 8.00 0.376 

      

Ox      

HDMR 0.13 -21.6 0.00 86.27 -8.11 

MLR 0.05 9.67 0.00 49.80 2.9 

kNN Hybrid  0.096 13.11 0.00 44.70 2.26 

RF Hybrid -0.58 72.9 0.00 454.77 7.126 

 434 

 435 

 436 

 437 

 438 

 439 



Table S12: ARI014 post-collocation performance metrics for each gas sensor calibrated by the five modelling 440 

approaches used in this study: k-nearest neighbor (kNN) hybrid, random forest (RF) hybrid, high-dimensional model 441 

representation (HDMR), multi-linear regression (MLR), and quadratic regression (QR). CO = carbon monoxide, NO 442 

= nitrogen oxide, NO2 = nitrogen dioxide, Ox = oxidants. R2 = Coefficient of Determination, cV = Coefficient of 443 

Variation, RMSE = Root Mean Square Error, Slope and Intercept are the fit regression coefficients from simple linear 444 

regression. 445 

ARI014      
 Slope Intercept R2  RMSE (ppb) cV 

CO           

HDMR 0.59 37 0.59 131 0.52 

MLR 0.59 37 0.59 131 0.52 

kNN Hybrid  0.57 80 0.70 100 0.39 

RF Hybrid 0.52 87 0.72 103 0.36 

QR 0.79 -62 0.498 174 0.90 

      

NO      

HDMR 0.27 -15 0.09 30 -1.1 

MLR 0.22 0 0.06 21 8.4 

kNN Hybrid  0.00 01 0.01 20 0.91 

RF Hybrid 0.05 7 0.02 17 0.81 

      

NO2      

HDMR -0.19 8 0.03 12 1.3 

MLR -0.35 3 0.07 17 -53 

kNN Hybrid  -0.1 7 0.02 10 0.92 

RF Hybrid 0.06 8 0.01 8 0.45 

      

Ox      

HDMR -1.4 -31 0.21 97 -0.58 

MLR 0.59 -15 0.23 57 -0.54 

kNN Hybrid  0.46 1 0.33 16 1.03 

RF Hybrid 0.00 9 0.00 20 0.42 

 446 



 447 

Figure S29: Scatter plots of raw differential voltage data from each gas sensor in ARI013 (y-axis) compared to 448 

reference data (x-axis) during post-deployment collocation in North Carolina. 449 



 450 

Figure S30: Scatter plots of raw differential voltage data from each gas sensor in ARI014 (y-axis) compared to 451 

reference data (x-axis) during post-deployment collocation in North Carolina. 452 



 453 

Figure S31: Time series of raw NO2 differential voltage data from ARI013 and ARI014, NO2 reference data (black), 454 

and temperature (red) during post-deployment collocation in North Carolina. 455 

 456 

Figure S32: Time series of raw NO differential voltage data from ARI013 and ARI014 and NO reference data 457 

(black) during post-deployment collocation in North Carolina. 458 



 459 

Figure S33: Scatter plots of kNN-calibrated data from each gas sensor in ARI013 (y-axis) compared to reference data 460 

(x-axis) during post-deployment collocation in North Carolina. Linear regression coefficients (y = mx + b), fit line 461 

(red line), the Coefficient of Determination (R2) are shown for each paired comparison; A one to one comparison line 462 

is shown as the dotted black line. 463 

 464 

 465 



 466 

Figure S34: Scatter plots of kNN-calibrated data from each gas sensor in ARI014 (y-axis) compared to reference data 467 

(x-axis) during post-deployment collocation in North Carolina. Linear regression coefficients (y = mx + b), fit line 468 

(red line), the Coefficient of Determination (R2) are shown for each paired comparison; A one to one comparison line 469 

is shown as the dotted black line. 470 

 471 

 472 

 473 

 474 
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